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Advances in control techniques for vibrational quantum states in molecules present new challenges
for modelling such systems that could be amenable to quantum simulation methods. Exploiting a
natural mapping to photons in waveguides, we demonstrate a reprogrammable photonic chip as a
versatile simulation platform for a range of quantum dynamical behaviour in di↵erent molecules.
We begin by simulating the time evolution of vibrational excitations in the harmonic approximation
for a variety of 4-atom molecules, including H2CS, SO3, HNCO, HFHF, N4, and P4. We go on
to simulate coherent and dephased energy transport in the simplest model of the peptide bond in
proteins, N-methylacetamide, and simulate thermal relaxation and the e↵ect of anharmonicities in
H2O. Finally, we use multi-photon statistics with a feedback control algorithm to iteratively identify
quantum states that increase a particular dissociation pathway of NH3. These methods point to
powerful new simulation tools for molecular quantum dynamics and the field of femtochemistry.

Early electronic computers exploited analogies with
acoustic, thermal, or mechanical phenomena, such as ca-
pacitance for spring sti↵ness, to simulate a range of prac-
tically relevant physical systems [1, 2]. While modern
digital simulations have become versatile foundational
tools in science and engineering, all classical comput-
ers are fundamentally ine�cient at tackling exponentially
complex microscopic behaviour such as the quantum dy-
namics of molecules [3, 4]. A proposed solution is to engi-
neer quantum mechanical components into devices that
are then inherently capable of simulating quantum sys-
tems [5–10]. Here, we demonstrate how integrated quan-
tum photonics can be used as a platform to develop new
simulation methods for molecular quantum dynamics, by
building on the analogies of optical modes in waveguides
for vibrational modes in molecules and single photons for
quantised vibrational excitations.

Advances in the control of ultrafast molecular dynam-
ics have revealed the importance of quantum interference
among vibrational modes in behaviour such as bond se-
lective chemistry [4]. In applying optimal control theory
to a harmonic model of chained atoms [11], it was shown
in principle how a designed control field could drive the
dynamics of quantum interference between vibrational
modes [12] to excite local bonds. However, laboratory
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demonstrations of selective bond dissociation required
adaptive feedback control to put the principles into prac-
tice [13–16]. Further control over vibrational wavepack-
ets has allowed selective dissociation governed by a single
quantum of vibrational energy [17], manipulation of indi-
vidual molecules at ambient conditions [18], preparations
of coherent superpositions on sub-femtosecond timescales
[19], and single vibrational states of ultracold molecules
[20, 21]. Molecular dynamics are now observable on their
ultrafast intrinsic timescale [22, 23].

The prospect of more sophisticated control with quan-
tum states of light and for larger molecules increases the
challenge to simulate dynamical behaviour. Light-matter
interaction with squeezed states has been experimentally
demonstrated in a number of contexts [24–28] and en-
hanced spectroscopy and control of molecules with multi-
mode, multi-photon states has been shown theoretically
[29–31] with new techniques for pulse shaping of quan-
tum states of light also demonstrated [32–35]. Evolving
a multi-excitation state across many vibrational modes
is computationally ine�cient even for the basic model
where normal modes are described as independent quan-
tum harmonic oscillators. Due to their bosonic nature,
the probability amplitudes for input-output transitions
amongst the modes are determined by matrix perma-
nents, the calculation of which is generally extremely
complex [36, 37]. More detailed molecular models, for
example with anharmonic corrections to the potentials,
are also likely to be computationally complex.
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Quantum algorithms for the e�cient simulation of
Hamiltonian dynamics [6, 38] have been a strong mo-
tivator for digital quantum computers, for example with
trapped ions [39]. Promising digital algorithms for simu-
lating reaction dynamics [40] and obtaining thermal rate
constants [41] have been presented that harness the ex-
ponential quantum speed up. Yet, achieving fault toler-
ance [42] and the high logical gate counts [43] that en-
able these applications is extremely challenging. Ansatz
based methods [44] for solving the eigenvalue problem
have reduced demands, as recently demonstrated with
superconducting qubits [45], but the di�culties associ-
ated with applying such an approach to Hamiltonian dy-
namics have yet to be overcome. Analogue quantum sim-
ulations [10], in which a quantum system of interest can
be directly mapped onto a quantum technological plat-
form, may enable practical advantages in the nearer term
[46, 47].

Progress in photonic quantum technologies over the
last decade has seen the introduction of on-chip process-
ing of photonic quantum information [48–53] to high fi-
delities [54, 55], full reprogrammability for linear optical
circuitry [56], and the integration of photon generation
[57, 58] and detection [59, 60]. Solid state single pho-
ton sources [61] and high e�ciency detectors [62] have
recently been demonstrated as a solution to achieving
high numbers of photons. Ultimately, basic methods to
correct for photon loss are likely to be required before
photonic quantum simulations outperform classical algo-
rithms [63], but the demands on error correction for spe-
cialised quantum simulators could be much lower than
those for universal digital quantum simulators [64].

Here, our focus is on establishing programmable linear
optical circuitry as a core capability for simulating the
vibrational dynamics of the atoms within molecules.
Our first set of demonstrations, in the harmonic approx-
imation, simulates the evolution of single and multiple
excitations for a range of four-atom molecules, and goes
on to simulate coherent and incoherent energy transfer in
N-methylacetamide (NMA). Using H2O as an example,
we show how to simulate thermal relaxation using ancil-
lary optical modes, and how to include anharmonicities
in the simulation model through measurement-induced
nonlinearities. Finally, we show how our methods can
be used as a testbed for control theory in molecules by
placing our simulator in a closed loop adaptive feedback
protocol, to find initial states which result in a particular
dissociation pathway of NH3. Overall, we demonstrate
a versatile simulator that can be rapidly reprogrammed
to compare behaviour between di↵erent molecules, for a
given physical model.

Simulation procedure
The procedure for simulating the vibrational quantum
dynamics of a molecular system in the harmonic approx-
imation begins with a calculation of the Hessian matrix,
which is the second derivative of the electronic energy
with respect to the nuclear coordinates at equilibrium

geometry. (Note that this can be calculated practically
for molecules with hundreds of vibrational modes, us-
ing standard techniques from quantum chemistry [65].)
Diagonalising the Hessian in mass-weighted coordinates,
and neglecting the eigenmodes related to molecular
translation and rotation, provides the vibrational spec-
trum (eigenvalues) and normal modes (eigenvectors) of
the system, which define a Hamiltonian of independent
quantum harmonic oscillators Ĥ =

P
i
~!ia

†
i
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zero point energy).

The spatial localisation of vibrational energy is im-
portant for understanding many molecular phenomena
such as energy transport and dissociation. We therefore
consider a basis transformation, a
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the collective normal modes to a set of modes which are
localised around a single atomic site or chemical bond.
These localised modes are found using a Pipek-Mezey
type method [66] by numerically maximising the sum of
the squares of kinetic energy contributions from each nu-
cleus. Dynamics in the localised basis can then be sim-
ulated via the model Hamiltonian ĤL =
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This general model can be directly simulated for m

vibrational modes of any given molecule with a linear
optical chip that can be programmed to implement any
unitary operation over m optical modes [56, 67, 68].
Reconfiguring such a device to implement the transfer
matrix U(ti) = exp (�iH

L
ti/~) for a series of timesteps

{ti} allows the e�cient simulation of the Hamiltonian ĤL

on any initial multimode vibrational state via its map-
ping to a multi-mode optical input state. Here we use
a silica-on-silicon integrated photonic chip that is fully
programmable over 6 waveguides via 30 thermo-optic
phase shifters [56], to perform molecular simulations of
up to six-mode vibrational systems. We simulate initial
states of up to four vibrational quanta, with states of
up to four single photons, produced from spontaneous
parametric downconversion (SPDC) sources. Photons
are detected with single photon counting modules. The
number and pattern of photons collected at the output
of the optical modes for each circuit configuration are
governed by the probabilities for the molecule to be
found in the corresponding vibrational states, at the
corresponding timestep.

Vibrational dynamics of four-atom molecules
As a first example, we consider Thioformaldehyde
(H2CS), a key molecule for spectroscopic experiments
[69], which is shown in Fig. 1(a) with its normal mode
spectrum. The 6 localised vibrational modes of H2CS
comprise two CH stretch modes, two CH bend modes,
a CS stretch mode, and a wagging mode, which are
mapped to our photonic chip from the normal mode
basis, as described above and conceptually depicted in
Fig. 1(b). We initialised the simulation for the state
|µi ⇠ µ |1CHs1, 1CHs2i + µ

2
/2 |2CHs1, 2CHs2i, of multiple

excitations superposed over the two CH stretch modes,
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FIG. 1. Simulating the vibrational dynamics of four atom molecules in the harmonic approximation. (a) The eigenspectrum for
H2CS is used to construct a molecular model of normal modes. (b) These are mapped to a Hamiltonian of local vibrational modes
and a unitary operator that is implemented with our photonic chip for a sequence of time-steps. (c) An initial superposition
of 2 and 4 excitations evolving in the localised stretch modes is simulated by injecting a two-mode squeezed vacuum state into
the corresponding optical modes and collecting photon statistics for the sequence of simulated timesteps. Top and bottom
panels show results for the two and four excitation subspaces respectively. (d) Simulations on two timescales for the evolving
probability of a single excitation to remain in a CH stretch mode. Blue squares represent the mean probability over a 30fs
window (as per left panel). (e-i) The simulated evolution of a single excitation in P4,SO3,HNCO and HFHF between a local
stretch mode (black) and another coupled local mode (blue). The local modes are represented diagramatically alongside the
spectral intensities of the normal modes involved. For N4, results are also shown for the evolution of two excitations. All data
is plotted together with ideal theoretical curves; error bars displaying s.d. from Poissonian statistics are very small.

by injecting the two-mode squeezed vacuum state pro-
duced by an SPDC source, into the two waveguides cor-
responding to the CH stretch modes. Photons were col-
lected over a series of circuit configurations which cor-

respond to timesteps of the H2CS local-basis Hamilto-
nian. Fig. 1(c) displays the experimentally simulated
evolution of the probabilities for excitations to be found
in the CH stretch modes only, in the CH bend modes
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FIG. 2. Quantum energy transfer and dephasing in NMA. (a) A six-mode vibrational subspace of the NMA molecule is
considered with the spectral components of three localised modes colour coded as per the arrows in (b). (b) Experimental
simulation results for the probability of a single excitation (black points) initially in a local rocking mode (black arrow) at one
end of the molecule and its transfer (blue and grey points) to local modes at the opposite end (blue and grey arrows) when
subject to a dephasing channel with T2 = 0.53ps. (c) Experimental simulation results for the evolution of a two-excitation state
(black points) that is initially in separate local modes (black arrows), and its probability (blue points) to be found bunched in
the NH stretch mode (blue arrows) under the same dephasing channel. Solid lines represent theory. The dashed blue line plots
a theoretical curve for distinguishable (or classical) excitations to be found bunched in the NH stretch mode. (d) Experimental
simulation results for the total probability to measure a fully anti-bunched state of two excitations with the same intial state as
(c) (black points with solid black theory curve) and to measure a fully anti-bunched state of three excitations initialised in the
modes shown in (b) (black points with dashed theory curve). All error bars represent s.d. estimates from Poissonian statistics.

only, and shared between these stretches and bends for
the two-excitation (upper panel) and four-excitation sub-
space (lower panel).

Dynamics in the two-excitation subspace involve both
excitations oscillating between stretch and bend modes
via the intermediate state where one excitation is in
each of the subspaces. The L

1 distance D(p,q) =
1

2

P
i
|pi � qi| between the results for an experimentally

simulated timestep and the ideal distribution, is averaged
over all timesteps to give D̄ = 0.06 ± 0.03. In the four-
excitation subspace, where both of the stretch modes
are initially doubly occupied, the experimentally simu-
lated evolution of probabilities are shown for both stretch
modes to remain doubly occupied, both bend modes to
become doubly occupied, and for combinations of one
doubly occupied stretch mode and one doubly occupied
bend mode. The apparent damping of the oscillatory
behaviour between these probabilities is attributable to
the combinatorially growing space of multiple excitations
available to the evolving state. The distance between the
experimentally simulated and ideal evolutions for the full
four photon distributions, averaged over all timesteps, is
D̄ = 0.16 ± 0.07. The full distributions for these and all
succeeding experiments can be found in the appendix.

Because time is a programmable parameter in our sim-
ulator, we are able to probe dynamics at arbitrary evo-
lution times. This can be exploited to study molecular
vibrations whose evolution involves di↵erent timescales,

such as the local CH stretch mode in H2CS, which is
a superposition of normal modes with lower and higher
frequencies. The probability for a single excitation to
remain localised in a CH stretch mode was simulated
on two timescales that di↵er by an order of magnitude.
Heralded single photons were injected into the mode cor-
responding to a local CH stretch, and the circuit was
programmed to implement sets of unitary transforma-
tions that correspond to a short (30 fs) high resolution
window, and a longer (300 fs) low resolution window
whose behaviour can be observed by averaging over the
high resolution windows. Fig. 1(d) displays the experi-
mentally collected data for these simulations, which ex-
hibit both high and lower frequency oscillations. Av-
eraging over both evolutions gives a mean distance of
D̄ = 0.014 ± 0.006.

In general, molecules of n atoms support 3n� 6 vibra-
tional modes, so a fully reprogrammable photonic chip of
su�cient size can simulate the vibrational dynamics of
any molecule in the harmonic approximation, using the
techniques described here. Our six mode simulator can
therefore explore the full space of vibrational dynamics
for a general molecule of up to four atoms, as we demon-
strate for P4, SO3, HNCO, HFHF and N4, which comprise
a wide range of molecular structures and energy scales.

Figures 1(e-i) show the time evolution of a single
excitation initially prepared in a local stretch mode.
The change in the occupation probability to a second,
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spectrally overlapped (coupled) local mode is plotted.
We observe dynamics with varying characteristic times
governed by the vibrational spectra of the molecules.
Due to its geometry and bonding structure, P4 has the
longest period oscillations between opposing stretches
with SO3 showing similar stretch mode coupling be-
haviour on shorter timescales. HNCO and HFHF in
contrast display faster dynamics with increased mode
coupling between hydrogen bond stretches and bends.
Fig. 1(i) shows the dynamics of both a single excitation
and two excitations initially prepared in stretch modes of
N4. The additional structure in the vibrational spectrum
and the introduction of multi-photon quantum interfer-
ence results in a more complex time dependence of the
detection probabilities. The average L

1 distance over all
these experiments is D̄ = 0.022 ± 0.007, demonstrating
accurate simulation over a wide range of molecules.

Decoherence and energy transfer in NMA
The flow of vibrational energy in molecules is a funda-
mental process for chemical reaction rates [70] and func-
tionality in biomolecules [71], while control of intramolec-
ular energy transfer could lead to new nanotechnolo-
gies such as molecular electronics [72]. The vibrational
quantum dynamics of a molecule within an environment
can be described by the interplay of coherent unitary
evolution and incoherent dephasing resulting from ran-
dom fluctuations of the vibrational frequencies - a pro-
cess referred to as spectral di↵usion. N-methylacetamide
(NMA) is the simplest molecular model (Fig. 2(a)) of the
peptide bond in proteins, where quantum coherence may
play a role in energy transfer [73]. In this section, we
simulate a model for intramolecular energy transport in
NMA in the presence of dephasing.

We consider a subspace spanning 6 backbone vi-
brational modes, which support a basis of approxi-
mately localised vibrational modes, including two rock-
ing modes (curved arrows in Fig. 2) and two stretch
modes (straight arrows in Fig. 2). These six local modes
are mapped to our photonic chip, such that the coher-
ent time evolution of an excitation can be tracked, fol-
lowing the same procedure as described in the previ-
ous section. Uniform dephasing between all modes is
achieved by a time-dependent statistical averaging over
the set of experiments with transfer matrices U(ti, k) =

ULZ(k)U†
L
e
�iH

L
ti/~ where Z(k) are Heisenberg-Weyl

matrices and the average is taken over k at each timestep.
(See appendix for details.)

Using a single photon, we simulated the probability for
a single excitation initialised in a local rocking mode at
one end of the molecule to be transferred to two localised
modes (a rocking mode and a C-C stretch mode) at the
opposite end of the molecule. The experimental results
shown in Fig. 2(b) show dynamics that are initially oscil-
latory, with vibrational energy transfer between the rock-
ing modes at either end of the molecule via an intermedi-
ate C-C stretch. The increasing e↵ect of the suppression
of coherence from dephasing results in evolution towards

a steady state. The peak probabilities for energy to be
localised at either end of the molecule are higher under
quantum coherent dynamics than under purely ballistic
classical dynamics. The T2 time constant of coherence
decay used is 0.53ps, though any time constant can be
simulated by changing only the post-processing of data.

Generalising the simulation for initial states of multi-
ple excitations allows us to investigate the interplay of
dephasing and quantum interference for multi-excitation
energy transport. Injecting one photon into the waveg-
uide corresponding to the rocking mode and another pho-
ton into the waveguide corresponding to the C-C stretch
mode, which are each localised at opposite ends of the
NMA molecule (black arrows in Fig. 2(c)), we simu-
lated the change in the probability for this state, and
the state in which both excitations ‘bunch’ in an NH
stretch mode (double blue arrows in Fig. 2(c)). The re-
sults in Fig. 2(c) show more complex oscillatory trans-
fer between these bunched and anti-bunched states, that
again tends toward a steady state. However, after full de-
phasing has occurred, the probability for two excitations
to be bunched in the NH stretch mode is twice as high
for excitations that behave as indistinguishable bosonic
particles than for excitations that behave as distinguish-
able or classical particles (e.g. two excitations that pass
through the molecule at di↵erent times) whose theoreti-
cal probability is also plotted.

For a given molecule, the probability that no bunching
occurs (multiple excitations are not localised around
the same bond) generally decreases as the number of
excitations increases [74]. In Fig. 2(d) the probability
for the subspace of no-bunching events is simulated for
two and three excitations under fully coherent dynamics.
The initial state for the two-excitation evolution is the
same as in the previous example; the initial state for
the three-excitation evolution comprises an excitation
in each of the local modes shown in Fig. 2(b). The
average distances across all single, two and three ex-
citation distributions in these examples are given by
0.017 ± 0.005, 0.05 ± 0.01 and 0.14 ± 0.07 respectively.

Vibrational relaxation in liquid water
We now consider extensions to the idealised model of
uncoupled harmonic oscillators, to account for more re-
alistic situations including energy dissipation and anhar-
monic potentials. We choose models for H2O to demon-
strate our techniques for simulating these e↵ects.

For a molecule that interacts with its environment,
vibrational energy is exchanged via intra- and inter-
molecular coupling to other degrees of freedom, eventu-
ally leading to thermalisation. This process is known as
vibrational relaxation, and its pathways for H2O remain
an area of current investigation [75–77]. Here we sim-
ulate the relaxation of H2O via an amplitude damping
model, depicted in Fig. 3(a).

In describing these open system dynamics, we consider
a Lindblad master equation, resulting in a set of time-
dependent Kraus operators which can be simulated via
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FIG. 3. Vibrational relaxation and anharmonic evolution for H2O. (a) Energy level diagram for single excitation harmonic
levels and ground state of H2O along with the spectral components of the two local OH stretch modes (black and grey) and the
symmetric bend normal mode (blue). (b) The open system dynamics of vibrational relaxation can be simulated by statistical
averaging of the evolution under a set of linear operators implemented via unitary dilation. (c) Experimental results for the
simulated evolution of the probability for a single excitation, initially in one OH stretch mode (black points), to be found in the
other stretch mode (grey points) and the symmetric bend (blue points) under relaxation dynamics. Solid lines are theoretical
curves. (d) Spectrum of two excitations in bunched (black) and anti-bunched (blue) local stretch modes for a harmonic (dashed)
and anharmonic model (solid). (e) The anharmonic evolution is implemented via a measurement-induced nonlinearity using
an ancillary photon and modes. (f) Experimental results for the simulated evolution of two excitations initially bunched in
local stretch modes to be found in the anti-bunched state (left panel) and the bunched state (right panel) under both models
(dashed harmonic, solid anharmonic). All error bars represent s.d. estimates from Poissonian statistics.

an ensemble of transfer matrices. This evolution cannot
be described as a convex sum of unitary evolutions as in
the previous section, however the transfer matrices can
be realised within a unitary matrix of twice the size, via
unitary dilation [78]. Because H2O has three vibrational
modes, its three dimensional (non-unitary) transfer ma-
trices can be realised within a six dimensional unitary
matrix, and can be implemented on our six mode chip,
as shown in Fig. 3(b). Experimentally measured relax-
ation times {�i} for liquid water at room temperature
in Ref. [76] were used in the model. (See appendix for
details.)

We simulated the thermalisation of an excitation in a
local OH stretch mode, via the symmetric bend normal
mode, to its ground state of no excitations. Fig. 3(c)
shows the probability of measuring the excitation in the
two local stretch modes (left panel) and the symmetric
bend (right panel). Oscillations between the two high

energy stretch modes decay, as the population is trans-
ferred via the lower energy bend mode to the ground
state. The average L

1distance in these experiments was
D̄ = 0.024 ± 0.007.

Anharmonic potentials in H2O
While the utility of the harmonic approximation makes
it a mainstay model, the potential energy surfaces of real
molecules are anharmonic, and we now consider simula-
tions in this regime, depicted in Fig. 3(d). In addition
to the second derivative in the Taylor expansion of the
potential energy surface, as per the harmonic approxima-
tion, we now include all third derivatives and the semi-
diagonal quartic derivatives. Applying vibrational per-
turbation theory [79, 80] yields a new Hamiltonian

Ĥa = Ĥ + ~
X

ij

xij

2
p
!i!j

�
a

†
i
ai + a

†
j
aj + 2a

†
i
a

†
j
aiaj

�
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FIG. 4. Adaptive feedback control algorithm for a dissociation pathway in NH3. (a) The spectral decomposition of an NH

stretch mode in the electronic excited state of NH3. (b) A two-excitation vibrational state, parameterised by ~✓, is initialised
in the ground state vibrational modes of NH3. The electronic state is excited and the localisation of vibrational energy is
measured over time. These measurements are used to feedback to the state preparation in order to increase energy localisation
in NH stretch modes, promoting a particular disassociation pathway for this molecule. (c) This scenario is simulated via a

parameterised unitary for state preparation U(~✓), a transformation between the ground state and excited state modes U†
GE,

evolution under the excited state modes and measurement in a localised basis via UL. The resulting photon statistics are fed
back through an AFC algorithm to set ~✓ for the next iteration. (d) An example set of experimental results showing (left panel)
the full distributions for bunching in the NH stretch modes (red), bunching in the remaining three localised modes (blue) and
detection in anti-bunched patterns (yellow) for five timesteps at iteration numbers 1 (bottom), 175 (middle) and 399 (top).
The right panel shows the measured cost function �C at every iteration.

where Ĥ is the harmonic Hamiltonian and xij are the
perturbation theory coe�cients.

Implementing this Hamiltonian requires interactions
between photons - a key challenge in quantum infor-
mation processing. Demonstrations of enhanced single
photon interactions have required, for example, an arti-
ficial Kerr medium using superconducting circuits [81],
fibre coupling a single atom and micro-resonantor [82],
or coupling to a single quantum dot in a micropillar
cavity[83]. Importantly, the interactions required to im-
plement perturbative models like Ĥa can be weaker than
the fully entangling operations and controlled ⇡-phase
gates used for universal quantum computing [84], with a
potentially lower demand for reprogrammable nonlinear
optics. Nonlinear operations in silicon based materials,
such as integrated nonlinear Mach Zehnder interferome-
ters in silicon [85] and large phase shifts in silicon nitride
[86] have involved strong laser light, while only very small
Kerr nonlinearities have been observed at the single or
few-photon level using silica photonic crystal fibres [87],
atoms in hollow fibres [88] and laser-cooled atoms [89].
However, novel microcavity designs to highly concentrate

light present new possibilities for strong single-photon
Kerr nonlinearities [90].

Here, instead, we demonstrate an approach based on
measurement-induced nonlinearities, which are in prin-
ciple scalable for all-linear-optical quantum computing,
though involve a large overhead. It is possible to imple-
ment a conditional ⇡-phase shift on a two-photon Fock
state using an ancillary photon, and additional optical
modes [91]. Using newly derived nonlinear phase-shift
(NPS) gates, we are able to implement arbitrary phase
shifts between the zero, one and two Fock states of an
optical mode. (See appendix for details.)

We simulate and compare harmonic and anharmonic
models of vibration for H2O, restricting to the subspace
of stretch modes. Two photons injected together into
the top mode of the chip serves to simulate two ex-
citations initialised in a superposition of the harmonic
model eigenstates corresponding to a local OH stretch.
As shown in Fig. 3(e), when simulating the anharmonic
model, this input state can now be understood as the
same superposition of the new energy eigenstates of Ĥa,
while a third photon injected into the third optical mode
serves as the ancillary system.
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Fig. 3(f) shows the results for simulating the prob-
abilties for these two vibrational excitations to remain
bunched or anti-bunch, under both the harmonic model,
as before, and the anharmonic model using the NPS gate.
The di↵erence in the detection patterns between the two
models, Ĥ and Ĥa, is a function of their di↵erent spec-
tra, shown in Fig. 3(d). The probability to detect a sin-
gle excitation in each of the modes (i.e. anti-bunched),
shown in the left panel of Fig. 3(f), acquires a simple fre-
quency shift for the anharmonic evolution corresponding
to the adjusted energy levels, as seen in the top panel of
Fig. 3(d). In contrast, the probabilities for the state to
remain doubly occupied display markedly di↵erent dy-
namics between the harmonic and anharmonic cases, as
shown in the right panel of Fig. 3(f). This is a result of
the three vibrational eigenstates no longer being equally
spaced in energy, as seen in the bottom panel of Fig. 3(d),
introducing new frequencies in the evolution. For this set
of experiments, the average distances between the ideal
and experimental distributions for the harmonic and an-
harmonic cases are 0.02±0.01 and 0.06±0.02 respectively.

Quantum simulation with adaptive feedback
Adaptive feedback control (AFC) is a practical labo-
ratory technique for finding optimal control fields for
molecules [13–16]. Starting with a random selection of
pulse shapes, the measured outcome from each control
setting is evaluated with respect to a predefined goal by
an algorithm that searches the available space of con-
trol parameters and iterates towards to an optimal solu-
tion. AFC naturally incorporates laboratory constraints
to design control fields that would not be found either
analytically or through numerical simulation. Neverthe-
less, models idealised for quantum simulation could help
to identify new possibilities for molecular control, allow
their comparison over a large number of molecules, and
include quantum control fields.

Our goal is to use our simulator with an adaptive feed-
back loop from its quantum measurement statistics to
design initial quantum states for a molecule that maxi-
mally achieve a particular task over a period of evolution.
Our example molecule is ammonia, NH3, a prototype for
studying dissociation, including vibrationally mediated
pathways, in which the states of its products, NH2 + H
depend on the prior vibrational state in the ground elec-
tronic state [17].

Our model, shown in Fig. 4(b), simulates the prepara-
tion of a vibrational state in the electronic ground state
of the molecule; we then obtain the vibrational state that
results from an electronic excitation by projecting the vi-
brational modes of the ground state onto the vibrational
modes of the excited state. We approximate this pro-
jection by a unitary transformation between the modes
UGE, though note that this transformation can in general
be achieved via single mode squeezing, displacement, and
linear optical transformations [92]. The evolution of the
vibrational state of the electronically excited molecule is
simulated under the harmonic approximation Hamilto-
nian for the normal modes. Measuring the evolved state

in a localised basis, as before, identifies three local NH
stretch modes.

The specific aim of this simulation, schematically de-
picted in Fig. 4(c), is to let an AFC algorithm find initial
states of two vibrational excitations (in the electronic
ground state molecule) which result in a maximal to-
tal probability to bunch in any of the three NH stretch
modes (of the electronically excited molecule) over the
first 10fs of evolution, which we associate with a preferred
dissociation pathway, whilst suppressing other bunched
events which we associate with other pathways. The al-
gorithm begins with a trial state of two photons that
simulates two excitations superposed randomly over 5
of the normal vibrational modes (the 6th mode is es-
sentially uncoupled from the rest). State preparation,

parameterised by U(~✓), is iteratively optimised by pro-
gramming the simulator to implement the transfer ma-
trix, U(~✓, ti) = ULe

�iHti/~U †
GE

U(~✓), where UGE relates
to the transformation between the ground and excited
state normal modes and UL relates to the transforma-
tion between the excited state normal and local modes.

An example experimental trial is shown in Fig. 4(d).
A Nelder-Mead simplex method is used to minimise the
cost function C = �↵

P
i
wi�pi 2 [1, �1], where �pi is

the di↵erence between the probability of bunching in the
NH stretch modes and the remaining modes at timestep
i, wi are weighting factors, and ↵ is a normalisation
factor (see appendix for details). The final value in
Fig. 4(d) is C = �0.771, starting from a random initial
state with C = +0.337. In all, this procedure involved
the collection of measurement statistics for almost 2000
unique settings of the photonic chip. This experiment
was repeated with six random initial states, all achieving
similar final values of the cost function with a mean
C̄ = �0.845 (see appendix for details).

Discussion
We have introduced integrated photonics as a plat-
form for simulating the vibrational quantum dynamics
of molecules within the harmonic, perturbatively anhar-
monic and Linblad models, demonstrating a core map-
ping in which a photonic chip plays the role of a pro-
grammable molecule. Scaling up and extending these
techniques to more involved Hamiltonians with highly
anharmonic atomic potentials and electronic degrees of
freedom, and to realise an advantage over classical simu-
lation techniques [63], present important and interesting
research directions.

Particularly relevant device errors that must be ad-
dressed are those of inevitable flaws in circuitry fabrica-
tion and operation, photon distinguishability, and pho-
ton loss. Although the precision required in the setting
of any individual circuit parameter must necessarily in-
crease with dimension [93, 94], linear optical elements
with extinction ratios of over 60dB have been demon-
strated [53, 55]. In addressing the task of reducing dis-
tinguishability between independent photons, visibilities
of 95% have been reported for on-chip sources [95], and
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visibilities > 90% have been reported for photons from
widely separated time bins of a solid state photon source
[96]. While ultra low loss integrated circuitry has been
demonstrated [97], photon loss is a fundamental error in
photonics; yet basic methods that alleviate some of this
error would provide significant improvements in rates for
the class of experiments demonstrated here.

The development of programmable nonlinear optics at
the quantum level is a key functionality for quantum

technologies and remains a major challenge for the field,
however, we have shown that weak nonlinearities pro-
vide a su�cient augmentation to simulate richer molec-
ular models. With modest progress in these areas, our
approach could yield an early class of practical quantum
simulations that operate beyond current classical limits.
It might then be possible to discover new possibilities for
molecular control with quantum states of light, including
new dissociation pathways and molecular conformations.
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I. Sagnes, A. G. White, L. Lanco, A. Au↵èves, and
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Appendix A: Quantum Chemistry details

The electronic ground state of H2CS, SO3, HNCO, HFHF, N4, P4, N-methylacetamide, H2O and NH3 are all
closed-shell singlet states. For H2CS, SO3, HNCO, HFHF, N4, P4 and NH3, the equilibrium geometries and force
constant matrices were computed using CC2, an approximate coupled-cluster correlated wavefunction method, and
the TVZPP atomic orbital basis sets [65, 98, 99]. For N-methylacetamide, density functional theory with the B3LYP
functional and a split-valence atomic orbital basis set was used. The planar equilibrium geometry and force constant
matrix of the first electronic excited state of NH3 were computed at the CC2/TZVPP level of theory, where the
Hessian was computed by finite di↵erence using the nuclear gradients of the excited electronic state [100]. For the
H2O molecule, the equilibrium geometry, second, third and semi-diagonal quartic force constant matrices were taken
from reference [80]. The normal modes and harmonic wavenumbers for each molecule and electronic state were
computed by diagonalising the projected mass-weighted force constant matrix.

Since the geometries of NH3 in its ground and excited states di↵er, the vector space spanned by the normal modes
di↵er. The unitary transformation UGE used to approximately model the projection of the vibrational modes of the
ground state VG to those of the excited state VE is the one that obtains maximal overlap in the orthogonal procrustes
sense

UGE = min
U

||VE � VGU ||2 (A1)

Appendix B: Experimental details

1. Photon source

The photonic states used as input for the simulations are generated using 140 fs pulses of light produced by a
Ti:Sapphire laser with emission wavelength centred at 808 nm and a repetition rate of 80 MHz. Frequency doubling
of these pulses is achieved with a Barium Borate (BBO) nonlinear crystal that is followed by dichroic mirrors used to
separate the light at 404 nm from the pump beam. The 404 nm pulses are then used to induce spontaneous parametric
down conversion (SPDC) in a Bismuth Borate (BiBO) nonlinear crystal that generates the pairs of single photons
used as input for the experiment. A 3 nm bandwidth interferometric filter centred at 808 nm allows for the collection
of photons generated at the same wavelength by the SPDC process. Up to two pairs of photons generated by the
SPDC process are collected from four points of the emission cone acting as two independent photon-pair sources. Four
polarisation maintaining fibres route these photons either to the integrated photonic chip or directly to detectors to
herald the generation of the multiphoton input state.

When either source is connected directly to the detectors, the ratio between the coincidence detection rate and the
single detection rate is 12%. Taking into account the detector e�ciency, this translates to a heralding e�ciency of
around 24%.

The indistinguishability, measured by Hong-Ou-Mandel dip visibility, for photons generated from the same pair
source is ⇠ 0.98 while for photons generated in two di↵erent pair sources, the HOM visibility is ⇠ 0.91.

2. Integrated photonic chip

The integrated planar lightwave circuit interferometer [56] consists of an array of six germanium doped silica cores
surrounded by a silica cladding operating as single mode waveguides for the working wavelength. This device is
designed to perform any unitary transformation of the optical modes corresponding to the integrated waveguides
using the theoretical scheme described in Ref [67]. This scheme requires 15 beamsplitters with adjustable splitting
ratio and 15 variable phase shifters, which are implemented using 30 integrated directional couplers with 50:50 splitting
ratio and 30 thermal phase shifters. Each of the thermal phase shifters consists of a metallic electrical heater that can
be independently fed with current up to 100mA supplied by an electronic circuit externally controlled via computer.
Two optical fibre arrays are coupled and glued at the input and output ports ensuring coupling stability. Further
details of this reconfigurable device can be found in [56].

3. Detectors

The photonic output state is measured by means of an array of single photon detectors. The experimental setup is
equipped with 12 silicon single-photon avalanche photodiode detectors with an average e�ciency of ⇠ 50% connected
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to a coincidence counting card time-tagging 16 simultaneous channels in a time window usually set to be around 2ns
during these experiments. For each channel it is possible to set a specific time delay that is used by the counting card
to compensate the discrepancy in the signals arrival time introduced in the experiment by optical fibres, detectors,
electronics and coaxial cables.

4. Input state configurations

All experiments are performed using one or both of the SPDC sources described above. Di↵erent input Fock states
are prepared with a combination of heralding signals and postselection.

• Single photon input states, |1i, are obtained using a single pair source and measuring coincidental detection
between one of the photons routed through the chip and the second photon connected directly to a detector as
a herald.

• Two photon input states of the form |2i are obtained by routing a single arm of a pair source through the chip
and postselecting upon coincidental detection of two photons at the output.

• Two photon input terms of the form |1i |1i are obtained using a single pair source and routing both the photons
through the chip, postselecting upon coincidental detection of two photons at the output.

• Four photon input terms of the form |2i |2i are obtained using the same configuration and postselecting upon
coincidental detection of four photons at the output.

• Three photon input states of the form |1i |1i |1i required both pair sources to be employed with three of the
fibres connected to the chip and the fourth directly to a detector as a herald. The postselection is based on the
detection of the heralding photon and of three photons at the output of the chip.

• The three photon input |2i |1i required for the simulation of anharmonic evolution of H2O is obtained via the
same configuration as the above |2i |2i input, and using the chip to implement a beamsplitter operation between
one of the input modes and two of the output modes. One of these output modes is then used as a heralding
signal for the |2i |1i input. Further heralding is then required to confirm the correct operation of the NPS gate.

5. Experimental procedure

The procedure for collecting experimental data begins with a set of experiments to measure detector e�ciencies. A
heralded single photon is input to the chip which is set to route the photon to each output mode. Collecting detection
events for a fixed period of time for each output mode then allows us to estimate the relative detector e�ciencies by
dividing all the count rates by the largest count rate. The input state is then set to one of the configurations described
above and the experiment is performed by logging all coincidental detections at the output with the integrated chip
set to perform the set of unitaries required for the simulation. These experimental counts are then corrected using
the measured e�ciencies by dividing the total counts in a detection pattern by the product of the relative detector
e�ciencies of the detectors in that pattern. These corrected counts are then used to estimate the expectation value of
projecting the output state onto a detection pattern as the frequency of corrected counts in that pattern to the total
number of corrected counts.

Finally, the statistical noise in the estimates of these probabilities resulting from the finite counting statistics is
estimated via a bootstrapping approach, where 1000 sets of data are resampled from Poissonian distributions with
means given by the experimentally measured counts, and the standard deviation of the probabilities estimated from
these sets are used to provide error bars on plots.

6. Probabilistic number resolving

Many of the experiments reported in this article require the ability to resolve multiple occupancy in the output
modes. Although number-resolving detectors were not available in this experiment we are able to circumvent this
requirement by performing probabilistic number resolving between one and two photons using auxiliary fibre beam-
splitters (FBS) and detectors. This is achieved by inserting a FBS at each of the relevant output fibres and connecting
both output modes to detectors; when there are two photons incident at the FBS there is then a probability that both
the detectors generate a signal. For a beamsplitter with reflectivity r connected to detectors with e�ciencies ⌘1 and ⌘2
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, the probability of detecting a coincidental detection given a two-photon input is 2r(1 � r)⌘1⌘2. Performing detector
e�ciency measurements as described in the previous section, the count rates in each detector will be proportional to
their e↵ective e�ciencies, r⌘1 and (1 � r)⌘2. As before, relative e�ciencies are then calculated by dividing by the
maximum count rate and all coincidence counts are re-normalised by the product of these relative e↵ective e�ciencies.
A final correction is then applied to account for multiple occupancy, for instance in a two photon experiment counts
corresponding to the same output mode are halved, whereas counts corresponding to di↵erent output modes are
averaged over the four possible ways of detecting such an output.

Appendix C: Molecule details

Here we include all computed vibrational frequencies and local basis transformations used in the work.

1. H2CS

The frequencies of the normal modes are calculated to be

{3195.45, 3102.74, 1501.77, 1061.45, 1017.08, 1008.04}cm�1 (C1)

and the transformation between the normal modes and localised modes is given by

UL =

0

BBBBB@

0.563 0.572 0.332 0.251 0. 0.427
�0.563 0.572 0.332 0.251 0. �0.427
�0.427 �0.392 0.572 0.138 0. 0.564

0. �0.196 �0.355 0.914 0. 0.

0. 0. 0. 0. 1. 0.

�0.427 0.392 �0.572 �0.138 0. 0.564

1

CCCCCA
(C2)

2. HFHF

The frequencies of the normal modes are calculated to be

{4068.29, 3981.51, 578.25, 464.46, 207.95, 148.93}cm�1 (C3)

and the transformation between the normal modes and localised modes is given by

UL =

0

BBBBB@

0.768 0.147 0.281 0. �0.410 �0.377
�0.178 0.920 0.265 0. 0.220 �0.046
0.064 �0.303 0.844 0. 0.357 0.254

0. 0. 0. 1. 0. 0.

0.607 0.135 �0.351 0. 0.462 0.525
�0.076 0.145 0.123 0. �0.665 0.718

1

CCCCCA
(C4)

3. HNCO

The frequencies of the normal modes are calculated to be

{3694.87, 2260.22, 1241.85, 805.38, 605.69, 552.52}cm�1 (C5)

and the transformation between the normal modes and localised modes is given by

UL =

0

BBBBB@

0.826 0.116 �0.198 �0.438 0. 0.272
�0.066 0.982 0.120 0.001 0. �0.129
0.157 �0.090 0.971 �0.085 0. 0.133
0.537 �0.037 0.039 0.667 0. �0.514

0. 0. 0. 0. 1. 0.

0.028 0.111 �0.050 0.597 0. 0.792

1

CCCCCA
(C6)
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4. N4

The frequencies of the normal modes are calculated to be

{1366.42, 1015.85, 947.85, 916.73, 412.35, 366.86}cm�1 (C7)

and the transformation between the normal modes and localised modes is given by

UL =

0

BBBBB@

0.191 �0.356 �0.611 0.494 0. 0.469
0.658 0.611 �0.356 �0.011 0. �0.258
0.658 �0.611 0.356 �0.011 0. �0.258
0.191 0.356 0.611 0.494 0. 0.469

0. 0. 0. 0. 1. 0.

0.244 0. 0. �0.716 0. 0.654

1

CCCCCA
(C8)

5. P4

The frequencies of the normal modes are calculated to be

{608.25, 460.20, 460.20, 460.20, 366.27, 366.25}cm�1 (C9)

and the transformation between the normal modes and localised modes is given by

UL =

0

BBBBB@

0.5 �0.676 �0.096 �0.533 0. 0.

0.5 0.727 0.074 �0.465 0. 0.

0. 0. 0. 0. 0.853 �0.522
0.5 0.059 �0.691 0.519 0. 0.

�0.5 0.110 �0.713 �0.480 0. 0.

0. 0. 0. 0. 0.522 0.853

1

CCCCCA
(C10)

6. SO3

The frequencies of the normal modes are calculated to be

{1334.97, 1334.55, 966.96, 497.57, 497.52, 469.50}cm�1 (C11)

and the transformation between the normal modes and localised modes is given by

UL =

0

BBBBB@

0.608 �0.346 �0.577 �0.218 0.362 0.

0. 0.701 �0.579 0.417 0. 0.

0.608 0.346 0.577 0.218 0.362 0.

0. �0.519 �0.012 0.855 0. 0.

�0.511 0. 0. 0. 0.859 0.

0. 0. 0. 0. 0. 1.

1

CCCCCA
(C12)

7. NMA

The vibrational frequencies of NMA are calculated to be

{3589.68, 3143.77, 3113.38, 3111.68, 3060.23, 3024.31, 3000.1, 1808.96, 1572.7, 1484.02, 1481.06, 1469.21, (C13)

1452.61, 1427.76, 1391.94, 1279.31, 1170.4, 1150.05, 1120.42, 1053.5, 995.522, 876.075, 637.311, 628.305, (C14)

475.592, 436.109, 291.874, 176.452, 96.9364, 39.7879}cm�1 (C15)

and the transformation used is UL � 124 where we select the subset

{1279.31, 1170.4, 1120.42, 995.522, 876.075, 628.305} (C16)
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to be the first six modes.

UL =

0

BBBBB@

0.796 �0.007 �0.401 �0.345 0.050 �0.290
�0.115 0.794 0.141 �0.178 0.500 �0.233
0.518 �0.085 0.807 0.139 0.156 0.172
0.211 0.147 �0.312 0.889 0.214 �0.012

�0.190 �0.583 0.006 �0.031 0.704 �0.357
0.059 �0.011 �0.267 �0.197 0.427 0.839

1

CCCCCA
(C17)

8. H2O

The vibrational frequencies of the normal modes in the harmonic model are

{3914.92, 3787.59, 1627.01}cm�1

and the transformation between normal and local modes is

UL =

0

@
0.70711 �0.70709 �0.00502
0.70711 0.70709 0.00502

0. �0.00710 0.99997

1

A (C18)

Now, restricting to the subspace of the asymmetric and symmetric stretch modes and adjusting the energy levels for
anharmonic potentials via perturbation theory results in single excitation energy levels of

{3740.05, 3619.68}cm�1
.

With two excitations the {20, 02, 11} energy levels become

{7391.43, 7154.35, 7206.46}cm�1

and the normal to local transformation for this subspace is given by

UL =

0

@
0.70711 �0.70711 0.

0.70711 0.70711 0.

0. 0. 1.

1

A (C19)

9. NH3

The vibrational frequencies of the ground electronic state are given by

{3646.13, 3646.09, 3503.94, 1678.57, 1678.4, 1065.59}cm�1 (C20)

and the frequencies of the excited state are

{2590.27, 2452.95, 2451.97, 1052.62, 1050.93, 750.124}cm�1
. (C21)

The transformation between the two sets of modes is given by

UGE =

0

BBBBB@

�0.085 �0.289 �0.216 0.090 0.913 �0.147
�0.058 �0.011 0.096 0.023 0.169 0.979
0.935 �0.023 �0.341 �0.031 0.017 0.087
0.131 0.859 0.313 �0.118 0.358 �0.072
0.308 �0.336 0.819 0.331 0.0694 �0.0856

�0.052 0.256 �0.244 0.931 �0.071 0.014

1

CCCCCA
(C22)

and the transformation between normal and local coordinates in the excited state is given by

UL =

0

BBBBB@

0.575 �0.542 �0.576 �0.058 0.200 0.

0.579 0.767 �0.185 0.195 �0.062 0.

0.578 �0.223 0.757 �0.163 �0.131 0.

0.012 �0.139 0.212 0.857 0.448 0.

�0.010 0.221 0.126 �0.444 0.859 0.

0. 0. 0. 0. 0. 1.

1

CCCCCA
(C23)
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Appendix D: Simulating open system dynamics

1. Dephasing

To simulate uniform dephasing across six vibrational modes we consider the Lindblad master equation

⇢̇ = L = �i[Ĥ, ⇢] +
�

6

5X

k=1

⇣
Ẑ(k)⇢Ẑ†(k) � 1

2
{Ẑ

†(k)Ẑ(k), ⇢}
⌘

(D1)

where Ẑ(k) =
P

j
exp(i2⇡jk/6)a†

j
aj , i.e. Z(k) are six dimensional Heisenberg-Weyl matrices. Solving this equation

results in the channel ⇢(t) =
P

k
Mk(t)e�iĤt/~

⇢(0)eiĤt/~
M

†
k
(t) with time-dependent Kraus operators

M0(t) =

r
1 + 5e��t

6

6X

j=1

a
†
j
aj

Mk>0(t) =

r
1 � e��t

6

6X

j=1

exp{i2⇡jk/6}a
†
j
aj (D2)

where ��1 is usually referred to as the T2 time. Including the change of basis to the local vibrational modes, we can
therefore simulate these dephasing dynamics for a set of vibrational modes with arbitrary T2 times by statistical averag-
ing the expectation values obtained from experiments implementing the transfer matrices U(t, j) = ULZ(j)e�iHt/~

U
†
L
.

In the case of the NMA molecule data plotted in Fig. 2, we use T2 = 0.53ps.

Appendix E: Thermalisation

To simulate vibrational relaxation for a single excitation we consider the Lindblad master equation

⇢̇ = L(⇢) = � i[Ĥ, ⇢] +
X

j=1,2

�1(|3ihj| ⇢ |jih3| � 1

2
{|jihj| , ⇢}) + �2(|0ih3| ⇢ |3ih0| � 1

2
{|3ih3| , ⇢})

+
X

j=1,2

�3(|0ihj| ⇢ |jih0| � 1

2
{|jihj| , ⇢}) (E1)

Where |ji ⌘ a
†
j
|vaci and |0i ⌘ |vaci. Solving Eq. E1 in this case results in time dependent Kraus operators

M1(t) =
p

1 � e��1t |3ih1| (E2)

M2(t) =
p

1 � e��1t |3ih2| (E3)

M3(t) =
p

1 � e��2t |0ih3| (E4)

M4(t) =
p

1 � e��3t |0ih1| (E5)

M5(t) =
p

1 � e��3t |0ih2| (E6)

M0(t) =

vuut1 �
5X

i=1

M
†
i
(t)Mi(t) (E7)

The evolution between the non-vacuum states can then be simulated by the set of transfer matrices K

Ki<3(t) = ULMi(t)e
�iHt/~

U
†
L
. (E8)

This case cannot be simulated as a convex sum of unitary evolutions. However, we can implement general linear
transformations using the concept of unitary dilation at the cost of a non-unit probability of success. Any m ⇥ m

matrix A with spectral norm ||A||2  1 can be embedded as the top-left block of a 2m ⇥ 2m unitary matrix UA.
All possible unitary dilations of A can be parameterised using the Cosine-Sine decomposition [78]. By considering a
singular value decomposition of A

A = U cos (✓)V †
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where cos (✓) = diag(cos ✓1, ..., cos ✓m) we can express the possible dilations of A into 2m modes as

UA =

✓
U 0
0 X

◆✓
cos(✓) � sin(✓)
sin(✓) cos(✓)

◆✓
V

† 0
0 Y

†

◆

where X, Y 2 U(m). In this experiment we used X = Y = 1. Using this technique, we are then able to simulate each
of the set of transformations K using the dilations UK .

The terms involving M3�5 can be simulated via introducing relative losses to the modes. This could be achieved by
coupling to further ancilla modes and this time a detection in these modes would correspond to the projection |0ih0|.
Here instead, we simply apply a time-dependent e↵ective e�ciency to the detected counts on each mode. Finally,
M0(t) is diagonal and commutes with UL, meaning that it can also be achieved via a rescaling of the detected counts
from the ideal unitary evolution ULe

�iHt/~
U

†
L
.

Statistically mixing these experiments results in the correct expectation values and states ⇢(t) for the thermalisation
process. We used the !i from the previous section and �1 = 0.24ps, �2 = 0.26ps and �3 = 1.36ps taken from
experimental data in [76].

Appendix F: NPS gates

In order to implement the NPS gates, we wish to perform diagonal unitaries in the Fock basis characterised by the
evolution

a0 |0i + a1 |1i + a2 |2i ! a0 |0i + a1e
i�1 |1i + a2e

i�2 |2i

for a single optical mode. We will search for gates which use a single ancilla photon, injected in an ancilla mode. In
this case it is possible to then restrict the search to arbitrary 2 ⇥ 2 transfer matrices M which can be extended to
unitaries using the principle of dilation explained in the previous section. By considering the equations that must be
satisfied

Per[M(0,1),(0,1)] = e
�i�1Per[M(1,1),(1,1)]

2Per[M(0,1),(0,1)] = e
�i�2Per[M(2,1),(2,1)]

(F1)

the solutions can be parameterised as

M =

✓
1 �

p
1 � ei⇢ x

y

x

p
1 � ei⇢ y

◆✓
e
i�1 0
0 1

◆
(F2)

where ⇢ = �2 � 2�1. It was proven in Ref. [101] that solutions exist for all choices of {�1,�2}. Optimal gates can
then be found by performing the optimisation

maximise Psucc

subject to ||M ||2  1
(F3)

where Psucc = |y|2 is the probability that the gate succeeds in performing the desired transformation. The optimisation
is performed by using the sequential least squares programming (SLSQP) [102] algorithm included in the SciPy [103]
python package.

Fig. 5 shows the success probabilities for the optimised gates for pairs of phases {�1,�2}. Beyond the trivial case of
{�1, 2�1}, where Psucc = 1, globally optimal solutions occur for {�1,�1 + ⇡} where Psucc = 1/4. These solutions can
be seen to be generalisations of the KLM NS gate. For the set of worst case {�1,�2} pairs, we find that Psucc = 1/6.

Ref. [104] establishes an upper bound on the probability of success of NPS gates of the form {0,�} with arbitrary
ancilla states of Psucc  (3 � cos(⇡ � �))2/16. For the case when � = ⇡ this bound is saturated by the KLM NS
gate. However, we find that in restricting to such single photon ancillas, this upper bound is not generally achievable.
Furthermore, we observed that these probabilities were not improved by considering separable ancilla states containing
two photons. We leave it as an open problem to establish whether the upper bound from [104] is achievable and what
form of ancilla state is required.
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FIG. 5. Optimised success probability (Psucc) for a nonlinear phase shift (NPS) gate mapping performing the transformation
a0 |0i + a1 |1i + a2 |2i to a0 |0i + a1e

i�1 |1i + a2e
i�2 |2i using two ancilla modes and one ancilla photon. The white line is the

curve �2 = 2�1, along which Psucc = 1.

Appendix G: AFC Algorithm

In the adaptive feedback algorithm experiment we begin with an initial state of two photons in orthogonal optical
modes. We then imagine we are able to prepare a set of states defined by this state subject to a unitary mixing
of the vibrational modes, U(~✓). We ignore the sixth mode as this remains uncoupled from the others (see Molecule
details section) and perform an arbitrary unitary transformation upon the remaining five modes. There are 14 free
parameters, ✓i, in this state preparation, which are mapped to the phase shifts and beamsplitter splitting ratios within
a linear optical network. These are the parameters which are optimised in the experiment. This parameterised initial
state is then used as input to a simulation where a vibrational state in the ground state of NH3 is electronically
excited, evolves for a time t and we look to maximise the probability of bunching in the modes corresponding to local
NH stretches and minimise all other bunching.

Our feedback algorithm is a type of random restart hill climbing optimisation with an objective function which
depends on observed data, which is implemented as follows. We begin with a set of uniformly random parameters. We
then collect all two-photon coincidences at the output for a series of time steps separated by �t. After correcting for
detector e�ciencies and the ine�cient detection of multiple photon mode-occupancies, the probabilities of bunched
events

p
i

bunch
(~✓, t) = |h2i| (~✓, t)i|2 (G1)

can be estimated by the procedure outlined in previous sections, where

| (~✓, t)i =
X

j,k

Uj1(~✓, t)Uk2(~✓, t)a
†
j
a

†
k
|vaci (G2)

and U(~✓, t) = ULe
�iHt/~

U
†
GE

U(~✓) (see previous sections for definitions of UL and UGE). Since we wish to selectively
promote dissociation via the three NH stretch modes (corresponding to the first three modes in the localised basis),

the quantity we wish to maximise is p1(t) =
P

3

i=1
p

i

bunch
(~✓, t), whereas we wish to minimise bunching in (and therefore

dissociation via) the remaining localised modes p2(t) =
P

6

i=4
p

i

bunch
(~✓, t). The objective function that we use is

min~✓
C (G3)

C = �↵
X

i

wi�pi (G4)
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with

w1 = 1, wi>1 =
i�1Y

j=1

�
1 � [p1(j�t) + p2(j�t)]/N

�
(G5)

�pi = [p1(i�t) � p2(i�t)]/N (G6)

↵ =
1

1 � (N�1

N
)N

(G7)

where later times are weighted in order to correct for the possibility of dissociation occurring previously, N is the
total number of timesteps and the factor ↵ is used to renormalise the objective function such that it is constrained to
the interval [�1, 1].

The updating of the values of ✓i is performed using the Nelder-Mead simplex method [105] contained in the
SciPy [103] python package. At each iteration, the unitaries are set, data is collected and the objective function C

evaluated. The parameters ~✓ are then updated and the procedure is repeated until no further progress is detected, or
2000 evaluations of C have occurred for a given starting set of parameters. The Nelder-Mead method is preferred to
gradient based methods in this situation, as the presence of experimental noise is likely to cause C to be nonsmooth.

The optimisation process is repeated for many random initial parameter sets (random restarts) in order to increase
the probability of finding the globally optimal solution.

Appendix H: Summary of results

Here we include a summary of all data in terms of the distances between theoretical and experimentally estimated
distributions. F(p,q) =

P
i

p
piqi is the statistical fidelity.

Molecule
Figure of
merit

Input state

|1i |11i |111i |22i

H2CS
F̄ 0.999± 0.001 0.992± 0.004 0.971± 0.018 0.969± 0.018

D̄ 0.014± 0.006 0.064± 0.028 0.159± 0.074 0.130± 0.062

H2CS (long/short)
F̄ 0.999± 0.001 0.995± 0.003 - -

D̄ 0.024± 0.009 0.063± 0.026 - -

HNCO
F̄ 0.998± 0.001 0.995± 0.002 - -

D̄ 0.026± 0.009 0.050± 0.015 - -

P4
F̄ 0.999± 0.001 0.996± 0.006 - -

D̄ 0.025± 0.005 0.067± 0.022 - -

N4
F̄ 0.999± 0.001 0.995± 0.003 - -

D̄ 0.022± 0.009 0.058± 0.022 - -

HFHF
F̄ 0.998± 0.001 0.996± 0.002 - -

D̄ 0.016± 0.005 0.049± 0.023 - -

SO3
F̄ 0.999± 0.001 0.995± 0.00x - -

D̄ 0.022± 0.006 0.070± 0.029 - -

NMA
F̄ 0.999± 0.001 0.996± 0.003 0.976± 0.018 -

D̄ 0.017± 0.005 0.046± 0.014 0.139± 0.068 -

NMA (dephased)
F̄ 0.998± 0.001 - - -

D̄ 0.024± 0.011 - - -

H2O(thermalisation)
F̄ 0.994± 0.004 - - -

D̄ 0.024± 0.007 - - -

H2O (harmonic)
F̄ - 0.998± 0.003 - -

D̄ - 0.020± 0.012 - -

H2O (anharmonic)
F̄ - - - 0.995± 0.006

D̄ - - - 0.057± 0.024

NH3(dissociation) C - -0.886 - -
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FIG. 6. Four atom molecule data. Full data sets for |1i (black) and |1i |1i (blue) input experiments for H2CS, P4, SO3, HNCO,
N4 and HFHF.

Appendix I: Additional data

Here we include plots displaying the full data from our experiments. All plots represent the experimentally es-
timated probabilities for measuring patterns ordered top to bottom as {|100000i , |010000i ...} for one photon data,
{|20000i , |020000i ..., |110000i , |101000i , ...} for two photon data, {|111000i , |110100i ...} for three photon data and
{|22000i , |202000i ..., |211000i ..., |111100i} for four photon data. The mode ordering is defined by the vibrational
frequencies defined in the Molecule details section.
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FIG. 7. H2CS data. Full data sets for |1i (black), |1i |1i (blue), |1i |1i |1i (grey) and |2i |2i (red) input experiments.
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FIG. 8. NMA data. Full data sets for |1i (black), |1i |1i (blue) and |1i |1i |1i (grey) input experiments.
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FIG. 9. H2O data. Full data sets for |2i and |2i |1i input experiments for harmonic and anharmonic. States are ordered top to
bottom as {|20i , |11i , |02i}



24

0 50 100 150 200 250 300 350

-0.5

0.0

0.5

1.0

Iteration

-C
os
t

0 50 100 150 200 250 300 350
0.0

0.2

0.4

0.6

0.8

1.0

Iteration

B
un
ch
in
g
pr
ob

0 50 100 150 200 250 300 350

-0.5

0.0

0.5

1.0

Iteration

-C
os
t

0 50 100 150 200 250 300 350
0.0

0.2

0.4

0.6

0.8

1.0

Iteration

B
un
ch
in
g
pr
ob

0 100 200 300

-0.5

0.0

0.5

1.0

Iteration

-C
os
t

0 100 200 300
0.0

0.2

0.4

0.6

0.8

1.0

Iteration

B
un
ch
in
g
pr
ob

0 100 200 300 400

-0.5

0.0

0.5

1.0

Iteration

-C
os
t

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

Iteration

B
un
ch
in
g
pr
ob

0 50 100 150 200 250 300 350

-0.5

0.0

0.5

1.0

Iteration

-C
os
t

0 50 100 150 200 250 300 350
0.0

0.2

0.4

0.6

0.8

1.0

Iteration

B
un
ch
in
g
pr
ob

0 50 100 150 200 250 300 350

-0.5

0.0

0.5

1.0

Iteration

-C
os
t

0 50 100 150 200 250 300 350
0.0

0.2

0.4

0.6

0.8

1.0

Iteration

B
un
ch
in
g
pr
ob

FIG. 10. Cost function (left) and probability of bunching in an NH stretch mode averaged over all timesteps (right) for a series
of random initial states in NH3 dissociation experiment.
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FIG. 11. Full distributions for initial (left column) and final (right column) states over the five time steps for the dissociation
experiments summarised in Fig. 10. Red bars are probability of bunching in an NH stretch mode, blue bars are remaining
bunched states and yellow are anti-bunched states.
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