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Abstract

The impact of altered amino acid metabolism on cancer progression is not fully understood. We 

hypothesized that a metabolic transcriptome shift during metastatic evolution is crucial for brain 

metastasis. Here we report a powerful impact in this setting caused by epigenetic upregulation of 

glutamate decarboxylase 1 (GAD1), a regulator of the GABA neurotransmitter metabolic pathway. 

In cell-based culture and brain metastasis models, we found that downegulation of the DNA 

methyltransferase DNMT1 induced by the brain microenvironment-derived clusterin resulted in 

decreased GAD1 promoter methylation and subsequent upregulation of GAD1 expression in brain 

metastatic tumor cells. In a system to dynamically visualize cellular metabolic responses mediated 

by GAD1, we monitored the cytosolic NADH:NAD+ equilibrium in tumor cells. Reducing GAD1 

in metastatic cells by primary glia cell co-culture abolished the capacity of metastatic cells to 

utilize extracellular glutamine, leading to cytosolic accumulation of NADH and increased 

oxidative status. Similarly, genetic or pharmacological disruption of the GABA metabolic pathway 

decreased the incidence of brain metastasis in vivo. Taken together, our results show how 

epigenetic changes in GAD1 expression alter local glutamate metabolism in the brain metastatic 

microenvironment, contributing to a metabolic adaption that facilitates metastasis outgrowth in 

that setting.
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Introduction

Altered cancer cell metabolism has been recognized as one of the important hallmarks of 

cancer(1,2). The dynamic metabolic balance between metabolic stress and the high demand 

for macromolecules for enhanced proliferation in the tumor cell is highly tissue context-

dependent(1). The process of metastasis represents an extreme case of context-dependent 

metabolic adaptation(3). Recently, experimental evidence began to shed light on the critical 

role of the metabolic interactions between tumor cells and the metastatic tumor 

microenvironment in facilitating metastatic success. Direct lipid transfer from peritoneal 

adipocytes to metastatic ovarian cancer cells promotes omental metastasis(4). Colon cancer 

cell-derived creatine kinase promotes the synthesis of phosphocreatine, which is transported 

and catabolized by metastatic tumor cells to generate ATP(5). Additionally, an in vitro 
proteomics analysis of brain-seeking sub-clones of a breast cancer cell line showed an 

increase in proteins that regulates β-oxidation of fatty acid synthesis, glycolysis and TCA-

cycle activity compared to the parental lines, implying a role for the brain microenvironment 

in reshaping metastatic tumor cell metabolism(6). Yet, the mechanisms of how metastatic 

tumor cells acquire a new metabolic balance when surrounded by a highly metabolically 

unique brain microenvironment are still poorly understood.

In normal physiological conditions, the brain microenvironment displays a unique metabolic 

cooperation among diverse cells types. Global brain tissue metabolism is compartmentalized 

between different cellular subtypes(7). This compartmentalized metabolic phenotype 

requires dynamic cross-talk between various cell types to establish a cohesive metabolic 

signaling network(8,9). Highly active neurons require an uninterrupted supply of metabolites 

from the astrocyte-neuron metabolic shuttle – lactate, glutamate, glutamine, malate and α-

ketoglutarate(10–13). Interestingly, recent studies have revealed crosstalk between brain 

astrocytes and metastatic tumor cells that is reminiscent of astrocyte-neuron interactions, 

including down-regulation of the tumor suppressor PTEN through uptake of glia-derived 

exosomes(14), and gap junctions mediated transfer of cGAMP to astrocytes(15). 

Intriguingly, clinical brain metastases display an increased neuronal-like gene signature 

compared with primary tumor counterparts, suggesting metastatic tumor cells engage an 

extensive brain-like transcriptome adaptation(16,17). However, it is still unknown whether 

the neuronal-like properties obtained by the metastatic tumor cell facilitate a neuronal-like 

metabolic adaption to efficiently utilize the metabolites in the extracellular compartment of 

the brain.

In this study, we identified the brain microenvironment-dependent up-regulation of 

glutamate decarboxylase 1 (GAD1) in metastatic cancer cells, which facilitates glutamine 

metabolism and intracellular γ-aminobutyric acid (GABA) production. Mechanistically, we 

elucidated that epigenetic regulation induced by the brain microenvironment-derived 

clusterin resulted in an up-regulation of GAD1 expression and functionally necessitated 

sustained brain metastatic outgrowth. Furthermore, our results revealed a novel therapeutic 

opportunity for brain metastasis patients. GAD1-GABA-dependent metastasis outgrowth 

warrants an alternative therapeutic strategy by repurposing FDA approved blood-brain 

barrier (BBB) permeable GABA targeting agent. Here, we demonstrate that vigabatrin, a 
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clinically approved anti-epileptic seizure drug targeting the catabolism of GABA 

downstream of GAD1, showed a promising therapeutic efficacy in treating brain metastasis 

in vivo. In summary, our study provides mechanistic insight into brain microenvironment-

induced epigenetic regulation of GAD1. Our pre-clinical evidence of repurposing anti-

seizure agents as novel anti-brain metastatic treatment opens new translational avenues, 

which could yield more effective clinical therapeutics for patients who are desperate for a 

cure.

Materials and Methods

Reagents and Cell Culture

A375SM and MDA-MB-231 cell lines were purchased from ATCC in the past three years 

and cultured less than six months before replenishment. Cells were authenticated by short 

tanden repeat less than six months prior to publication. All cell lines were tested 

mycoplasma negative. Human cell lines were further authenticated using STR Profiling by 

Genetica DNA Laboratories (Burlington, NC). Primary glia cells were isolated from brain 

tissue of new born C57B6 mouse pups (1 to 3 days old) as described(18). Cancer associated 

fibroblast (CAF) cell line was a gift from Dr. Zachary Schafer at the University of Notre 

Dame. Lentiviral-based expression vectors pcDNA3/Myc-DNMT1 (36939), pcDNA3.1-

Peredox-mCherry (32383) and packaging vectors were purchased from Addgene. Lentiviral-

based TRIPZ short hairpin RNA (shRNA) and SMARTpool:ON-TARGETplus siRNA were 

purchased from GE Healthcare. MISSION esiRNA and GABRA1 (HPA055746) antibody 

were purchased from Sigma-Aldrich. DNMT3A (ab4897) and p-AMPK (ab131357) 

antibodies were purchased from Abcam. DNMT1 (5032) and DNMT3B (67259) antibodies 

were purchased from Cell Signaling Technology. For co-culture experiments, tumor cells 

were mixed in a 1:5 ratio with either freshly isolated primary glia or CAF cells in six-well 

plates. For the transwell co-culture experiments, tumor cells were seeded in the bottom wells 

and primary glia or CAF cells were seeded on the upper insert and maintained for two days. 

For conditioned media and co-culture experiments, reduced media (1 g/L glucose, 2 mM L-

glutamine, 10% of fetal bovine serum, 1% penicillin/streptomycin) was used. Conditioned 

media were collected five days after seeding of either glia or CAF cells. Conditioned media 

were mixed with fresh media as designated and used as culture media for tumor cell 

proliferation assay. Cytokine array analysis was conducted by RayBiotech (Quantibody 

Mouse Cytokine Array 4000). Human clusterin protein (2937-HS-050) was purchased from 

R&D systems. Clusterin siRNA (mouse, sc-43689) was purchased from Santa Cruz 

Biotechnology.

Bioinformatics and Gene Set Enrichment Analysis (GSEA)

Publically available GSE19184 dataset(19) was analyzed for transcriptome changes of tumor 

cell at the different tissue microenvironments. In brief, we performed differential gene 

expression analysis using the Comparative Selection Marker Module interface to compare 

the transcriptome profile of brain metastases to respective primary tumor. Four tumor types 

are analyzed: MDA-MB-231Br3 for mammary tumor, PC14Br4 for prostate tumor, 

A375SM for melanoma, KM12M for cecum cancer. A q-value of less than 0.05 was 

considered statistically significant. To identify metabolism related genes, we performed 
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GSEA analysis(20) using GenePattern interface (http://www.broadinstitute.org/gsea/) (21). 

Metabolism specific custom gene sets were assembled from the MSigDB v4.0 database(20), 

specifically from c2 and c5 sub-databases. GSEA enrichment results were compared across 

all four cell lines to identify shared enriched gene sets. The differently expressed metabolic 

genes were depicted by Java Treeview. Network analysis were conducted through the web-

based bioinformatics package NetworkAnalyst (http://www.networkanalyst.ca) based on 

recommended protocol(22,23).

Quantitative Real-Time PCR (qRT-PCR)

Total RNA was isolated using TRIzol® reagent (Life Technologies) and then reverse-

transcribed using Verso cDNA Synthesis Kit (Thermo Fisher Scientific). SYBR-based qRT-

PCR was performed using pre-designed primers. For quantification of gene expression, real-

time PCR was conducted using iTaq™ Universal SYBR® Green Supermix (Bio-rad) on a 

Mastercycler® ep realplex real-time PCR machine (Eppendorf). The relative expression of 

mRNAs was quantified by 2-Δ Δ Ct with logarithm transformation.

Proliferation Assay

Tumor cells were seeded in 1:5 ratio of tumor to stromal cell and cultured for 48 hours in 

reduced media. Five random non-overlapping regions were imaged using a Zeiss Axio 

confocal microscope. Three wells were manually counted for each condition.

DNA Extraction and Methylation Analysis

Genomic DNA was extracted from 25 mg of brain tissue containing human metastatic 

tumors or 100,000 tumor cells with the DNeasy blood and tissue kit (Qiagen). DNA (1 μg) 

was modified with sodium bisulfite (EpiTect kit, Qiagen). For methylation specific PCR, 100 

ng of converted DNA was amplified with the EpiTect MSP kit (Qiagen) using specific 

methylated or unmethylated primers designed with MethPrimer(24) and following the 

cycling conditions indicated by the EpiTect MSP kit. For bisulfite sequencing, GAD1 

promoter region (CpG island 122) was amplified and gel purified. Sanger DNA sequencing 

was performed on purified PCR amplicon.

Biosensors and Time-lapse Imaging

Tumor cells were transiently transfected Peredox(25) and co-cultured with either CAF or 

glia cells in reduced media conditions for 48 hours. For time-lapse imaging, cells were 

incubated in an environment chamber (5% CO2 and 37°C) with a consistent media flow (0.5 

ml/min). Glutamine was supplemented for a final concentration of 2 mM. Cells were 

maintained in initial reduced media condition for 10 minutes prior to image acquisition. 

Time-lapse imaging was performed on a Nikon A1-R confocal microscope (ex:488 nm em:

561 nm). ImageJ and custom MatLab codes were used to subtracted background, determined 

fluorescent intensity and generated pixel-by-pixel green-to-red ratio image for each time 

point. Fluorescence baseline value of each cell at the initial time point was defined as 

relative level 1.0.
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In vivo animal experiments

All animal experiments and terminal endpoints were carried out in accordance with 

approved protocols by Notre Dame Institutional Animal Care and Use Committee. Primary 

mammary fat pad (MFP) tumors were established by injection of 5 × 106 tumor cells 

orthotopically into the MFP of 12 week old Rag1-/- mice. Brain metastatic tumors were 

established by either intracarotid injection of tumor cells (250,000 cells in 0.1 ml of serum 

free media) or intracranial injection (50,000 cells in 2 μl of serum free media). The 

endpoints of in vivo experiments are based on the presence of clinical signs of brain 

metastasis, including but not limited to, primary central nervous system disturbances, weight 

loss, and behavior abnormalities. Animals are culled after showing the above signs or 3 

week after surgery. Eight haematoxylin and eosin (H&E)-stained sagittal sections through 

the left hemisphere of the brain were analyzed for the presence of metastatic lesions. Brain 

metastases incidence was quantified by identification of tumors from fluorescent images of 

total brain (A375SM) or by identification of tumors from H&E stained sections (MDA-

MB-231).

Immunohistochemistry (IHC) and Immunofluorescence (IF) staining

Standard immunohistochemistry was performed as described previously(14). 

Immunofluorescence was performed following the standard protocol (Cell Signaling Inc.). 

ImageJ was used for quantification of pixel-by-pixel intensity of staining.

Statistical Analysis

For quantitative data with normal distribution, the Student t test was used for comparing two 

groups. All p values are two-tailed. A difference with p < 0.05 (two-sided) was considered 

statistically significant.

Results

Brain Metastatic Microenvironment Induces a Global Metabolic Transcriptome Shift

To examine the global influence of the brain metastatic microenvironment on cancer cell 

metabolism in vivo, we performed bioinformatics analysis focusing on curated metabolism 

related genes using a publically available cDNA microarray dataset (GSE19184), containing 

gene expression data generated from either primary xenograft tumors or brain metastases 

counterparts. This dataset represents major tumor types that metastasize to the brain, 

including lung (KM12M), colon (PC14Br4), melanoma (A375SM) and breast (MDA-

MB-231Br3). Surprisingly, we observed a global down-regulation of the majority of 

metabolism related genes in brain metastatic tissues compared with respective primary 

tumors, regardless of their distinct primary tumor-of-origin (Fig 1A). In contrast, only a 

small set of metabolism related genes were up-regulated in brain metastases (Fig 1A, top 

right), suggesting that brain metastases engage a specific metabolic program that is vital for 

sustaining their energy needs. We performed GSEA to further determine the functional 

implications of the tumor metabolic shift. Interestingly, despite the majority of metabolism 

related gene sets were negatively enriched in the brain metastatic tumors, only one gene set 

(REACTOME: GABA synthesis, release, reuptake, and degradation) was significantly 
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enriched in the brain metastatic tumors in all four cell lines (Fig 1B-D, Supplementary Fig 

S1 and Supplementary Table 1). γ-aminobutyric acid (GABA) is an inhibitory 

neurotransmitter primarily found in GABAergic neurons(26). In line with a recent clinical 

finding demonstrating GABA receptor up-regulation in human HER2+ breast cancer brain 

metastases(16), enrichment of GABA signaling in brain metastatic tumor cells suggests that 

the metastatic tumor cells might adapt and shift to more neuronal-like signaling to thrive in 

the brain microenvironment. To mimic the brain microenvironment, we co-cultured MDA-

MB-231Br cells with primary brain glia cells and observed an increase in one GABA 

receptor isoform, GABRA1, compared to tumor cells alone (Supplementary Fig S2A). 

Examining the “REACTOME: GABA synthesis, release, reuptake, and degradation” gene 

set further revealed glutamate decarboxylase 1 (GAD1) as among the only three 

significantly up-regulated genes in brain metastases (Fig 2A). GAD1 catalyzes the 

production of GABA from L-glutamic acid and is primarily found in the cytosol in order to 

provide an intracellular source of GABA for cell metabolism(27). As other cellular 

processes to catabolize glutamine (and glutamate) were down-regulated (Supplementary Fig 

S2B-C and Supplementary Table 2) in brain metastatic tumor cells, we reasoned that the 

GAD1-mediated GABA pathway could be the primary method for utilizing glutamine as an 

energy source in metastatic tumor cells.

To validate the observed increase of GAD1 in brain metastases from our bioinformatics 

analysis, we injected MDA-MB-231 parental cells (MDA-MB-231 here after), a non-brain-

seeking triple-negative breast cancer cell line, into either the brain or mammary fat pad to 

model brain metastases and primary breast cancer. Using human specific qRT-PCR primers, 

we detected a significant increase of GAD1 mRNA expression in the brain metastatic tumor 

compared to the primary tumors (Fig 2B, p < 0.01). To model the different tissue 

microenvironments in vitro, we co-cultured tumor cells with either Cav1-/- fibroblast (cancer 

associated fibroblast, CAF) cells or primary glia cells to model the primary cancer 

microenvironment or brain metastatic microenvironment respectively(14,28). Compared 

with CAF co-culture, co-culture with primary glia cells led to a significant increase of 

GAD1 mRNA expression in both MDA-MD-231 cells and A375SM cells (Fig 2C, p < 0.01), 

which was associated with increased cell proliferation of tumor cells (Fig 2D, left, p < 

0.001). Importantly, the proliferative advantage imposed by glia co-culture was completely 

abolished by inducible knockdown of GAD1 in tumor cells (Fig 2D, right, p < 0.0005 and 

Supplementary Fig 3, p < 0.0001). Together, this data demonstrates that the brain metastatic 

microenvironment alters the cancer cell metabolic transcriptome and induces up-regulation 

of GAD1 mRNA expression, thereby facilitating tumor cell proliferation.

Brain Microenvironment-induced Down-Regulation of DNMT1 Reactivates GAD1 
Expression

Epigenetic regulation has been implicated in regulation of GAD1 gene expression under 

certain pathological conditions, such as schizophrenia(29). We examined the ENCODE data 

track of the GAD1 genomic locus(30), and found that CpG islands located on the GAD1 

promoter are heavily methylated in differentiated cancer cell lines (K562, HeLa and HepG2) 

while de-methylated in human embryonic stem cells (hESC) (Fig 3A). This suggests a 

possible methylation-dependent regulation of GAD1 mRNA transcription(31). We first 
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performed methylation-specific PCR (MSP) using human specific primers to multiple CpG 

sites along the GAD1 promoter (Supplementary Fig S4). Co-culture with glia cells 

decreased GAD1 promoter methylation compared with co-culture with CAFs (Fig 3B). 

Bisulfate sequencing of CpG Island 122 located in the GAD1 promoter further validated a 

decreased GAD1 promoter methylation under the glia cell co-culture (Fig 3C, p < 0.05). 

Consistently, in vivo brain metastases exhibited a similar decrease in GAD1 promoter 

methylation compared to paired primary tumors (Fig 3D).

As the primary enzyme regulating the propagation of DNA methylation(32), DNA 

(cytosine-5)-methyltransferase 1 (DNMT1) has been shown to regulate GAD1 through DNA 

methylation in multiple physiological conditions(29). Interestingly, we observed a 

significant decrease of DNMT1 mRNA in brain metastatic tissue compared with paired 

primary tumors derived from A375SM and MDA-MB-231Br3 cells (q < 0.005 and q < 

0.001 respectively) in our bioinformatics analysis of GSE19184 (Fig 3E). Moreover, we 

detected a significant reduction of DNMT1 mRNA expression using independent, paired 

tumor sets (brain vs. primary) (Fig 3F, p < 0.0001) and co-cultured with glia, but not CAF 

cells, led to a prominent decrease in DNMT1 mRNA expression in both MDA-MB-231 and 

A375 cells (Fig 4A, p < 0.005 and p <0.001 respectively). Consistently, DNMT1 protein 

expression was also decreased in glia co-culture (Supplementary Fig S5A), while there are 

no evident changes in DNMT3A and DNMT3B mRNA and protein (Supplementary Fig 

S5B-D). The above evidence suggests that the brain microenvironment induces de-

methylation of the GAD1 promoter, possibly through down-regulation of DNMT1. To 

determine whether the altered DNMT1 expression in tumor cells induced by glia co-culture 

requires direct cell-to-cell contact, we cultured tumor cells using conditioned media from 

either glia or CAF cells. Culture with glia-conditioned media, but not CAF-conditioned 

media, reduced DNMT1 mRNA expression (Fig 4B, p < 0.05). Consistently, when we 

cultured tumor and stromal cells in a transwell system, we observe a similar decrease in 

DNMT1 expression (Supplementary Fig S5E, gray boxes, p < 0.005) and a corresponding 

increase in GAD1 expression (Supplementary Fig S5E, white boxes, p < 0.005), suggesting 

an unique glia secretory factors influence DNMT1 gene expression in tumor cells. Next, we 

conducted an unbiased cytokine screen to identify the glia secretory factor influencing the 

epigenetic regulation of GAD1 in tumor cells. We identified 74 differentially expressed 

cytokines between conditioned media from glia cells or CAF cells (Fig 4C, left, adjusted p < 

0.1) with 44 cytokines enriched in glia conditioned media (Fig 4C, right, heatmap). We 

further performed Network analysis using online NetworkAnalyst tools. We constructed 

densely connected modules and nodes based on the number of first-degree interactions. 

Interestingly, NetworkAnalyst revealed the cytokine clusterin as the top-ranked key nodes 

(centrality degree=74, betweeness= 17320.89) (Fig 4D and Supplementary Table 3) and is 

highly expressed in the glia conditioned media (Fig 4E, left, p < 0.05). Clusterin is a 

glycoprotein increased in pathological conditions that has been implicated in cancer and 

cellular adaptive responses to extracellular stresses, such as metabolic stress (33,34). Direct 

treatment of clusterin dramatically reduced DNMT1 expression in tumor cells and resulted 

in GAD1 up-regulation (Fig 4E, right, white boxes, p < 0.00001) and a decrease in DNMT1 

(Fig 4E, right, gray boxes, p < 0.00005). To examine whether glia-derived clusterin is 

responsible for DNMT1 reduction in tumor cells, we conducted loss-of-function experiment 
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by knocking down clusterin in glia cells prior to co-culture. Knocking down glia clusterin 

mRNA expression (Fig 4F, left, p < 0.00001) led to a decrease in GAD1 mRNA (Fig 4F, 

right, white boxes, p < 0.005) and an increase in DNMT1 mRNA (Fig 4F, right, grey boxes, 

p < 0.005) in the tumor cells after 48 hour co-culture. To determine whether the brain-

microenvironment-induced reduction of DNMT1 is required for increased GAD1, we 

overexpressed DNMT1 in tumor cells (Fig 4G, left, p < 0.0001) resulting in blocking glia-

induced GAD1 up-regulation (Fig 4G, right, p < 0.0001), and proliferative advantage (Fig 

4H, p < 0.0005). Lastly, we targeted DNMT1 in tumor cells using an esiRNA 

(Supplementary Fig 5F, left, p < 0.0001) resulting in increased GAD1 expression in tumor 

cells (Supplementary Fig S5F, right, p < 0.0001). As both DNA methylation and histone 

modification status could potentially influences GAD1 expression, we further explored 

mRNA expression levels of histone modification enzymes in primary tumor and brain 

metastases microarray datasets. Surprisingly, we observed a general down-regulation of a 

majority of these enzymes (Supplementary Fig S6A). Using pair primary and brain 

metastases in vivo tissue sample, we validated the down-regulation of histone deactylase 1 

(HDAC1) mRNA brain metastasis tissues (Supplementary Fig S6B, p < 0.005). Due to the 

generally low expression of HDACs, treating tumor cells with HDAC inhibitors did not 

result in a convincing restoration of GAD1 mRNA expression in vitro and in vivo 
(Supplementary Fig S6C-D), suggesting the HDACs-mediated mechanism is unlikely to be 

the major contributor in GAD1 expression. Taken together, comprehensive epigenetic 

analysis suggests brain-microenvironment-secreted clusterin down-regulates DNMT1 in 

metastatic tumor cells, which subsequently leads to GAD1 upregulation.

GAD1 Mediates a Dynamic Glutamine Metabolic Flux

Considering the role of GAD1 in regulating glutamine-GABA metabolism, we hypothesized 

that up-regulation of GAD1 drives a metabolic shift towards glutamine-mediated 

metabolism. To visualize cellular metabolic events dynamically, we transfected MBA-

MD-231 with a biosensor for real-time sensing of cytosolic NADH:NAD+ (Peredox)(25). 

Increased GFP/RFP ratio (Green/Red ratio) as reported by time-lapse imaging of Peredox 

indicates NADH accumulation in the cytosol and a more oxidative cellular status(35). We 

co-cultured tumor cells transfected with Peredox with either CAFs or primary glia cells 

under the precise control of media circulation, which allows us to alter extracellular 

glutamine concentrations and monitor intracellular NADH/NAD+ in real-time (Fig 5A). 

After an initial starvation period with glucose-free and glutamine-free media for 15 minutes 

(T0 to T1), we introduced glutamine into the co-culture (Supplementary Fig 7A-B, T1). The 

glia co-cultured tumor cells responded dramatically to the glutamine, displaying a sharp 

decrease in green/red fluorescence ratio indicating increased consumption of NADH, while 

the CAF co-cultured tumor cells expressed a stable fluorescence signal, indicating no change 

in the NADH/NAD+ ratio (Supplementary Fig 7A-B, T1 to T2). Upon removing glutamine, 

all tumor cells, regardless of co-culture condition, showed an increase in green/red 

fluorescence ratio (Supplementary Fig 7A-B, T2 to T3). This data suggests that glia co-

cultured tumor cells have a greater response to extracellular glutamine due to the brain 

stromal-cell-directed metabolic shift. When applying glucose containing media instead of 

glutamine-high media, we observed no increase in green/red fluorescence ratio 

(Supplementary Fig 7C, T1 to T2). This suggests that glia cells shift the tumor cells to 

Schnepp et al. Page 8

Cancer Res. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



respond primarily to glutamine greater than glucose, a metabolite found in greater level in 

the brain parenchyma(36). To further characterize intracellular signaling in response to 

glutamine, we stained for phosphorylated AMPK (Thr172)(p-AMPK), a sensor of cellular 

energy homeostasis(37), at different time points during the glutamine starvation-replenish 

cycle. Under co-culture with CAFs, p-AMPK in tumor cells increases during the starvation 

period and remains unchanged during the subsequent high glutamine and starvation periods 

whereas the p-AMPK fluctuates moderately in the tumor cells co-cultured with glia 

(Supplementary Fig 8A-B). This result suggests that glia facilitates the ability of tumor cells 

to overcome metabolic stresses imposed by nutrient starvation.

To visualize the metabolic flux regulated by GAD1 expression, we co-cultured glia cells 

with tumor cells transfected with either GAD1 siRNA or a non-silencing control siRNA 

(Supplementary Fig S8C, left, p < 0.01). We observed an increase of the green/red ratio in 

all tumors cells during the initial starvation period (Fig 5B-C, T0 to T1). Once glutamine 

was introduced into the media, tumor cells transfected with siGAD1 did not respond to 

glutamine (Fig 5B, T1 to T2). Real-time imaging revealed a continuous increase of the 

green/red ratio in siGAD1 cells, despite co-culture with glia cells (Fig 5C). However, in the 

control siRNA group, replenishing glutamine led to an immediate decrease of the green/red 

ratio (Fig 5B-C, T1 to T2). When glutamine was removed from the media, all of the tumor 

cells display an increased green/red ratio, suggesting a more oxidative cellular status (Fig 

5C, T2 to T3). Furthermore, increased staining of p-AMPK in tumor cells co-cultured with 

primary glia cells in response to glutamine starvation (T0 to T1) suggested an increase in 

anabolic metabolic pathways (Fig 5D-E and Supplementary Fig 8C, right). Consistent with 

this cellular behavior, when glia-induced overexpression of GAD1 was inhibited with 

siGAD1, tumor cells failed to utilize glutamine replenishment (T1 to T2), indicated by 

sustained staining of p-AMPK (Fig 5E). Taken together, demonstrate that glia-induced 

GAD1 is the key cellular metabolism enzyme responsible for the dynamic glutamine 

utilization capability of tumor cells, following metabolic shifting at the brain metastatic 

microenvironment.

Repurposing Vigabatrin as an anti-Brain Metastatic Therapy

The reliance on brain microenvironment-dependent GAD1 upregulation to drive glutamine 

metabolism and cell proliferation represents a novel therapeutic opportunity for brain 

metastasis treatment. Modulation of GAD1-mediated GABA metabolism has been clinically 

exploited previously as an anti-seizure therapy(38,39). One such drug, vigabatrin, targets 

GABA metabolism by inhibiting GABA transaminase (GABA-T), an enzyme directly 

downstream of GAD1. Vigabatrin thus functions to block GABA flux into the TCA 

cycle(40). Due to the essential role of GAD1-mediated GABA signaling in metastatic 

outgrowth, we hypothesize that vigabatrin could be repurposed to block tumor cells 

utilization of GABA as a metabolite, thereby decreasing metastatic outgrowth. Examination 

of GABA-T expression revealed an increase in both brain metastatic tumor samples (Fig 6A, 

left, p < 0.05) and tumor cells co-cultured with glia cells (Fig 6A, right, p < 0.05), which is 

likely to be a result of downstream positive feedback in response to up-regulated GAD1-

GABA signaling. Knocking down GABA-T genetically (Fig 6B, p < 0.005) did not alter the 

GAD1 expression (Supplementary Fig S9A), but decreased glia-induced tumor cell 
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proliferation in both the MDA-MB-231 (Fig 6C, left, p < 0.05) and A375SM cell lines (Fig 

6C, right, p < 0.00005), suggesting GABA-T is a downstream singling node responsible for 

GAD1's tumor promoting function. Consistently, targeting GABA-T pharmacologically with 

vigabatrin resulted in a dose-dependent reduction in tumor cell proliferation under glia co-

culture (Fig 6D, p < 0.05), without significant impacts on the migratory potential of the 

tumor cells (Supplementary Fig S9B). Collectively, this data suggests that targeting GABA-

T is a potentially viable brain metastasis therapy, which could block the proliferation 

potential of tumor cells in the brain microenvironment.

To explore the possibility of targeting the GAD1 metabolic pathway as anti-brain metastasis 

therapy in vivo, we induced shRNA expression after metastatic extravasation of tumor cells 

(seven days after intracarotid injection) (Supplementary Fig S9C). We observed a significant 

decrease in metastases with shGAD1 (GFP) compared to control shRNA cells (RFP) in both 

the A375SM (Fig 7A, p < 0.05) and MDA-MB-231 models (Fig 7B, p < 0.00001). This data 

suggests ablation of brain microenvironment-induced metabolic shifting to GAD1-GABA 

signaling is critical for successful brain metastatic outgrowth. Since we have demonstrated 

targeting GABA-T effectively suppressed tumor cell proliferation, we treated metastasis-

bearing mice with either 4 mg/kg (clinically recommended dosage for anti-seizure 

treatment) or 7 mg/kg vigabatrin daily intraperitoneally. As expected, inhibiting GABA-T 

led to an evident accumulation of GABA in tumor cells in vitro (Supplementary Fig S9D, p 

= 0.0218). After a 7-day course of 4 mg/kg daily vigabatrin, the metastatic burden is 

dramatically decreased compared with vehicle-treated mice (Fig 7C). There were no 

detectable morphological differences in residual brain metastases (Fig 7D, left, H&E 

staining). We observed a dose-dependent decrease in the number of metastases (Fig 7D, 

right, p < 0.01), which is associated with a decrease in Ki-67+ tumor cells (Fig 7E, p < 0.05). 

Together, these data suggest that blocking GABA flux into the TCA cycle, either through 

genetic depletion of GAD1 or pharmacological treatment with vigabatrin, significantly 

suppressed aggressive metastatic outgrowth in the brain.

Discussion

One of the emerging hallmarks of cancer is deregulated metabolism(41). Yet, the dynamic 

nature of metabolic reprogramming in response to metastatic microenvironments, such as 

the brain, has not been fully characterized. During the metastatic process, highly metastatic 

“seeds” from the primary tumor microenvironment experience a series of metabolic stresses 

and ultimately settle in an exotic metastatic microenvironment: the brain, an organ which 

maintains a unique metabolism equilibrium(7,11). Our study illustrates the striking 

metabolic plasticity of metastatic tumor cells. In order to take the greatest advantage of 

available metabolites, metastatic tumor cells, regardless of their primary tumor-of-origin, 

metabolically adapt to the brain microenvironment by engaging the GAD1-GABA synthesis 

pathway to facilitate metastatic outgrowth (Fig 7F). In accordance with the previous 

observation of upregulated GABA-receptors in brain metastatic tumors derived from HER2-

positive breast cancer patients(16), our study significantly expands the relevance of this 

finding by revealing a mechanism of epigenetic up-regulation of the key GABA synthesis 

enzyme GAD1 in multiple tumor types which drives an increased intracellular GABA 
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metabolism. Our study also highlighted a clinically targetable mechanism for brain 

metastasis treatment (Fig 7F).

The data from this study shed light on the emerging concept of metastatic co-option. Co-

option is essential to many biological ecosystems including disease conditions(42). 

Conceivably, metastasis, as a well-known multistep, tissue context-dependent biological 

process, requires a series of co-options to facilitate ultimate metastasis success. Indeed, 

during early metastatic colonization, blood vessel co-option has been observed and is 

believed to be essential for metastasis outgrowth(43). In our study, we demonstrated an 

indispensable form of metabolic co-option, in which metastatic tumor cells mimic astrocyte-

neuron cooperation, by adopting a similar metabolic phenotype. Cooperation between 

astrocytes and neurons enables metabolic compartmentalization and precise metabolite 

regulation between astrocytes and neurons(7,11). In the normal brain tissue, glutamine 

metabolism primarily occurs in the astrocytes yet GABA synthesis occurs predominately in 

GABAergic neurons(7,11). Reminiscent of neurological disorders(29), metastatic tumor 

cells exhibit methylation-dependent up-regulation of GAD1, which is a marker of 

GABAergic neurons(44) and decrease of other glutamine catabolic process (Fig 2A-C and 

Supplemental Fig 2B-C). The altered metabolic phenotype, characterized by neuronal-like 

expression of the GAD1-GABA pathway, favors GABA synthesis in tumor cells and 

subsequently enables tumor cells to thrive in the glutamine-rich brain metastatic 

microenvironment. Due to the overarching role of DNMT1 in regulation of DNA 

methylation, it is reasonable to envision that a collective transcriptome shifting of a number 

of DNMT1-regulated genes orchestrates the highly dynamic brain metastasis process. 

Further study would be necessary to functionally reveal and validate other significant 

contributors in the brain metastasis context.

Furthermore, our data lays the groundwork for clinically translatable-targeted therapies for 

patients suffering with brain metastases. Currently, brain metastasis patients have limited 

treatment options, mainly surgery or radiotherapy(45). One of the major obstacles in 

developing therapies for brain metastasis is the presence of the blood brain barrier (BBB). 

The BBB acts as the barrier to prevent molecules from the vascular system from reaching 

the brain parenchyma(46). Most chemotherapeutic drugs fail to cross the BBB, making the 

brain a sanctuary organ for cancer cells(47). Fortunately, in developing treatments for mental 

disorders, there is a repertoire of clinical neurological drugs that have been proven to cross 

the BBB. Mechanistically, our data illustrates that brain metastatic tumor cells up-regulate a 

shared common signaling node, GAD1-GABA, with clinical seizures, which has been 

successfully targeted by the neurological drug, vigabatrin(39). Vigabatrin acts a suicide 

inhibitor of the enzyme directly downstream of GAD1, GABA transaminase (GABA-T), 

leading to an accumulation of GABA. For patients suffering from epilepsy, the increased 

pool of GABA results in a decrease in epileptic seizures(40). At the same time, inhibiting 

GABA-T also prevents GABA flux into the TCA cycle in tumor cells, suggesting that 

repurposing this neurological drug for brain metastasis may inhibit tumor GABA 

metabolism. One previous study suggested that treatment of HER2-positive breast cancer 

cells with vigabatrin decreases proliferation in vitro(16). Our study further demonstrated 

vigabatrin as a highly promising brain metastasis therapy using an in vivo model of brain 

metastases (Fig 7C-E). Expanding the applicability of these findings for additional brain 
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metastases that arise from other cancer is of interest for further study. Extravagated tumor 

cells lose their metastatic outgrowth capability in brain when vigabatrin is used to block 

GABA flux, decreasing both metastasis number and proliferation index (Fig 7C-E). It is 

important to note that brain tumor patients frequently experience seizures due to the 

deprivation of inhibitory neurotransmitter GABA around the tumor site(48). This suggests 

that in addition to treating brain metastases, vigabatrin might bring an additional benefit of 

stabilizing tumor-induced seizures, which is of interest for future pre-clinical and clinical 

study. Collectively, our study provides critical preclinical mechanistic evidence to support 

future clinical repurposing of FDA-approved GABA pathway targeting vigabatrin for brain 

metastatic patients.

In summary, our data demonstrates brain metastatic tumor cells adapt to the brain 

microenvironment by increasing GABA synthesis mediated by methylation-dependent up-

regulation of GAD1. The dependence of brain metastatic cells on GAD1 and GABA reveals 

novel mechanistic insights into brain metastasis progression and, more importantly, provides 

intriguing rationale for repurposing neurological drugs as novel brain metastasis treatments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Metastatic Microenvironment Induces Metabolic Transcriptome Shift. A, Heatmap of 

differentially expressed metabolic genes identified from bioinformatic analysis of 

GSE19184. B, GSEA result of gene sets enriched in either brain metastatic or primary tumor 

samples arising from MDA-MB-231Br3. C, Cleveland plot of top 10 gene sets enriched in 

either brain metastatic or primary tumor samples arising from MDA-MB-231Br3. D, Venn 

diagram of gene sets enriched in the brain metastatic samples arising from indicated cell 

lines.
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Figure 2. 
Brain Microenvironment Induces GAD1 Upregulation. A, Heat map of Reactome: GABA 

synthesis, release, reuptake, and degradation gene set from bioinformatic analysis of 

GSE19184. B, qRT-PCR validation of GAD1 mRNA expression using tissue samples of 

either primary or brain metastatic tumors derived from MDA-MB-231. C, qRT-PCR of 

GAD1 mRNA expression of tumor cells after 48 hours co-culture with either CAFs or glia 

cells. (left) MDA-MB-231; (right) A375SM D, (left) Cell proliferation assay of MDA-

MB-231 after 48 hours of co-culture with CAF or primary glia cells. (right) Cell 

proliferation assay of MDA-MB-231 with or without knock-down of GAD1 by transfection 

with either control shRNA or GAD1-targeting shRNA prior to co-culture with primary glia 

cells for 48 hours with Dox-containing reduced media.
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Figure 3. 
Altered Tumor Cell GAD1 Promoter Methylation and DNMT1 Expression Induced by Brain 

Microenvironment. A, UCSC Genome Browser plot of ENCODE data track of CpG Islands 

located around the GAD1 promoter. B, Promoter methylation-specific PCR (MSP) assay 

detecting methylation status in human GAD1 promoter region in vitro. C, (left) Bisulfite 

sequencing of CpG island 122 located in human GAD1 promoter region, (right) Percentage 

of Methylated CpG sites in sequenced region. D, MSP assay detecting methylation status in 

the human GAD1 promoter region in vivo. E, Bioinformatics analysis of GSE19184 

showing normalized DNMT1 probe intensity in primary tumors or brain metastases arising 

from indicated cell lines. F, qRT-PCR of DNMT1 mRNA levels in primary tumors or brain 

metastases arising from MDA-MB231.
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Figure 4. 
Brain Microenvironment-Induced Down-Regulation of DNMT1 Reactivates GAD1 

Expression. A, qRT-PCR of DNMT1 mRNA expression after 48 hours co-culture with either 

CAF or glia cells. (left) MDA-MB-231; (right) A375SM. B, qRT-PCR of DNMT1 mRNA 

expression of MDA-MB-231 cultured either with 100% conditioned media from either CAF 

or glia cells or 50% mix of conditioned media and fresh media. C, Cytokine screen of glia 

and CAF conditioned media. (left) MA plot of Log [mean expression of Glia/CAF] of 73 

cytokines analyzed. *: differentially expressed cytokines (adjusted p < 0.1) (right) Heatmap 

of differentially expressed cytokines. D, Network analysis of differentially expressed 

cytokines. E, Impact of extracellular clusterin on DNMT1 and GAD1 expression. (left) 

Cytokine expression profile of clusterin in conditioned media from CAFs or glia cells. 

(right) qPCR of GAD1 and DNMT1 mRNA expression in MDA-MB-231 cells treated with 

control or 200 ng of clusterin. F, qRT-PCR of GAD1 and DNMT1 mRNA expression in 

tumor cells genetic knockdown of glia derived-clusterin. (left) qRT-PCR of clusterin mRNA 

expression in glia cells. (right) qRT-PCR of GAD1 and DNMT1 mRNA expression in MDA-

MB-231 cells co-cultured with control glia or siClusterin glia cells. G, qRT-PCR of mRNA 

levels in tumor cells after 48 hours co-culture with primary glia cells. Prior to co-culture, 

tumor cells were transfected with either vector control or DNMT1 over expression plasmid 
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for 24 hours. (left) DNMT1 mRNA expression; (right) GAD1 mRNA expression under glia 

co-culture. H, Proliferation of MDA-MB-231 cells after DNMT1 overexpression and co-

culture with glia cells for 48 hours.

Schnepp et al. Page 19

Cancer Res. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
GAD1 Mediates Dynamic Tumor Glutamine Metabolic Flux. A, Schematic of experimental 

setup. B, Heat maps of time course of changes in fluorescence ratio of Peredox biosensor 

throughout indicated time points. Prior to biosensor study, MDA-MB-231 were transfected 

with either control or GAD1 targeting siRNA for 24 hours; then co-cultured with glia cells 

for another 48 hours. T0: 48 hours co-culture in reduced media; T1: 15 minutes of 

incubation in glucose-free and glutamine-free media; T2: 15 minutes of incubation in 

glucose-free and 2 mM glutamine media. T3: 15 minutes of incubation in glucose-free and 

glutamine-free media. C, Time course measurements of green/red fluorescence ratio of 

Peredox biosensor in MDA-MB-231. Tumor cells were transfected, co-cultured and treated 

as in B. D, Representative images of immunofluorescence staining of tumor cell's 

phosphorylated AMPK at Thr172 (pAMPK) and tumor specific marker cytokeratin 8 (K8) at 

indicated time point after 48 hours co-culture with glia cells following transfection with 

GAD1 targeting siRNA. Time-course experiments (T0-T3) are conducted as B. E, 

Quantification of pAMPK fluorescence intensity in tumor cells from images in D.
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Figure 6. 
Suppression of metastatic tumor cell proliferation in vitro by targeting GABA-T. A, qPCR of 

GABA-T mRNA expression. (left) primary tumor or brain metastatic samples arising from 

MDA-MB-231 cell line, (right) MDA-MB-231 cells co-cultured with either CAF or glia 

cells for 48 hours in reduced media. B, qPCR of GABA-T after tumors are transfected with 

esiRNA targeting GABA-T or control and then co-cultured with glia cells for 48 hours. (left) 

MDA-MB-231 cells; (right) A375SM cells. C, Proliferation of tumor cells after transfection 

with esiRNA targeting GABA-T or control and then co-culture with glia cells for 48 hours. 

(left) MDA-MB-231 cells; (right) A375SM cells. D, Proliferation of tumor cells after co-

culture with glia cells and treatment of Vigabatrin, either control, 300 μM, or 600 μM. (left) 

MDA-MB-231 cells; (right) A375SM cells.
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Figure 7. 
GAD1-Mediated Glutamine Metabolism Enables Brain Metastatic Outgrowth. A, (top) 

Representative images of A375SM brain metastatic tumors arising from 1:1 mix of tumor 

cells expressing either control (labeled with GFP) or GAD1 targeted shRNA (labeled with 

RFP), (bottom) Quantification of metastatic incidence. B, (top) Representative images of 

MDA-MB-231 brain metastatic tumors with/without GAD1 knockdown, (bottom) 

Quantification of metastatic incidence. C, Representative images of brain metastatic tumors 

arising from arising from A375SM cell after treated with vehicle control or vigabatrin (4 

mg/kg) for seven days beginning at seven days post injection. D, Reduction of metastatic 

tumor lesions by vigabatrin. (left) representative images of haemoxyolin and eosin staining 

of metastatic tumors treated with either control or vigabatrin (4 mg/kg); (right) 

Quantification of stained tumors per section. E, Ki-67 immunohistochemistry staining of 

tumors arising in mice treated with either vehicle control or vigabatrin (4 mg/kg). (left) 

Representative images of Ki-67 staining; (right) Quantification of ki-67 positive tumor cells 

per region of interest. F, Proposed model of brain microenvironment-induced tumor cell 

metabolic shifting via clusterin-mediated epigenetic upregulation of GAD1, which 

contributes to brain metastatic outgrowth.
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