REGION-BASED CONVOLUTIONAL NEURAL NETWORK AND
IMPLEMENTATION OF THE NETWORK THROUGH ZEDBOARD ZYNQ

A Thesis
Submitted to the Faculty
of
Purdue University
by
Md Mahmudul Islam

In Partial Fulfillment of the
Requirements for the Degree
of
Master of Science in Electrical and Computer Engineering

May 2019
Purdue University
Indianapolis, Indiana
THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Lauren Christopher, Chair
Department of Electrical and Computer Engineering

Dr. Maher Rizkalla
Department of Electrical and Computer Engineering

Dr. Paul Salama
Department of Electrical and Computer Engineering

Approved by:

Dr. Brian King
Head of the Graduate Program
To my parents, Mahmuda Khatun and Md Rezaul Islam
ACKNOWLEDGMENTS

I want to express my sincerest gratitude to my thesis advisor, Dr. Lauren Christopher, for allowing me to work on the topic and providing me the guidance required at every step. I am grateful to Dr. Maher Rizkalla and Dr. Paul Salama for serving on the thesis committee. I also want to thank all my lab-mates and especially to David Emerson for his collaboration.

Finally, I would like to express my earnest gratitude to my parents, my family and friends for all of the motivation and support throughout this Journey.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>LIST OF FIGURES</th>
<th>vi</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABBREVIATIONS</td>
<td>viii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ix</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Literature Review</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1 Neural Network and FPGA</td>
<td>2</td>
</tr>
<tr>
<td>1.1.2 RCNN AND Matlab</td>
<td>3</td>
</tr>
<tr>
<td>1.1.3 Vivado Design Suite</td>
<td>4</td>
</tr>
<tr>
<td>1.1.4 Petalinux</td>
<td>4</td>
</tr>
<tr>
<td>1.2 Organization</td>
<td>4</td>
</tr>
<tr>
<td>2 DEFINE RCNN AND IMPLEMENTATION IN MATLAB</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Layers and Training Image Set</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Network Code and Parameter Setup</td>
<td>14</td>
</tr>
<tr>
<td>3 VALIDATION, DESIGN AND BITSTREAM GENERATION</td>
<td>17</td>
</tr>
<tr>
<td>3.1 Validation</td>
<td>17</td>
</tr>
<tr>
<td>3.2 Designing Block Diagram and Bitstream Generation</td>
<td>26</td>
</tr>
<tr>
<td>4 SOFTWARE AND HARDWARE IMPLEMENTATION IN PETALINUX</td>
<td>30</td>
</tr>
<tr>
<td>4.1 Choosing Platform and Data Modification</td>
<td>30</td>
</tr>
<tr>
<td>4.2 Classification Result in Hardware</td>
<td>33</td>
</tr>
<tr>
<td>5 SUMMARY</td>
<td>38</td>
</tr>
<tr>
<td>5.1 Conclusion</td>
<td>38</td>
</tr>
<tr>
<td>5.2 Future Works</td>
<td>38</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>40</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>7</td>
</tr>
<tr>
<td>2.4</td>
<td>8</td>
</tr>
<tr>
<td>2.5</td>
<td>8</td>
</tr>
<tr>
<td>2.6</td>
<td>9</td>
</tr>
<tr>
<td>2.7</td>
<td>10</td>
</tr>
<tr>
<td>2.8</td>
<td>10</td>
</tr>
<tr>
<td>2.9</td>
<td>11</td>
</tr>
<tr>
<td>2.10</td>
<td>12</td>
</tr>
<tr>
<td>2.11</td>
<td>12</td>
</tr>
<tr>
<td>2.12</td>
<td>13</td>
</tr>
<tr>
<td>2.13</td>
<td>14</td>
</tr>
<tr>
<td>2.14</td>
<td>15</td>
</tr>
<tr>
<td>2.15</td>
<td>15</td>
</tr>
<tr>
<td>2.16</td>
<td>16</td>
</tr>
<tr>
<td>2.17</td>
<td>16</td>
</tr>
<tr>
<td>3.1</td>
<td>18</td>
</tr>
<tr>
<td>3.2</td>
<td>19</td>
</tr>
<tr>
<td>3.3</td>
<td>20</td>
</tr>
<tr>
<td>3.4</td>
<td>20</td>
</tr>
<tr>
<td>3.5</td>
<td>21</td>
</tr>
<tr>
<td>3.6</td>
<td>21</td>
</tr>
<tr>
<td>Figure</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>3.7</td>
<td>22</td>
</tr>
<tr>
<td>3.8</td>
<td>22</td>
</tr>
<tr>
<td>3.9</td>
<td>23</td>
</tr>
<tr>
<td>3.10</td>
<td>23</td>
</tr>
<tr>
<td>3.11</td>
<td>23</td>
</tr>
<tr>
<td>3.12</td>
<td>24</td>
</tr>
<tr>
<td>3.13</td>
<td>24</td>
</tr>
<tr>
<td>3.14</td>
<td>25</td>
</tr>
<tr>
<td>3.15</td>
<td>25</td>
</tr>
<tr>
<td>3.16</td>
<td>26</td>
</tr>
<tr>
<td>3.17</td>
<td>26</td>
</tr>
<tr>
<td>3.18</td>
<td>27</td>
</tr>
<tr>
<td>3.19</td>
<td>28</td>
</tr>
<tr>
<td>3.20</td>
<td>28</td>
</tr>
<tr>
<td>3.21</td>
<td>28</td>
</tr>
<tr>
<td>3.22</td>
<td>29</td>
</tr>
<tr>
<td>4.1</td>
<td>31</td>
</tr>
<tr>
<td>4.2</td>
<td>32</td>
</tr>
<tr>
<td>4.3</td>
<td>32</td>
</tr>
<tr>
<td>4.4</td>
<td>33</td>
</tr>
<tr>
<td>4.5</td>
<td>34</td>
</tr>
<tr>
<td>4.6</td>
<td>34</td>
</tr>
<tr>
<td>4.7</td>
<td>35</td>
</tr>
<tr>
<td>4.8</td>
<td>35</td>
</tr>
<tr>
<td>4.9</td>
<td>36</td>
</tr>
<tr>
<td>4.10</td>
<td>36</td>
</tr>
<tr>
<td>4.11</td>
<td>36</td>
</tr>
<tr>
<td>4.12</td>
<td>37</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NN</td>
<td>Neural Network</td>
</tr>
<tr>
<td>CNN</td>
<td>Convolutional Neural Network</td>
</tr>
<tr>
<td>RCNN</td>
<td>Region-based Convolutional Neural Network</td>
</tr>
<tr>
<td>FPGA</td>
<td>Field Programmable Gate Array</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>HLS</td>
<td>High-Level Synthesis</td>
</tr>
<tr>
<td>GPU</td>
<td>Graphics Processing Unit</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>ReLU</td>
<td>Rectified Linear Unit</td>
</tr>
<tr>
<td>ARM</td>
<td>Advanced RISC Machines</td>
</tr>
<tr>
<td>ASIC</td>
<td>Application Specific Integrated Circuits</td>
</tr>
<tr>
<td>HDL</td>
<td>Hardware Description Language</td>
</tr>
<tr>
<td>DSP</td>
<td>Digital Signal Processing</td>
</tr>
<tr>
<td>BRAM</td>
<td>Block Random Access Memory</td>
</tr>
<tr>
<td>LUT</td>
<td>Look-up Table</td>
</tr>
<tr>
<td>BSP</td>
<td>Board Support Package</td>
</tr>
<tr>
<td>FSBL</td>
<td>First Stage Boot Loader</td>
</tr>
<tr>
<td>SDK</td>
<td>Software Development Kit</td>
</tr>
<tr>
<td>GPU</td>
<td>Graphics Processing Unit</td>
</tr>
<tr>
<td>IP</td>
<td>Intellectual Property</td>
</tr>
<tr>
<td>SGDM</td>
<td>Stochastic Gradient Descent with Momentum</td>
</tr>
</tbody>
</table>
ABSTRACT

In autonomous driving, medical diagnosis, unmanned vehicles and many other new technologies, the neural network and computer vision has become extremely popular and influential. In particular, for classifying objects, convolutional neural networks (CNN) is very efficient and accurate. One version is the Region-based CNN (RCNN). This is our selected network design for a new implementation in an FPGA. This network identifies stop signs in an image.

We successfully designed and trained an RCNN network in MATLAB and implemented it in the hardware to use in an embedded real-world application. The hardware implementation has been achieved with maximum FPGA utilization of 220 18k_BRAMS, 92 DSP48Es, 8156 FFS, 11010 LUTs with an on-chip power consumption of 2.235 Watts. The execution speed in FPGA is 0.31 ms vs. the MATLAB execution of 153 ms (on computer) and 46 ms (on GPU).
1. INTRODUCTION

The most robust visual processing system in the mammal is its’ visual cortex [1]. This visual system was the initial inspiration for the creation of the current day Neural Network. In the coming age, autonomous systems (i.e., autonomous vehicles, animal robots or cooking assistant robots [2]) have an increased demand for machine vision. There are many variations of machine vision Neural Networks now available. One of the most common is the Convolutional Neural Network which provides more flexibility and improved accuracy for classification using the convolutional layer’s parameter learning through this network’s hierarchy [3]. For the automotive industry, it is becoming essential to implement these facilities within the embedded hardware for speed and cost.

1.1 Literature Review

In recent years, the demand for Computer Vision (CV) processes in Autonomous Vehicles (AV), Medical Diagnostics and Unmanned Aerial Vehicles (UAVs) have created much interest among researchers and scientists. This work is not an entirely new horizon for this type of task. Researchers have developed CNN for either the software level [4] or the FPGA hardware level, but only with one-channel grey scale images [5]. In this case, our new FPGA hardware implementation of the CNN needed the RGB images.

Before starting this thesis, we searched the web for papers or projects with hardware acceleration to understand the state of the art. The most relevant papers were CNN2ECST- a Xilinx Open Hardware Contest 2016 project [5] and ZynqNet Embedded CNN - a masters thesis report by David Gschwend [4]. ZynqNet was a highly efficient FPGA-based CNN acceleration exploration with 84.5 percent top-5-
accuracy [6]. The ZynqNet FPGA accelerator had been synthesized using high-level synthesis for the Xilinx Zynq XC-7Z045, reached 200 MHz clock frequency with a device utilization of 80 to 90 percent. However, this chip had many more resources needed compared to us. CNN2ECST, was designed by an Italian group, and similar to our goal. CNN2ECST is a CNN, used the same FPGA chip. However, it takes grey scale images and hand-drawn digits into ten classes 0,...,9. They used an USPS dataset [7] for training and testing their classification work. USPS dataset consists of 1100 images of each of the ten digits, with 1000 training images and 100 test images [8]. This project gave us an initial starting point for our work. Although it inspired us, our network design was different from them.

1.1.1 Neural Network and FPGA

Artificial Neural Network (ANN) implies a network that is based on the connections of the mammal’s brain neurons implemented as a computer network [9]. Axons and Dendrites are two significant components of a neuron cell. These neurons get excited electrically. Axons perform the Neural coding depending upon the receiving signal through the Dendrites [10] and are connected to the next Neuron’s Dendrites, repeating the procedure forms the Neural Network. Modern computer science invented a connection based system modeling the biological neurons as nodes [11] and performs various interactions in between network components [12]. It is done by proper usage of weights, biases and activation functions. Neural networks can perform tasks without being programmed precisely, and they improve performance through data learning. A neural network consists of several layers of nodes, like the neurons of the brain, and these are interconnected in layers. Input layers, output layers, and hidden layers are the main three layers. Nodes are determined by individual weights and biases and have a unique output. A defined activation function activates these outputs.
Field Programmable Gate Array (FPGA), on the other hand, are electrically programmable and re-programmable integrated circuits. The FPGA is composed of arrays of programmable logic blocks and four kinds of resource sharing elements. Its reconfigurability property makes it different from Application Specific Integrated Circuits (ASICs) which are not re-configurable. Previously only VHDL/Verilog was used to program and model FPGAs. However, now we can do operations in standard C/C++ language. Once programmed, a file to configure the function into the hardware, known as a bit-stream, is created and contains the resource and wiring information for the FPGA components. We created such a file for our CNN, and then we downloaded it into the FPGA board. Once we power on, our board gets configured and initiated to run according to the designed CNN function.

1.1.2 RCNN AND Matlab

RCNN stands for region-based Convolutional Neural Network. What the regular CNN does is that it captures little information through predefined sub-regions called the receptive fields within a fixed dimension image or region. Then in a later stage, this locally captured data is analyzed, and CNN Neurons perform classification. The RCNN adds a pre-processing step to identify regions of interest to pass to CNN. So RCNN is a special version of CNN. It was Krizhevsky [13] who first initiated this thought of RCNN in 2012 and eventually in 2014, Girshick [13] designed a new method of image detection (RCNN). In 2015, he also designed the model Fast RCNN. [13]

In Matlab, there are options to create a CNN network and train it with labeled image sets. We designed our network using the MATLAB dataset provided with the Faster-RCNN example. In this case, we designed a new network to fit into a specific FPGA.
1.1.3 Vivado Design Suite

The software-hardware acceleration in this research will use Vivado Design Suite as the interface to validate, design the software section and to create bitstream for the hardware. Vivado Design Suite consists of Vivado HLS, Vivado, and SDK. Vivado HLS synthesize and implement the high-level C code into IP block. Vivado and SDK will be used to draw the network’s block diagram, and generate the bitstream. We have used Vivado Design Suite 15.3.

1.1.4 Petalinux

The hardware implementation requires an embedded software design. A commercial Linux distribution developed by Petalogix, operating system Petalinux, was our chosen embedded system software. It is used for microprocessors in Xilinx FPGAs as it supports ARM microprocessor. It is considered that Petalinux is useful for this CNN network implementation [14].

1.2 Organization

- Chapter 2 describes our RCNN definition in MATLAB and its output modification.
- Chapter 3 explains how the verification of the network was done.
- Chapter 4 describes the hardware implementation details.
- Chapter 5 is the summary.
2. DEFINE RCNN AND IMPLEMENTATION IN MATLAB

The first step of this thesis was to train an RCNN network with a labeled dataset and using the weights and biases for the next step in FPGA hardware. For training the already labeled dataset of "rcnnStopSigns.mat" [15] from MATLAB 2018B was used. Then we defined, designed and trained our RCNN in MATLAB.

2.1 Layers and Training Image Set

Initially, we choose to select a CNN network with three convolutional layers with filter numbers, 32,32,64 respectively. However, later we revised the filter numbers to be 32,32,16 respectively. The reason why we did not validate the earlier estimation of the design is described in detail in Chapter 3’s validation section. So, our final layers for the RCNN detection and classification is as following Figure 2.1 and Figure 2.2.

```matlab
layers = [imageInputLayer([32 32 3])
    convolution2dLayer(3,32,'Padding',2,'BiasLearnRateFactor',2)
    reluLayer()
    maxPooling2dLayer(3,'Stride',2)
    convolution2dLayer(5,32,'Padding',2,'BiasLearnRateFactor',2)
    reluLayer()
    maxPooling2dLayer(3,'Stride',2)
    convolution2dLayer(5,16,'Padding',2,'BiasLearnRateFactor',2)
    reluLayer()
    maxPooling2dLayer(3,'Stride',2)
    fullyConnectedLayer(16)
    reluLayer()
    fullyConnectedLayer(2,'WeightLearnRateFactor',20,'BiasLearnRateFactor',10)
    softmaxLayer()
    classificationLayer()];
```

Fig. 2.1.: RCNN layers description
Here we can see that we choose a network with RGB images of 32 by 32 by 3 as its image input layer. In a Network, layers start with an input layer. So, we started with the image input layer which will take the first step to take the sample into the network. After feeding the network, we started the first convolutional operation using the first convolutional layer. It takes regions from the image and convolves it with the parameter values. After the operation, to provide the non-linearity, we use the ReLU layer. ReLU stands for Rectified Linear Units [16]. It provides the network with non-linearities to better model the real world using "max" function. After ReLU, we get new features from convolved images.

We used a max pooling layer to extract the max values from each pooling square with stride 2. We repeat the process two more times to get the final features for the fully connected layer. The goal of these layers was to create unique features which will detect a particular object when it goes through the fully connected layers. After all nine layers (3 times convolution, ReLU, and max-pooling) we obtain the essential features. Now, we need fully connected layers to classify from these features. We
take two fully connected layers and a ReLU layer in between. We did this to provide non-linearity after the first fully connected layers. The second fully connected layer is defined by the number of objects to be determined. In our case, it had to be either 'stop sign' or 'background.'

Softmax layer is the next one. Softmax layer is normally used at the final fully connected layer because it emphasizes the most likely feature match by regression. So finally, we receive our class through the classification layer. Among the three convolutional layers, the first two convolution layers have 32 5 by 5 filters, whereas third one has 16 5 by 5 filters. All of them were with padding and bias learn rate factor of 2. The first fully connected layer uses 16 nodes to learn non-linear combinations of the features, and the last fully connected layer is used to produce the two class scores [17]. Parameters during the training are shown in the Figure 2.3 using MATLAB [18].

![Table showing training parameters]

Fig. 2.3.: Training parameters

The training had three steps.

- First, extracting region proposal from the labeled Data set. This phase reads the image input and identifies the feature to learn. Before any network training, there must be ground truth dataset. We had 27 sign images where stop signs were labeled with a rectangle box of four co-ordinates as the following Figure 2.4.

- Second, training our defined network to classify objects in our data. In this phase, the network gets trained according to described parameters such as the number of epochs, mini-batch size and initial learning rate.
Third, training bounding box regression models for each object class. This phase detects the region inside an image where the detected object is placed and place a box around that before we get the output. We can see this box in all the images of Figure 2.6, 2.7, 2.9 and 2.10.
In our case, we display the single stop sign with the best match, but multiple objects can be shown and there is also the background (no stop sign). The three steps were successfully done in MATLAB as can be seen from the images.

Now it was time for testing the network with test images. We choose 8 random images from Google search [19] [20] [21] [22] [23] [24] [25] [26] and two data from the training set to feed into the network and observe the performance. The detected images in Figure 2.6 and 2.7 showed good result, using MATLAB.

Fig. 2.6.: First 6 test images output with boxes
It has to be noted that before this network we tried another network. This network had similar parameters but had 64 filters in the third convolutional layer, and 64 filters in the first fully connected layer as shown in the following layer settings figure 2.8.

```python
layers = [imageInputLayer([32 32 3])
        convolution2dLayer(5,32,'Padding',2,'BiasLearnRateFactor',2)
        reluLayer()
        maxPooling2dLayer(3,'Stride',2)
        convolution2dLayer(5,32,'Padding',2,'BiasLearnRateFactor',2)
        reluLayer()
        maxPooling2dLayer(3,'Stride',2)
        convolution2dLayer(5,64,'Padding',2,'BiasLearnRateFactor',2)
        reluLayer()
        maxPooling2dLayer(3,'Stride',2)
        fullyConnectedLayer(64)
        reluLayer()
        fullyConnectedLayer(2,'WeightLearnRateFactor',20,'BiasLearnRateFactor',10)
        softmaxLayer()
        classificationLayer()];
```

Fig. 2.8.: Alternate RCNN layers description
The output performance was almost the same performance of the alternate RCNN as seen in Figure 2.9 and 2.10. We will describe why we chose the smaller RCNN in the next chapter.

We also ran the test images with basic MATLAB layer architecture. The layer description are shown in Figure 2.11 and detected images is shown in Figure 2.12. Confidences are higher with this trained network.
Fig. 2.10.: Last 4 test images output with alternate network

Fig. 2.11.: MATLAB layer orientation
So, after successful classification, we moved on to the network detail where we found each CNN layer’s weights and biases which will make our parameter file for the hardware. At this point, our challenge was to extract the CNN weights and biases.
data. It was a challenge mainly because it was a data that cannot be extracted manually. It is a 4-dimensional matrix. We wanted row reading first, so the simple solution was to make a data modification by a simple code in MATLAB. This code reforms our data according to our requirements seen in Figure 2.13. This step marks the end of our MATLAB part by exporting weights and biases for our network’s hardware.

```matlab
[row, column] = size(M);
Length_NewMat = row*column;
NewMat = zeros(Length_NewMat, 1);
NewMat_index = 1; %initialization

for block = 1:3
    for i = 1:32 %row
        for k = 1:32 %col
            col_index = (block-1)*32 + k;
            val = M(i, col_index);
            NewMat(NewMat_index, 1) = val;
            NewMat_index = NewMat_index + 1;
        end
    end
end
```

Fig. 2.13.: Code for formatting matrices

2.2 Network Code and Parameter Setup

After the successful creation of the weights and biases from the trained network, we need to create the parameter file where the weights and biases will be presented as matrices to the hardware. We again formatted the file according to our requirement for input to the hardware. It creates the parameter file which will work alongside the CNN C code. This file has three big matrices of weights of the convolutional
layers and seven other small matrices which will include biases of the convolutional layers and weights and biases of fully connected layers. We also had to calculate the output after each operation of convolution and pooling layers. We calculate the output dimensions depending on input dimensions, pooling dimensions, and stride squares [17]. The second part to be prepared was the C code which represents the CNN architecture. We had to represent each layer in C language to validate the network in Vivado HLS. We wrote each layer according to layer.

```c
//Load biases
for (k = 0; k < FM_2; k++) {
    for (i = 0; i < DIMH_2; i++) {
        for (j = 0; j < DIMW_2; j++) {
            o2[k][i][j] = b2[k];
        }
    }
}

//convolution
Conv2:for (i = 0; i < DIMH_2; i++) {
    for (j = 0; j < DIMW_2; j++) {
        for (l = 0; l < FM_1; l++) {
            for (s = 0; s < KH_2; s++) {
                m = i + s;
                for (t = 0; t < KW_2; t++) {
                    n = j + t;
                    cnn_label1:for (k = 0; k < FM_2; k++) {
                        #pragma HLS PIPELINE
                        v = w2[k][1][s][t] * p1[i][m][n];
                        o2[k][i][j] += v;
                    }
                }
            }
        }
    }
}
```

Fig. 2.14.: Loading biases

Fig. 2.15.: Loading weights and calculating with biases

Figure 2.13, 2.14, 2.15 and 2.16 shows four major operations through each convolutional, ReLU and max pooling. We can see from Figure 2.14 coding that a parameter file loads the bias values of the each layer in the convolution operation.
Then in Figure 2.15, it is shown how we have calculated operation between weights and biases, and the pragma PIPELINE is used. This pragma allows concurrent executions of operation by reducing the interval during initiation [27]. We also used pragma HLS INTERFACE inside vivado HLS tool (validation operation) which specifies RTL generation from the definition of the function [27].

```c
//Relu for convolution
if ((o2[k][i][j]) <= 0){
    o2[k][i][j] = (0.000000000000);
}
else o2[k][i][j] = (o2[k][i][j]);
```

Fig. 2.16.: Applying ReLU (MAX(0,x) operation)

```c
//Pooling
for (k = 0; k < FM_2; k++) {
    for (i = 0; i < PDIM_2; i++) {
        for (j = 0; j < PDIM_2; j++) {
            max = -HUGE_VAL;
            for (s = 0; s < PM_2; s++) {
                m = i * PS_2;
                m += s;
                for (t = 0; t < PW_2; t++) {
                    n = j * PS_2;
                    n += t;
                    if (o2[k][m][n] > max) {
                        max = o2[k][m][n];
                    }
                }
            }
            p2[k][i][j] = max;
        }
    }
}
```

Fig. 2.17.: Pooling max values from the 3 by 3 square

In Figure 2.16, we can see the ReLU layer performing the MAX operation which will provide the network with the non-linearity. The max pooling layer is pooling the max out of the three by three square. This operation is shown in Figure 2.17. When the generation of the C code for network and parameter file is done, we are ready for the validation and design Phase.
3. VALIDATION, DESIGN AND BITSTREAM GENERATION

This section deals with the validation of the network with chosen FPGA. We can choose any network or circuit for given hardware, but we always have to remember that hardware has limited resources. So, even if we design a perfect network, it actually might not work within particular hardware. That is why validation is required. Once a design is validated then we move on to its block diagram design. Here we use the module created by our design along with other supporting parts and wires. If the block diagram is also validated correctly, then we move on to the bitstream generation phase. This whole process was performed using Vivado Design Suite 15.3 using HLS scripting language, as shown in section 2.2. When we complete synthesis and implementation, the tool creates a script file inside Vivado HLS that maps to hardware.

3.1 Validation

The biggest initial challenge of this whole thesis was resource optimization. This thesis work was initially a continuation of a previous student’s work to improve the accuracy of a given network [28]. There was a given RCNN/CNN network of 15 layers in the previous design. It also used three convolutional layers, similar to ours. However, it had some differences regarding the third convolutional layer and first fully connected layer. It was a conventional RCNN/CNN layer configuration, and it was classifying ten classes. It is the alternate network that we have described and showed stop sign classification performance in Chapter 2. Figure 3.1 shows the layer configuration of that network.
Table 3.1.: Proposed 15 layers Convolutional Neural Network [28]

<table>
<thead>
<tr>
<th>Layer</th>
<th>Layer Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image Input</td>
<td>32x32x3 images with 'zero-center' normalization</td>
</tr>
<tr>
<td>Convolution</td>
<td>32 5x5 convolutions with stride [1 1] and padding [2 2]</td>
</tr>
<tr>
<td>ReLU</td>
<td>ReLU</td>
</tr>
<tr>
<td>Max Pooling</td>
<td>3x3 max pooling with stride [2 2] and padding [0 0]</td>
</tr>
<tr>
<td>Convolution</td>
<td>32 5x5 convolutions with stride [1 1] and padding [2 2]</td>
</tr>
<tr>
<td>ReLU</td>
<td>ReLU</td>
</tr>
<tr>
<td>Max Pooling</td>
<td>3x3 max pooling with stride [2 2] and padding [0 0]</td>
</tr>
<tr>
<td>Convolution</td>
<td>64 5x5 convolutions with stride [1 1] and padding [2 2]</td>
</tr>
<tr>
<td>ReLU</td>
<td>ReLU</td>
</tr>
<tr>
<td>Max Pooling</td>
<td>3x3 max pooling with stride [2 2] and padding [0 0]</td>
</tr>
<tr>
<td>Fully Connected</td>
<td>64 fully connected layer</td>
</tr>
<tr>
<td>ReLU</td>
<td>ReLU</td>
</tr>
<tr>
<td>Fully Connected</td>
<td>10 fully connected layer</td>
</tr>
<tr>
<td>Softmax</td>
<td>softmax</td>
</tr>
<tr>
<td>Classification Output</td>
<td>crossentropy</td>
</tr>
</tbody>
</table>

Fig. 3.1.: Proposed 15 layers Convolutional Neural Network [28]

We choose the Zedboard development kit as our hardware platform. The resource requirements for this previous network was too high for the Zedboard. The board has a Xilinx Z-7020 FPGA chip, and its specifications are shown in Figure 3.2. We can see that it has 85k programmable logic cells, 53,200 LUTs, 106,400 Flip-Flops, 4.9 Mb BRAM, and 220 DSP slices. This 4.9 Mb BRAM is consist of 140 36Kb blocks or 280 18Kb blocks. The usable RAM is 4.9 Mb.

BRAM stands for Block Random Access Memory, and it stores data. The DSP slice is used to implement algorithmic operations (Digital Signal Processing). The DSP slice performs multiply-accumulate operation. Within the signal processing
industry, utilization DSP operations in FPGA is a common practice. LUT stands for LookUp Table. It is a table that determines how our combinational logic output behaves. FFs and LUTs can be used for creating registers.

The previous student’s network could not be implemented with our chip resources. The number of parameters it would need to save was too high for the Zedboard’s memory. The resources were mainly absorbed by the values of weights and biases and their products. So after the synthesis, we found that it was not a fit for our hardware. The report of the synthesis for this network is shown in Figure 3.3.

We can see that it has exceeded the BRAM utilization by 59 percent more than maximum usage. This view is just the summary, but we investigated in detail and saw that some resources could be reused but it will hamper the overall latency. The first two vertical images in Figure 3.4 shows that it improved the resource usage by 11 percent from 159 to 148 but it is still too high. Then remaining within this usage, we tried to increase the latency using pipelining. It improved the latency but exceeded the estimated clock. Next, we used another option to increase memory. We created
Fig. 3.3.: Basic C synthesis result of the proposed network

Fig. 3.4.: C synthesis result using all loops pipelining and no pipelining with possible resource reusing registers using available FFs and LUTs. This only increased a few 100s even using all the available FFs and LUTs. This also was limited to 14k BRAM and exceeded the clock constraint as shown in Figure 3.5.
Next, we combined these two processes and reused BRAMs and partitioned an array (making new register) to maximize the usage. However, even after that, it could only reach 138 percent from 148 percent.

This analysis was the reason why the previous student’s network, described in Chapter 2, was not selected. Finally, we were forced to modify our network, although a new board with Xilinx Z-7045 could be a future improvement [29]. At this point, we redesigned the network which made a reduction in the final convolutional layer and fully connected layer. This design fits inside the available resources as shown in Figure 3.7. The memory allocation, performance and resource profiles were also validated as shown in Figures 3.8, 3.9 and 3.10.
Fig. 3.7.: C synthesis result after network redesign and profiles

Fig. 3.8.: C synthesis memory allocation analysis

It is noticeable that most of the BRAMs are getting absorbed for saving first convolution layer output values (01_U) and weights values of the second convolutional layer (w2_U). As a result, the first pooling layer also absorbs many BRAMs. It is shown in Figure 3.8.
Figure 3.9 shows us that, because of those two high values, trip count at the second convolution inner loop is the highest. When we tried to use a Dataflow architecture, we noticed a decrease in latency from 13644866 to 8216258, but it then exceeded the resources again as shown in figure 3.11.
After a successful C synthesis, we created the script to run the C simulation and run C/RTL co-simulation in Vivado HLS, this produces a hardware module named cnn_0. A few snippets of the operation such as pipelining the convolutional layers, successfully finishing and exporting RTL to the Vivado and log messages are given below.

![Fig. 3.12.: Pipelining three inner loops of conv layers](image)

We can notice in Figure 3.12, that three inner loops of the convolution operation are successfully applied with pipelining with the labels cnn_label0, cnn_label1 and cnn_label2 respectively. Now, with a quick look at Figure 2.12 we see our second convolutional layer inner loop was declared as cnn_label1. Figure 3.13 is the confirmation of that loop getting pipelined.

![Fig. 3.13.: CNN RTL generation](image)

Next, we see the successful messages during the finishing of RTL generation at Vivado HLS, generating hardware language of these RTLs for Vivado and exporting it as an IP block for use with an embedded microprocessor.

During the simulation, Vivado HLS generates core modules, implements BRAMs, synthesizes and simulates. Figure 3.14 describes the generation of synthesis and simulation targets for various DSPs.
It is also noticeable from Figure 3.14 that memory usage increased to 230 MB during this phase. This last Figure 3.15 shows that, after successful compilation, Vivado HLS uploads this IP block in the Vivado IP repository. So, later Vivado will use it for designing the block diagram of the system. The total time taken for creating hardware block for our device was 188.341 seconds, and the peak memory usage was 145 MB on desktop computer.
3.2 Designing Block Diagram and Bitstream Generation

After the successful creation of an IP block from Vivado HLS, we move on to the Vivado tool to create the block diagram within the actual FPGA.

![RTL IP block of our CNN](image1)

Fig. 3.16.: RTL IP block of our CNN

![Block Diagram with cnn_0, DMA, ARM processor](image2)

Fig. 3.17.: Block Diagram with cnn_0, DMA, ARM processor

The module cnn_0 was added to the hardware library. Upon importing it to the block diagram, we can see it in figure 3.16. ARM core processing_system7_0 is the processing system related to Zedboard zynq 700. We started our Vivado part by creating a Vivado project at the same directory of the completed Vivado HLS direc-
tory and importing the library path. Then we started designing a block diagram by importing this Zynq processing system. Next, we apply the block diagram automation command with the board preset. Then, we required an interfacing block, and to connect our block to the microprocessor AXI-bus was the standard choice. we added an AXI_DMA cell to make the interface in between the processing system AXI-bus and our module. Then we select and connect the MASTER and SLAVE using the peripheral system and the AXI_DMA. After all the interfaces are ready, we import our module cnn_0 and connect the streamIN and streamOUT ports with the DMA. Once our total connection is complete, the block diagram looks like as above in Figure 3.17. When the diagram is complete we launch the implementation run. When the implementation is done, we get all the details regarding the successful design.

![Utilization Post-Synthesis](image)

Utilization - Post-Synthesis

Fig. 3.18.: Post-synthesis summary graph

Now we can see the post-synthesis and post-implementation utilization estimation’s graphical views as in Figures 3.18 and 3.19. We can see a 2 percent drop in LUTs usage after the implementation. Total power summary is provided in Figure 3.20 where we can see total on-chip power consumption will be 2.235W where 92 percent (2.050W) will be used for dynamic power and 8 percent for static power.

The last analysis on this phase was the timing analysis of setup, hold and pulse width timing where none of them have falling endpoint or negative slack as shown in Figure 3.21.
So, we click on the device to see the final implemented design of the device and it is shown in Figure 3.22. It provides a graphical representation of how the blocks of FPGA are used in real-life.
The most important thing that we obtained from this phase was the hardware bitstream programs the FPGA hardware. We exported the bitstream to the Vivado SDK, where it will have two ways to go into the hardware as described in the next chapter.
4. SOFTWARE AND HARDWARE IMPLEMENTATION IN PETALINUX

4.1 Choosing Platform and Data Modification

Now that we have obtained the bitstream from Vivado design suite we can move on the next stage which is to implement the network into the hardware. We could achieve that in two ways. One is to do it from Vivado design toolset SDK on the ARM micro processor, but it would constrain us to limited set of operations [30]. The second option is to use an actual operating system(OS) platform that has the driver availability for the hardware and can be implemented in Zedboard. Although we have used this first option (BOOTGEN utility) previously in our course, we chose the second way for more flexibility. We chose an embedded Petalinux as it looked like to be the most convenient way to get into the Zedboard hardware. It provides the Board Support Packages (BSP) for various embedded hardware (FPGA). First, we created the environment to run the hardware operation successfully. We made Linux 16.04.3 as our OS to start the operations. The next step was to install and run Petalinux successfully from a Linux platform on our desktop computer.

Minimum desktop workstation requirement for any computer [31] to install Petalinux Tool are:

- 8 GB RAM (recommended minimum for Xilinx tools).
- 2 GHz CPU clock or equivalent (minimum of 8 cores).
- 100 GB free HDD space.
- compatible OS (for us - Ubuntu Linux 16.04.3 (64-bit)).
We installed Petalinux and ran successfully only after installing all the tools below in Figure 4.1 with the Ubuntu platform. After installing all the tools, our desired Petalinux is entirely ready for the next phase.

![Prerequisite tools for the desired environment](image)

Now the next thing we require is a Board Support Package (BSP) for the specific hardware. The good news was that the BSP for Zedboard is already available at Petalinux for various FPGA boards. We just had to use it with our bitstream with minor changes. Next step was to create and compile our program at Petalinux OS. Due to the scarcity of open source instruction and explanation, it was hard to find the commands. But we eventually found it and applied it to the application to run on board. Few of the frequently used commands are seen below:
• petalinux-create -t apps –template install –name mylib –enable

• petalinux-create -t apps –template c++ –name myapp –enable

• petalinux-build

• petalinux-build -c rootfs

• petalinux-build -c myapp -x do-install

After creating the application each time we had to compile and build it. The Device
tree of the network is imported from the Vivado generated HW folder. The informa-
tion about how the FPGA resources will be used, and how the hardware will be
designed is passed to the Petalinux BSP from Vivado using this folder and accord-
ingly creates the FSBL, Devicetree in BSP. After building this, we also had to build a
BOOT file for the SD card that will go into the FPGA with the command in Figure
4.2.

```bash
don@don-ThinkPad-E550:/boot/avnet-digilent-zedboard-2018.2$ petalinux-package --boot --fsbl images/linux/zynq_fsbl.elf --fpga project-spec/hw-description/digilent/design_i_wrapper.bit --uboot
```

Fig. 4.2.: Commands for generating bootfile from our hardware bitstream

```matlab
csvwrite('test6.csv',x5test)
M = csvread('test6.csv')
imageformatting
fileID = fopen('test6','w');
fwrite(fileID,NM);
fclose(fileID);
fileID = fopen('test6','r');
h=fopen(fileID)
```

Fig. 4.3.: Commands in MATLAB to manipulate images into binary files
Once it is done, we mount the SD card and format it to pass the files to the FPGA's ARM microprocessor and Boot file. This files will go inside the FPGA and into the hardware. The RCNN uses a Region of Interest (ROI) preprocessing step which selects potential candidates for CNN classifier. Our CNN in hardware takes the ROI candidates as the input. We selected these candidates from the region pre-processed in MATLAB. To feed the images into the hardware, we need binary arrays. Again, we used MATLAB to manipulate the image data to form binary files, and in our case, we used little-endian (64 bit) format. Figure 4.3 is a snippet of the final few commands of the image creation. Once we have the binary image files to feed it into the CNN network, we are ready for the final step. We run the hardware CNN with the test images.

4.2 Classification Result in Hardware

So, at this final stage, we used an SD card containing Petalinux OS root file system, boot file, and the test images. We connect it with our FPGA through the SD card port with pin settings for SD card boot shown in Figure 4.4.

Fig. 4.4.: Demonstration of FPGA setup
We log in the Petalinux using root user and run the Petalinux using our hardware. We connect to the interface from a desktop computer using connecting software terminals such as Tera term or Putty.

![Run process into the petalinux and classified screenshot](image)

Once we log in using the terminal, we run our compiled application which would uses the hardware to classify objects. It successfully classified all the selected images. Then we put 8 new test images and two arbitrary images to the network. All were correctly classified. Notice that, in Figure 4.5, "0" stands for detecting road sign and "1" stands for the background.

![MATLAB time for executing first 8 test images](image)
So, this matches our expectation as our network should classify the test images just like the results in MATLAB software and the goal is obtained. Let’s look at the timing comparison between the hardware and MATLAB. We run each test image five times in MATLAB to get its detection time shown in Figures 4.6 and 4.7. Elapsed times for all ten test images in MATLAB are 0.522, 0.144, 0.176, 0.226, 0.175, 0.130, 0.192, 0.178, 0.122 and 0.292. One images took around 300-400 ms extra time due to image complexity.

![Elapsed time is 0.120561 seconds.
Elapsed time is 0.124160 seconds.
Elapsed time is 0.117896 seconds.
Elapsed time is 0.116915 seconds.
Elapsed time is 0.127532 seconds.](image1)

![Elapsed time is 0.292073 seconds.
Elapsed time is 0.287144 seconds.
Elapsed time is 0.287972 seconds.
Elapsed time is 0.285781 seconds.
Elapsed time is 0.293766 seconds.](image2)

Fig. 4.7.: MATLAB time for executing last 2 test images

Average time in MATLAB was 0.216 seconds or 216 ms. Additionally, we tested on a computer with better specifications and with an installed GPU(NVIDIA TITAN XP). Average timing for this is 153 ms for the CPU and 46ms when GPU is used. Following Figure 4.8 shows the timing calculation.

![CPU and GPU comparison](image3)

Fig. 4.8.: MATLAB time for execution at enhanced CPU and at GPU
Note that although usage of GPU has increased the speed, at the same time, the power consumption has also increased, as shown in Figure 4.9 and Figure 4.10. In the FPGA it took 3100334 ns or 3.1 ms for all ten images. For a single image, it took 0.31 ms. The power consumption was only 2.235 watts.

![Power Consumption at enhanced CPU](image1.png)

Fig. 4.9.: Power consumption at enhanced CPU

![Increased power consumption at GPU](image2.png)

Fig. 4.10.: Increased power consumption at GPU

In Figure 4.11, we compare our result to the closest research. First, the FPGA chip, Zynq XC-7Z045 has a higher number of resources, and ZynqNet has absorbed almost all resources. Also, it consumed 7.80 watts while FPGA accelerator is running. The second one, CNN2ECST was a small network consisting of only one convolutional layer. The resource allocation for this network is also shown in Figure 4.11. It consumed 2.009 watts as on-chip power. In Figure 4.12, we also compare our network

![Comparison among our network, ZynqNet [4] and CNN2ECST [5]](image3.png)

Fig. 4.11.: Comparison among our network, ZynqNet [4] and CNN2ECST [5]
to an NN which ran in ARM Cortex-M7 [34]. These two tables show that our design is more complex than the CNN2ECST, but less complex than the ZynqNet, and has good performance and power for our task even after comparing to a network run by ARM Cortex-M7 processor. Although the ROI and bounding box parts were not performed in FPGA, it is still a significant time and power usage drop compared to CPU and GPU. This result can help in next-generation machine learning, especially in the automotive industry.

Fig. 4.12.: Comparison among our network and CMSIS-NN [34]
5. **SUMMARY**

5.1 **Conclusion**

In this research, our goal was to implement a hardware-software acceleration of an RCNN network. We have designed an RCNN from scratch in MATLAB and used data manipulation to perform the CNN part in hardware (FPGA) eventually successfully. This research contributed to the state of the art in two ways: First, we created and trained the network in MATLAB. Second, we have successfully taken an RCNN from software into the Hardware using Petalinux which has seen much improvement in timing. It achieved FPGA maximum utilization of 220 18k_BRAMS, 92 DSP48Es, 8156 FFS, 11010 LUTs with an on-chip power consumption of 2.235 Watts. We met the clock timing with 0 failing endpoint and 0 negative slack. Classification of images in FPGA is reduced to 0.31 ms from 153 ms in CPU and 46ms in GPU. This result can help in next-generation machine learning, especially in the automotive industry since autonomous driving needs embedded, fast implementations.

5.2 **Future Works**

Even though we have achieved the basic goals in this work, there are still many areas to improve the work. A few possible improvements:

- Larger training data-set: More images used as the labeled data-set makes better training and more robust performance.

- Implement (ROI) preprocessing for RCNN in the ARM: RCNN holds a difference from the CNN because of its region of interest (ROI). This part was done in MATLAB, but in future, that can be done in the ARM part of the FPGA.
• Compare: The design can be done on both with the bare metal application and with Petalinux OS implementation and observe the differences.

• Alternate Network: Continue to improve the CNN, and compare performance.

• Multi-classification: Extend current binary classifier to more objects.
REFERENCES
REFERENCES

[26] “Laminated poster road warning stop red sign traffic stop sign

