Will Computer-Aided Detection and Diagnosis Revolutionize Colonoscopy?

Colorectal cancer (CRC) remains a critical health concern and a significant financial burden, not only in North America, but worldwide. This highlights the importance of colonoscopy as a cost-effective means of preventing CRC through the identification and removal of polyps. However, colonoscopy is operator dependent. Variability in the skill and diligence of the endoscopist to detect and remove polyps impacts the ability of colonoscopy to reduce the risk of interval CRC and its associated mortality. Moreover, the use of colonoscopy itself carries its own economic footprint, specifically, the associated costs of removing and histologically evaluating all identified polyps regardless of their malignant potential. With the above point in mind, efforts have been made to improve the adenoma detection rate (ADR) through various strategies, including the use of high-definition endoscopes and cap attachments. Furthermore, enhanced imaging modalities have been developed as a means of performing an “optical biopsy,” thereby empowering the endoscopist to resect and discard diminutive adenomas without pathology review or to leave diminutive distal hyperplastic polyps in situ. Unfortunately, these interventions have their limitations, specifically outside the hands of expert endoscopists. Therefore, a need exists for further technical advancements to optimize both the detection of polyps and their endoscopic evaluation.

Computer-aided detection (CADe) and computer-aided diagnosis (CADx) are systems that incorporate a computer’s ability to learn and perform specific tasks. Through advances in machine learning and deep learning methodology, computers can now learn and perform specific endoscopic tasks that previously were the responsibility of the endoscopist. Although still in their infancy, CADe and CADx have the potential to revolutionize endoscopy. This article’s focus is to provide an overview of the use of CADe and CADx in colonoscopy, focusing on 3 key areas: (1) adequacy of mucosal inspection, (2) polyp detection, and (3) optical biopsy.

Adequacy of Inspection Technique

Careful inspection of the colonic mucosa is the cornerstone of a quality colonoscopy. A surrogate marker for this is the ADR, defined as the percentage of patients with ≥1 adenoma identified on screen colonoscopy. ADR has been embraced as the pivotal colonoscopy quality metric by the quality task force of the American College of Gastroenterology/American Society for Gastrointestinal Endoscopy, with an ADR target for asymptomatic average-risk adults undergoing screening colonoscopy of ≥25% (men, ≥30%; women, ≥20%). The usefulness of ADR was validated by Corley et al, who found a 3% reduction in the risk of interval CRC and a 5% reduction in interval CRC-related mortality for every 1% increase in the ADR. The ADR can be improved by using high-definition colonoscopes, split-dose bowel preparations, nondevice techniques such as optimized inspection technique, and tools to improve mucosal exposure and highlight flat lesions. However, the highest ADRs reported have been achieved by endoscopists using only split-dose preparations, high-definition colonoscopes, and optimal technique. ADR and its variants such as adenomas per colonoscopy provide only a post-procedure assessment of performance quality that may lead to steps to improve performance in future examinations. Until recently, an automated means of assessing and correcting colonic mucosal inspection in real time has been unavailable.

The EM-Automated-RT (EndoMetric Inc, Ames, IA) is a computer system that allows for real-time analysis and feedback for mucosal inspection during colonoscopy. It does so through 3 mechanisms: (1) differentiating informative and noninformative (blurry) frames, (2) detecting and quantifying residual stool/debris, and (3) measuring the effort to inspect all colonic mucosa. The latter is achieved by dividing the endoscopic view into quadrants (Supplemental Figure 1). During withdrawal, when the colonic lumen is seen in a particular quadrant, the opposing quadrant of colonic mucosa is marked as inspected. When each quadrant has been sequentially inspected, the EM-Automated-RT provides the endoscopist with an increase in their inspection score. This technology was recently evaluated in a prospective study among 10 third-year gastroenterology trainees performing 483 colonoscopies. The trainees were randomly assigned to use the EM-Automated RT. Subsequently, the de-identified endoscopic videos were evaluated by 2 blinded investigators. The results showed that the EM-Automated-RT leads to a significant increase in the mean mucosal visualization score, the mean debris removal score, the mean bowel distension score, and the mean withdrawal time (all P < .02). Although further studies are needed to evaluate this software as a means of assessing and affecting colonoscopy quality among practicing endoscopists, it seems to be a promising tool for objective real-time quality assessment.

Polyp Identification

Even with diligent exposure of the colonic mucosa, polyps may not be detected because of their small or flat morphology, or minimal color differences between the polyp and normal mucosa. The relative contributions of failed mucosal exposure and failed recognition of exposed polyps are uncertain. However, the contributions of high definition and chromendoendoscopy to detection and the recent demonstrations that brighter forms of electronic chromendoendoscopy improve detection are clear evidence that...
failure to recognize exposed lesions is a significant contributor to missed lesions. In a 2006 systematic review and meta-analysis, 6 tandem colonoscopy studies showed a pooled miss rate of 22% for all polyps. This varied by adenoma size with pooled miss rates of 2.1% for adenomas ≥10 mm, 13% for adenomas 5-10 mm, and 26% for adenomas 1-5 mm. This finding highlights that, regardless of expertise, polyps can be difficult to identify. Therefore, automating the detection of CRC and precancerous lesions through incorporation of CADe carries the potential to improve patient outcomes and resource use.

New CADe systems have emerged (Figure 1). The Polyp-Alert system (EndoMetric Inc, Ames, IA), described by Wang et al in 2015, uses detection of polyp edges to highlight exposed polyps during colonoscopy videos. The technique analyzes every third video frame, approaching real-time analysis. Sixty-one complete colonoscopy videos were randomly selected for the study; 8 were used for training and 53 for testing the Polyp-Alert system. The Polyp-Alert system correctly detected 98% of polyps, although it averaged 36 false-positive detections per colonoscopy. False positives commonly resulted from protruding folds, the appendiceal orifice, the ileocecal valve, and areas with residual fluid. Several of these causes of false positives should be easily dismissed by experienced colonoscopists. Thus, near real-time CADe systems for polyp detection hold great promise for improving polyp detection and reducing operator dependence during colonoscopy.

Optical Biopsy

Optical biopsy refers to endoscopically predicting histology through the use of advanced imaging modalities alongside validated classification systems (eg, narrow-band imaging [NBI] international colorectal endoscopic [NICE] classification). A specific paradigm of interest is the diagnosis and differentiation of diminutive pre-cancerous adenomas and diminutive non-neoplastic hyperplastic polyps. This is in part driven by the low likelihood of either invasive cancer or advanced histology among polyps ≤5 mm. Two strategies have emerged: (1) the “resect and discard” strategy of removing optically diagnosed diminutive adenomas without sending them for pathology review, and (2) the “diagnose and leave” strategy of optically diagnosing diminutive rectosigmoid hyperplastic polyps and leaving them in situ without sampling. Implementing the former strategy has been estimated to save upwards of US$1 billion in upfront costs. The American Society for Gastrointestinal Endoscopy produced the Preservation and Incorporation of Valuable Endoscopic Innovations (PIVI) guidelines recommending: (1) >90% agreement for post-polypectomy surveillance intervals for the “resect and discard” strategy, and (2) >90% negative predictive value (NPV) for adenomatous histology for the “diagnose and leave” strategy. Unfortunately, optical biopsy is also operator dependent, with a recent systematic review and meta-analysis highlighting the correlation between operator expertise and the ability to meet the PIVI benchmarks for performance. Fortunately, CADx, or for this purpose automated optical biopsy, has the potential to allow even nonexperts to effectively use optical biopsy in the management of diminutive polyps. Four imaging modalities that have effectively assimilated automated optical biopsy are (1) magnifying NBI, (2) endocytoscopy, (3) laser-induced fluorescence spectroscopy, and, more recently, (4) nonmagnification NBI. Magnifying NBI is the combination of NBI with high-definition magnifying endoscopes, allowing for up to 80× magnifying power. Its role in automated optical biopsy was recently evaluated among 118 colorectal lesions with histology as the gold standard reference. Lesions were differentiated by
the computer system using the
Hiroshima classification into non-
neoplastic (ie, hyperplastic) and
neoplastic (ie, adenoma or adenocar-
cinoma with intramucosal invasion).
Accuracy, with reference to histology,
reached 93% (sensitivity 93%, speci-
ficity 93%, positive predictive value
[PPV] 93%, NPV 93%). Moreover,
there was 93% concordance for
subsequent surveillance colonoscopy
intervals, therefore meeting both PIVI
performance benchmarks.18
Endocytoscopy is a method of
endoscopic contact microscopy which allows for
cellular, structural, and vessel atypia
evaluation in vivo.20 The EndoBRAIN
(Cybernet System Co., Tokyo, Japan),
which is a combination of endocyto-
scopy and NBI, is a platform for auto-
matched optical biopsy (Supplemental
Figure 2). Captured images by the
endoscopist during real-time endos-
copy are subsequently analyzed by the
EndoBRAIN, which then provides an
optical biopsy interpretation within
0.3 seconds. It was recently evaluated
on 100 randomly selected images of
colorectal lesions that were endoscop-
ically removed and underwent pathol-
ogy review.20 The accuracy of the
EndoBRAIN was 90% (sensitivity 85%,
specificity 98%, PPV 98%, NPV 82%).

Using laser-induced autofluorescence spectroscopy, WavSTAT4
(Pentax Medical, Tokyo, Japan) per-
forms real time, in vivo, automated
optical biopsy of colon polyps.21 This is
through an optical fiber that is incor-
porated into standard biopsy forceps
and is triggered upon contact. In a
prospective observational study of 27
patients (137 polyps), the accuracy of
the WavSTAT4 was 85% (sensitivity
82%, specificity 85%, PPV 51%, NPV
96%).21 Upon stratified analysis for
only diminutive distal polyps, the
NPV increased to 100%. Concordance
between the WavSTAT4 and histology-
driven recommendations for interval
colonoscopy reached 89%.

Deep Learning
Until recently, CADe and CADx in
endoscopy have been largely depen-
dent on traditional machine learning
methodology, whereby the program-
mer essentially “teaches” the computer
which features to focus on; the so-called human feature extraction.
However, the emergence of deep
learning methodology allows for depar-
ture from human perceptual limitations.
Deep learning methodology, specifically
through the use of deep convolutional
neural networks, allows for the use of
raw and unprocessed videos,22 thus,
allowing artificial intelligence to be
integrated during live endoscopy.
In an attempt to address historical
limitations of automated polyp detec-
tion, specifically the notable variability
in polyp appearance and the lack thereof between polyps and potential mimics (eg, prominent colonic folds, residual debris). Yu et al24 recently unveiled a CADe platform incorpo-
rating a 3-dimensional, fully convolu-
tional network. Their platform was
evaluated using the ASU-Mayo Clinic
Polyt Database,25 which contains 20
colonoscopy videos. Precision (P) [true
positive/(true positive + false posi-
tive)], Recall (R) [true positive/(true
positive + false negative)], F1 [2PR/
(P + R)], and F2 [5PR/(4P + R)] were
used for evaluation with the following
results of 88%, 71%, 79%, and 74%
respectively.
To our knowledge, we recently
were the first to describe the use of
deep learning methodology for auto-
mated optical biopsy.22 Using raw and
unaltered NBI video recordings of
colorectal polyps, we trained, vali-
dated, and subsequently tested our
system’s ability to differentiate ade-
nomas from hyperplastic polyps using the NICE classification system.16 These
videos were captured with standard
colonoscopes (Olympus 190 Series;
Olympus America, Center Valley, PA).
In real time, the system calculates a
credibility score based on fluctuations
in the system’s NICE classification
prediction over successive video
frames, after which a final polyp clas-
sification is provided within approxi-
mately 50 ms alongside an associated
probability for the correct diagnosis
(Figure 2). Ultimately, 125 diminutive
polyp videos were used to test the
model after training and validation
were completed. The credibility score
did not reach ≥50% for 19 polyps,
which were subsequently excluded from
analysis. Of the remaining 106
polyp videos, the overall accuracy, with
reference to histology, was 94%
(sensitivity 98%, specificity 83%, PPV
97%, NPV 90%). Our alignment with
the PIVI benchmarks using non-
magnification colonoscopy further
reinforces the importance of our find-
ings, which mark a step toward incor-
porating automated optical biopsy into
everyday colonoscopy.

Future Directions
CADe and CADx are rapidly
growing disciplines and have many
potential applications in healthcare,
including imaging, robotic surgery, and
omics. Pertaining to endoscopy, we
have reviewed their potentials in co-
lonoscopy and colonic polyps, but it is
almost certain that CADe and CADx
will have growing roles in other
endoscopic domains; this includes the
assessment of mucosal healing and
dysplasia surveillance in inflammatory
bowel disease, dysplasia surveillance
in Barrett’s esophagus, and the evalua-
tion of pancreatic cystic neoplasms
during endoscopic ultrasound, to name
a few. “Transfer learning,” whereby
knowledge gained in one area can be
applied to a different but related
problem, means the work done to
date in the field of endoscopy can
help to accelerate future improve-
ments and new applications in other
areas. A recent review by the European
Society of Gastrointestinal Endos-
copy,26 comments on “decision support
tools and computer-aided diagnosis,”
and questions how such systems will
be deployed; suggesting the most likely
scenario being as a “second reader”
with more work needed to have true
“stand alone” CADe and CADx systems.
We agree with this statement, but
only at this precise moment in time,
because evidence is lagging behind the
technology in this space. We are likely
to see rapid advances in the sophisti-
cation of CADe and CADx systems in
medicine in the near future, and
application of artificial intelligence in
many representations.

Although the emergence of CADe
and CADx technologies are promising,
they do have limitations. First, to
empower CADe and CADx platforms,
large datasets or “big data” are needed,
especially for those platforms using deep learning methodology. Moreover, with future platforms more likely to incorporate deep learning methodology, more powerful computers will be needed to support them, potentially limiting their ability to be readily incorporated in a standard endoscopy tower. It is also important to note that although magnifying NBI, endocytoscopy, and laser-induced autofluorescence spectroscopy show promise, there is a lack of worldwide availability and expertise for these modalities. Last, a key obstacle that CADE will need to tackle is the detection of flat lesions, with evidence currently limited in this area.

Mori et al. have described a “roadmap” to facilitate the assimilation of CADE and CADx into everyday colonoscopy. This includes (1) product development and feasibility studies, (2) clinical trials, (3) regulatory approval, and (4) insurance reimbursement. To start, continued methodological development by incorporating deep learning strategies to improve ADR, and to assess the performance of automated optical biopsy. This should be coupled with cost-effectiveness analyses across all areas of interest, especially as real-world data begin to emerge. Regarding regulatory approval, WavSTAT4 has already obtained regulatory approval in both the United States and Europe, which will hopefully open the door for other platforms. Last, incentives to accelerate the adoption of CADE and CADx may be necessary, something that is currently being considered by leading countries in this area.

Conclusion

It is now too conservative to suggest that CADE and CADx carry the potential to revolutionize colonoscopy. The artificial intelligence revolution has already begun.

Michael F. Byrne

University of British Columbia

Vancouver, British Columbia, Canada

Neal Shahidi

Douglas K. Rex

Indiana University Medical Center

Indianapolis, Indiana

Supplementary Material

Note: To access the supplementary material accompanying this article, visit the online version of *Gastroenterology* at www.gastrojournal.org, and at https://doi.org/10.1053/j.gastro.2017.10.026.

References

7. Rex DK, Helbig CC. High yields of small and flat adenomas with high-definition colonoscopes using either white light or narrow band imaging. Gastroenterology 2007;133:42–47.

11. Pohl J, Schneider A, Vogell H, et al. Pancolonic chromendoendoscopy with...

Conflicts of interest

© 2017 by the AGA Institute

0016-5085/$36.00
https://doi.org/10.1053/j.gastro.2017.10.026
Supplemental Figure 1. Computer-aided colonic inspection. (Reprinted with permission from Stanek SR et al.8).

Supplemental Figure 2. Computer-aided optical biopsy. (Reprinted with permission from Misawa M et al.20).