Lymphedema is a chronic, debilitating condition that affects millions of people worldwide. The prevalence of lymphedema is expected to increase as cancer treatments become more advanced and survivorship improves. The true incidence of lymphedema is difficult to determine because definitions, diagnoses, and duration of follow-up vary. This is seen in breast cancer related lymphedema, as the reported rate varies from 4 to 56%.1-12 Lymphedema patients report lower quality of life, frequent episodes of cellulitis, lymphangitis, and decreased extremity range of motion.13,14

Vascularized lymph node transfer (VLNT) is a promising surgical treatment option to treat lymphedema. Donor sites such as the submental, supraclavicular, axillary, and groin nodes have been described, but these sites have the potential

Abstract

Background Vascularized lymph node transfer is an increasingly popular option for the treatment of lymphedema. The omental donor site is advantageous for its copious soft tissue, well-defined collateral circulation, and large number of available nodes, without the risk of iatrogenic lymphedema. The purpose of this study is to define the anatomy of the omental flap in the context of vascularized lymph node harvest.

Methods Consecutive abdominal computed tomography angiography (CTA) images performed at a single institution over a 1-year period were reviewed. Right gastro-epiploic artery (RGEA) length, artery caliber, lymph node size, and lymph node location in relation to the artery were recorded. A two-tailed Z-test was used to compare means. A Gaussian Mixture Model confirmed by normalized entropy criterion was used to calculate three-dimensional lymph node cluster locations along the RGEA.

Results In total, 156 CTA images met inclusion criteria. The RGEA caliber at its origin was significantly larger in males compared with females ($p < 0.001$). An average of 3.1 (1.7) lymph nodes were present per patient. There was no significant gender difference in the number of lymph nodes identified. Average lymph node size was significantly larger in males (4.9 [1.9] x 3.3 [0.6] mm in males vs. 4.5 [1.5] x 3.1 [0.5] mm in females; $p < 0.001$). Three distinct anatomical variations of the RGEA course were noted, each with a distinct lymph node clustering pattern. Total lymph node number and size did not differ among anatomical subgroups.

Conclusion The omentum is a reliable lymph node donor site with consistent anatomy. This study serves as an aid in preoperative planning for vascularized lymph node transfer using the omental flap.

Copyright © 2018 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel: +1(212) 584-4662.
to cause iatrogenic lymphedema13,15–18 and may have limited soft tissue availability.19 The omentum is recognized for its rich reservoir of lymphatic tissue,20,21 redundant collateral circulation,22–24 and copious soft tissue availability.23 The omental lymph nodes have therefore been investigated as a potential donor site, and to date, there are no reported cases of iatrogenic donor site lymphedema.20,25 The purpose of our study is to characterize the anatomy, quantity and location of lymph nodes, and vascular anatomy of the omental lymph node flap. This characterization can be used in preoperative planning for patients undergoing VLNT.

Methods

An institutional review board approved retrospective analysis of consecutive abdominal computed tomography angiography (CTA) studies performed at a single institution over an 8-month period was completed. Indications for CTA imaging included evaluation of vascular anomalies, abdominal masses, epigastric pain, and kidney donation potential. Patients with a history of previous abdominal surgery, cirrhosis with portal hypertension, omental disease, active gastrointestinal bleeding, poor right gastroepiploic arterial phase timing, dissection of the celiac artery, thrombosis of the celiac artery, and stenosis of the celiac artery were excluded. Studies with excess artifact or degradation due to patient motion or position, and studies with incomplete imaging of the abdominal wall were also excluded.

The right gastroepiploic artery (RGEA) was identified and its course was analyzed and categorized into subgroups, defined by the course of the RGEA from its origin to termination. The origin was defined at the point of bifurcation of the gastroduodenal artery into the superior pancreaticoduodenal artery and RGEA. Artery termination was defined at the point where the RGEA passes the splenic artery. Additional anatomical measurements included the RGEA pedicle length, RGEA and right gastroepiploic vein (RGEV) intraluminal caliber at the gastroepiploic origin, lymph node length and width, and three-dimensional distance of each lymph node from the gastroepiploic origin using both coronal (Fig. 1) and axial (Fig. 2) views. Each variable was measured three times and averaged by two independent reviewers; measurements with a range of \(\pm 0.5\) mm were repeated.

All scans were performed in a 64-detector scanner (Aquilion 64, Toshiba Medical Systems, Otawara, Japan) using standard CTA imaging protocols. A weight-based bolus of iodinated contrast agent was administered intravenously, and images were taken at 0.5-mm intervals. Reconstructed axial images were processed to create multiplanar reconstructions (Synapse version 4.3, Fujifilm, Tokyo, Japan).

Statistical Analysis

All measurements were reported as means, and a two-tailed Z-test was used to compare results. Pearson correlation and simple linear regression analyses for colinearity were conducted to predict intraluminal diameter in relation to vascular comorbidities (XLSTAT version 2017.5, Addinsoft, New York, NY). A Gaussian mixture model was trained for each pedicle class. The expectation–management (EM) algorithm was used to estimate the mean vectors, covariance matrices, and prior probabilities. Cohen’s kappa (\(\kappa\)) coefficient was used to measure interrater agreement between the two independent reviewers. Statistical significance was set at a \(p\)-value of \(<0.05\).

Results

Composite Data

A total of 237 consecutive patients were evaluated and 156 (65.8\%) met inclusion criteria. Of the included patients, 88 (56.4\%) were male. The average age of patients was 60.7 (16.1) years old and did not differ significantly between males and females (62.6 [16] and 58.3 [15.9] years, respectively; \(p = 0.09\)). Mean body mass index (BMI) was 29.3 (6.5) kg/m\(^2\), with no significant difference between males (29.6 [5.9] kg/m\(^2\)) and females (28.8 [7.2] kg/m\(^2\); \(p = 0.41\)).

There was a high degree of agreement between the two reviewers, \(\kappa = 0.84\) (95\% confidence interval: 0.62–0.96; \(p < 0.006\)), as seen in Table 1. The right gastroepiploic pedicle length was 192.2 (39.7) mm long with no significant difference in length between males and females (196.3 [41.1]
Table 1 Cohen’s kappa: inter- and intra-rater reliability

<table>
<thead>
<tr>
<th></th>
<th>Intrarater reliability</th>
<th>Interrater reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGEA pedicle length</td>
<td>0.90</td>
<td>0.85</td>
</tr>
<tr>
<td>RGEA caliber</td>
<td>0.91</td>
<td>0.80</td>
</tr>
<tr>
<td>RGEV caliber</td>
<td>0.94</td>
<td>0.86</td>
</tr>
<tr>
<td>Node position, x</td>
<td>0.89</td>
<td>0.88</td>
</tr>
<tr>
<td>Node position, y</td>
<td>0.95</td>
<td>0.89</td>
</tr>
<tr>
<td>Node position, z</td>
<td>0.92</td>
<td>0.91</td>
</tr>
<tr>
<td>Node length</td>
<td>0.91</td>
<td>0.92</td>
</tr>
<tr>
<td>Node width</td>
<td>0.94</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Abbreviations: RGEA, right gastroepiploic artery; RGEV, right gastroepiploic vein.

and 186.8 [37.6] mm, respectively; \(p = 0.13 \). The RGEA had a significantly larger caliber in males as compared with females (3.2 [0.5] and 2.9 [0.5] mm, respectively; \(p < 0.001 \)). The RGEV also had a significantly larger caliber in males (4.2 [0.7] and 3.7 [0.4] mm; \(p < 0.001 \)). An average of 3.1 (1.7) lymph nodes were present per study. Average lymph node size was significantly larger in males (4.9 [1.9] × 3.3 [0.6] mm in males vs. 4.5 [1.5] × 3.1 [0.5] mm in females; \(p < 0.001 \)). There was no significant gender difference in the number of lymph nodes identified (3 [1.7] in men and 3.2 [1.6] in women; \(p = 0.37 \)).

Cook–Chu Right Gastroepiploic Artery Classification

The RGEA had the following three anatomical variants in the study population:

- Class I (47.4%): following the bifurcation of the gastroduodenal artery into the RGEA and the superior pancreatoduodenal artery, the RGEA travels \(>10 \) mm right lateral toward the liver prior to coursing left lateral to supply the greater curvature of the stomach (\(\rightarrow \) Fig. 3).
- Class II (30.8%): following the bifurcation of the gastroduodenal artery, the RGEA courses \(>10 \) mm caudally prior to coursing toward the greater curvature of the stomach (\(\rightarrow \) Fig. 4).
- Class III (21.8%): following the bifurcation of the gastroduodenal artery, the RGEA immediately courses toward the greater curvature of the stomach (\(\rightarrow \) Fig. 5).

Class I anatomy was most common and present in 43 males and 31 females. Average RGEA pedicle length was 199.6 (34.6) mm and did not differ between males and females (200.6 [35.5] mm and 198.2 [33.7]; \(p = 0.80 \)). RGEA caliber was larger in males (3.1 [0.5] mm) as compared with females (2.9 [0.5] mm; \(p = 0.05 \)). Mean RGEV diameter was 4 (0.6) mm and did not significantly differ between males (4.1 [0.6] mm) and females (3.9 [0.7] mm; \(p = 0.11 \)). Females (3.8 [1.8] mm) had significantly more lymph nodes...
than males (2.9 [1.4] mm; \(p = 0.03 \)). One study examined had no identifiable lymph nodes. Lymph node length and width was 4.8 (1.4) mm between males (2.8 [1.4] mm) and females (2.5 [1.4] mm). Averagelymph nodes were identified. One study had no identifiable lymph nodes. The average pedicle length was 202.4 (43.6) mm and did not differ significantly between males (206.5 [48.3] mm) and females (196.8 [36.6] mm; \(p = 0.43 \)).

Class II anatomy was found in 28 males and 19 females; 147 lymph nodes were identified. One study had no identifiable lymph nodes. The average pedicle length was 161.5 (28.6) mm and did not differ significantly between males (2.9 [0.5] mm) and females (2.8 [0.6] mm; \(p < 0.001 \) and \(p < 0.001 \)). Number of lymph nodes did not differ significantly between males and females (5 [1.3] \(\times \) 3.5 [0.7] mm) as compared with females (4.5 [1.3] \(\times \) 3.1 [0.8]; \(p = 0.02 \) and 0.01).

Class III anatomy was seen in 17 males and 17 females; 90 lymph nodes were identified. One study meeting inclusion criteria demonstrated no lymph nodes. The average pedicle length was 161.5 (28.6) mm and did not differ significantly between males (170.1 [29.6] mm) and females (164.2 [26.4] mm; \(p = 0.11 \)). The RGEA had an average caliber of 2.9 (0.5) mm without significant difference between males (2.9 [0.5] mm) and females (2.9 [0.5] mm; \(p = 0.890 \)). The RGEV had an average caliber of 3.8 (0.7) mm and did not demonstrate a significant difference between males (4.0 [0.8] mm) and females (3.6 [0.5] mm; \(p = 0.16 \)). An average of 2.7 (1.4) lymph nodes were identified per pedicle with no significant difference between males (2.8 [1.4] mm) and females (2.5 [1.4] mm). Average lymph node length and width was 4.8 (1.4) \(\times \) 3.2 (0.8) mm and did not differ significantly between males (4.9 [1.6] \(\times \) 3.3 [0.8] mm) and females (4.6 [1] \(\times \) 3.1 [0.6] mm; \(p = 0.22 \) and 0.12).

For each pedicle class, 20 iterations of the EM algorithm were enough to converge. Clustering analysis was performed for the three-dimensional location of each lymph node for each pedicle class. Each RGEA class had three areas of lymph node clustering found at distinct, three-dimensional bodies that drain into the lymphatic collecting system along the right gastroepiploic pedicle and should be preserved during dissection.

Vascular Comorbidities

Vascular comorbidities were common in this cohort: 61% had hypertension, 44% had hyperlipidemia, 28% had coronary artery disease, 18% had diabetes mellitus, 11% had peripheral vascular disease, and 6% had congestive heart failure. After controlling for vascular comorbidities, obese patients (BMI \(\geq 30 \mathrm{~kg/m^2} \)) demonstrated significantly greater arterial caliber (3.2 [0.27] mm) compared with nonobese individuals (2.8 [0.17] mm; \(p < 0.001 \)). The RGEV also demonstrated significantly larger caliber in obese individuals (4.1 [0.5] mm vs. 3.7 [0.3] mm; \(p < 0.001 \)). Linear regression analysis also demonstrated a positive correlation between BMI and arterial (RGEA caliber = 2.42 + 0.02 [BMI], \(R^2 = 0.07, F = 11.4, p < 0.001 \)) and venous caliber (RGEV caliber = 3.1 + 0.03 [BMI], \(R^2 = 0.08, F = 12.7, p < 0.001 \)). Other vascular comorbidities did not affect arterial or venous caliber.

Total number of lymph nodes per pedicle did not vary with the presence of vascular comorbidities; however, lymph node size was larger in obese patients compared to patients with a normal BMI (4.1 [0.7] \(\times \) 3.2 [0.5] mm, \(p < 0.001 \), vs. 3.7 [0.6] \(\times \) 2.8 [0.4] mm, \(p < 0.001 \)). Other vascular comorbidities did not affect lymph node size.

Discussion

The omental lymph node flap is an ideal donor site due to the low risk of iatrogenic lymphedema. First described in 1967 by Goldsmith et al, the flap has been slow to gain popularity due to concerns regarding an open abdominal procedure. Laparoscopic harvest techniques have renewed interest in this donor site for VLNT; scarring is minimized and donor site morbidity is reduced.

The omental flap comprises two dominant pedicles, the right and left gastroepiploic vessels. The RGEA is preferred because it is larger, has more epiploic branches, and is easily accessible through a laparoscopic approach.

Table 2

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I</td>
<td>Coordinates (x, y, z) mm</td>
<td>(−8.1, −3.2, 16.2)</td>
<td>(25.8, 62.1)</td>
</tr>
<tr>
<td></td>
<td>LN dimension, mean (SD), mm</td>
<td>4.5 (1.1) (\times) 3.3 (0.9)</td>
<td>4.7 (1) (\times) 3.1 (0.9)</td>
</tr>
<tr>
<td></td>
<td>Proportion</td>
<td>0.69</td>
<td>0.17</td>
</tr>
<tr>
<td>Class II</td>
<td>Coordinates (x, y, z) mm</td>
<td>(−2.2, −18.5, 16.2)</td>
<td>(4.8, 71.8)</td>
</tr>
<tr>
<td></td>
<td>LN dimension, mean (SD), mm</td>
<td>4.9 (0.8) (\times) 3.3 (0.8)</td>
<td>4.7 (0.9) (\times) 3.3 (0.8)</td>
</tr>
<tr>
<td></td>
<td>Proportion</td>
<td>0.68</td>
<td>0.11</td>
</tr>
<tr>
<td>Class III</td>
<td>Coordinates (x, y, z) mm</td>
<td>(6.8, −2.2, 11)</td>
<td>(52.10, 31.6)</td>
</tr>
<tr>
<td></td>
<td>LN dimension, mean (SD), mm</td>
<td>4.9 (0.9) (\times) 3.3 (0.7)</td>
<td>4.8 (0.8) (\times) 3.3 (0.9)</td>
</tr>
<tr>
<td></td>
<td>Proportion</td>
<td>0.59</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Abbreviations: LN, lymph node; SD, standard deviation.
This study is the first to describe a classification system of the RGEA and its associated lymph nodes. The study findings can be helpful in preoperative planning by understanding anatomical differences. Current literature suggests that a vascularized flap containing two or three lymph nodes is sufficient for improvement of lymphedema.15,35 Our results demonstrate that all three classes of right gastroepiploic anatomy can supply sufficient lymph nodes for a successful VLNT. If a surgeon’s preference is to transfer more than two lymph nodes, patients with class III anatomy may require further omental dissection.

Our study supports previous literature suggesting that obese patients have larger caliber vessels.36–38 Larger vessel caliber makes microanastomoses easier and more successful.39,40 This finding supports existing data that microsurgery in obese patients is feasible and safe, and increased BMI may have an improved effect on anastomotic patency outcomes.

Our study is the first to demonstrate a significant relationship between lymph node size and obesity. The clinical implications of this relationship are not yet known.

This study is limited by its retrospective nature, lack of surgical correlation to radiographic findings, and the inherent limits of CT angiography. CT images comprise a series of square data points called voxels. Each voxel has a numerical value representing the calculated density of a structure measured in Hounsfield units (HUs).41 If a voxel contains two areas with different HUs, the voxel is assigned the average as different densities within a voxel cannot be separated. Smaller voxels are required to increase precision, but smaller voxels are more sensitive to background noise and can distort the vascular lumen.42 In angiographic imaging, postprocessing manipulates voxels by discarding nonvascular data to enhance vascular structures and requires high contrast between vascular and nonvascular structures.43 Despite these limitations, CTA is a useful radiographic study to assess vasculature in reconstructive settings. The criterion standard is invasive angiography, but CTA sensitivity and specificity approach 90% and avoids the risks of arterial puncture, hemoptysis, and infection.44 In addition, CTA provides axial images that allow for direct visualization of vessel lumen and has accuracy in measuring perforator vessel size greater than 0.3 mm in diameter.45

This study does not advocate for routine, preoperative CT scans, and its results must be interpreted carefully. However, the study has many interesting findings that can be useful in counseling and preoperative planning for vascularized omental lymph node transfers. Finally, CTA has demonstrated complete concordance between radiological and surgical findings.46–50

Conclusion

An ideal lymph node donor site would have a sufficient number of donor nodes, a vascular pedicle of adequate length and caliber, and low risk of donor site lymphedema. The results of this study indicate that the omental lymph node flap can satisfy these requirements. Understanding lymph node clustering along the RGEA is helpful in preoperative planning for this donor site. Future studies should confirm these findings using lymphoscintigraphy or indocyanine green fluorescence.

Conflict of Interest

None.

References

