Meteoric 10Be as a tracer of subglacial processes and interglacial surface exposure in Greenland

Joseph A. Graly1, Lee B. Corbett2, Paul R. Bierman2, Andrea Lini2, Thomas A. Neumann3

1: Indiana University Purdue University Indianapolis, Dept. of Earth Sciences, Indianapolis, IN, USA
2: University of Vermont, Dept. of Geology, Burlington, VT, USA
3: NASA Goddard Space Flight Center, Greenbelt, MD, USA

Keywords: Quaternary; Interglacials; Glaciation; Glaciology; Greenland; Cosmogenic isotopes; Stable isotopes.

Abstract: In order to test whether sediment emerging from presently glaciated areas of Greenland was exposed near or at Earth’s surface during previous interglacial periods, we measured the rare isotope 10Be contained in grain coatings of sediment collected at five ice marginal sites. Such grain coatings contain meteoric 10Be (10Be$_{\text{met}}$), which forms in the atmosphere and is deposited onto Earth’s surface. Samples include sediment entrained in ice, glaciofluvial sediment collected at the ice margin, and subglacial sediment extracted during hot water drilling in the ablation zone. Due to burial by ice, contemporary subglacial sediment could only have acquired substantial 10Be$_{\text{met}}$ concentrations during periods in the past when the Greenland Ice Sheet was less extensive than present.

The highest measured 10Be$_{\text{met}}$ concentrations are comparable to those found in well-developed, long-exposed soils, suggesting subglacial preservation and glacial transport of sediment exposed during preglacial or interglacial periods. Ice-bound sediment has significantly higher 10Be$_{\text{met}}$ concentrations than glaciofluvial sediment, suggesting that

glaciofluvial processes are sufficiently erosive to remove tracers of previous interglacial exposures. Northern Greenland sites where ice and sediment are supplied from the ice sheet’s central main dome have significantly higher $^{10}\text{Be}_{\text{met}}$ concentrations than sites in southern Greenland, indicating greater preglacial or interglacial landscape preservation in central Greenland than in the south. Because southern Greenland has more frequent and spatially extensive periods of glacial retreat but nevertheless has less evidence of past subaerial exposure, we suggest that $^{10}\text{Be}_{\text{met}}$ measurements in glacial sediment are primarily controlled by erosional efficiency rather than interglacial exposure length.

Introduction

For ice sheets, such as the Greenland Ice Sheet, the links between climate forcings, ice sheet response, and resultant sediment fluxes has generally not been well resolved (Bierman et al., 2016). Past interglacial periods, such as the mid-Holocene and marine isotope stage (MIS) 5e, had reduced global ice volumes compared to present (Lisiecki and Raymo, 2005), but it remains uncertain how much of the ice volume change came from changes to the Greenland Ice Sheet (e.g. Stone et al., 2013). The sediment flux from erosion under glaciers and ice sheets is highly variable, with some regions experiencing considerable erosion (Hallet et al., 1996) and others experiencing very little (Bierman et al., 1999). Over the Quaternary period, substantial volumes of sediment have fluxed from the Greenland Ice Sheet to the oceans and shelf, although the total volume and chronology is not well constrained (Laine, 1980; Molnar, 2004). Modeling efforts can produce variable results depending on the assumed climate forcings (Goelzer et al., 2013) and have only
limited constraint from the offshore sediment record (Dowdeswell et al., 2014). New
approaches for assessing past changes in ice sheet extent in and erosive response are needed.

Here, we seek to add new constraints on the past exposure history and erosive
behavior of the Greenland Ice Sheet by measuring isotopic and geochemical tracers of
previous surface exposure. Our study is based on the premise that analyses of previously
exposed sediment at the present-day glacial margin can identify up-glacier regions where
the ice sheet was previously absent and subsequent erosion was insufficient to fully remove
such tracers from the landscape and thus from the ice sheet’s sediment load. Meteoric ^{10}Be
($^{10}\text{Be}_{\text{met}}$) is the primary tracer we employ; it is a long-lived cosmogenic isotope that is
easily incorporated into the grain coatings of sediment and accumulates during periods of
surface exposure (Graly et al., 2010; Pavich et al., 1984). We also report organic carbon
and total nitrogen measurements as indicators of soil formation and thus surface exposure
(Barjes, 1996). We measured the stable isotope composition of water in the ice surrounding
some of our samples in order to infer sediment entrainment mechanisms and therefore
erosional processes (Sugden et al., 1987).

Background

Glacial-Interglacial History

The Greenland Ice Sheet is assumed to have responded to the same climate forcings
that cause global glacial-interglacial cycles (Huybrechts, 2002), but the differences
between Greenland’s response and global average response are not known (Schaefer et al.,
2016). According to the marine benthic stable isotope record, global ice volume was less
than the mid-Holocene level for only ~40,000 of the past 2.1 million years (Bintanja and
van de Wal, 2008). This brevity of past interglacial global ice volume lows is independently confirmed by a variety of paleoclimatic indicators, such as speleothems, pelagic dust flux, and coastal highstand features (e.g. Grant et al., 2014; Rohling et al., 2017). In some cases, these records suggest even briefer interglacial highstands than the marine benthic stable isotope record implies (Rohling et al., 2010). This corresponds with a comparable lack of evidence of extended surface exposure after ~1.8 Ma in East Greenland’s offshore record (Bierman et al., 2016). However, other evidence suggests the Greenland Ice Sheet may have been more responsive to climatic optima than the global records suggest. Measurement of ^{10}Be and ^{26}Al in cores of the sub-ice rock below the GISP2 ice core are consistent with either numerous or extensive periods of interglacial exposure in central Greenland, beginning in the mid-Pleistocene (Schaefer et al., 2016). Organic carbon and meteoric ^{10}Be in the basal sediment of the GISP2 core suggest preservation of a well-developed preglacial or interglacial soil in central Greenland (Bierman et al., 2014). Mid to later Pleistocene climatic optima are suggested by the presence of boreal-forest remains in sub-ice sediment from southern Greenland (Willerslev et al., 2007).

Meteoric ^{10}Be systematics

High concentrations of $^{10}\text{Be}_{\text{met}}$ are generally found in the chemically weathered portions of well-developed soils. $^{10}\text{Be}_{\text{met}}$ forms in the atmosphere from the spallation of nitrogen and oxygen by cosmic rays and has production rates on the order of 10^6 atoms·cm$^-2$·a$^-1$; it differs in production location from \textit{in situ} ^{10}Be, which forms from atomic spallation within mineral lattices and has depth integrated production rates at sea level on the order of 10^5 atoms·cm$^-2$·a$^-1$ (Lal and Peters, 1967). Once formed, $^{10}\text{Be}_{\text{met}}$ sorbs to aerosol
particles and is transported by atmospheric circulation, eventually coming to Earth through
toxic or dry deposition (Graly et al., 2011; Heikkilä et al., 2008). In general, \(^{10}\text{Be}_{\text{met}}\) strongly
adsorbs to sediment (You et al., 1989) and accumulates within the soil column (Pavich et
al., 1984). However, Be is mobile, moving between adsorbed, clay, oxide, or oxyhydroxide
phases with evolving soil chemistry (Bacon et al., 2012; Barg et al., 1997), typically
following clay illuviation to accumulate in greatest concentrations within the B-horizon at
depths < 2-3 m (Graly et al., 2010). In deep continental regolith, appreciable concentrations
of meteoric \(^{10}\text{Be}\) are found to depths of 10-20 m (Brown et al., 1988).

If similar deeply weathered regolith formed in preglacial Greenland, any regolith
remaining after glaciation likely contains at least some \(^{10}\text{Be}_{\text{met}}\). In contrast, the duration of
brief interglacial periods (<10 ka) is insufficient for substantial clay illuviation or transport
of \(^{10}\text{Be}_{\text{met}}\) beyond the top meter of the soil profile (Harden et al., 2002; Pavich and Vidic,
1993). Though the systematics of \(^{10}\text{Be}_{\text{met}}\) in soils have been mostly studied in the mid-
latitudes, \(^{10}\text{Be}_{\text{met}}\) data from high latitudes also show long-term transport of the isotope to
depth (Ebert et al., 2012). High latitude flux of \(^{10}\text{Be}_{\text{met}}\) to marine sediment has been
measured in glaciomarine settings near Greenland and Antarctica, though its relationship
to terrestrial soil concentrations is complicated by the scavenging of \(^{10}\text{Be}_{\text{met}}\) from ocean
water (Simon et al., 2016; Sjunneskog et al., 2007; Yokoyama et al., 2016).

Past studies have analyzed \(^{10}\text{Be}_{\text{met}}\) concentrations in terms of a total soil inventory
that uses the total abundance of the isotope within a soil column to assess surface ages and
erosion rates (e.g. Pavich et al., 1986). The \(^{10}\text{Be}_{\text{met}}\) inventory is related to soil exposure age
via:

\[
N = \frac{Q}{\lambda} \left(1 - e^{-\lambda t}\right)
\]
where N is the inventory measured in atoms·cm$^{-2}$, t is the exposure period in years, λ is the 10Be disintegration constant of $5.0 \cdot 10^{-7}$ yr$^{-1}$ (Korschinek et al., 2010), and q is the average annual flux (atoms·cm$^{-2}$·a$^{-1}$) of 10Be$_{met}$ atoms into the soil profile.

Holocene 10Be$_{met}$ deposition rates in central Greenland are approximately $3.5 \cdot 10^5$ atoms·cm$^{-2}$·a$^{-1}$ based on measurements of 10Be$_{met}$ in ice cores (Finkel and Nishiizumi, 1997). In eastern and southern Greenland, Holocene 10Be$_{met}$ fluxes are up to 2 times larger, primarily due to higher mean annual precipitation (Sturevik-Storm et al., 2014). Eemian (MIS 5e) deposition rates were 30% higher; $-4.2 \cdot 10^5$ atoms·cm$^{-2}$·a$^{-1}$ is recorded in the NEEM core, in north-central Greenland (Sturevik-Storm et al., 2014). The Eemian 10Be$_{met}$ data plot along the same accumulation-flux trend that is seen in the Holocene data, strongly suggesting that the increase in 10Be$_{met}$ deposition is precipitation controlled. We do not know how closely the 10Be$_{met}$ deposition rates of previous interglacial periods resembled mid-Holocene or Eemian fluxes.

Because 10Be$_{met}$-bearing aerosols and dust are deposited on the ice sheet (Baumgartner et al., 1997), glacial ice is also a potential source of 10Be$_{met}$ to the subglacial environment. In the ice sheet ablation zone, surface meltwater is routed to the bed and forms high discharge, erosive streams (Alley et al., 1997). Such streams are likely to erode and transport the subglacial sediment they encounter, and therefore are not likely to be a major source of 10Be$_{met}$ to subglacial sediment. In regions where surface melt water does not readily reach the bed, basal melt is the only source of subglacial water. With geothermal heat fluxes implying basal melt rates of ~ 5 mm·a$^{-1}$ (Greve, 2005), ice density of 0.9 g·cm$^{-1}$, and Pleistocene 10Be$_{met}$ concentrations in ice of $\sim 4 \cdot 10^4$ atoms·g$^{-1}$ (Finkel and Nishiizumi, 1997), the flux of 10Be$_{met}$ from basal melt is approximately $1.8 \cdot 10^4$ atoms·cm$^{-2}$·yr$^{-1}$. This
is more than an order of magnitude lower than the interglacial 10Be$_{\text{met}}$ flux from precipitation at the ice sheet surface documented in ice cores. Because surface 10Be$_{\text{met}}$ primarily runs off in erosive meltwater streams that would remove sediments that acquire the isotope and basal 10Be$_{\text{met}}$ is fluxed to the bed in minimal quantities, we conclude that 10Be$_{\text{met}}$ in sub-ice sediment will predominately accumulate during interglacial surface exposure or else be inherited from preglacial regolith (Figure 1).

Subglacial Processes

Soil, sediment, and rock at the ice sheet’s bed may be transported by glaciofluvial subglacial streams, subglacial till shearing, or by sliding of basal ice that has entrained debris through refreezing processes (Alley et al., 1997). At the ice sheet margins, sediment carried by water and bound in ice are the major components of sediment flux (Knight, 1997; Knight et al., 2002). Subglacial fluvial processes have the greatest erosive power and have water and sediment residence times of hours to days (Alley et al., 1997; Chandler et al., 2013). Ice-bound sediment is transported by basal sliding, which is typically on the order of 10 m·a$^{-1}$, but varies substantially both spatially and temporally, in that major outlet glaciers and large melting events induce substantial sliding accelerations (Joughin et al., 2008; Joughin et al., 2010). Residence times of sediment in basal ice layers are therefore on the order of 10^3 to 10^4 years when sediment is transported over distances on the scale of tens to hundreds of km. Sediment is incorporated into the basal ice layer through regelation (Hubbard and Sharp, 1993; Philip, 1980) or freeze-on (Alley et al., 1998), and can be released from the basal ice layer if the basal melt rate exceeds the rate of freeze-on. If the hydrologic and glaciological conditions allow for the transfer of sediment between
the basal ice layer and underlying till, the total sediment transport time from the point of origin to the margin may be longer than the transport time of basal ice.

The history and origin of the preglacial or interglacial soil material collected at the margin differ appreciably between ice-bound and glaciofluvial sediment samples. During regelation entrainment, ice-bound sediment is not completely homogenized by the entrainment mechanism, as the freezing front either advances or retreats through a static sediment profile based on thermal and glaciological factors (Rempel, 2008). This suggests that the ice-bound sediment samples may represent discrete natural sampling of the underlying sediment, and a 10Be$_{net}$ measurement could represent a preserved point in the soil column from a preglacial landscape. In contrast, glaciofluvial samples are likely to be integrated from a range of sediment depths and distances from the current ice margin (Walder and Fowler, 1994), and result in 10Be$_{net}$ concentrations that are spatially averaged over the catchment area of the subglacial stream. Sampling detrital material imparts only an imperfect knowledge of the transport and source histories; material we analyzed could have been sheared as till prior to regelation entrainment, or entrained for a time prior to basal melting and fluvial transport.

The process of regelation creates ice that is often enriched in heavy stable isotopes of oxygen and hydrogen compared with the water from which it is derived (Jouzel and Souchez, 1982). Past studies of marginal basal ice in western Greenland have primarily found isotopic patterns consistent with regelation entrainment in an open system, with loss of residual meltwater to the basal hydraulic system (Knight, 1989; Sugden et al., 1987). Due to the mass difference between heavy and light isotopes of O and H, the open system regelation enrichment effect is more strongly expressed by δ^{18}O than δ^2H, resulting in
shallower two-isotope slopes than are found in meteoric water (Jouzel and Souchez, 1982). Experimental and theoretical findings predict that open-system regelation of Greenland Ice Sheet ice would produce a $\delta^2H/\delta^{18}O$ enrichment trend with a slope of approximately 5.5-6.0, depending on the initial isotopic composition of the ice (Iverson and Souchez, 1996; Lehmann and Siegenthaler, 1991). Based on the $\delta^2H/\delta^{18}O$ enrichment slope of 8 found in precipitation (Craig, 1961), deuterium excess is defined as $\delta^2H - 8 \cdot \delta^{18}O$. Excess values of 10 are considered typical of meteoric precipitation (Dansgaard, 1964); excess values found in regelation enriched ice are well-below meteoric values (Sugden et al., 1987).

Study Sites

Samples were collected from five study areas in coastal Greenland: Upernavik (72.6° N, 53.6° W), Illulissat (69.4° N, 50.3° W), Kangerlussuaq (67.1° N, 50.0° W), Tasiilaq (65.6° N, 38.5° W), and Narsarsuaq (61.2° N, 45.0° W) (Figure 2). Samples from Upernavik and Ilulissat were collected from flowlines that drain the main dome of the Greenland Ice Sheet to the west and originate near Summit. The Tasiilaq and Kangerlussuaq samples are from flowlines that drain the southern dome from the east and west sides respectively; Narsarsuaq is in the far south. All samples were collected from land-terminating ice. At sites that contain major marine-terminating outlet glaciers, such as Ilulissat and Tasiilaq, our samples were collected from smaller, land-terminating sites.

There is substantial variation in topographic character between the five sites. Both Upernavik and Narsarsuaq are characterized by deep fjords dissecting relatively level uplands. At Upernavik, relief is on the order of 1000 m; at Narsarsuaq, relief is on the order of 1500 m. Ilulissat and Kangerlussuaq contrast with these sites; they are characterized by
a low relief (<500 m) landscape of glacially rounded hills. Tasiilaq is intermediate to the
other sites, both in relief and in dissection of the landscape.

The upland areas of the high-relief sites are generally consistent with minimal
glacial erosion. In the Upernavik area, the upland bedrock has a complex in situ
cosmogenic isotope exposure history, indicating subglacial erosion rates insufficient to
remove rock material at appreciable rates (Corbett et al., 2013). Low rates of subglacial
erosion are also suggested by the uplands’ highly weathered rock surfaces, including
exfoliation sheets, tors, and weathering pits. Some of the highest elevation sites between
Kangerlussuaq and the coast also have 10^5 year in situ cosmogenic isotope histories, though
most of the landscape records only Holocene exposure due to efficient subglacial erosion
during the last glacial period (Rinterknecht et al., 2009; Roberts et al., 2009). Ilulissat lacks
substantial inheritance of in situ cosmogenic nuclides from prior periods of exposure, thus
indicating deep erosion during glaciation, even in upland areas (Corbett et al., 2011).

Though cosmogenic isotope measurements in the upland bedrock of Narsarsuaq suggest
only Holocene exposure, in situ 10Be concentrations in fluvial sediment from non-glaciated
catchments draining upland areas found higher concentrations near Narsarsuaq than near
Tasiilaq or Kangerlussuaq (Nelson et al., 2014). The Narsarsuaq fluvial sediment sample
from the non-glacial stream with the highest in situ 10Be concentration was included in this
study (GLX18).

Low-lying regions and fjords at all of the study sites appear to have simple
exposure histories that indicate rapid ice sheet retreat between 9 and 11 ka (Carlson et al.,
2014; Corbett et al., 2013; Kelley et al., 2013; Roberts et al., 2008), though early to middle
Holocene minor readvances are suggested at some sites (e.g. Carlson et al., 2014; Levy et
al., 2012; Young et al., 2013). Where the upland and lowland histories differ, it is likely that cold-based ice preserved the landscape on the highlands, while warm-based ice carved the fjords.

The sites also differ in distance from the ice sheet margin to the coast, both presently and in past interglacial periods. The Kangerlussuaq region is presently the furthest from the coast (~150 km), and most models show significant retreat in this sector of the Greenland Ice Sheet both during the mid-Holocene and the MIS 5e interglacial periods (Stone et al., 2013). The high relief sites (Upernavik and Narsarsuaq) are modeled to have less interglacial retreat (e.g. Otto-Bliesner et al., 2006).

Methods

Sampling Strategy

We analyzed three different types of samples: subglacial sediment extracted below ice boreholes, ice-bound sediment collected at the glacial margin, and glaciofluvial sediment collected from outlet streams at or near the active ice margin. Samples of subglacial sediment accessed through hot water drilling at ablation zone sites were collected in 2011 by independent drill teams working inland from Kangerlussuaq (n=2) (Graly et al., 2016) and Ilulissat (n=2) (Ryser et al., 2014). The Kangerlussuaq samples were collected by means of a downhole sampler; the Ilulissat samples were sediment that clung to the drill stem and were recovered upon its removal from the borehole.

Ice-bound sediment samples were collected in 2008 from Kangerlussuaq (n=10), Ilulissat (n=8), and Upernavik (n=16). At one Upernavik site, samples were collected in a vertical transect across the basal ice layer, allowing comparison of the measured isotope
data to ice depth. Ice-bound samples were removed with ice axe or chisel, stored in sealed Nasco whirlpaks, and melted in the field. In the laboratory, the meltwater was decanted, and the sediment dried. The ice-bound and subglacial samples were not sorted by grain size but are predominately fine sand and silt (Graly et al., 2016).

Nine samples of outlet stream glaciofluvial sediment were collected in 2011 and 2012 from Narsarsuaq (n=2), Tasiilaq (n=2), and Kangerlussuaq (n=5). The glaciofluvial samples have been previously analyzed for \textit{in situ} ^{10}Be and, in some cases, ^{26}Al (Bierman et al., 2016; Nelson et al., 2014). The glaciofluvial samples were taken from the 250-800 µm grain size fraction, in which \textit{in situ} ^{10}Be and ^{26}Al were also measured (Nelson et al., 2014).

Stable Isotopes

We measured $\delta^{18}\text{O}$ in the meltwater from the ice-bound samples using equilibration with CO$_2$ gas (Socki et al., 1992), and measured $\delta^{2}\text{H}$ using H$_2$ extraction by elemental zinc (Coleman et al., 1982). Results are reported using the standard delta (δ) notation, in units of $\%$ relative to Vienna Standard Mean Ocean Water (VSMOW). Organic carbon (C) and total nitrogen (TN) were analyzed by combusting sediment in sealed tin capsules and analyzing the gas released in a CE Instruments NC 2500 elemental analyzer calibrated with OAS B-2152 (1.65% ± 0.02 C, 0.14% ± 0.01 N) and OAS B-2150 (6.72%±0.17 C, 0.50%±0.01 N) standards and using Eager 200 data handling software. The precision of the analyzer is ~1% of the quantity measured for C, and ~0.5% for TN.

^{10}Be measurements
Meteoric ^{10}Be was isolated using total fusion of sediment pulverized to fine silt, in a modification of the KHF_2 flux method (Stone, 1998); the ice-bound samples were extracted in 2009 and measured in 2010; the glaciofluvial and drill samples were extracted and measured in 2017. We added \sim300 μg ^9Be as a carrier (Tables 1 and 2). The $^{10}\text{Be}/^9\text{Be}$ ratio was measured by accelerator mass spectrometry at Lawrence Livermore National Laboratory and referenced to primary standard 07KNSTD3110, with an assumed $^{10}\text{Be}/^9\text{Be}$ ratio of $2.85 \cdot 10^{-12}$ (Nishiizumi et al., 2007). A full process blank was measured with each batch of 16 samples. The $^{10}\text{Be}/^9\text{Be}$ of processed blanks was $1.51 \cdot 10^{-14} \pm 1.22 \cdot 10^{-15}$ for the samples measured in 2010 ($n = 3$, average, 1SD) and $2.55 \cdot 10^{-14} \pm 1.06 \cdot 10^{-15}$ for the samples in 2017 ($n = 1$). However, in the batch of samples processed in 2017 (Table 2), five sample had values below detection limits, have their measured ratios either similar to or less than the blank. Therefore, to make a blank correction to the other measured ratios in the batch we used an average of the blank ratio and those of these five samples. In both cases, we subtracted the average ratio representative of the blank and propagated uncertainties in quadrature.

Transport time estimates

At the locations where we sampled ice-bound sediment, we estimated transport rates along the associated modern flowlines. The estimates are based on two dimensional geophysical reconstructions of the modern flowlines (Wang et al., 2002) in which each flowline is derived from 1 km horizontal grid components and 100 vertical layers. Given that the reconstructed vertical velocity is small compared to the horizontal velocity, only the horizontal velocity was used to determine transport times. The total time required to
transport sediment from a position in the interior to the margin was calculated by summing the inverse of the horizontal flow rates for the basal ice layer along these flowlines. As noted above, this approach neglects the time the sediment may spend sequestered with other basal material due to the cycling of sediment between the bed and the overlying ice. As such, transport times are likely minima.

Statistical Methods

To compare meteoric 10Be data between sites and sampling techniques, we determined statistical significance through an unequal-variance, two-tailed, log-normal t-test. We used a maximum likelihood estimation to constrain the maximum 10Be$_{met}$ concentration in ice-bound sediment at each of our sites. We did not attempt to constrain this value for glaciofluvial sediment or subglacial sediment, as the sample size was much smaller. We considered the ice-bound samples to be discrete and random samples of the underlying sediment. Assuming a log-uniform distribution of 10Be$_{met}$ concentration within a soil profile, the maximum likelihood estimator of the maximum is the observed value (Ruggles and Brodie, 1947). An unbiased estimate of the maximum was calculated via:

$$M_{ub} = e^{\log M + \frac{\log M - \log m}{k-1}}$$

where M_{ub} is the unbiased estimate of the maximum, M is the observed maximum, m is the observed minimum, and k is sample size. Uncertainty was calculated as the difference between the unbiased (M_{ub}) and maximum likelihood (M) estimates.

To estimate the 10Be$_{met}$ inventory of the source soils from our estimates of the soil maximum 10Be$_{met}$ concentration, we employed the correlation between maximum 10Be$_{met}$ soil concentration and total 10Be$_{met}$ inventory following Graly and others (2010). Though
the correlation curve of Graly and others (2010) was constructed using primarily mid-
latitude soils, we added recent measurements from arctic soils in Sweden (67° N) (Ebert et
al., 2012) and Alaska (70°N) (Bierman et al., 2014). Errors were propagated from both the
maximum concentration estimate and the correlation with inventory to establish
uncertainty in the 10Be$_{met}$ inventory of the sources for ice-bound sediment. As past
interglacial 10Be$_{met}$ fluxes to Greenland have only been assessed at a few, primarily
Holocene locations (Sturevik-Storm et al., 2014), there is insufficient information to assign
an uncertainty to past interglacial or pre glacial deposition rates. So, we used the average
value from mid-Holocene sections of the GISP2 core. Only uncertainty in the value of the
inventory (N) was propagated through equation 1 to solve for exposure time (t). Because
the maximum-inventory correlation was developed on continuously exposed soils, decay
during burial can result in an overestimate of the 10Be$_{met}$ soil inventory. In determining
whether 10Be$_{met}$ concentrations could have formed during the interglacial periods of the
past 500,000 years, the effect of decay is inconsequential compared with other uncertainties.

Results

Measured meteoric 10Be concentrations (n=48) vary from $<10^6$ to $2.1\cdot10^8$ atoms·g$^{-1}$
(Figure 3, Tables 1 and 2). Unequal variance t-tests show that ice-bound sediment
contains significantly more 10Be$_{met}$ than glaciofluvial sediment (Table 3). Significant
differences between ice-bound and glaciofluvial sediment are also found at Kangerlussuaq
alone, where both types of sediment were collected (Figure 3, Table 3). The glaciofluvial
10Be$_{met}$ concentrations are significantly lower in Kangerlussuaq than at Narsarsuaq and
Tasiilaq, and the ice-bound 10Be$_{met}$ concentrations are significantly lower at Kangerlussuaq
than at Upernavik and Ilulissat. Samples from Upernavik and Ilulissat are not statistically
distinguishable from each other; nor are samples from Tasiilaq and Narsarsuaq (though
n=2 at these sites). The ice-bound sediment at the GISP2 base (Bierman et al., 2014) is
significantly enriched in $^{10}\text{Be}_{\text{met}}$ compared to any of the marginal sites (Figure 3, Table 3).

In the ice-bound samples, the $\delta^{18}\text{O}$ values of the ice range from -38.9‰ to -24.3‰;
$\delta^2\text{H}$ values range from -273.8‰ to -195.1‰ (Table 4). Average deuterium excess is 3.1‰
(Table 4). At the Upernavik transect site, the $\delta^2\text{H}/\delta^{18}\text{O}$ slope is 5.85 ± 0.83 (Figure 4). At
the Upernavik transect site, deuterium excess, organic C concentration, and meteoric ^{10}Be
concentration are highest at top of the basal ice layer and decrease toward the bed (Figure
5).

In most (30 of 40) of the ice-bound sediment samples, organic carbon
concentrations are <0.1%. The remaining samples (n=10) have organic C concentrations
from 0.16% to 1.53% (Table 4). The highest measured $^{10}\text{Be}_{\text{met}}$ concentrations corresponds
to the highest measured organic carbon concentration, and the two values are correlated
within the Upernavik transect site ($R^2 = 0.88$; Figure 5). However other sites, especially
Ilulissat, have considerable $^{10}\text{Be}_{\text{met}}$ concentrations (up to $1.5 \cdot 10^8$ atoms·g$^{-1}$) without any
detectable organic carbon. Total nitrogen content also correlates weakly ($R^2 = 0.55$, p=0.05)
with $^{10}\text{Be}_{\text{met}}$ content across the data set (Table 3). In the 10 samples with higher organic C
concentrations, the C/N ratio is 7.5 ± 2.0 (S.E.).

At each of the flowlines for which we analyzed ice-bound sediment, modeled
sediment evacuation times were 10^3-10^4 years within ~100 km of the modern ice margin
and increased exponentially to ~10^5 years if sediment were sourced near the continental
flow divide (Figure 6).
Using Eq. 2 and the measured maximum ^{10}Be concentrations of $4.63 \cdot 10^7$, $1.46 \cdot 10^8$, and $2.08 \cdot 10^8$ atoms·g$^{-1}$ at Kangerlussuaq, Ilulissat, and Upernavik, respectively, we estimate the maximum ^{10}Be concentration in a uniform source for each site is $6.50 \pm 1.90 \cdot 10^7$, $2.40 \pm 0.98 \cdot 10^8$, and $2.69 \pm 0.62 \cdot 10^8$ atoms·g$^{-1}$, respectively.

The strong correlation between maximum $^{10}\text{Be}_{\text{met}}$ concentration and total soil inventory (Graly et al., 2010) allows us to infer source $^{10}\text{Be}_{\text{met}}$ inventories from the estimated maximum concentrations (Figure 7). The newly added arctic soil measurements fit well within the mid-latitude trend. Propagating uncertainty through the correlation, we infer meteoric ^{10}Be inventories in the source sediment for the ice-bound sediment at Kangerlussuaq, Ilulissat, and Upernavik of $8.17 \pm 3.46 \cdot 10^9$, $4.18 \pm 2.32 \cdot 10^{10}$, and $4.82 \pm 1.73 \cdot 10^{10}$ atoms·cm$^{-2}$, respectively. If deposition rates from the mid-Holocene are taken to represent conditions during earlier interglacial periods, we infer minimum exposure times (that do not account for loss to decay during ice cover) of 90-197 ka at Upernavik, 54-195 ka at Ilulissat, and 13-34 ka at Kangerlussuaq.

Discussion

Our isotopic data lead to three principal observations: (1) The maximum observed $^{10}\text{Be}_{\text{met}}$ concentrations are comparable to those found in well-developed mid-latitude soils (Graly et al., 2010). (2) Ice-bound sediment has significantly more $^{10}\text{Be}_{\text{met}}$ than glaciofluvial samples. (3) Sediment transported by the northern outlet glaciers that drain the Greenland Ice Sheet’s main dome have significantly higher $^{10}\text{Be}_{\text{met}}$ concentrations than sediment transported by ice from the ice sheet’s southern dome.
Exposure time and erosion estimates for ice-bound samples

The high concentrations of $^{10}\text{Be}_{\text{met}}$ in most ice-bound sediment from Upernavik and Ilulissat likely developed over extended periods of preglacial and/or interglacial exposure. The global benthic δ18O record suggests that during the past Ma, global ice volume was less than present during four brief periods: the mid-Holocene (8 ka – 3 ka), the Eemian (MIS 5e – 127 ka – 116 ka), MIS 9 (333 ka – 323 ka), and MIS 11 (417 ka – 397 ka) (Bintanja and van de Wal, 2008). Though there are uncertainties in all global sea level reconstruction approaches, independent alternate methods indicate comparably brief interglacial periods in the late Pleistocene (Rohling et al., 2010). The decay-corrected sum of these periods is equivalent to ~40 ka of continuous exposure, less than the minimum surface exposure time that we infer from $^{10}\text{Be}_{\text{met}}$ for Ilulissat of 54 ka and far less than the Upernavik minimum exposure time of 90 ka. This means that the analyzed sediment from these two sites very likely records an exposure history beyond the global ice minima of the past million years.

Though it is not possible to attribute the observed $^{10}\text{Be}_{\text{met}}$ concentrations to any particular exposure, decay, and erosion history, the long minimum exposure times we calculate suggest that some of the $^{10}\text{Be}_{\text{met}}$ in the ice-bound sediment from Ilulissat and Upernavik likely remains from preglacial soils. Alternatively, the Greenland Ice Sheet might have had substantially longer periods of interglacial exposure than suggested by global records; exposure length would have to be more than twice the global average to even reach the Upernavik minimum. Prior to glaciation, continental surfaces probably developed deep soil profiles with tens of meters of regolith (Lidmar-Bergström, 1997). The preservation of such preglacial sediment requires integrated Quaternary subglacial erosion
rates be $<10 \text{ m} \cdot \text{Ma}^{-1}$ in the source regions of the ice-bound sediment at the northern sites, Upernavik and Ilulissat.

The last sustained period when global ice volume was reduced below present levels occurred ~ 2.7 Ma (Lisiecki and Raymo, 2005), or about two ^{10}Be half-lives ago. If the meteoric ^{10}Be in the ice-bound sediment is exclusively pre-Quaternary, initial concentrations in the range of $6 \cdot 8 \times 10^8 \, ^{10}\text{Be}_{\text{met}} \, \text{atoms} \cdot \text{g}^{-1}$ would be required to explain the current inventory, accounting for radioactive decay. If an extensive ice-free period formed much of the initial $^{10}\text{Be}_{\text{met}}$ inventory during the early or mid-Pleistocene (i.e. Funder et al., 2001; Schaefer et al., 2016), then preglacial $^{10}\text{Be}_{\text{met}}$ concentrations on the order of $3 \cdot 4 \times 10^8$ ^{10}Be atoms\cdotg$^{-1}$ could have produced the highest concentrations we measured in the ice-bound marginal sediment. In previous studies of deeply weathered soils, $^{10}\text{Be}_{\text{met}}$ concentrations of the order of 3 to 8×10^8 atoms\cdotg$^{-1}$ have been found only in the soil B horizon (Bacon et al., 2012; Pavich et al., 1985). For a preglacial B horizon at a depth < 2 m to still supply sediment to the margin, subglacial erosion rates of $< 1 \text{ m} \cdot \text{Ma}^{-1}$ are necessary for the Quaternary. The record of offshore sedimentation suggests that erosion rates on that order are unlikely to be widespread (Bierman et al., 2016; Laine, 1980). Instead, an initial ^{10}Be inventory remaining from the development of deep preglacial regolith was likely enhanced during subsequent periods of interglacial exposure (Figure 1).

In low erosion rate settings, a small amount of $^{10}\text{Be}_{\text{met}}$ accumulation may also have occurred from the basal melt of the overlying ice. However, the delivery rates through basal melting are not sufficient to account for the measured concentration maxima. The flux rate from basal melt of $1.8 \cdot 10^4$ atoms\cdotcm$^{-2}$$\cdotyr^{-1}$ would take $\sim 10,000$ years of melt delivered to a single g\cdotcm$^{-2}$ of sediment to obtain concentrations of 2×10^8 atoms\cdotg$^{-1}$. If the $^{10}\text{Be}_{\text{met}}$ were
virtually distributed as it is in a typical terrestrial soil profile, with the isotope distributed over several m of depth, hundreds of thousands of years of melt are needed to reach even the concentrations found at Kangerlussuaq. However, if the subglacial sediment cover is thin (i.e. a few cm) or 10Be_{met} is not downwardly mobile within a sediment column, a substantial portion of the meteoric 10Be concentration could come from subglacial melting. Therefore, we cannot rule out some 10Be_{met} contribution from sub-glacial melt; though, it likely represents a small fraction of the total inventory.

The long potential transport times for ice-bound sediment in the ice sheet basal layer may play a role in the preservation of sediment with a history of preglacial and interglacial exposure. Regardless of erosion rate, mid-Holocene sediment from near the margin and Eemian (MIS 5e) sediment from the interior could still be emerging at the margin as ice-bound sediment due to the slow rate of ice transport (Figure 6). The idea that older sediment may source from deeper in the interior of the ice sheet is further supported by the vertical transect collected at Upernavik (Figure 5). We expect that basal ice layers grow progressively from the bed, with the top of the layer containing sediment that was entrained earliest (Rempel, 2008). At the Upernavik vertical transect, the highest 10Be_{met} concentrations and organic C concentrations are found at the top of the transect, suggesting a source of preglacial regolith and/or lower erosion rates deeper in the interior compared to a more marginal source for the stratigraphically lower samples.

The water stable isotope values of the ice-bound samples also suggest multiple entrainment events in the formation of the basal ice layers. The slope of stable isotope enrichment at the Upernavik vertical transect (Figure 4) is consistent with isotopic enrichment during open-system regelation, which should be approximately 5.5 for ice of
this isotopic composition (Jouzel and Souchez, 1982; Lehmann and Siegenthaler, 1991). A single regelation enrichment event decreases the deuterium excess of the ice by ~3 - 7‰, depending on the proportion of the ice that melts (Jouzel and Souchez, 1982). Assuming clean glacial ice has deuterium excess near 10‰ (Dansgaard, 1964), most samples experienced multiple enrichment events (Table 4). The conclusion that basal ice layers grew progressively through multiple regelation enrichment events is consistent with a long residence time of the sediment within the upper portions of the basal ice layer.

Erosion conditions for glaciofluvial and subglacial samples

Glaciofluvial samples have significantly lower 10Be$_{net}$ concentrations than ice-bound sediment (Figure 3), suggesting that they are sourced from a more erosive portion of the ice sheet than the ice-bound samples. The average 10Be$_{net}$ concentration in the Kangerlussuaq glaciofluvial samples is $\sim$$10^6$ atoms·g$^{-1}$, whereas the ice-bound sediment there averages $1.3\cdot10^7$ atoms·g$^{-1}$, a more than ten-fold difference.

The 10Be$_{net}$ concentrations in glaciofluvial sediment can be explained from meltwater-driven 10Be addition alone, without any inheritance from preglacial or interglacial soil development. Assuming the surface ice and snow that feed ablation zone melt contain 10Be$_{net}$ concentrations of $2\cdot10^4$ atoms·g$^{-1}$ (Finkel and Nishiizumi, 1997), a liter of glacial meltwater contains $2\cdot10^7$ atoms of 10Be$_{net}$. Measured concentrations of suspended sediment in Greenland Ice Sheet meltwaters range from 1 to 10 g·L$^{-1}$ (Cowton et al., 2012; Overeem et al., 2017). If most 10Be$_{net}$ sorbed to sediment grain surfaces during fluvial transport (You et al., 1989), 10Be$_{net}$ concentrations of 10^6 to 10^7 atoms·g$^{-1}$ could be expected in glaciofluvial sediment, simply from the mixing of sediment and surface glacial
meltwater. The glaciofluvial samples cluster toward the low end of this range, perhaps implying incomplete partitioning of the meltwater 10Be$_{\text{met}}$ to solids or a preference of the isotope for fine-grain size fractions underrepresented in these sand-sized samples. If the 10Be$_{\text{met}}$ concentrations measured in glaciofluvial sediment were derived mostly from meltwater, then these sediments are derived from material that has little or no 10Be$_{\text{met}}$ remaining from preglacial or interglacial periods. This implies glacial erosion sufficient to remove previously exposed sediment in the glaciofluvial sediment from Kangerlussuaq and Tassilaq.

The glaciofluvial samples in which we measured 10Be$_{\text{met}}$ were previously analyzed for *in situ* cosmogenic isotopes (Nelson et al., 2014). The measured concentrations are very low for both *in situ* (10^3 atoms g$^{-1}$) and meteoric 10Be (< 10^6 atoms g$^{-1}$) and no significant correlation between the two is observed in the samples of solely glacial origin (Table 2). The measured *in situ* concentrations do not necessarily imply surface exposure, as muons are capable of producing small quantities of 10Be at up to 100 m depth (Heisinger et al., 2002; Nelson et al., 2014). We interpret the combined *in situ* and meteoric 10Be data in glaciofluvial sediment as implying very little or no previous exposure of this sand-sized sediment at or near Earth’s surface.

In contrast to Kangerlussuaq and Tassiaq, two fluvial samples from Narsarsuaq suggest possible preglacial or interglacial surface exposure. One sample from a non-glaciated fluvial system has a 10Be$_{\text{met}}$ concentration of $1.3 \cdot 10^8$ atoms g$^{-1}$ (Table 2). Due to higher precipitation than elsewhere in Greenland, the meteoric 10Be deposition rate at Narsarsuaq is $\sim 10^6$ atoms cm$^{-2}$ a$^{-1}$ (Heikkilä and Von Blanckenburg, 2015). If the measured non-glacial fluvial concentration represents the average 10Be$_{\text{met}}$ content of a
steadily developing soil profile, it would take 15-30 ka to develop the source soil, probably exceeding what developed in the 11 ka since deglaciation (Carlson et al., 2014). Narsarsuaq also has the highest $^{10}\text{Be}_{\text{met}}$ value we measured in a glaciofluvial sample (Table 2). These two datapoints are consistent with some preglacial or interglacial exposure preserved in the Narsarsuaq area. Comparatively large in situ ^{10}Be concentrations were also observed in some of the sediment from Narsarsuaq (Nelson et al., 2014). The high topographic relief in the Narsasuaq area may be a factor in preserving low erosion, highland regions capable of preserving interglacial or preglacial sediment.

The differences between the glaciofluvial samples and the ice-bound samples are very likely due to erosive power of subglacial streams, which far exceed the erosive power of ice entrainment processes (Alley et al., 1997). If sediment from low erosion rate subglacial regions (represented by ice-bound sediment samples) is present in subglacial streams, it comprises an undetectably small fraction. At Kangerlussuaq, the order of magnitude difference between ice-bound and glaciofluvial sediment requires that <10% of the ice-bound sediment could be mixed into the glaciofluvial sediment, even assuming that glaciofluvial processes introduced no $^{10}\text{Be}_{\text{met}}$ through delivery by water. It is therefore likely that the ice-bound sediment with high $^{10}\text{Be}_{\text{met}}$ concentrations is sourced from a region outside of the influence of glaciofluvial processes, either beyond the marginal region (at most, a few 10s of km wide) that supports subglacial conduits (Dow et al., 2014) or from an area disconnected from glacial hydrologic system.

The subglacial samples collected from hot water boreholes could be comparable to glaciofluvial sediment or ice-bound sediment, depending on the conditions at the bed. At Kangerlussuaq, subglacial samples collected from the ablation zone have very low $^{10}\text{Be}_{\text{met}}$
levels, comparable to glaciofluvial samples collected at the margin (Table 2). At Ilulissat,
10Be$_{\text{met}}$ concentrations are comparable to the ice-bound sediment collected at the margin.
Both subglacial sampling sites are located within the ablation zone, near where moulins
actively contact the bed (Andrews et al., 2014). This could imply that, at least at Ilulissat,
spatial heterogeneity in the glaciohydrological system permits low erosion zones to exist
in the ablation zone.

Context of Greenland erosion and sediment flux

Proglacial regions with erosion rates low enough to preserve rock surfaces over
multiple glacial cycles are observed in several marginal regions of Greenland, including
Thule (Corbett et al., 2016), Upernavik (Corbett et al., 2013), Jameson Land (Håkansson
et al., 2008), and Sukkertoppen (Beel et al., 2016). Similar regions under the ice may be
the source of the ice-bound and subglacial sediment with high 10Be$_{\text{met}}$ concentrations.
However, ice-bound sediment like those we measured still must have been subjected to
warm-based subglacial processes in order to become entrained and transported to the ice
margin, whereas currently proglacial regions could have been cold-based, and therefore
non-erosive, for their entire glacial histories.

The large difference in 10Be$_{\text{met}}$ concentrations between glaciofluvial and ice-bound
samples at Kangerlussuaq mirrors large differences in contemporary sediment fluxes from
the region. Contemporary ice-bound sediment fluxes in the Kangerlussuaq area are ~20
m3 m$^{-1}$ a$^{-1}$ (Knight et al., 2002), suggesting an average of ~40 m3 Ma$^{-1}$ of subglacial erosion
over the 340 km flowline (assuming rock is 50% denser than sediment). Erosion rates
calculated from glaciofluvial sediment flux at the Leverett Glacier (also in the
Kangerlussuaq area) are on the order of $1000 \text{ m} \cdot \text{Ma}^{-1}$ (Cowton et al., 2012), sufficient to strip the evidence of even a mid-Holocene interglacial exposure. Contemporary sediment fluxes in the Kangerlussuaq area are among the highest observed in Greenland (Overeem et al., 2017), although contemporary sediment flux data are not necessarily representative of the long-term. Such sediment flux rates are consistent with ice-bound sediment sourcing from material capable of preserving a memory of interglacial exposure and glaciofluvial sediment sourcing from material where erosion rates are too high to maintain this memory. The long residence time of ice-bound sediment may also play a role in preserving an exposure signal in $^{10}\text{Be}_{\text{net}}$ concentrations (i.e., Figure 6).

The thicknesses of glacial sediment as measured by offshore cores generally suggest far lower long-term erosion rates than the contemporary fluxes observed at Kangerlussuaq. Several cores in the Disko Bugt region (near Ilulissat) have background sedimentation rates around $100 \text{ m} \cdot \text{Ma}^{-1}$ that spike to $\sim2,000 \text{ m} \cdot \text{Ma}^{-1}$ during periods of deglaciation (Cofaigh et al., 2013). If the regions of erosion and deposition are equal in area, the background sedimentation rate is equivalent to $50 \text{ m} \cdot \text{Ma}^{-1}$ of subglacial erosion (though the channeling of ice into distinct outlets implies that the true value is lower). Analysis of authigenic $^{10}\text{Be}/^{9}\text{Be}$ in a sediment core from the center of Baffin Bay suggests slightly higher erosion rates for the entire region, with background rates near $80 \text{ m} \cdot \text{Ma}^{-1}$ that approximately double during Heinrich events (Simon et al., 2016). Rates of sediment deposition in the near shelf of central East Greenland are similar to those measured in West Greenland, though deposition rates in fjords are an order of magnitude higher (Andrews et al., 1994). Andrews and others (1994) suggest these sedimentation rates imply Holocene erosion on the order of $10 \text{ m} \cdot \text{Ma}^{-1}$. If erosion rates between 10-50 $\text{ m} \cdot \text{Ma}^{-1}$ are taken as
typical, the variation between high and low erosion regions suggest Quaternary erosion rates on the order of 5-10 m·Ma\(^{-1}\) are plausible for portions of the subglacial environment.

The existence of glaciofluvial outlet systems capable of performing most of the erosion and sediment transport to the shelf may explain the differences in \textit{in situ} cosmogenic isotopes observed in Greenland’s onshore (Schaefer et al., 2016) and offshore (Bierman et al., 2016) records. The lack of evidence for surface exposure during the past 1.8 Ma in marine sediment cores (Bierman et al., 2016) may be in part because the vast majority of the sediment comes from subglacial streams too erosive to preserve an interglacial exposure record. However, the more minimally erosive regions of the ice sheet, both preserved in central Greenland at the base of the GISP2 ice core (Bierman et al., 2014; Schaefer et al., 2016) and at the marginal sites presented here, do contain a record of extensive pre-glacial or interglacial exposure.

The southwest region of the Greenland ice sheet, where Kangerlussuaq is located, has been modeled by many as the ice sheet’s most responsive sector to changing climate (Helsen et al., 2013; Stone et al., 2013). The source regions for Kangerlussuaq’s marginal sediment likely had more total exposure than any other site, and yet have significantly less \(^{10}\text{Be}_{\text{met}}\). Upernavik, by contrast, is located in one of the most stable sectors of the ice sheet (Otto-Bliesner et al., 2006) and yet has the highest \(^{10}\text{Be}_{\text{met}}\) observed in marginal sediment. Sediment from the stable center of Greenland has higher concentrations still (Bierman et al., 2014) (Figure 3). Differences in \(^{10}\text{Be}_{\text{met}}\) concentrations between sites appear to be primarily controlled by erosion rates and not necessarily duration of interglacial exposure.

\textbf{Conclusions}
We measured $^{10}\text{Be}_{\text{met}}$ in ice-bound, glaciofluvial, and subglacial sediment collected from five marginal Greenland Ice Sheet sites. In the ice-bound sediment at the two northernmost sites, we found maximum $^{10}\text{Be}_{\text{met}}$ concentrations that are comparable to those measured in well-developed soils, evidence that these sediments were subject to 10^4 to $>10^5$ years of interglacial and preglacial exposure. Glaciofluvial sediment has very low $^{10}\text{Be}_{\text{met}}$ concentrations and do not preserve a signal of past interglacial or preglacial exposure. One site, Kangerlussuaq in central west Greenland, has significantly lower $^{10}\text{Be}_{\text{met}}$ concentrations for all sample types. Because this site has both unusually high sediment flux and a history of substantial interglacial ice retreat, it implies erosion is more influential than exposure in controlling $^{10}\text{Be}_{\text{met}}$ flux to the ice margin in sediment. Variation in subglacial processes (particularly regelation entrainment vs. glaciofluvial entrainment of sediment) causes erosion rates to vary across the subglacial landscape. Erosion rates low enough to preserve preglacial material may be confined to regions of the ice sheet that are lacking widespread influence of glaciofluvial processes.

Acknowledgements

This work was supported by funding from U.S. National Science Foundation grants ARC-071956 and ARC-1023191. Subglacial samples from Kangerlussuaq were collected with assistance from N. Humphrey and J. Harper. Drill-tip samples from the Ilulissat area were collected by L. Andrews, M. Hoffman, and M. Lüthi. Accelerator Mass Spectroscopy was performed by R. Finkel, A. Hidy, and S. Zimmerman. Three anonymous reviews and editorial handling by N. Glasser greatly improved the manuscript.

Kelley, S., Briner, J. and Young, N. (2013) Rapid ice retreat in Disko Bugt supported by 10Be dating of the last recession of the western Greenland Ice Sheet. Quaternary Science Reviews 82, 13-22.

Figure Captions

Figure 1: Conceptual model of development of 10Be$_{met}$ soil profiles over glacial and interglacial conditions. A) Prior to glaciation, high concentrations and large inventories of 10Be$_{met}$ develop in a deep regolith layer. B) During glacial periods, upper portions of this regolith are entrained in basal ice and removed from the landscape, while remaining 10Be$_{met}$ is reduced by radio decay. C) During interglacial periods, sediment is again exposed to 10Be$_{met}$ deposition and new 10Be$_{met}$ is added to the previous 10Be$_{met}$ inventory that remains. This process of glacial-period 10Be$_{met}$ loss and interglacial period replenishment repeats over glacial/interglacial cycles.

Figure 2: Location maps. A) Source regions of sediment delivered to sampling regions at the modern margin of the Greenland Ice Sheet based on modeled flowlines (Wang et al., 2002) B-F) Satellite imagery (Google Earth) of our sampling locations at each site.

Figure 3: Bar and whisker plots of 10Be$_{met}$ concentrations across all Greenland Ice Sheet sampling sites. Boxes represent 2nd and 3rd quartiles of the data. Whiskers go to the minimum/maximum or 1.5 times the interquartile range (whichever is closer to the median). Outliers beyond the whiskers are marked with an x. Data from sediments in the GISP2 ice core (Bierman et al., 2014) are shown for comparison.

Figure 4: δ^{18}O and $\delta^{2}H$ from the Upernavik transect site. The slope is lower than the slope of meteoric water, suggesting refreezing with mass dependent fraction as meltwater is lost to the subglacial system (Sugden et al., 1987).

Figure 5: Upernavik transect site data with depth of the basal ice layer. A) 10Be$_{met}$ concentration, organic carbon concentration, and deuterium excess vs. transect distance. B) Image of the transect site, black arrow indicates direction of deeper basal ice, white bags are sampling locations, Bell 212 helicopter for scale.

Figure 6: Total time necessary to transport ice-bound sediment to the Greenland Ice Sheet margin from a given distance in the interior based on model results of Wang et al. (2002).

Figure 7: Derivation of 10Be$_{met}$ inventories in source soils from the maximum measured 10Be$_{met}$ concentration at each site. The relationship between maximum 10Be$_{met}$ concentration and total 10Be$_{met}$ inventory in mid latitude and arctic soils is used as a calibration. Mid latitude data are from Graly et al. (2010); Alaska data are from Bierman et al. (2014); Sweden data are from Ebert et al. (2012).
Table Captions

Table 1. 10Be$_{met}$ data for Greenlandic Ice-bound Samples (analyzed 2010)

Table 2. 10Be$_{met}$ data for Greenlandic Glaciofluvial and Subglacial Samples (analyzed 2017)

Table 3. P values for two tailed t-test of log-normal distributions of various subsets of the 10Be$_{met}$ data. P-values <0.05 are bold.

Table 4. Stable Isotope and C/N Data
A: Pre-glacial Conditions

- Meteoric ^{10}Be Deposition
- Erosion by Fluvial Transport

B: Glacial Conditions

- Meteoric ^{10}Be Deposition
- Meteoric ^{10}Be Transport by Glacial Flow
- Soil Meteoric ^{10}Be Lost to Erosion
- Entrainment of Sub-glacial Sediment into Basal Ice Layer
- Loss to Decay

C: Interglacial Conditions

- Meteoric ^{10}Be Deposition
- Minimal Fluvial Processes

- Glacial Ice
- Pre-glacial Regolith
- Glacial Till
- Bedrock

- Concentration (atoms·g$^{-1}$)
- Depth (m)

\[\delta^{18}O \, \text{‰} \]

\[\delta^2H \, \text{‰} \]

Meteoric Water 8x Slope

5.83x Slope

\(R^2 = 0.93 \)
Figure A: Scatter plot showing the relationship between Basal Ice Transect (m) and 10Be atoms·g⁻¹ with an R² value of 0.85.

Figure B: Image of a helicopter on a rocky terrain with penguins in the background.
$y = 1.4\pm0.3x^{1.25\pm0.04}$

$R^2 = 0.92$

- **Mid Latitude Soils**
- **Pre-glacial Soil (N. Sweden)**
- **Tundra Soil (N. Slope, Alaska)**