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Abstract

Recent advances in data collection during routine health care in the form of Electronic Health Records (EHR), medical
device data (e.g., infusion pump informatics, physiological monitoring data, and insurance claims data, among others,
as well as biological and experimental data, have created tremendous opportunities for biological discoveries for
clinical application. However, even with all the advancement in technologies and their promises for discoveries, very
few research findings have been translated to clinical knowledge, or more importantly, to clinical practice. In this
paper, we identify and present the initial work addressing the relevant challenges in three broad categories: data,
accessibility, and translation. These issues are discussed in the context of a widely used detailed database from an
intensive care unit, Medical Information Mart for Intensive Care (MIMIC III) database.

1 Introduction

The promise of big data has brought great hope in health care research for drug discovery, treatment innovation,

personalized medicine, and optimal patient care that can reduce cost and improve patient outcomes. Billions of

dollars have been invested to capture large amounts of data outlined in big initiatives that are often isolated. The

National Institutes of Health (NIH) recently announced the All of Us initiative, previously known as the Precision
Medicine Cohort Program, which aims to collect one million or more patients’ data such as EHR, genomic, imaging,

socio-behavioral, and environmental data over the next few years1. The Continuously Learning Healthcare System is

also being advocated by the Institute of Medicine to close the gap between scientific discovery, patient and clinician

engagement, and clinical practice2. However, the big data promise has not yet been realized to its potential as the mere

availability of the data does not translate into knowledge or clinical practice. Moreover, due to the variation in data

complexity and structures, unavailability of computational technologies, and concerns of sharing private patient data,

few projects of large clinical data sets are made available to researchers in general. We have identified several key

issues in facilitating and accelerating data driven translational clinical research and clinical practice. We will discuss

in-depth in the domains of data quality, accessibility, and translation. Several use cases will be used to demonstrate the

issues with the “Medical Information Mart for Intensive Care (MIMIC III)” database, one of the very few databases

with granular and continuously monitored data of thousands of patients3.

2 Promises

In the era of genomics, the volume of data being captured from biological experiments and routine health care pro-

cedures is growing at an unprecedented pace4. This data trove has brought new promises for discovery in health care

research and breakthrough treatments as well as new challenges in technology, management, and dissemination of

knowledge. Multiple initiatives were taken to build specific systems in addressing the need for analysis of different

types of data, e.g., integrated electronic health record (EHR)5, genomics-EHR6, genomics-connectomes7, insurance

claims data, etc. These big data systems have shown potential for making fundamental changes in care delivery and

discovery of treatments such as reducing health care costs, reducing number of hospital re-admissions, targeted inter-

ventions for reducing emergency department (ED) visits, triage of patients in ED, preventing adverse drug effects, and

many more8. However, to realize these promises, the health care community must overcome some core technological

and organizational challenges.
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3 Challenges
3.1 Data

Big data is not as big as it seems
In the previous decade, federal funding agencies and private enterprises have taken initiatives for large scale data

collection during routine health care and experimental research5, 9. One prominent example of data collection during

routine health care is the Medical Information Mart for Intensive Care (MIMIC III) which has collected data for more

than fifty thousand patients from Beth Israel Deaconess Hospital dating back to 20013. This is the largest publicly

available patient care data set of an intensive care unit (ICU) and an important resource for clinical research. However,

when it comes to identifying a cohort in the MIMIC data for answering a specific clinical question, it often results

in a very small set of cases (small cohort) that makes it almost impossible to answer the question with a strong

statistical confidence. For example, when studying the adverse effects of a drug-drug interaction, a researcher might

be interested in looking at the vital signs and other patient characteristics during the time two different drugs were

administered simultaneously, including a few days before the combination and a few days after the combination.

Often this selection criteria results in a very small cohort of patients limiting the interpretation of the finding and with

statistically inconclusive results. As an example, a researcher may want to investigate if any adverse effect exists

when anti-depressants and anti-histamines are administered simultaneously. A query of simultaneous prescriptions

of Amitriptyline HCl (anti-depressant) and Diphenhydramine HCl (anti-histamines) returned only 44 subjects in the

MIMIC database (Figure 1). Furthermore, by filtering the data with another selection criterion (e.g., to identify the

subjects for which at least one day’s worth of data exist during, before and after the overlap) the query returned a much

smaller cohort with only four records.

Patients with antihistamine 
and antidepressant

(n=44)

Has data for at least 1 day 
during, & 1 day before & 
1 ����after the overlap

(n=4)

Patients with antidepressant 
(Amitriptyline HCL)

(n=264)

Patients with antihistamine 
(Diphenhydramine HCL)

(n=2230)

Figure 1: Example of a small cohort with clinical selection criteria.

Data do not fully capture temporal and process information
In most cases, clinical data are captured in various systems, even within an organization, each with a somewhat differ-

ent intent and often not well integrated. For example, an EHR is primarily used for documenting patient care and was

designed to facilitate insurance company billing10, and pharmacy records were designed for inventory management.

These systems were not developed to capture the temporal and process information which is indispensable for under-

standing disease progression, therapeutic effectiveness and patient outcomes. In an attempt to study clinical process

of vancomycin therapeutic drug monitoring based on ICU patient records in the MIMIC database, it was discovered

that such process is not easy to reconstruct. Ideally, a complete therapeutic process with a particular drug contains the

history of the drug’s prescription, each of its exact administration times, amount and rate, and the timing and measure-

ments of the drug in the blood throughout the therapy. From the MIMIC III database we were able to find prescription
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information but it lacks the detailed dosing amount and prescription’s length of validity. The “inputevents” table con-

tains drug administration information but does not include the exact time-stamp and drug amount which is critical for

studying intravenous infused vancomycin in the ICU . It is also difficult to match drug prescription and administration

records because their recording times in the clinical systems often are not the precise event times, and prescribed drugs

are not always administered.

Time
start_time/chart_time end_date drug prod_strength dose_val_rx dose_unit_rx route endtime label amount amountuom rate value valueuom label
10/13/2141 0:00 10/16/2141 0:00 Vancomycin 1g Frozen Bag 1000 mg IV
10/13/2141 8:30 10/13/2141 8:31 Vancomycin 1 dose
10/13/2141 18:01 33.4 ug/mL VANCOMYCIN
10/14/2141 8:31 22.4 ug/mL VANCOMYCIN
10/14/2141 19:50 17.1 ug/mL VANCOMYCIN
10/14/2141 22:00 10/14/2141 22:01 Vancomycin 1 dose
10/15/2141 6:18 23.1 ug/mL VANCOMYCIN
10/15/2141 19:50 3.8 ug/mL VANCOMYCIN
10/15/2141 21:10 10/15/2141 21:11 Vancomycin 1 dose

Prescriptions Input_events Lab_events

Figure 2: An example of vancomycin therapeutic process reconstruction of one unique ICU stay using data from three

different tables in the MIMIC III database.

Moreover, since the MIMIC III database does not contain detailed infusion event records which may be available from

infusion pump software, one cannot know the precise drug infusion amount (and over what time) for any particular

administration. The sparse and insufficient information on drug administration makes it almost impossible to associate

available laboratory records and to reconstruct a therapeutic process for outcomes studies. Figure 2 is such an attempt

of process reconstruction using data from the MIMIC III database including prescriptions, input events, and lab events

for one patient during a unique ICU stay. The record only shows one valid prescription of vancomycin for this patient

with start and end dates but does not indicate the administration frequency (e.g., every 12 hours) or method (e.g.,

continuous or bolus). The input events data (the second main column) came from the nursing records but it only shows

one dose of vancomycin administration on each of the three-day ICU stay: one in the morning and two in the evening.

Even though, as shown in the third main column, the “lab event” data contain the patient’s vancomycin concentration

levels measured during this period, without the exact amount and duration of each vancomycin infusion, it is difficult

to reconstruct this particular therapeutic process for the purposes of understanding its real effectiveness.

The problem of missing data remains relevant, even when the nursing workflow was designed to capture the data in the

EHR. For example, as part of the nursing workflow, the information of drug administration should be documented in

the medication administration records each time vancomycin was administered, and the MIMIC system was designed

to capture all. But this was often not the case from our review of the database 2. Additionally, often times a patient’s

diagnoses, co-morbidities, and complications are not fully captured nor available for reconstructing the complete

clinical encounter. Those pieces of information are usually documented as free text not discrete data that can easily

be extracted. Moreover, precise timings of the onset of an event and its resolution are rarely present. In the previous

example of analyzing the effect of simultaneously administering Amitriptyline HCl and Diphenhydramine HCl, based

on our selection criteria, we were able to find only one or two cases where such data were recorded (Figure 3). In

the figure, each color represents one subject, and only one color (green, ID:13852) is consistently present in the time

window for the selection criteria indicating missing systolic blood pressure measurements for the other subjects. This

example is not an exception for cohort selection from data captured during care delivery, but a common occurrence11,

due to the complex nature of the care delivery process and technological barriers in the various clinical systems

developed in the past decade or so.

3.2 Access

Accessibility to patient data for scientific research and sharing of the scientific work as digital objects for validation

and reproducibility is another challenging domain due to patient privacy concerns, technological issues such as in-

teroperability, and data ownership confusion. This has been a widely discussed issue in recent years of the so-called

patient or health data conundrum as individuals do not have easy access to their own data12. We are discussing these

challenges in the context of privacy, share-ability, and proprietary rights as follows.
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Figure 3: Example of a cohort with missing systolic blood pressure data for three out of the four subjects meeting our

clinical selection criteria. Day 0 (zero) is when drug overlap begins. This start of the overlap is aligned with multiple

subjects and is denoted by the thick red line. Each data point represents one measurement from the “chartevents” table

and each color indicates one subject and the black line indicates the average of the selected cohort.

Privacy
Access to health care data is plagued by vulnerability due to patient privacy considerations which are protected by

federal and local laws of protected health information such as Health Insurance Portability and Accountability Act

of 1996 (HIPAA)13. The fear of litigation and breach of privacy discourages providers from sharing patient health

data, even when they are de-identified. One reason is that current approaches to protect private information is limited

to de-identification of an individual subject with an ID, which is vulnerable to twenty questions-like problems. For

example, a query to find any patient who is of Indian origin and has some specific cancer diagnosis with a residential

zip code 3-digit prefix ‘479’ may result in only one subject; thus exposing the identity of the individual.

Share-ability
Even after de-identification of patient data, the sharing of such data and research works based on the data is a compli-

cated process. As an example, “Informatics for Integrating Biology and the Bedside (i2b2)”5 is a system designed to

capture data for scientific research during routine health care. i2b2 is a large initiative undertaken by Partners Health-

care System as an NIH-funded National Center for Biomedical Computing (NCBC). It contains a collection of data

systems with over 100 hospitals that are using this software system on top of their clinical database. As a member

of this project, each participating hospital system needed to transform their data into a SQL based star schema after

de-identification. It required much effort for each institution to make the data available for scientific research as well

as to develop the software in the first place. Although i2b2 was used exhaustively for research, sharing of data and

research work as digital objects (i.e., the coding and the flow of the analysis) is not easily achieved. We argue that

current EHR and other clinical systems do not empower the patients to take control of their data and engage in citizen

science. The crowd sourcing approach might be one way to make a paradigm shift in this area which, unfortunately,

is not yet possible with the current systems such as i2b2. A good example is the success in open source software

technologies in other disciplines and applications (such as Linux, Git-hub, etc.) which rely on the engagement of

many talented and passionate scientists and engineers all over the world to contribute their working products as digital

objects14.
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(a) Sensitivity for the validation set (Decision Tree) (b) Sensitivity for the validation  set (SVM) 

Figure 4: Sensitivity for the machine learning algorithms for different training sizes for prediction of Medical Emer-

gency Team (MET) activation from the MIMIC database15. The X-axis represents training size for different trials. For

each training set, the results of a 10 fold cross validation are reported as box plots (the central red line is the median,

the edges of the box are the 25th and 75th percentiles, the whiskers extend to the extreme data points the algorithm

considers to be not outliers, and the red + sign denotes outliers). The blue asterisks represent the performance on the

validation set of the algorithm that performs best on the test set. The blue dashed lines represent the performance of

the National Early Warning Score (NEWS)16.

Proprietary rights
A relevant issue is the ongoing debate about the ownership of patient data among various stakeholders in the healthcare

system including providers, patients, insurance companies and software vendors. In general, the current model is

such that the patient owns his/her data, and the provider stores the data with proprietary software systems. The

business models of most traditional EHR companies, such as Epic and Cerner, are based on building proprietary

software systems to manage the data for insurance reimbursement and care delivery purposes. Such approach does

not encourage or makes it difficult for individual patients to share data for scientific research, nor does it encourage

patients to obtain their own health records that may help better manage their care and improve patient engagement.

3.3 Translation

Historically, a change in clinical practice is hard to achieve because of the sensitivity and risk aversion of care delivery.

As an example, the use of beta blockers to prevent heart failure took 25 years to reach a widespread clinical adoption

after the first research results were published2. This problem is much bigger for big data driven research findings to

be translated into clinical practice because of the poor understanding of the risks and benefits of data driven decision

support systems. Many machine learning algorithms work as a “black box” with no provision of good interpretations

and clinical context of the outcomes, even though they often perform with reasonable accuracy. Without proper

understanding and translatable mechanisms, it is difficult to estimate the risk and benefit of such algorithms in the

clinical setting and thus discourages the new methods and treatments from being adopted by clinicians or approved by

the regulatory bodies such as the FDA.
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For example, if a machine learning algorithm can predict circulatory shock from patient arterial blood pressure data,

what would be the risk if the algorithm fails in a particular setting based on patient demographics or clinical history?

What should be the sample size to achieve high confidence in the results generated by the algorithm? These are

some critical questions that cannot be answered by those traditional “black box” algorithms, nor have they been well

accepted by the medical community, which relies heavily upon rule based approaches.

As an example, a decision tree algorithm might perform very differently for prediction of Medical Emergency Team

(MET) activation based on the training set or sample size from the MIMIC data. Furthermore, the prediction result

can be very different when another machine learning algorithm, the support vector machine (SVM), was used (Figure

4).

3.4 Incentive

Yet another barrier in using big data for better health is the lack of incentive for organizations to take initiative to

address the technological challenges. As mentioned earlier, EHRs are developed for purposes other than knowledge

advancement or care quality improvement, and that has led to unorganized, missing, and inadequate data for clinical

research. An individual health system does not usually have the incentive to make these data organized and available

for research, unless they are big academic institutions. It would be easier for each individual health system to share data

if they were organized and captured using standard nomenclature and with meaningful and useful detailed information

with significant detail. A key question any health organization faces is: what is the return on investment for my hospital

to organize all the clinical data it gathers? One model is the Health Information Technology for Economic and Clinical

Health Act (HITECH) which promotes the adoption and meaningful use of health information technology. The act

authorized incentive payments be made through Medicare and Medicaid to clinicians and hospitals that adopted and

demonstrated meaningful use of EHRs, and the US government has committed payments up to $27 billion dollars over

a ten year period17. This incentive has paved the way for widespread adoption of EHRs since HITECH was enacted

as part of the American Recovery and Reinvestment Act in 2009. However, for the purpose of using clinical data

for scientific innovation and improving care delivery process, no apparent financial incentives currently exist for any

organization to do so.

4 Opportunities
4.1 Data

For data driven research in health care, we propose to record the most granular data during any care delivery process

so as to capture the temporal and process information for treatment and outcomes. For example, in an intensive care

unit, the exact time of medication administrations need to be captured. This can be achieved in a number of ways.

As a nurse bar code scans an oral medication into the electronic medication administration record (eMAR) the system

also timestamps the action in the EHR. Detailed intravenous drug infusions can be linked to the patient clinical records

by integrating the smart infusion pumps with the EHR systems. The Regenstrief National Center for Medical Device

Informatics (REMEDI), formerly known as the Infusion Pump Informatics18, has been capturing for capturing process

and temporal infusion information. The planned expansion of such data set will allow linked patient outcomes and drug

admin data forming a more complete treatment process for answering research and treatment effectiveness questions

related to the administration of drugs such as drug-drug interaction, safe and effective dosage of drugs, etc., among

others.

In order to achieve a statistically significant sample size after cohort selection, we promote breaking the silos of

individual clinical data systems and making them interoperable across vendors, types and institutional boundaries

with minimal effort. For the next generation of EHRs, these capabilities need to be considered.

4.2 Access

Patient/citizen powered research
To replicate the success in open source technologies in other disciplines by enabling citizen science, data and research

analysis must be accessible to everyone. At the same time, patient privacy needs to be protected complying with the
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Figure 5: System concept for community driven software-hardware eco-system analogous to ‘app store’ for data

driven clinical research.

privacy law and proprietary rights of the vendors, and researchers need to be protected. As an example, we have

demonstrated such a system with the MIMIC database where interoperable and extensible database technologies have

been used on de-identified patient data in a high performance computing environment19.

Shareable digital objects
For the next generation of EHRs and other big data systems such as REMEDI18 and i2b25, data must be findable, acces-

sible, interoperable and reproducible (FAIR)20. For big data systems, a software-hardware ecosystem could work as a

distribution platform with characteristics analogous to an Apple or Android “app store” where any qualified individual

can access the de-identified data with proper authentication without the need for a high throughput infrastructure and

the rigorous work, including pre-processing of the data needed to reproduce previous works. The proposed architecture

is shown in Figure 519.

4.3 Translation

Causal understanding
Historically, clinical problems and treatment are studied and understood as “cause and effect”. For example, genetic

disposition and lifestyle could lead to frequent urination, fatigue and hunger, and can be associated with diabetes.

Based on this, the patient may be treated for this disease. However, most machine learning algorithms do not provide

such a rule based approach; rather they predict the outcome of a given set of inputs, which may or may not be associ-

ated with known clinical understanding. Unlike other disciplines, clinical applications require a causal understanding

of data driven research. Hence, most clinical studies start with some hypothesis, that ‘A’ causes ‘B’. The gold standard

to identify this causation is randomized controlled trials (RCTs), which have also been the gold standard for regula-

tory approval of new drugs. Unfortunately, EHRs and the like data captured during routine healthcare has sampling

selection bias and confounding variables and hence it is important to understand the limitation of such data sets. To

answer the causal questions, a new generation of methods are necessary to understand the causal flow of treatment,

outcome, and molecular properties of drugs by integrating big data systems for analysis and validation of hypothesis

for transportability across studies with observational data21, 22. These methods would enable the regulators to under-

stand the risk and benefit of data driven systems in clinical settings for new guidelines enabling the translation. Once

those guidelines are established, technological solution must also be enabled at the point of care such that clinicians
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can access for data driven queries as part of their clinical workflow.

5 Conclusion

“Big data” started with many believable promises in health care, but unfortunately, clinical science is different from

other disciplines with additional constraints of data quality, privacy, and regulatory policies. We discussed these

concepts in pursuit of a holistic solution that enables data driven findings to be translated in health care, from bench to

bedside. We argue that the existing big data systems are still in their infancy, and without addressing these fundamental

issues the health care big data may not achieve its full potential. We conclude that to make it to the next level, we need a

larger cohort of institutions to share more complete, precise, and time stamped data as well as with greater willingness

to invest in technologies for de-identifying private patient data for it to be shared broadly for scientific research. At

the same time, as more and more “big data” systems are developed, the scientific and regulatory communities need

to figure out new ways of understanding causal relationship from data captured during routine health care, that would

complement current gold standard methods such as RCTs as well as identify the relationship between clinical practice

and outcomes, as there is a wide disparity in the quality of care across the country2.
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