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Abstract 
The extent of tumor-infiltrating lymphocytes (TILs), along with immunomodulatory ligands, tumor-
mutational burden and other biomarkers, has been demonstrated to be a marker of response to 
immune-checkpoint therapy in several cancers. Pathologists have therefore started to devise 
standardized visual approaches to quantify TILs for therapy prediction. However, despite successful 
standardization efforts visual TIL estimation is slow, with limited precision and lacks the ability to 
evaluate more complex properties such as TIL distribution patterns. Therefore, computational image 
analysis approaches are needed to provide standardized and efficient TIL quantification. Here, we 
discuss different automated TIL scoring approaches ranging from classical image segmentation, where 
cell boundaries are identified and the resulting objects classified according to shape properties, to 
machine learning-based approaches that directly classify cells without segmentation but rely on large 
amounts of training data. In contrast to conventional machine learning (ML) approaches that are often 
criticized for their "black-box" characteristics, we also discuss explainable machine learning. Such 
approaches render ML results interpretable and explain the computational decision-making process 
through high-resolution heatmaps that highlight TILs and cancer cells and therefore allow for 
quantification and plausibility checks in biomedical research and diagnostics.  
  
 
 
Introduction 
Computational image analysis in histopathology has been around for several decades[1, 2]. However, 
its application in diagnostics has been limited, in part due to the very limited capabilities of computer 
hardware restricting slide digitization, processing and analysis as well as storage. In addition, 
qualitative or semi-quantitative visual evaluation mostly sufficed as clinical decision-making was not 
refined to a point where quantitative diagnostic results were required. In recent years, digital 
pathology has received increasing attention because whole slide scanning capabilities and desktop 
computer hardware capable of processing and displaying whole slide images at high resolution have 
become widely available. Moreover, increasingly refined biomarker-based patient stratification calls 
for accurate quantitative evaluation of the relevant histological and molecular properties[3]. 
Particularly because molecular profiling provides allegedly precise numeric results without any 
interrater reliability issues, demands for histopathological evaluation including morphological and 
immunohistochemical evaluation to keep up with these developments of quantitative diagnostics are 
greater than ever. Therefore, systematic manual and computational pathology strategies have been 
proposed to facilitate the quantitative evaluation of both morphological and immunological markers, 
which will be reviewed here.  
 Prominent examples of increased demands for quantitative histopathological evaluation 
include proliferation scoring in breast and other cancers based on Ki67-immunhistochemistry[4] and, 
more recently, immuno-oncology. Here, tumor-infiltrating lymphocytes (TILs) scored on 
Hematoxylin&Eosin (H&E) or immunohistochemistry (IHC) slides have been shown to be not only 
prognostically, but also therapeutically relevant in breast cancer, non-small cell lung cancer and 
melanoma[5-7]. Administration of immune-checkpoint inhibitors is becoming an important part of 
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tumor treatment for an increasing number of tumor entities, but its therapeutic success is dependent 
on several parameters such as the expression of immunomodulatory ligands (such as PD-L1[8]), tumor 
mutational burden and, last but not least, the immune cell infiltrate[9, 10].
 Currently, the most prominent example where TIL scoring is clinically relevant is breast cancer. 
The relevance of immunological parameters for chemotherapy response[11] in triple-negative breast 
cancer has led to phase 1 and phase 2 trials investigating immune checkpoint inhibitors in this subset 
of tumors. These trials have reported objective response rates (ORR) of 5-23%[12-14] for immune 
checkpoint inhibitor monotherapy in the metastatic setting depending on the line of therapy. 
Response rates can be increased for immune checkpoint inhibitors when given in combination with 
chemotherapy, for example a chemo-immunotherapy trial reported ORR of 38% for the combination 
in the metastatic setting (54% in front-line) [15]. Importantly, as for immune checkpoint monotherapy, 
line of therapy was important, with highest ORR in the front-line setting, and responses appeared 
durable[16]. At the 2017 ASCO meeting, a neoadjuvant trial[17] of a combination of immune 
checkpoint inhibitors and chemotherapy has reported increased pathological complete response (pCR) 
rates in triple-negative tumors, but also in luminal breast cancer. Because of the observation made for 
many cancers that while only a minority of tumors responds to therapy, those that do respond typically 
have a substantially improved prognosis[18-20] and because the therapies involved are expensive and 
can have serious toxicities, analytically - and clinically - valid predictive biomarkers are critically 
needed. PD-L1 expression in TNBC has been shown to enrich for responses in some but not all trials[13, 
14], however, preliminary data of TIL as predictive biomarker appear promising in metastatic 
TNBC[21]. As diverse predictors of therapy response have been proposed, combinations of 
quantitative molecular and spatio-morphological parameters should be explored for an improved 
understanding of the biology of tumor-immune-cell interactions and the identification of predictive 
markers. 
 Over the last couple years, different strategies for developing clinically applicable immune 
biomarkers have been proposed. One widely-adopted current diagnostic approach to evaluate tumor-
infiltrating lymphocytes (TILs) on standard H&E sections has been described in guidelines published by 
the International TIL working group. Briefly, TILs are divided into intra-tumoral and stromal TILs that 
are quantitated separately, but any additional spatial distribution patterns are not assessed due to a 
lack of standardized methodology, time and difficulty in making such assessments. The international 
TIL Guidelines are made for visual evaluation of H&E sections by pathologists[22, 23] and their 
robustness has been shown in international ring trials[24]. Quantification of TILs has the potential to 
become a new tumor biomarker as an easy approach to evaluate the immunogenicity of a tumor. 
 However, despite these successful standardization efforts, visual assessment requires 
extensive training by pathologists and inter-observer variability will likely remain an issue given the 
difficulty in quantitatively evaluating histological properties. Automated image analysis methods can 
help improve quantification accuracy, save time and facilitate the analysis of more complex spatial 
patterns and provide standardized metrics for rigorous validation by expert pathologists and quality 
assurance through regulatory agencies.  
 While TIL scoring in conventional H&E sections has the advantage that no additional stains are 
required, lymphocyte subtyping into cytotoxic, helper, regulatory and other T cells not possible in H&E 
may become clinically relevant in the future[25]. Therefore, in addition to TIL detection through 
morphological (H&E) features, subtyping of TILs through immunohistochemistry or more advanced 
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multiplex imaging approaches may become necessary and will also require adequate image analysis 
strategies. 
 In this review, we will discuss computational pathology approaches to TIL scoring with a focus 
on machine learning strategies. Although a broad variety of computational image analysis approaches 
exists, they can be grouped into segmentation and direct classification methods (Fig. 1). While the 
techniques may show some overlap, segmentation primarily refers to approaches that first identify 
shapes and distinct "segments" within images which are then classified in a second step. Direct 
classification refers to machine learning methods that identify objects of interest in images without 
explicit selection of distinct image shapes [26].  
 
Classical image segmentation for TIL detection 
Classical segmentation methods are unsupervised or semi-supervised and require small amounts of 
training data. Such methods include threshold or watershed-segmentation, morphology-based 
segmentation, level set methods, color-space clustering-based approaches [27-30] as well as more 
advanced approaches such as deformable models[31] or metaheuristic-based methods[32]. In general, 
segmentation-based image analysis includes three different aspects. First, the raw segmentation 
process normally identifies edges within the image and thereby subdivides the image into (disjunct) 
"segments". With reference to approaches described below, this step also occurs implicitly in deep 
learning-based segmentation such as the approach by Chen et al. [33]. It was shown that lower layers 
of convolutional neural networks learn to represent edges[34]. Second, this approach identifies image 
segments that are regarded as target objects in the context of the application based on pre-defined 
parameters (i. e. identification of cells in histological images). Finally, features are extracted and target 
objects are classified into lymphocytes, fibroblasts and cancer cells. This can be done with any type of 
classification approach from simple parameter range selection such as cell size or shape features to 
more complex machine learning techniques.  
 An advantage of object detection by classical segmentation is that it requires a limited training 
set. However, the disadvantage is that parameters need to be provided based on a priori knowledge 
and that segmentation results are sensitive to small changes in biological and technical image 
variation. Moreover, the downstream classification accuracy of segmented objects is highly dependent 
on the prior segmentation results which can cause over-fitting and weak performance with external 
datasets. To reduce the limitations due to requirements of a priori knowledge, Wienert et al. proposed 
a minimum-model segmentation approach which minimizes necessary parameters provided a 
priori[35, 36]. However, while this approach can be adapted easily to the identification of lymphocytes 
which have little morphological variability, the classification of the highly variable cancer cells and their 
differentiation from normal cells such as gland and duct epithelia or even stromal cells based on pre-
defined parameters is difficult. Quantification of lymphocytes without the identification of carcinoma 
cells ignores their spatial relationship, but this information may indeed be relevant in the clinical 
setting, because of the typically heterogeneous distribution of TILs. In breast cancer, the majority of 
TILs are located in the tumor stroma, while only a minority of lymphocytes have direct contact with 
tumor cells. The current international guidelines recommend focusing on stromal TILs as a main 
parameter[37] which recognizes the challenges faced by clinical pathologists in reviewing whole slide 
images. 
 However, scoring immune cell abundance in the stroma may not be sufficient in all cases. In a 
recent study, Yuan and coworkers use a segmentation-classification approach to show that spatial 



 5 

clustering was associated with poor recurrence-free survival after endocrine therapy in ER+ breast 
cancer whereas immune cell abundance had no prognostic effect[38]. This study also demonstrates 
that computational image analysis not only allows for automated quantification of tumor-infiltrating 
lymphocytes, but also facilitates the evaluation of the clinical relevance of more complex tissue 
properties such as spatial patterns of TIL distribution. 
 Despite such successful applications of segmentation-based approaches, a general critique of 
segmentation approaches is that they complicate the cell identification process by introducing an 
intermediate segmentation step instead of directly classifying objects or predicting the quantities of 
interest[26]. More specifically, for detecting and quantifying TILs it is sufficient to identify the 
approximate cell coordinates and not necessary to detect their precise cell boundaries as is done in 
segmentation. Therefore, relying on segmentation, one resorts to solving a more complex problem 
than actually needed, and inaccuracies from the segmentation process impact the intended prediction 
for TIL quantities. Direct classification of cells through machine learning-based image analysis 
approaches may improve performance which will be described in the following sections. 
 
Machine learning-based classification 
The term "machine learning" refers to mathematically diverse approaches such as, for instance, 
support vector machines (SVM)[39] or deep neural networks (dNN)[40] to solve prediction problems 
including classification, detection and segmentation. The learning machines, which are 
implementations of classification algorithms, are trained using large sets of (manually annotated) data 
and thereby acquire the ability to predict out-of-sample objects (i.e. the machine was trained to learn 
the properties of the class the object belongs to, but the particular object was not part of the training 
cohort). Machine learning approaches have been proposed for a large variety of histological image 
analysis tasks including, but not limited to, mitosis counting, nucleus detection or identification of 
tissue components (cancer vs normal cells), lymphoma subtyping and lymphocyte detection[41]. State-
of-the-art deep neural networks typically use an input image or tile for training and classification of 
around 300x300 pixels. Larger sizes are possible, in principle, but the size of the input image is 
constrained primarily by the memory of the GPUs (graphics processing unit) necessary to fit the large 
number of feature maps present in deep neural network models. Histological whole slide images at 
40x magnification have sizes of up to 100,000 x 150,000 pixels which adds to the complexity of deep 
learning approaches.  
 Machine learning-based approaches that can offer segmentation rely on conditional random 
fields[42] or deep learning models such as the U-Net[43] or fully convolutional neural nets [44]. 
Combinations of above ideas such as the Deeplab-CRF [33] and derivatives thereof have been 
successfully applied to histopathology [45]. Another fully convolutional network (FCN) approach is 
capable of detecting lymphocytes but also other cell types with location information [46]. Achieving 
high quality (segmentation) results with this group of methods requires large scale datasets for training 
(tens of thousands of cells) with precisely annotated segmentation masks accurately representing the 
cell borders or the exact locations of all cells of the relevant types in training images, which is a 
tremendous manual annotation effort and prone to variation. 
 Other machine learning approaches offer alternatives to segmentation through object 
detection which output bounding boxes around object of interest (cells). These approaches are well-
established in computer vision for the detection of man-made objects or human body parts; examples 
are Fast R-CNN[47], Faster R-CNN[48] and YOLO[49]. However, applying these techniques for 
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identification of cell types, including lymphocytes, may be much more challenging than to man-made 
objects, as histomorphological variability is high (particularly in cancer). Moreover, it is often 
insufficient to classify a single cell without accounting for contextual information. The cell recognition 
process may substantially benefit from using context by looking at the neighborhood of a cell, as done 
in the dNN-based segmentation approaches mentioned before. However, this comes at the cost of 
more complex annotations consisting of precise cell boundaries.  

 Here, machine learning-based image classification approaches that directly identify cells 
without object segmentation may be more efficient. Although these classification-based approaches 
require neither a priori parameters defining the objects to be classified nor precise segmentation 
masks for the training data, training is still a critical component due to the need for weight learning in 
neural networks. Images are sub-tiled into regions and then image tiles are classified with respect to 
the presence or absence of cell types. Depending on the complexity of the task at hand, hundreds to 
thousands of image tiles containing the relevant cell types are needed and the composition of the 
training data set critically influences the classification results. Therefore, a balanced unbiased and 
representative training data set is essential for a good generalization of the machine learning algorithm 
to out-of-sample data. While lymphocytes display relatively little morphological variation, training for 
tumor cell classification is more complex because of the large morphological variability of cancer cells. 
Classification results also depend on technical parameters such as the tile size used for training and 
classification. Image tiles that are large relative to the cell sizes allow for the use of contextual 
information that may often be relevant for classification. However, while machine learning algorithms 
are robust to moderate amounts of label noise, information on the contained cell types may be 
"diluted" if - for a too large fraction of training data - more than one cell type is present (which is 
normally the case for image regions large compared to the size of a single cell). On the other hand, 
using tiles of the size of single cells may be problematic due to a large range of cell sizes from 
pleomorphic tumor cells to lymphocytes apart from the fact that potentially important contextual 
information is ignored. Most current machine learning approaches provide classification results with 
a resolution limited to the tile sizes used during training. Their advantage is a relatively easy annotation 
that requires only the information whether an image patch contains a cell of interest or not in contrast 
to precise annotations of cell shapes, bounding boxes or cell centers. 

 Several approaches for leukocyte/lymphocyte quantification using machine learning have 
been proposed recently. Zhao et al. detect all major subtypes of leukocytes including lymphocytes in 
peripheral blood using convolutional neural networks[50]. However, approaches tested for blood 
smears, which are less complex than histological images, may not generalize to TIL detection in cancer 
tissue specimens. Chen et al. [51] propose a deep neural network approach that combines 
approximate manual labeling of individual cells with prior knowledge about the uniformity of 
lymphocyte size and shape to reduce the training data annotation effort. While designed for 
application in tissue images, their approach is optimized for lymphocyte detection and does not 
necessarily generalize well to tumor cell detection. Similar assumptions were made for the training 
data annotation in the segmentation stage of the approach presented in [46], where all positions of 
cell nuclei were labeled. This work is based on a fully convolutional network for segmenting nuclei 
independent of type with a subsequent classification of small windows around the detected cells. 
Similarly, Garcia et al., 2017 [52] and Chen and Chefd'hotel [53] propose deep convolutional neural 
networks to identify lymphocytes in immunohistological images.  Swiderska-Chadaij et al. [54] 
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compare different patch classification, bounding box detection and segmentation algorithms for 
immunohistochemically stained whole-slide images. The TIL detection capabilities in these three works 
rely, however, on T lymphocyte-specific markers (CD3, CD8) to facilitate the discrimination against 
background, which is substantially less complex than lymphocyte detection in H&E stained 
histomorphological images. 
 
Interpretable machine learning 
Interpretability of classical machine learning approaches for image analysis is normally limited by the 
resolution defined by the size of the image patches used for training. Location information is usually 
achieved by using patch sizes similar to that of cells. For different cell types, such as small lymphocytes 
and larger tumor cells, using dual tile sizes can be an option. A sliding window is moved over a larger 
image. If the scan process "hits" a relevant cell, location information is gained, which can be used to 
generate probability heatmaps showing cell locations[46], where the heatmap resolution depends on 
size and overlap of tiles. However, if contextual information around cells matters, patch sizes need to 
be large relative to cell sizes and with a classification score for each tile, classification results have a 
relatively coarse resolution not allowing the image analyst (pathologist) to understand and check the 
plausibility of the classification result (Figure 2). This fact in combination with the complexity of the 
underlying models has led to the criticism that machine learning is a "black-box" technique, which 
limits its acceptance and is particularly critical in medicine, where physicians are required to carefully 
check the plausibility of the diagnostic results. Even in a possible future fully-automated classification 
approach, the results still need to be reviewed by experienced pathologists. Here, so-called explainable 
machine-learning approaches offer a solution as explained below. 
 Several approaches have been developed to explain machine learning predictions, such as 
Sensitivity, Guided Backprop, LIME, deepLIFT, integrated Gradients or layer-wise relevance 
propagation (LRP, see below). Although they all share the property that they take a prediction for an 
image as input and compute as output scores (often rendered as a heatmap) for regions or pixels of 
the input image attempting to explain the prediction decision, the methods differ substantially. The 
well-known gradient-based methods, for instance, explain which regions are most sensitive to changes 
in the input, which are often different from those regions which contribute most to a prediction.
 The recently developed "layer-wise relevance propagation" (LRP) [55, 56]) traces back the 
contributions of image regions to the classification result and computes pixel-wise scores based on a 
decomposition principle. The results can be rendered in heatmaps that visualize the classification 
result and allow for plausibility checks by overlaying original image with heatmap information (Figure 
2 right panel). The advantage of LRP over the heatmaps obtained by patch-wise classification described 
above is that it is capable of taking larger context into account for the prediction without reducing its 
capacity to provide spatially highly resolved results. Although fully convolutional neural network 
approaches can also provide high resolution (heatmap) results, they require detailed annotations for 
cell shapes and locations which are cumbersome to obtain and subject to inter- and intra-rater 
variability. In contrast to that, LRP neither requires segmentation labels nor cell locations for training. 
Instead the approach relies on only relatively weak supervision on the patch level, e. g. labels indicating 
the presence of at least one lymphocyte or tumor cell. In summary, LRP works with image tiles 
relatively large compared to the objects of interest (i. e. cancer cells, lymphocytes), but outputs high 
resolution heatmaps showing the (pixel-wise) classification scores. These heatmaps allow for an 
accurate localization and quantification of lymphocytes and other cell types and even provide cell 
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shape information (Figure 2). LRP is therefore particularly useful when studying data with strong 
variability with the need to include contextual information and for efficient training data annotation 
and result explanation[57]. LRP implementations have also been shown to work with large and very 
deep neural networks such VGG [58] and DenseNets [59] (cf. [60] and 
https://github.com/albermax/innvestigate for a comparison of different explanation methods). 

 
Performance evaluation and quality assurance in machine learning 
Although machine-learning based image analysis shows less sensitivity towards cellular parameters 
defined a priori as in conventional segmentation as described above, performance depends on 
available training data and technical properties of the ML approach. Therefore, systematic 
performance evaluation and quality assurance standards with benchmark image data sets should to 
be defined and implemented prior to clinical application of machine learning for TIL scoring similar to 
what has been done for microarray data[61].  
 
Estimating tumor-infiltrating lymphocytes from molecular data.  
Besides image-analysis based methods, machine learning-based deconvolution approaches have been 
proposed to estimate the amount and the composition of tumor-infiltrating immune cells from 
molecular profiles. These methods are attractive since they quantify several immune cell populations 
simultaneously, however, they do not allow for a spatial localization of infiltrating immune cells. 
Moreover, the required molecular profiles (mostly gene expression) are in general not available in 
routine diagnostics. As an example, CIBERSORT, one of the most widely used methods, applies support 
vector regression to quantify 22 hematopoietic subpopulations from bulk gene expression data[62]. 
The more recently proposed Microenvironment Cell Populations-counter (MCPcounter) uses specific 
gene expression signatures that allow for the robust quantification of 8 immune cell populations and 
2 stromal cell populations[63]. These methods have been successfully used to infer proportions or 
absolute levels of immune cell populations and their prognostic relevance in large datasets including 
several different cancer-types[63-65]. They are also attractive to study tumor-associated immune cells 
in rare cancer types, where large image-based studies are unfeasible due to sample size restrictions 
(for immunohistochemistry) or where TILs cannot be reliably detected on HE slides, e.g. in small-round-
blue-cell tumors [66] (Bockmayr et al, Oncoimmunology, 2018, in press). 
 Additionally, omics based approaches for the characterization of immune infiltrates have also 
been proposed. For example, a methylation signature that allows for the quantification of TILs in breast 
cancer and other tumors has been recently published[67] and another study relies on multi-omics data 
to identify cytokines to be predictive of TIL levels [68]. 
 
Integration of machine learning-based image analysis with molecular information 
Machine learning-based approaches may also contribute to immuno-oncology by integrating image-
based quantification of TILs, immune cell enrichment analyses corresponding to those described above 
and analyses of local structures in TIL patterns. Yuan et al.[69] showed that an integrated predictor of 
survival in estrogen receptor negative breast cancer combing TIL scores from image based analysis and 
gene expression signatures outperforms classifiers that use only a single data type. Saltz et al. present 
an analysis based on 13 TCGA tumor types [70] and demonstrate that differential morphological 
patterns of TIL distributions exist across cancers which may hint to distinct spatial relations between 

https://github.com/albermax/innvestigate
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different immune cell types in the context of different tumor types and molecular backgrounds. In 
addition to such correlative analysis, we recently developed an approach that extends layer-wise 
relevance propagation (LRP) beyond histological classification to predicting molecular tumor 
properties from morphological tumor properties  available through H&E stains which is the 
computational basis for an integrative, morpho-molecular pathology[57]. 
 
Outlook 
The present studies on TIL analysis illustrate that computational pathology, and in particular, machine 
learning based approaches, will increasingly contribute to a better understanding of histopathological 
images and the relation of spatio-morphological properties, molecular alterations and the immune 
system in cancer with applications in research and diagnostics. Their main contribution for the 
foreseeable future will, however, not be in replacing the pathologist in rendering diagnoses, where the 
(qualitative) decision if a tissue alteration is benign or malignant still is the basis of all oncological 
therapies, but will assist the pathologist in more objectively quantifying additional parameters such as 
the amount and distribution of tumor-infiltrating lymphocytes. With the increasing relevance of 
"omics" analyses including mutational profiling, epigenetics, gene and protein expression, machine 
learning will enhance and make histology "fit" for the age of precision medicine[71]. 
 
 

 
Figure 1: Different approaches of TIL evaluation. Top: classical evaluation of TILs is based on estimation of lymphocyte density, 
for instance, by providing the pathologist with example or simulated images for which quantification are known. Middle: 
Classical segmentation-based approaches rely on pre-defined parameters to model lymphocytes making them susceptible to 
image variability and often do not perform well at cancer cell detection. Bottom: machine learning approaches require large 
training data sets but allow for more efficient detection of lymphocytes and cancer cells than segmentation. 
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Figure 2: Machine-learning-based TIL evaluation. Left: original H&E breast cancer image. Center: machine-learning-based 
classification/scoring of regions with respect to their lymphocyte content (green: no lymphocytes, red: high content of 
lymphocytes). Right: Heatmap explaining classifier decisions with pixel-wise resolution demonstrates how lymphocytes are 
identified and localized based on layer-wise-relevance propagation LRP. Lymphocyte counts can be derived from the heatmap 
or directly during classification (blue to green: no evidence of lymphocytes; yellow to red: increasing evidence of lymphocytes). 
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