Running head: Race/ethnicity and retention in TBI research

Race/Ethnicity and Retention in Traumatic Brain Injury Outcomes Research:
A Traumatic Brain Injury Model Systems National Database Study

Angelle M. Sander, Ph.D., Anthony H. Lequerica, Ph.D., Jessica M. Ketchum, Ph.D.,
Flora M. Hammond, Ph.D., Kelli Williams Gary, Ph.D., Monique R. Pappadis, Ph.D.,
Elizabeth R. Felix, Ph.D., Douglas Johnson-Greene, Ph.D., Tamara Bushnik, Ph.D.

From the Departments of Physical Medicine and Rehabilitation & Psychiatry, Baylor College of Medicine/Harris Health System and Brain Injury Research Center, TIRR Memorial Hermann, Houston, TX (Sander); Kessler Foundation and Rutgers, New Jersey Medical School, West Orange, NJ (Lequerica); Craig Hospital, Englewood, CO (Ketchum); Department of Physical Medicine and Rehabilitation, Indiana University School of Medicine, Indianapolis, IN (Hammond); Departments of Physical Medicine and Rehabilitation/Neuropsychology and Occupational Therapy, Virginia Commonwealth University, Richmond, VA (Gary); Division of Rehabilitation Sciences, University of Texas Medical Branch, Galveston, TX and Brain Injury Research Center, TIRR Memorial Hermann, Houston, TX (Pappadis); University of Miami Miller School of Medicine, Miami, FL (Felix and Johnson-Greene); Rusk Rehabilitation, New York University Langone School of Medicine, New York, NY (Bushnik)

This is the preprint of the article published in final edited form as:
The contents of this publication were developed under grants from the National Institute on Disability, Independent Living, and Rehabilitation Research (NIDILRR grant numbers 90DPTB0016, 90DP0028, 90DP0060, and 90RT5007 (TIRR), 90DP0032 (Kessler), 90DP0034 and 90DP0084 (Craig), 90DP0036 (Indiana), 90DP0046 (Miami), 90DP0047 (New York), and 90DP0033 (Virginia)); the Agency for Healthcare Research and Quality (AHRQ grant number R24HS022134); UTMB Claude D. Pepper Older Americans Independence Center funded by the National Institute on Aging (NIA grant number 5P30-AG024832); the UTMB Institute for Translational Sciences supported by a National Institutes of Health (NIH) Clinical and Translational Science Award (UL1RR029876). NIDILRR is a Center within the Administration for Community Living (ACL), Department of Health and Human Services (HHS). The contents of this publication do not necessarily represent the policy or official views of NIDILRR, ACL, AHRQ, NIA, NIH, or HHS, and you should not assume endorsement by the Federal Government.

We certify that no party having a direct interest in the results of the research supporting this article has or will confer a benefit on us or on any organization with which we are associated. We also certify that all financial and material support for this research and work are clearly identified in the title page of the manuscript.

Correspondence to Angelle M. Sander, Ph.D., TIRR Memorial Hermann Research Center, 1333 Moursund St., Houston, TX 77030, Email: asander@bcm.edu; Phone: 713-797-7161; Fax: 713-797-7150. Reprints will not be available from the author.

Word count manuscript: 3,546
ABSTRACT

Objective: To investigate the contribution of race/ethnicity to retention in traumatic brain injury (TBI) research at 1 to 2 years post-injury. Setting: Community. Participants: 5548 Whites, 1347 Blacks, and 790 Hispanics enrolled in the Traumatic Brain Injury Model Systems National Database with dates of injury between October 1, 2002 and March 31, 2013. Design: Retrospective database analysis. Main Measure: Retention, defined as completion of at least one question on the follow-up interview by the person with TBI or a proxy. Results: Retention rates 1-2 years post-TBI were significantly lower for Hispanic (85.2%) than for White (91.8%) or Black participants (90.5%) and depended significantly on history of problem drug or alcohol use. Other variables associated with low retention included older age, lower education, violent cause of injury, and discharge to an institution versus private residence. Conclusions: The findings emphasize the importance of investigating retention rates separately for Blacks and Hispanics rather than combining them or grouping either with other races or ethnicities. The results also suggest the need for implementing procedures to increase retention of Hispanics in longitudinal TBI research.

Keywords: Traumatic brain injury, Cultural Competency, Follow-Up Studies
LIST OF ABBREVIATIONS:

IRB – Institutional Review Board
NIDILRR – National Institute on Disability, Independent Living and Rehabilitation Research
PTA – posttraumatic amnesia
TBI – Traumatic Brain Injury
TBIMS – Traumatic Brain Injury Model Systems
INTRODUCTION

Cognitive,\(^1\) emotional,\(^2\) and physical\(^3\) impairments resulting from traumatic brain injury (TBI) contribute to decreased independent living,\(^4\) employment,\(^5\) and participation in leisure activities.\(^6\) Approximately 3.2 million United States residents are estimated to have long-term or life-long disability resulting from TBI.\(^7\) Unfortunately, minorities are disproportionately represented among those who sustain TBI\(^8\) and those with poor outcomes.\(^9\) Blacks and Hispanics with TBI have been shown to have poorer outcomes than Whites in overall functioning,\(^10\) functional independence,\(^11\) independence in home activities,\(^12\) employment outcomes,\(^13,14\) and satisfaction with participation.\(^15\) Minorities have also been shown to utilize rehabilitation services less than Whites in both civilian\(^16\) and military\(^17\) samples. These findings emphasize the need for inclusion of minorities in longitudinal research and clinical trials targeting TBI, as their exclusion can yield a biased view of outcomes.

Recruitment and retention of minorities is challenging for health research as a whole. National Institutes of Health investigators are less likely to meet recruitment goals for minorities compared to Whites.\(^18\) Minimal empirical evidence exists to support specific retention strategies.\(^19\) Greater loss of minorities to follow-up is a common problem in research on TBI outcomes, posing a threat to internal and external validity.\(^20\)

The relationship between race/ethnicity and loss to follow-up in TBI research has been investigated in prior studies. Corrigan and colleagues\(^21\) studied predictors of loss to follow-up in three longitudinal samples, including the Colorado TBI registry, five TBI Model System (TBIMS) centers, and a single brain injury rehabilitation unit. Minorities with TBI were less likely to be followed at 1 year compared to Whites in two of the three samples investigated. Other variables that predicted loss to follow-up included violent injury, elevated blood alcohol
level at hospital admission, lower FIM™ motor score at rehabilitation admission, non-private health insurance, and discharge to an institution. Krellman and colleagues22 studied predictors of longitudinal follow-up patterns in the TBIMS National Database. Each participant had the opportunity to complete follow-up at four time points- 1, 2, 5, and 10 years post-injury. Findings were that non-responders (did not complete any follow-ups, but did not formally withdraw) and wave responders (completed some follow-ups and skipped others) were more likely to be minorities; however, Whites were also more likely to be in one of these groups if they were missing data on pre-injury education. Missing data on pre-injury education, acute care payer, or pre-injury employment status was also associated with non-responding and wave responding. Recently, Jourdan and colleagues23 studied a sample of 504 adults with severe TBI in Paris. While they did not include race/ethnicity as a variable, they found other associations with loss to follow-up that can inform covariate analyses. Specifically, loss to follow-up at 1 year post-injury was associated with pre-injury unemployment and violent mechanism of injury. Pre-injury unemployment and alcohol abuse were predictive of loss to follow-up at 4 years post-injury.

Research findings to date indicate that race/ethnicity likely contributes to retention in longitudinal TBI research, with the pattern being lower retention of minorities; however, the extant research is limited by methodological issues. First, prior studies have either combined Blacks with Hispanics or grouped Hispanics with other minorities and compared them to Blacks and Whites.21,22 The importance of investigating retention of Hispanics as a separate group is justified by the fact that Hispanics currently represent the largest racial/ethnic minority group in the United States, comprising 17\% of the total population.24 Persons of Hispanic ethnicity make up approximately 10\% of current enrollees in the TBIMS National Database.25 Given their substantial numbers and their likelihood of having poor outcomes compared to Whites,
investigation of retention of Hispanics as a separate group is warranted. Additionally, prior
studies have not investigated the potential interaction of race/ethnicity with other variables that
may impact retention in longitudinal TBI studies. For example, prior research has shown that
minorities with TBI are more likely to be unemployed at the time of injury and to be injured via
violence.26,27 As these variables have also been shown to predict loss to follow-up, they may
interact with race/ethnicity to impact retention.

The aims of the current study are: (1) to investigate retention in the TBIMS database for
Whites, Blacks, and Hispanics; (2) to investigate the contribution of being White, Black, or
Hispanic to retention at 1-or 2-years post-injury, after controlling for other variables that may
impact retention; and (3) to investigate the interaction of race/ethnicity with other variables that
may impact retention.

METHODS

Participants

Participants included were those enrolled in the National Database of the National
Institute for Disability, Independent Living, and Rehabilitation Research (NIDILRR) TBIMS
program. The TBIMS National Database includes individuals with newly acquired TBI who
receive comprehensive inpatient rehabilitation services at one of the NIDILRR-funded centers in
the US. Twenty-two centers contributed to the dataset for this analysis, with 7685 individuals
with dates of injury between October 1, 2002 and March 31, 2013. The start and end dates were
selected based on the availability of key variables (variables are periodically added and deleted
from the National Database) and to ensure all subjects had become eligible for 2-year follow-up.

Criteria for inclusion in the TBIMS National Database include: age \(\geq 16 \) at time of injury;
medically documented complicated mild, moderate, or severe TBI (emergency department
Glasgow Coma Scale score ≤ 12 or duration of posttraumatic amnesia > 24 hours or loss of consciousness > 30 minutes or evidence of intracranial trauma on neuroimaging); admission to a TBIMS acute-care hospital within 72 hours of injury; completion of inpatient rehabilitation within the TBIMS; and informed consent obtained. During the interval covered by this study, race/ethnicity was coded as a mixed variable rather than two separate variables in the TBIMS National Database. Race/ethnicity was coded as White, Black, Asian/Pacific Islander, Native American, Hispanic Origin, Other, or Unknown. Only participants coded as White, Black, or Hispanic origin were included in the current analysis because the numbers in the other categories were too low to provide a meaningful comparison. As shown in Figure 1, 348 people were excluded for race/ethnicity other than White, Black, or Hispanic.

Procedure

IRB approval was obtained at all participating TBIMS institutions. Medical and injury information was abstracted from participants’ medical records according to TBIMS National Database standardized procedures. Demographic information was obtained by trained research personnel who interviewed the individual with TBI or a proxy.

Follow-up interviews were conducted in person, via phone, or through the mail at 1 (± 2 months) and 2 years (± 3 months) post-injury. Sample derivation is shown in the flowchart in Figure 1. In the TBIMS National Database, follow-up status is coded as followed, lost, refused, withdrew, expired, incarcerated, or follow-up not attempted due to a center losing TBIMS funding. Persons eligible for 1 or 2 year follow-up were excluded from the sample if they had expired prior to 1 year follow-up, were incarcerated at both follow-ups, or if no attempt was made to contact them at either follow-up due to loss of funding. Participants were considered to be retained if the interview status variable was coded as “followed” at either year 1 or year 2.
Participants were considered to be not retained if interview status was coded as lost, refused, or withdrew at both year 1 and year 2.

Standard follow-up procedures used by all centers included: 1) attempting contact as soon as the follow-up window opened; 2) making at least 12 phone contact attempts during various times of day and night and days of the week (including weekends) using the most reliable phone numbers available; 3) sending a letter to the participant and any known contacts at their last known mailing addresses; 4) using phone directory assistance in the last known city of residence, internet searches, fee-based location services, and medical records to identify updated phone numbers, addresses, or other contact information; 5) conducting a search for potential death information; and 6) conducting a search of an inmate database to determine if the participant was incarcerated.

Measures

Race/ethnicity category was preferentially determined by asking the person with injury or their caregiver, but medical record information was used if information could not be obtained in the preferred way. The outcome variable, retention, was a dichotomous variable defined as completion of at least one question on either the 1 or 2 year follow-up interview by the person with TBI or a proxy.

Covariates:

Injury severity was measured by the duration of post-traumatic amnesia (PTA) – a period marked by confusion and inability to form new memories after TBI that is predictive of global outcomes after moderate-severe TBI.\(^28\) Duration of PTA was calculated as the number of days between the TBI and the first of two occasions within a 72-hour period in which the participant was fully oriented, as defined by a score \(\geq 76\) on the Galveston Orientation and Amnesia Test.\(^29\)
a score over 25 on the Orientation Log, or documentation of two days with consistent
orientation within a three day period in the acute medical record with no intervening days at less
than full orientation. For the 1442 individuals discharged before emerging from PTA, missing
values were imputed by using total length of stay (acute plus rehabilitation)+ 1 day. Injury
severity categories, based on the Mississippi PTA Intervals, were: moderate (0 to 14 days);
moderate-severe (15 to 28 days); severe (29 to 70 days); and extremely severe (>70 days).

The FIM™ is an 18-item rating scale of functional independence. Rasch analysis has
indicated that items can be divided into a motor factor ranging from 13 to 91 and a cognitive
factor ranging from 5 to 35. Each item is rated on a scale of 1 (total assistance required) to 7
(complete independence), and higher scores indicate greater independence. FIM™ has good
internal consistency (Cronbach’s α between .86 and .97) and has been shown to be sensitive to
changes in functional ability from admission to discharge and follow-up.

History of problem substance use was determined by questions adapted from the Centers
for Disease Control and Prevention’s Risk Factor Surveillance System. These questions pertain
to frequency of alcohol consumption and average quantity consumed per occasion. Using
established criteria, participants were classified as having a history of problem substance use
if they endorsed more than 7 drinks per week for women, more than 14 drinks per week for men,
or had consumed more than 5 or more drinks on one occasion in the month prior to injury or had
used illicit drugs in the year before injury.

Residence at the time of rehabilitation discharge was categorized as private or non-
private (nursing home, adult home, correctional institution, hotel/motel, homeless, hospital,
subacute care, other). Job stability was defined as the number of weeks worked in the year prior
to injury. Cause of injury was classified as violent (gunshot wound; assault with blunt
instrument; stabbing; impalement; explosions) or non-violent (vehicular; sports-related; falls; auto-pedestrian; hit by falling or flying object). Sex and pre-injury marital status, education, and incarcerations were categorized as shown in Table 1.

Data Analysis

The demographic and injury characteristics of the sample were summarized separately for each of the three race/ethnicity groups using means and standard deviations for continuous variables and frequency counts and percentages for categorical variables. These characteristics were compared between the race/ethnicity groups using chi-square tests and ANOVA models.

The probability of being retained was initially modeled as a function of race/ethnicity using logistic regression unadjusted for other patient characteristics. Multivariate logistic regression was then used to model the relationship between race/ethnicity and retention status controlling for 12 patient characteristics that may impact retention in longitudinal studies (age, gender, marital status, education, residence at rehabilitation discharge, pre-injury incarceration, problem substance use, violent cause of injury, PTA, FIM™ scores at rehabilitation discharge, and job stability for the year prior to injury). The assumption of linearity in the logit was assessed for all continuous variables and was found to be adequate. Significant interactions between race/ethnicity and patient characteristics were also examined and included in the final adjusted model if significant. All statistical analyses were conducted using SAS v.9.4 with a significance level of 0.05. Significant interactions were investigated using a Bonferroni correction for the level of significance, as shown in Table 3.

RESULTS
Description of the Sample

The demographic and injury characteristics of the sample are summarized by race/ethnicity in Table 1. Overall, the sample was primarily White and single, with at least a high school education and moderate to severe TBI. A substantial number had a history of pre-injury problem substance use and most were discharged from rehabilitation to a private residence. The race/ethnicity groups showed significant differences in all patient characteristics (all \(p \)'s \(\leq 0.0004 \)) except for pre-injury problem substance use (\(p = 0.9906 \)). Compared to Whites, Blacks and Hispanics were less likely to be female, less likely to have a high school education, more likely to have been incarcerated prior to injury, and more likely to have violent cause of injury. Blacks were less likely to be married, and Hispanics were more likely to have less than an 8th grade education.

Unadjusted Relationship between Race/Ethnicity and Retention Status

As shown in Table 2, there was a significant difference in retention rates among the three race/ethnicity groups (chi-square = 32.5, \(df = 2 \), \(p \)-value < 0.0001). Retention rates were 91.8% for Whites, 90.5% for Blacks, and 85.2% for Hispanics. The unadjusted odds of being retained were 1.9 times greater for Whites as compared to Hispanics (\(p \)-value < 0.0001) and 1.7 times greater for Blacks as compared to Hispanics (\(p \)-value = 0.0002). There was not a significant difference in unadjusted retention rates between Whites and Blacks (OR = 1.18, \(p \)-value = 0.1239).

Adjusted Relationship between Race/Ethnicity and Retention Status

There was a significant interaction effect between race/ethnicity and pre-injury problem substance use (\(p = 0.0330 \)) on retention rates. Table 3 shows the effects of race/ethnicity on retention status for those with and without a pre-injury history of problem substance use, as well
as the effect of a pre-injury history of problem substance use on retention status for each
race/ethnicity group. Odds ratios with a p-value less than a Bonferroni adjusted significance level
of $\alpha = 0.05/9 = 0.0056$ were considered significant. For subjects without a history of pre-injury
problem substance use, the odds of being retained were 2.09 times greater for Whites as
compared to Hispanics and 2.45 times greater for Blacks as compared to Hispanics; the odds of
retention did not differ between Whites and Blacks without a history of substance problem use.
For subjects with a history of pre-injury problem substance use, the odds of being retained did
not differ among the race/ethnicity groups. The odds of being retained were 1.28 greater for
Whites without a history of problem use as compared to those with a history and 1.81 greater for
Blacks without a history of problem substance use as compared to Blacks with a history. For
Hispanics, the odds of retention did not differ between those with and without a history of
problem substance use. The relationship between retention and race/ethnicity was not found to
depend significantly on any of the other examined covariates.

Adjusted Relationship between Covariates and Retention Status

There was a significant relationship between retention status and age ($p = 0.0011$),
education ($p < 0.0001$), residence ($p = 0.0019$), and violent cause of injury ($p = 0.0006$). As
shown in Table 4, the odds of being retained were 0.99 times lower for each year increase in age
at injury, 1.44 times greater for those discharged to a private versus non-private residence, and
1.57 times greater for those with injuries due to non-violent causes. Furthermore, increases in
levels of pre-injury education were associated with increases in the odds of retention. No other
variables were associated with retention status.

DISCUSSION
The findings are consistent with prior studies that have shown lower retention of
minorities in TBI outcomes research;21,22 however, the results are unique in showing that
Hispanics are less likely to be retained than Whites or Blacks, with retention rates being similar
for Whites and Blacks. The findings emphasize the importance of investigating Blacks and
Hispanics separately, rather than combining them or grouping either with other races or
ethnicities, when investigating retention in longitudinal rehabilitation research. This would
increase the probability of study samples accurately reflecting the broader population, as
Hispanics are currently the largest minority group in the United States. The results justify efforts
to facilitate Hispanics’ participation in research through targeted retention strategies. A unique
finding is that pre-injury problem substance use interacts with race/ethnicity. Hispanics did not
differ from Whites or Blacks in the group with pre-injury problem substance use. Problem
substance use history was associated with a slight decrease in retention rates for Whites and a
more substantial decrease for Blacks, while no decrease was noted for Hispanics. It is possible
that sociocultural factors associated with Hispanic race/ethnicity impact retention in research to
the extent that problem substance abuse does not have any additive predictive value. Such a
hypothesis could be investigated in future research.

Findings are consistent with previous research that showed a lower retention rate for
persons with TBI injured by violent means21,23 and those discharged to an institution versus a
private residence.21 In addition, older persons and those with lower education were less likely to
be retained. These variables were predictive of lower retention regardless of race/ethnicity and
can be used to target retention strategies.

Factors influencing retention of study participants may be participant-specific or study-
specific. Public health studies report a lesser likelihood of study retention for males and those
with multiple comorbidities, persons with low income, and immigrants. Our results showed no relationship between sex and retention, but the other factors were not included in our study and may have impacted retention, particularly for our Hispanic participants. Relocation to their country of origin is common among Hispanic research participants at some centers included in this analysis and may have influenced retention. Study-specific factors that might have influenced lower retention of Hispanic participants include cultural and linguistic barriers between research staff and participants, inexperience of data collectors with the Hispanic population, and few bilingual data collectors. In recent years, the TBIMS national data and statistical center has implemented procedures to increase cultural competence of data collectors and investigators, including training in cultural sensitivity. However, this may not substitute for in-person contact with a bilingual research staff member and/or person of similar race/ethnicity.

Retaining participants from minority groups in rehabilitation research has been recognized as challenging. Creative recruitment/retention strategies that focus on cultural factors, language preferences, and community resources are needed to maximize retention. To enhance retention of U.S. born and non-U.S. born Hispanic participants, acknowledging cultural values of *familismo* (importance of family), *personalismo* (building rapport or personal connection), *confiaza* (being trustworthy), and *respeto* (being respectful) are key to conducting culturally competent research. Employing research staff from the same cultural and linguistic background as participants can increase rapport, reduce mistrust, and increase comfort with discussing sensitive information. These strategies have been shown to increase Hispanics’ satisfaction with and motivation to participate in psychological research. Community partnerships can also be effective for recruiting and retaining minority groups. Hispanic research participants referred by community agencies/activities have been shown to have greater
The researcher’s connection with community-based organizations familiar to Hispanic participants fosters trust and motivates consistency in research involvement through social networking.48

Making research participation convenient and less burdensome can increase retention. Transportation can be a major problem for persons with TBI,49 and this problem can be exacerbated for newer immigrants and persons with low income. Compensating participants for the cost of transportation and parking may increase engagement and retention. In addition, offering follow-up outside normal work hours could facilitate participation by those who work in industries with irregular work hours.

Study Limitations

This study assessed the impact of race/ethnicity on study retention among individuals who received inpatient rehabilitation following primarily moderate-to-severe TBI and were enrolled in the TBIMS National Database. Findings may differ among individuals with mild TBI, veterans with TBI, and those with moderate-to-severe TBI who received acute care but not inpatient rehabilitation. Analyses were also limited to variables available in the TBIMS database during the study period. Retention was defined as being followed at a specific time point (1 or 2 years post-injury). This study was also limited by using a combined race/ethnicity variable, not allowing for distinctions between White Hispanics and Black Hispanics. Race and ethnicity are coded separately in other federally funded databases. The TBIMS has recently changed its coding to reflect this, although not for the period covered by current analyses. We also acknowledge that there is a plethora of environmental and sociopolitical factors that are associated with race/ethnicity and that may impact retention in longitudinal rehabilitation.
research. These factors were not quantified in this retrospective database study, but are important
to consider for future prospective studies.

Conclusions

Lower retention of Hispanic participants in TBI research can bias outcomes and threaten external validity. Researchers should implement strategies to improve retention of Hispanic participants in TBI research. Other variables, including primary language spoken, acculturation, citizenship or visa status, country of residence at time of injury, and proximity of residence to rehabilitation hospital, may contribute to retention and should be investigated in future studies.

Future research should examine whether longitudinal patterns of retention differ for Hispanics compared to Blacks and Whites.
References

Figure 1

Injury Date between 10/1/02 and 3/31/13: N = 8527

White, Black, or Hispanic: N = 8179

Excluded: N = 494
- Died before year 1 FU (N = 264)
- Incarcerated at both year 1 and 2 (N = 42)
- No funding at both year 1 and 2 (N = 181)*
- Incarcerated at year 1 and died between year 1 and 2 (N = 1)
- No funding at year 1 and died between year 1 and 2 (N = 3)
- Incarcerated at year 1 and no funding at year 2 (N = 3)

Analyzed: N = 7685
- Retained (N = 6985)
- Not Retained (N = 700)

*Traumatic Brain Injury Model Systems centers are funded for 5-year periods and then must compete for another funding cycle. This sometimes results in existing centers losing funding for one or more cycles, and thus participants in the national database may not be followed due to lack of funds.
Table 1: Summary of Sample Characteristics by Race/Ethnicity

<table>
<thead>
<tr>
<th></th>
<th>White</th>
<th>Black</th>
<th>Hispanic</th>
<th>Total</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N = 5548)</td>
<td>(N = 1347)</td>
<td>(N = 790)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Count (%)</td>
<td>Count (%)</td>
<td>Count (%)</td>
<td>Count</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Male</td>
<td>3991 (71.9%)</td>
<td>1049 (77.9%)</td>
<td>613 (77.6%)</td>
<td>5653</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1557 (28.1%)</td>
<td>297 (22.1%)</td>
<td>177 (22.4%)</td>
<td>2031</td>
<td></td>
</tr>
<tr>
<td>Pre-Injury Marital Status</td>
<td>< 0.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>2063 (37.2%)</td>
<td>267 (19.9%)</td>
<td>217 (27.5%)</td>
<td>2547</td>
<td></td>
</tr>
<tr>
<td>Not Married</td>
<td>3485 (62.8%)</td>
<td>1078 (80.1%)</td>
<td>571 (72.5%)</td>
<td>5134</td>
<td></td>
</tr>
<tr>
<td>Pre-Injury Education</td>
<td>< 0.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 8th Grade</td>
<td>186 (3.4%)</td>
<td>84 (6.3%)</td>
<td>196 (25.0%)</td>
<td>466</td>
<td></td>
</tr>
<tr>
<td>9th – 11th Grade</td>
<td>844 (15.3%)</td>
<td>366 (27.4%)</td>
<td>199 (25.4%)</td>
<td>1409</td>
<td></td>
</tr>
<tr>
<td>12th Grade (HS/GED)</td>
<td>2074 (37.7%)</td>
<td>523 (39.1%)</td>
<td>216 (27.6%)</td>
<td>2813</td>
<td></td>
</tr>
<tr>
<td>> 12th Grade</td>
<td>2411 (43.6%)</td>
<td>366 (27.3%)</td>
<td>172 (22.1%)</td>
<td>2950</td>
<td></td>
</tr>
<tr>
<td>Residence at Discharge*</td>
<td></td>
<td></td>
<td></td>
<td>0.0004</td>
<td></td>
</tr>
<tr>
<td>Private Residence</td>
<td>4549 (82.1%)</td>
<td>1098 (81.8%)</td>
<td>691 (87.7%)</td>
<td>6338</td>
<td></td>
</tr>
<tr>
<td>Non-Private Residence</td>
<td>989 (17.9%)</td>
<td>244 (18.2%)</td>
<td>97 (12.3%)</td>
<td>1330</td>
<td></td>
</tr>
<tr>
<td>Pre-Injury Penal Incarcerations</td>
<td>< 0.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>5081 (92.9%)</td>
<td>1080 (81.0%)</td>
<td>691 (89.6%)</td>
<td>6852</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>390 (7.1%)</td>
<td>254 (19.0%)</td>
<td>80 (10.4%)</td>
<td>724</td>
<td></td>
</tr>
<tr>
<td>Pre-Injury Substance Problem Use</td>
<td></td>
<td></td>
<td></td>
<td>0.9906</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>3061 (57.8%)</td>
<td>753 (57.9%)</td>
<td>426 (57.6%)</td>
<td>4240</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>2236 (42.2%)</td>
<td>548 (42.1%)</td>
<td>314 (42.4%)</td>
<td>3098</td>
<td></td>
</tr>
<tr>
<td>PTA Group</td>
<td></td>
<td></td>
<td></td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>1852 (34.24%)</td>
<td>384 (29.20%)</td>
<td>207 (27.79%)</td>
<td>2443</td>
<td></td>
</tr>
<tr>
<td>Moderate/Severe</td>
<td>1200 (22.19%)</td>
<td>274 (20.84%)</td>
<td>150 (20.13%)</td>
<td>1624</td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td>1247 (23.05%)</td>
<td>321 (24.41%)</td>
<td>183 (24.56%)</td>
<td>1751</td>
<td></td>
</tr>
<tr>
<td>Extremely Severe</td>
<td>1110 (20.52%)</td>
<td>336 (25.55%)</td>
<td>205 (27.52%)</td>
<td>1651</td>
<td></td>
</tr>
<tr>
<td>Cause of Injury</td>
<td>< 0.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Violent</td>
<td>336 (6.1%)</td>
<td>318 (23.6%)</td>
<td>136 (17.3%)</td>
<td>790</td>
<td></td>
</tr>
<tr>
<td>Not Violent</td>
<td>5204 (93.9%)</td>
<td>1029 (76.4%)</td>
<td>651 (82.7%)</td>
<td>6884</td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>42.82(19.96)</td>
<td>38.58(17.03)</td>
<td>35.86(17.56)</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>FIM™ Motor at Discharge</td>
<td>66.44(18.24)</td>
<td>63.22(17.86)</td>
<td>66.02 (17.53)</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>FIM™ Cognitive at Discharge</td>
<td>24.00(6.72)</td>
<td>22.80(6.63)</td>
<td>23.40(6.82)</td>
<td><.00001</td>
<td></td>
</tr>
<tr>
<td>Job Stability**</td>
<td>29.87 (24.15)</td>
<td>23.41(24.08)</td>
<td>30.76(23.77)</td>
<td><0.0001</td>
<td></td>
</tr>
</tbody>
</table>

* Non-private residence=nursing home, adult home, correctional institution, hotel/motel, homeless, hospital, subacute care, or other

**number of weeks worked in the year prior to injury, modeled as a continuous variable
Table 2: Differences in Retention Rates Between Whites, Blacks, and Hispanics

<table>
<thead>
<tr>
<th></th>
<th>Retained</th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>455 (8.2%)</td>
<td>5093 (91.8%)</td>
<td>5548</td>
</tr>
<tr>
<td>Black</td>
<td>128 (9.5%)</td>
<td>1219 (90.5%)</td>
<td>1347</td>
</tr>
<tr>
<td>Hispanic</td>
<td>117 (14.8%)</td>
<td>673 (85.2%)</td>
<td>790</td>
</tr>
<tr>
<td>Total</td>
<td>700 (9.1%)</td>
<td>6985 (90.9%)</td>
<td>7075</td>
</tr>
</tbody>
</table>
Table 3: Odds Ratios Comparing Race/Ethnicity and Pre-Injury Problem Substance Use Groups from Adjusted§ Model

<table>
<thead>
<tr>
<th>History of Pre-Injury Problem Substance Use</th>
<th>Race/Ethnicity</th>
<th>OR†</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>White vs. Black</td>
<td>0.853</td>
<td>(0.607, 1.200)</td>
<td>0.3608</td>
</tr>
<tr>
<td></td>
<td>White vs. Hispanic</td>
<td>2.091</td>
<td>(1.489, 2.936)</td>
<td>< 0.0001‡</td>
</tr>
<tr>
<td></td>
<td>Black vs. Hispanic</td>
<td>2.451</td>
<td>(1.607, 3.739)</td>
<td>< 0.0001‡</td>
</tr>
<tr>
<td>Yes</td>
<td>White vs. Black</td>
<td>1.212</td>
<td>(0.883, 1.666)</td>
<td>0.2347</td>
</tr>
<tr>
<td></td>
<td>White vs. Hispanic</td>
<td>1.341</td>
<td>(0.904, 1.989)</td>
<td>0.1453</td>
</tr>
<tr>
<td></td>
<td>Black vs. Hispanic</td>
<td>1.106</td>
<td>(0.710, 1.723)</td>
<td>0.6567</td>
</tr>
<tr>
<td>No vs. Yes</td>
<td>White</td>
<td>1.275</td>
<td>(1.012, 1.606)</td>
<td>0.0388</td>
</tr>
<tr>
<td>No vs. Yes</td>
<td>Black</td>
<td>1.812</td>
<td>(1.211, 2.712)</td>
<td>0.0038‡</td>
</tr>
<tr>
<td>No vs. Yes</td>
<td>Hispanic</td>
<td>0.818</td>
<td>(0.518, 1.290)</td>
<td>0.3866</td>
</tr>
</tbody>
</table>

§Model variables include race/ethnicity, age, gender, marital status, education, residence at rehabilitation discharge, pre-injury incarceration, problem substance use, violent cause of injury, PTA, discharge FIM, pre-injury job stability, and race/ethnic by problem substance use

† Odds ratios represent the odds of being retained versus not retained for one sub group versus another subgroup

‡ Significant at a Bonferroni corrected level of significance $\alpha = 0.05/9 = 0.0056$
<table>
<thead>
<tr>
<th>Variable</th>
<th>Comparison</th>
<th>OR†</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>1 year increase</td>
<td>0.991</td>
<td>(0.986, 0.997)</td>
<td>0.0011</td>
</tr>
<tr>
<td>Sex</td>
<td>Female vs. Male</td>
<td>1.193</td>
<td>(0.963, 1.478)</td>
<td>0.1070</td>
</tr>
<tr>
<td>Marital Status</td>
<td>Married vs. Not Married</td>
<td>1.232</td>
<td>(0.999, 1.519)</td>
<td>0.0512</td>
</tr>
<tr>
<td>Education</td>
<td>> 12th Grade vs. ≤ 8th Grade</td>
<td>2.832</td>
<td>(2.042, 3.927)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td></td>
<td>9th – 11th Grade vs. ≤ 8th Grade</td>
<td>1.638</td>
<td>(1.177, 2.279)</td>
<td>0.0034</td>
</tr>
<tr>
<td></td>
<td>12th Grade (HS/GED) vs. ≤ 8th Grade</td>
<td>1.739</td>
<td>(1.279, 2.365)</td>
<td>0.0004</td>
</tr>
<tr>
<td></td>
<td>> 12th Grade vs. 9th – 11th Grade</td>
<td>1.730</td>
<td>(1.329, 2.250)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td></td>
<td>12th Grade (HS/GED) vs. 9th – 11th Grade</td>
<td>1.062</td>
<td>(0.838, 1.347)</td>
<td>0.6195</td>
</tr>
<tr>
<td></td>
<td>> 12th Grade vs. 12th Grade (HS/GED)</td>
<td>1.628</td>
<td>(1.309, 2.026)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Residence</td>
<td>Private vs. Not Private</td>
<td>1.443</td>
<td>(1.145, 1.818)</td>
<td>0.0019</td>
</tr>
<tr>
<td>Incarcerated</td>
<td>No vs. Yes</td>
<td>1.013</td>
<td>(0.767, 1.338)</td>
<td>0.9275</td>
</tr>
<tr>
<td>PTA Group</td>
<td>Moderate vs. Moderate/Severe</td>
<td>0.855</td>
<td>(0.670, 1.091)</td>
<td>0.2082</td>
</tr>
<tr>
<td></td>
<td>Moderate vs. Severe</td>
<td>0.813</td>
<td>(0.634, 1.042)</td>
<td>0.1019</td>
</tr>
<tr>
<td></td>
<td>Moderate vs. Extremely Severe</td>
<td>0.878</td>
<td>(0.649, 1.189)</td>
<td>0.4001</td>
</tr>
<tr>
<td></td>
<td>Moderate/Severe vs. Severe</td>
<td>0.951</td>
<td>(0.727, 1.243)</td>
<td>0.7112</td>
</tr>
<tr>
<td></td>
<td>Moderate/Severe vs. Extremely Severe</td>
<td>1.027</td>
<td>(0.753, 1.402)</td>
<td>0.8664</td>
</tr>
<tr>
<td></td>
<td>Severe vs. Extremely Severe</td>
<td>1.081</td>
<td>(0.807, 1.447)</td>
<td>0.6038</td>
</tr>
<tr>
<td>FIM Motor</td>
<td>1 unit increase</td>
<td>0.998</td>
<td>(0.992, 1.005)</td>
<td>0.6195</td>
</tr>
<tr>
<td>FIM Cognitive</td>
<td>1 unit increase</td>
<td>0.991</td>
<td>(0.973, 1.009)</td>
<td>0.3050</td>
</tr>
<tr>
<td>Job Stability</td>
<td>1 week increase</td>
<td>1.003</td>
<td>(0.999, 1.007)</td>
<td>0.1170</td>
</tr>
<tr>
<td>Violent Injury</td>
<td>No vs. Yes</td>
<td>1.565</td>
<td>(1.212, 2.021)</td>
<td>0.0006</td>
</tr>
</tbody>
</table>

§Model variables include race/ethnicity, age, gender, marital status, education, residence at rehabilitation discharge, pre-injury incarceration, problem substance use, violent cause of injury, PTA, discharge FIM, pre-injury job stability, and race/ethnic by problem substance use

† Odds ratios represent the odds of being retained versus not retained for one subgroup versus another subgroup