DEVELOPMENT AND APPLICATION OF A MASS SPECTROMETRY-BASED QUANTITATIVE ASSAY FOR APOLIPOPROTEIN M IN HUMAN AND MOUSE SERUM

Marci Lynn Copeland

Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Master of Science in the Department of Biochemistry and Molecular Biology Indiana University

September 2008
Accepted by the Faculty of Indiana University, in partial fulfillment of the requirements for the degree of Master of Science.

Mu Wang, Ph.D., Committee Chair

Sonal Sanghani, Ph.D.

Mark Goebl, Ph.D.

Bomie Han, Ph.D.

Jinsam You, Ph.D.
ACKNOWLEDGEMENTS

I am grateful for my thesis advisor, Dr. Mu Wang for his guidance throughout my Master’s degree, from proposal to thesis. I am grateful for the constructive advice and improvements he has made to revision after revision of my graduate writings. I truly appreciate the time and patience he put into helping me fine-tune my writings and his support and guidance throughout this process, not only as a graduate student, but on a professional level as well.

Dr. Jinsam You has my gratitude for taking the time to explain the sample preparation protocols and biological mechanisms that I encountered in my graduate and professional work, as many times as necessary until I understood. In the midst of an extremely busy schedule, he was always willing to teach, indicative of the patient, wise, and valuable scientist and teacher that he is. I would also like to recognize Dr. Sonal Sanghani for her support, time, and effort given to me throughout my time as a graduate student. I have learned valuable concepts and laboratory techniques from her teachings in the classroom and laboratory. I also wish to thank Dr. Mark Goebl for his willingness to help me learn and understand biology and for his teachings in the classroom as well.

I am deeply grateful to Dr. Bomie Han for his steady support and guidance throughout my research and thesis preparation. He exemplifies a great mentor and educator and his efforts to push me to the limits of my knowledge and capabilities have made me a better scientist and a stronger person. His enthusiasm for the exploration of science inspired me to learn and gave me a fresh excitement for the study of science and a thirst for knowledge. He guided me through many presentations and multiple revisions
of my scientific writings without weariness. He gave me the freedom to try things for
myself and learn from my mistakes, but all the while providing a steady support so I
could regain my balance and confidence. I am deeply indebted to all that he has taught
and given to me and it is his teachings, both scientific and life lessons that I will cherish
long after I finish my Master’s degree.

I also thank Dr. Thomas Lee for showing me proper laboratory procedures while
taking the time to explain each step in the protocol to help me to better understand each
process, even while he was busy finishing his doctoral work. Without his patient
teachings, my laboratory skills would not be at the level they are today.

I would like to acknowledge Monarch LifeSciences for providing a professional
environment conducive to learning and teaching. Thank you for your support of my
education, financially and emotionally. I also recognize the support Eli Lilly and
Company has given me throughout this process. Thank you for providing a laboratory
where I could learn and work in a research-driven environment, and the provision of
experimental samples to include in my thesis work.

I want to acknowledge my father for instilling in me the values of hard work and
perseverance that got me through my graduate studies writings, successfully. I thank my
mother for teaching me patience, a valuable asset in the successful completion of my
graduate work. Lastly, I want to thank my husband, Jerred, for his constant strength and
encouragement in helping me to achieve my goals, and without him I would not have
made it this far. He truly embodies all that I could ever ask for in a spouse through his
unwavering love and support.
ABSTRACT

Marci Lynn Copeland

Development and Application of a Mass Spectrometry-Based Quantitative Assay for
Apolipoprotein M in Human and Mouse Serum

Apolipoprotein M (apoM) is necessary for the formation of lipid-poor preβ-HDL particles, the initial precursor of HDL and acceptors of cholesterol efflux from peripheral cells. An assay to quantify apoM in serum is not widely-available, hampering the efforts to further understand apoM and to develop therapeutic methods to increase circulating levels of apoM. An antibody-free, high throughput mass spectrometry (MS)-based assay was developed to quantitatively measure apoM from a variety of species including human, mouse, and rat. Apolipoproteins were enriched by selectively binding to Liposorb, an affinity resin, followed by enzymatic digestion. This peptide mixture was separated by HPLC coupled in-line with tandem MS/MS. Signal intensities from the MS/MS fragmentation of apoM-specific peptides were measured simultaneously in a targeted method spanning many commonly used species. The same amount of purified human apolipoprotein A-IV uniformly labeled with 15N was spiked into all samples and was used as an internal standard to correct for any variation in sample handling and recovery. Assay variability and accuracy was statistically validated in a three-day spike recovery experiment to determine the working range of the assay. The concentration range for quantification of apoM using this assay was 11.2-500 nM, whereas average concentration of human apoM measured from a large sampling (n>100) was 370 nM.
This assay was used to measure changes in apoM in mouse serum from a pre-clinical study that was designed to evaluate the effects of a microsomal triglyceride transfer protein (MTTP) inhibitor. All measured lipoproteins and apolipoproteins showed a dose-dependent decrease in concentration and the response of apoM closely followed the response of HDL.

In a clinical application of the assay, apoM was measured in human serum to evaluate the effects of two cholesterol-lowering compounds, a statin drug and an experimental PPAR-α agonist. ApoM levels did not change with PPAR-α agonist or combination treatments, but significantly decreased with atorvastatin. The measurement of apoM provided additional information on the effects of these drug treatments that previously could not be measured. The availability of a quantitative assay for apoM provides a valuable tool in the development of cardio-protective therapeutics and understanding the mechanisms of these drugs.

Mu Wang, Ph.D., Committee Chair
TABLE OF CONTENTS

List of Tables...viii
List of Figures ...ix
Abbreviations ..xi
Introduction..1
Experimental Section...7
Results...25
Application to Pre-Clinical Study ..135
Application to Clinical Study..141
Discussion..161
Conclusion..172
References...175
Curriculum Vitae
LIST OF TABLES

Table 1 ...38
Table 2 ...39
Table 3 ...50
Table 4 ...55
Table 5 ...63
Table 6 ...70
Table 7 ...92
Table 8 ...93
Table 9 .. 99
Table 10 ...113
Table 11 ...114
Table 12 ...151
Table 13 ...152
Table 14 ...157
LIST OF FIGURES

Figure 1 ... 6
Figure 2 ... 28
Figure 3 ... 29
Figure 4 ... 33
Figure 5 ... 42
Figure 6 ... 56
Figure 7 ... 58
Figure 8 ... 62
Figure 9 ... 66
Figure 10 ... 73
Figure 11 ... 76
Figure 12 ... 79
Figure 13 ... 83
Figure 14 ... 86
Figure 15 ... 94
Figure 16 ... 98
Figure 17 .. 102
Figure 18 .. 103
Figure 19 .. 108
Figure 20 .. 109
Figure 21 .. 110
Figure 22 .. 115
Figure 23 .. 120
Figure 24 .. 123
Figure 25 .. 126
Figure 26 .. 127
Figure 27 .. 129
Figure 28 .. 131
Figure 29 .. 133
Figure 30 .. 135
Figure 31 .. 140
Figure 32 .. 147
Figure 33 .. 153
Figure 34 .. 156
Figure 35 .. 160
Figure 36 .. 161
ABBREVIATIONS

Ammonium Bicarbonate (ABC)
Analysis of Variance (ANOVA)
Apolipoprotein M (ApoM)
Area-Under-Curve (AUC)
Cardiovascular Disease (CVD)
Coefficient of Variation (CV)
Coronary Heart Disease (CHD)
High Density Lipoprotein (HDL)
High Performance Liquid Chromatography (HPLC)
Internal Standard (iSTD)
Low Density Lipoprotein (LDL)
Mass Spectrometer (MS)
Not Significant (NS)
Peroxisome Proliferator-Activated Receptor (PPAR)
Phosphate Buffered Saline (PBS)
Poly-Acrylamide Gel Electrophoresis (PAGE)
Reduction-Alkylation (R/A)
Standard Deviation (SD)
Total Cholesterol (TC)
Triglycerides (TG)
Very Low Density Lipoprotein (VLDL)