Dietary nitrate increases VO$_2$peak and performance but does not alter ventilation or efficiency in patients with heart failure with reduced ejection fraction.

Andrew R. Coggan$^{a,b,c}$, Seth R. Broadstreet$^a$, Kiran Mahmood$^d$, Deana Mikhalkova$^d$, Michael Madigan$^d$, Indra Bole$^d$, Soo Park$^d$, Joshua L. Leibowitz$^d$, Ana Kadkhodayan$^d$, Deepak P. Thomas$^d$, Dakkota Thies$^e$, Linda R. Peterson$^{c,d}$.

Departments of $^a$Kinesiology and $^b$Cellular and Integrative Physiology
Indiana University Purdue University Indianapolis
Departments of $^c$Radiology and $^d$Medicine
Washington University School of Medicine, St. Louis,

Running head: Dietary NO$_3^-$ increases VO$_2$peak in HF patients

Address for correspondence: Andrew R. Coggan, Ph.D., FACSM
Department of Kinesiology
Indiana University Purdue University Indianapolis
IF 101C, 250 University Boulevard
Indianapolis, IN 46202
Tel.: (317) 274-0656
Fax: (317) 278-2041
Email: acoggan@iupui.edu

This is the author’s manuscript of the article published in final edited form as:

Highlights

- Acute dietary NO_3^- intake increased VO_2_peak in patients with HF by 8±2% (P<0.05).
- Time to fatigue during exercise improved by 7±3 % (P<0.05).
- Dietary NO_3^- may be a means of enhancing exercise capacity in patients with HF.

Abstract

Background: Patients with heart failure with reduced ejection fraction (HFrEF) exhibit lower efficiency, dyspnea, and diminished peak O_2 uptake (VO_2_peak) during exercise. Dietary nitrate (NO_3^-), a source of nitric oxide (NO), has improved these measures in some studies of other populations. We determined the effects of acute NO_3^- ingestion on exercise responses in eight patients with HFrEF using a randomized, double-blind, placebo-controlled, crossover design. Methods and Results: Plasma NO_3^-, nitrite (NO_2^-), and breath NO were measured at multiple time points and respiratory gas exchange was determined during exercise after ingestion of beetroot juice containing or devoid of 11.2 mmol of NO_3^-.

NO_3^- intake increased (P<0.05-0.001) plasma NO_3^- and NO_2^- and breath NO by 1469±245, 105±34, and 60±18%, respectively. Efficiency and ventilation during exercise were unchanged. However, NO_3^- ingestion increased (P<0.05) VO_2_peak by 8±2%, i.e., from 21.4±2.1 to 23.0±2.3 mL min^-1 kg^-1. Time to fatigue improved (P<0.05) by 7±3 %, i.e., from 582±84 to 612±81 s. Conclusions: Acute dietary NO_3^- intake increases VO_2_peak and performance in patients with HFrEF. These data, in conjunction with our recent data demonstrating that dietary NO_3^- also improves muscle contractile function, suggest that dietary NO_3^- supplementation may be a valuable means of enhancing exercise capacity in this population.
Keywords

Nitric oxide, heart failure, VO$_2$peak, exercise
Highlights

- Acute dietary NO$_3^-$ intake increased VO$_2$peak in patients with HF by 8±2% (P<0.05).
- Time to fatigue during exercise improved by 7±3 % (P<0.05).
- Dietary NO$_3^-$ may be a means of enhancing exercise capacity in patients with HF.
Introduction

Tens of millions of men and women around the world suffer from heart failure (HF), a disabling and often deadly affliction (2). In approximately half of all such individuals, the ejection fraction (EF) of the heart is reduced (2). However, regardless of the precise nature or etiology of the disease, i.e., HF with reduced EF (HFrEF) or HF with preserved EF (HFpEF), patients with HF exhibit dyspnea and diminished peak oxygen (O$_2$) uptake (VO$_2$peak) during exercise (18,19). Along with declines in maximal muscle speed and power (12), these abnormalities in aerobic exercise responses play a major role in the disability, loss of independence, and reduced quality of life that accompany HF. Perhaps more importantly, elevations in ventilatory demand and decreases in VO$_2$peak (and in skeletal muscle contractile function (22)) are highly predictive of mortality in patients with HF (3,13,26,40).

One factor contributing to the exercise intolerance of HF – especially HFrEF - may be a reduction in nitric oxide (NO) signaling. Along with its well-recognized role as a vasodilator, NO modulates numerous other physiological functions relevant to exercise performance, e.g., muscle contractility (10,11,12,41). There is considerable evidence, however, that NO bioavailability is diminished in HFrEF, as a result of both reduced NO production via the NO synthase (NOS) pathway (45) and more rapid destruction of NO due to increased oxidative stress (33). For example, endothelial dysfunction is common in HFrEF (48), indicative of blunted NO activity. Breath NO levels, a biomarker of whole-body NO production, are also lower in patients with HFrEF (1,8,9), as are the circulating concentrations of nitrite (NO$_2^-$) (31,46), the immediate degradation product of NO. The conversion of $^{15}$N-labeled arginine to $^{15}$N-labeled nitrate (NO$_3^-$) has also been shown to be diminished in patients with HFrEF (24), demonstrating directly that NOS-mediated NO production is impaired. Finally, increasing NO bioavailability via L-arginine supplementation has been shown to improve 6 min walk distance in patients with HFrEF (39). Collectively, these data suggest that reduced NO signaling in HFrEF may contribute to the altered exercise responses described above.
Although most of the NO in the body is produced via the NOS pathway, it is now recognized that production of NO from dietary NO$_3^-$ is an important source as well (28). In this enterosalivary pathway, ingested NO$_3^-$ is reduced to NO$_2^-$ with aid of the mouth microbiota and then to NO in the tissues via a number of endogenous catalysts (43). This last step is enhanced at low pO$_2$ and low pH, conditions that regularly exist in exercising muscle. A number of studies have therefore examined the effects of dietary NO$_3^-$ supplementation, often in the form of beetroot juice (BRJ), on physiological responses and performance during exercise (23). Many, but not all, of these studies have reported that NO$_3^-$ ingestion can enhance efficiency, reduce ventilatory demands, and/or increase performance during exercise in at least some populations, including patients with HFpEF (15,50,51). On the other hand, results of previous studies of patients with HFrEF (20,25) have been equivocal.

The purpose of the present proof-of-concept study was to test the hypothesis that acute dietary NO$_3^-$ intake would reduce ventilatory demands, increase VO$_2^{\text{peak}}$, and improve exercise performance in patients with HFrEF. We chose to study patients with HFrEF instead of HFpEF because evidence of reduced NO bioavailability is strongest in this population (\textit{vida supra}). We focused specifically on ventilatory responses and VO$_2^{\text{peak}}$ because of their importance as determinants of exercise capacity and predictors of survival in patients with HFrEF (3,13,26,40). Furthermore, since improvements in economy or efficiency are believed to be an important mechanism by which dietary NO$_3^-$ enhances performance in other subject groups (5,36), we designed our study to carefully quantify not only gross but also delta efficiency during exercise, as the latter is a more direct indicator of muscle contractile efficiency (41).

\textbf{Materials and Methods}

\textit{Subjects:} The subjects in this study were patients $\geq$18 y of age with HFrEF (i.e., EF $\leq$45%) who were on stable medical therapy (i.e., no addition, removal, or change in medication dose of $>100\%$ in the last 3 mo). Each underwent a physical exam, medical history, and blood tests for fasting chemistries. In
addition, to document the presence of HFrEF a resting echocardiogram was obtained from those who had not undergone cardiac imaging for clinical purposes in the last 12 mo. Subjects were excluded if they had major organ system disease or dysfunction other than HF, were pregnant, smoked, or had significant orthopedic limitations or other contraindications to exercise. In addition, subjects using antacids or proton pump, xanthine oxidase, or phosphodiesterase inhibitors (e.g., sildenafil) were excluded, as these can affect reduction of NO$_3^-$ and NO$_2^-$ to NO (30). Finally, subjects treated with organic nitrates (e.g., trinitroglycerin) were also excluded. After screening of 33 subjects, 10 subjects were enrolled in the study, with eight completing the entire protocol as planned (Fig. 1). One subject was unable to achieve a steady-state at even 20 W, such that their gross and delta efficiency and VT could not be determined. Data from another subject were excluded when subsequent analysis of their plasma samples demonstrated that they inadvertently received NO$_3^-$ during both trials. Approval for the study was obtained from the Human Subjects Office at Indiana University and the Human Research Protection Office at Washington University School of Medicine, and all subjects provided written, informed consent.

Experimental design and protocol: Upon enrollment, each patient was studied using a randomized, double-blind, placebo-controlled, crossover design (Fig. 2, top panel). During one trial, they were tested 2 h after ingesting 140 mL of a concentrated BRJ supplement (Beet It Sport®, James White Drinks, Ipswich, UK) containing 11.2 mmol of NO$_3^-$. During another trial, they were tested after ingesting the same volume of NO$_3^-$-depleted BRJ. This placebo is prepared by the manufacturer by extracting NO$_3^-$ from BRJ using an ion exchange resin and is indistinguishable from the standard product in packaging, color, texture, taste, and smell, and does not alter plasma NO$_3^-$ or NO$_2^-$ concentrations or breath NO levels. There was a minimum 1 wk washout period between trials. To limit variation in baseline NO$_3^-$, NO$_2^-$, and NO levels, subjects were instructed to avoid high NO$_3^-$ foods for 10 d prior to intervention and throughout the study. Subjects were also instructed to avoid food, caffeine, alcohol, and exercise for 12
h prior to each trial, and to not chew gum or use mouthwash on study days, as these products can block conversion of NO$_3^-$ to NO$_2^-$ and hence to NO via the enterosalivary pathway (17).

Subjects arrived at the Clinical Research Unit of Washington University School of Medicine in the morning after fasting overnight. Baseline heart rate and blood pressure were first measured, after which an antecubital venous catheter was inserted and a blood sample was obtained. Plasma was rapidly separated via centrifugation and frozen at -80°C for subsequent determination of NO$_3^-$ and NO$_2^-$ concentrations using a dedicated HPLC system (ENO-30, Eicom USA, San Diego, CA). Briefly, plasma was thawed on ice, mixed 1:1 with methanol, and centrifuged at 4°C for 10 min at 10,000 g. A 10 μL aliquot of the protein-poor supernatant was then injected into the HPLC, wherein NO$_3^-$ and NO$_2^-$ were isolated via a separation column, NO$_3^-$ reduced to NO$_2^-$ on a cadmium column, and both reacted with Griess reagent then detected spectrophotometrically at 540 nm. Plasma NO$_3^-$ and NO$_2^-$ concentrations were calculated based on integrated peak areas compared to those of authentic standards. This method was highly reproducible, with test-retest correlation coefficients of 0.99 and 0.98 for NO$_3^-$ and NO$_2^-$, respectively. To further reduce variability, all samples from a single subject were analyzed together.

Breath NO level, a biomarker of whole-body NO production (1,8,9,35), was also measured once at this time using a portable electrochemical analyzer (NIOX VERO, Circassia Pharmaceuticals Inc., Chicago, IL) following American Thoracic Society guidelines. These measurements were repeated 1 and 2 h after the subject had ingested the BRJ, and also 10 min after completion of all exercise testing (i.e., at ~3 h). The latter consisted of submaximal steady-state and maximal incremental exercise on a semi-recumbent cycle ergometer (Lode, Gronigen, The Netherlands) (Fig. 2, bottom panel). Semi-recumbent cycle ergometry was chosen to minimize use of upper body musculature, thus aiding interpretation of any observed changes in exercise efficiency. After adjustment of the seat position, subjects first pedaled the ergometer at 60 rpm for 6 min each at 20, 40, and 60 W while respiratory gas exchange was measured continuously using a ParvoMedics 2900 metabolic cart (ParvoMedics, Sandy, UT). Heart rate, blood
pressure, and perceived exertion (7) were determined during the last 30 s of each stage. Following 10 min of rest, subjects resumed pedaling at 60 W for 1 min, after which the power output was incremented by 10 W/min (47) until volitional fatigue. Respiratory gas exchange and heart rate were monitored continuously and blood pressure was measured periodically throughout the test and also immediately following cessation of exercise.

Data analyses: Respiratory gas exchange data collected during the final 2 min of each stage of the submaximal exercise test were averaged and used in all subsequent analyses. Gross efficiency was calculated as the ratio of external power to metabolic power (37), multiplied by 100%. Delta efficiency, i.e., the slope of the relationship between external and metabolic power, and the metabolic cost of unloaded cycling, i.e., the y intercept of this relationship, were determined by regression analysis (40). Similarly, during the maximal exercise test the oxygen uptake efficiency slope (OUES; Ref. 4) was calculated by regressing VO\textsubscript{2} (in L/min) on the log of ventilation (Ve; also in L/min), both being measured at 15 s intervals. The Ve/VCO\textsubscript{2} slope (3) was calculated in a similar fashion. Ventilatory threshold (VT) was determined using the V-slope method (6). Peak power was defined as the average power during the last 1 min of exercise. VO\textsubscript{2}peak was defined as the highest VO\textsubscript{2} measured over any 1 min period.

Statistical analyses were performed using GraphPad Prism version 7.02 (GraphPad Software, La Jolla, CA). Normality of data distribution was first tested using the D’Agostino-Pearson omnibus test. Data were subsequently analyzed using two-way (treatment x order) ANOVA, with subject as a repeated measures factor within treatment. A P value of <0.05 was considered significant. Primary outcome variables were changes in ventilatory responses and VO\textsubscript{2}peak in response to dietary NO\textsubscript{3}−. Secondary outcome variables were changes in exercise performance and efficiency; all other variables measured were considered tertiary.

Results
Patient characteristics. Characteristics of the patients are shown in Table 1. All had mild-to-moderate nonischemic HFrEF (based on NYHA class, MLWHFQ score, and EF). All were under stable, standard-of-care therapy, including use a β-blocker and, in six out of eight, treatment with an angiotensin converting enzyme inhibitor (ACEi) or an angiotensin receptor blocker (ARB).

Plasma NO\textsubscript{3}\textsuperscript{-} and NO\textsubscript{2}\textsuperscript{-} and breath NO. No changes in plasma NO\textsubscript{3}\textsuperscript{-} or NO\textsubscript{2}\textsuperscript{-} concentration (Fig. 3, top and middle panels) or in breath NO levels (Fig. 3, bottom panel) occurred during the placebo trial. In contrast, ingestion of NO\textsubscript{3}\textsuperscript{-}-containing BRJ elevated (P < 0.01) plasma NO\textsubscript{3}\textsuperscript{-} concentrations approximately 10-fold after 1 h, with this increase being maintained for the remainder of the experiment (Fig. 3, top panel). Concentrations of the downstream metabolites of NO\textsubscript{3}\textsuperscript{-}, i.e., plasma NO\textsubscript{2}\textsuperscript{-} and breath NO, were also significantly elevated by NO\textsubscript{3}\textsuperscript{-} intake, albeit to a much lesser degree (Fig. 3, middle and bottom panels). The increase in plasma NO\textsubscript{2}\textsuperscript{-} also seemed to lag behind that of NO\textsubscript{3}\textsuperscript{-}, achieving statistical significance only after 2 h and peaking at 10 min post-exercise. These findings are consistent with the important rate-limiting role played by oral bacteria in the enterosalivary pathway of NO production (28).

Responses to submaximal exercise. Despite the increase in NO bioavailability resulting from NO\textsubscript{3}\textsuperscript{-} ingestion, no differences were observed in VO\textsubscript{2}, ventilation, ventilatory equivalents (i.e., Ve/VO\textsubscript{2} and Ve/VCO\textsubscript{2}), respiratory exchange ratio, or gross efficiency during submaximal steady-state exercise (Table 2). Delta efficiency was also unaffected by dietary NO\textsubscript{3}\textsuperscript{-} intake, averaging 26.2 ± 2.5 and 24.9 ± 1.8% in the placebo and nitrate trials, respectively (P = NS). The metabolic cost of unloaded cycling was also unchanged, averaging 200 ± 27 W, or 1.87 ± 0.07 W/kg, in the placebo trial and 215 ± 27 W, or 2.06 ± 0.14 W/kg, in the nitrate trial (P = NS). Finally, no significant differences were observed in heart rate, systolic or diastolic blood pressures, or in perceived exertion (Table 2).

Responses to maximal exercise. Ingestion of NO\textsubscript{3}\textsuperscript{-} did not alter ventilatory responses during the incremental exercise test, regardless of whether the data were analyzed to determine the OUES, Ve/VCO\textsubscript{2} slope, or VT (Table 3). Respiratory exchange ratio, heart rate, and systolic and diastolic blood
pressures at peak exercise were also unchanged (Table 3). The patients were, however, able to achieve a higher (P<0.05) peak power (Table 3) and exercise longer (P<0.05; Fig. 4, top panel) following acute dietary NO₃⁻ intake. This improvement in exercise performance was accompanied by a moderate, but potentially clinically-significant (see Discussion), increase in VO₂peak, expressed in either L/min (P<0.05; Table 3) or in mL·min⁻¹·kg⁻¹ (P < 0.05; Fig. 4, bottom panel). Notably, NO₃⁻ ingestion increased VO₂peak in seven out of the eight patients, with individual increases ranging from 0.8 to 3.9 mL·min⁻¹·kg⁻¹, or 5 to 19%. VO₂peak in the remaining patient, who weighed the most and hence received the smallest dose of NO₃⁻ per kilogram of body mass, was essentially unchanged. For the group as a whole, however, no statistically significant correlations were observed between the magnitude of the increase in VO₂peak and the dose of NO₃⁻ provided or the increase in plasma NO₃⁻/plasma NO₂/breath NO. The highest correlation was between the relative increase in plasma NO₂ and the relative increase in VO₂peak (r = 0.64; P = 0.09).

Discussion

The purpose of the present study was to determine the effects of dietary NO₃⁻ supplementation on the responses to aerobic exercise in patients with HFrEF. Using a double-blind, placebo-controlled, crossover design, we found that acute ingestion of 11.2 mmol of NO₃⁻ resulted in significant increases in exercise duration, peak power, and VO₂peak during an incremental cycle ergometer exercise test. Contrary to our initial hypothesis, however, this was not accompanied by any changes in the ventilatory response (i.e., ventilatory equivalents, QUES, Ve/VCO₂ slope, or VT) during submaximal or maximal exercise. There were also no changes in either gross or delta efficiency during steady-state exercise.

As stated above, we found that acute ingestion of NO₃⁻ enabled patients with non-ischemic HFrEF to exercise longer and to achieve a higher peak power output during incremental exercise. This improvement in performance was accompanied by an increase in VO₂peak. The former is in keeping with the results of Kerley et al. (25), who reported that acute NO₃⁻ intake enhanced performance during
an incremental shuttle walk test in patients with non-ischemic cardiomyopathy. In contrast, Hirai et al. (20) found that repeated ingestion of NO$_3^-$ did not improve performance or VO$_2$peak in patients with HFrEF primarily of ischemic origin. The reason for this discrepancy is not clear, but it may be due to this difference in disease etiology. On the other hand, it appears unrelated to disease severity, as even the three patients we studied with baseline VO$_2$peak values of ~15 mL min$^{-1}$ kg$^{-1}$, i.e., comparable to those studied by Hirai et al. (20), demonstrated increases in VO$_2$peak and in performance following NO$_3^-$ ingestion.

Regardless of the above, an increase in VO$_2$peak of the magnitude that we observed, i.e., +1.6 ± 0.5 mL min$^{-1}$ kg$^{-1}$, or +8 ± 2%, may prove to be clinically significant. In particular, in a previous cross-sectional study of patients with HFrEF one of us (LRP) found that for every 1 mL min$^{-1}$ kg$^{-1}$ increase in VO$_2$peak there was a 5% decrease in the annual risk of death or transplantation (38). A quantitatively-similar relationship was observed between changes in VO$_2$peak and disease outcome in the longitudinal HF-ACTION trial (44). At least theoretically, then, the acute dietary NO$_3^-$-induced increase in VO$_2$peak observed in the present study would translate into almost a 10% reduction in annual risk. Additional research will be needed to test this hypothesis, especially in those at greatest risk (such as the three patients mentioned above).

It is also worth noting that the magnitude of the improvement in VO$_2$peak that we observed is comparable to that typically resulting from standard-of-care drug therapies or from endurance exercise training in patients with HF, both of which provide salutary effects. Specifically, a number of previous studies have demonstrated that chronic treatment of HFrEF patients with a beta blocker or ACEi/ARB increases VO$_2$peak by approximately 10% (e.g., 14,16,32). Improvements in VO$_2$peak with exercise training are also similar (22). Intriguingly, the 8% enhancement of VO$_2$peak that we found in response to acute dietary NO$_3^-$ intake occurred in patients with HFrEF already on optimal medical therapy, including use of a beta blocker and, in most cases, an ACEi/ARB, indicative of an additive effect. Future studies will
be required to determine whether the impact of dietary NO$_3^-$ on VO$_2$peak is also additive (or perhaps even synergistic) to that of exercise training in patients with HF.

Although the present results indicate that acute dietary NO$_3^-$ intake increases VO$_2$peak in patients with HFrEF, the specific mechanisms responsible for this beneficial response cannot be determined from the present data. From the perspective of the cardiovascular Fick equation, though, an increase in VO$_2$peak could only result from an increase in heart rate, stroke volume (SV), and/or arteriovenous O$_2$ difference (a-vO$_2$diff) at peak exercise. Indeed, at peak exercise heart rate tended to be higher and diastolic blood pressure tended to be lower, suggesting that the dietary NO$_3^-$-induced increase in VO$_2$peak we observed may have been the result of a greater cardiac output in a setting of reduced total peripheral resistance. Given the direct effects of NO on arteriolar smooth muscle, the latter response might be expected. In addition, recent data indicate that dietary NO$_3^-$ intake also enhances vasodilation in contracting muscle by reducing sympathetic nerve activity (36). Again, however, in the absence of direct measurements the mechanism(s) responsible for the increase in VO$_2$peak observed in the present study remain unknown.

Although acute dietary NO$_3^-$ intake resulted in a significant increase in performance and VO$_2$peak, there were no changes in the ventilatory response to exercise, quantified as either Ve/VO$_2$ or Ve/VCO$_2$ during steady-state exercise or as OUES, Ve/VCO$_2$ slope, or VT during incremental exercise. The effects of dietary NO$_3^-$ on these parameters in patients with HFrEF have not been previously reported. The present results, however, are generally comparable to previous similar studies of patients with HFpEF (15,51), although Zamani et al. (50) found that dietary NO$_3^-$ supplementation resulted in a significant increase in VT. It should be noted, however, that the increase in VT in their study was only 0.5 ± 0.2 mL min$^{-1}$kg$^{-1}$, which is nearly identical to the 0.4 ± 0.5 mL min$^{-1}$kg$^{-1}$ difference (P=NS) that we observed. Thus, the effects of dietary NO$_3^-$ on ventilatory responses in patients with HFrEF or HFpEF would at best seem equivocal.
As indicated previously, studies of dietary NO\textsubscript{3}~supplementation in healthy individuals have often, although not always, reported improvements in exercise economy or efficiency (36). The mechanism responsible for this O\textsubscript{2}-sparing effect is not clear, however, with some data suggesting that it results from direct inhibition of mitochondrial respiration (29) and other data implicating a decrease in ATP utilization by contracting muscle (5). In any case, given the compromised circulatory function of HF patients, any reduction in the demand for delivery of O\textsubscript{2}-carrying blood during exercise would seem beneficial. Hirai et al. (20), however, did not observe any dietary NO\textsubscript{3}-induced changes in submaximal VO\textsubscript{2} during exercise. Despite using a protocol carefully designed to account for the slower VO\textsubscript{2} kinetics found in HF, minimize involvement of non-active tissues, and allow assessment of not only gross but also delta efficiency, we also found acute dietary NO\textsubscript{3} intake did not alter the energy requirements of submaximal exercise. As suggested by Zamani et al. (50), this may reflect differences between patients with HF and young, healthy control subjects in age or in the factors controlling mitochondrial respiration during exercise. Regardless, the present data demonstrate that, at least in patients with HFrEF, acute dietary NO\textsubscript{3} intake can increase performance and VO\textsubscript{2peak} even in the absence of any changes in energy demand at a given power output.

There are a number of limitations to the present study. First, we studied a relatively small number of individuals, and therefore may have failed to detect some true effects of NO\textsubscript{3}~supplementation, e.g., a decrease in blood pressure. However, our sample size was comparable to those of similar previous studies of dietary NO\textsubscript{3} intake on exercise responses in patients with HFrEF (20,25), and was adequate to detect changes in one of our primary outcomes, i.e., VO\textsubscript{2peak}. Second, as previously discussed we did not directly measure central or peripheral determinants of VO\textsubscript{2peak}, and therefore cannot determine the mechanisms responsible for the improvement that was observed. This does not, however, negate our primary finding that dietary NO\textsubscript{3}~supplementation increases exercise capacity and VO\textsubscript{2peak} in patients with HFrEF. Finally, we studied only the effects of acute ingestion of
NO$_3^-$ at a single, fixed dose, and therefore cannot draw any conclusions on the effects of longer-term treatment and/or other doses. Answering such questions will therefore require additional research.

To summarize, the results of this proof-of-concept study demonstrate that acute ingestion of 11.2 mmol of NO$_3^-$ (in the form of a concentrated BRJ supplement) increases aerobic exercise performance and VO$_2$peak, but does not alter ventilatory responses or gross or delta efficiency during exercise, in patients with mild-to-moderate HFrEF. Along with our previous data demonstrating that acute dietary NO$_3^-$ intake results in comparable improvements in muscle contractile function in this population (10), these suggest that dietary NO$_3^-$ supplementation may be a valuable adjunctive treatment for exercise intolerance in this population. Larger, i.e., multi-center trials are needed to confirm the present findings and to determine whether longer-term dietary NO$_3^-$ treatment improves physical activity levels, quality of life, and perhaps even survival in patients with HFrEF.
References


European Society of Cardiology Guidelines and Recommendations (2008) and further developments.


Acknowledgements

This study was supported by the Barnes-Jewish Hospital Foundation, the Washington University
Mentors in Medicine and C-STAR programs, and Washington University Institute of Clinical and
Translational Sciences grant UL1 TR000448 from the National Center for Advancing Translational
Sciences (NCATS) of the National Institutes of Health (NIH).
Table 1. Patient characteristics.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (M/F)</td>
<td>8 (6/2)</td>
</tr>
<tr>
<td>Age (y)</td>
<td>52 ± 5</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.79 ± 0.03</td>
</tr>
<tr>
<td>Body mass (kg)</td>
<td>107.6 ± 14.1</td>
</tr>
<tr>
<td>BMI (m/kg²)</td>
<td>33.1 ± 3.5</td>
</tr>
<tr>
<td>Duration of HF (y)</td>
<td>6 ± 3</td>
</tr>
<tr>
<td>NYHA class (I/II/III/IV)</td>
<td>3/2/3/0</td>
</tr>
<tr>
<td>MLWHFQ (score)</td>
<td>35 ± 8</td>
</tr>
<tr>
<td>Ejection fraction (%)</td>
<td>34 ± 2</td>
</tr>
<tr>
<td>B-blocker</td>
<td>8/8</td>
</tr>
<tr>
<td>ACEi/ARB</td>
<td>6/8</td>
</tr>
<tr>
<td>Spironolactone</td>
<td>6/8</td>
</tr>
<tr>
<td>Statin</td>
<td>2/8</td>
</tr>
</tbody>
</table>

Values are mean±S.E. for n=8. NYHA, New York Heart Association. MLWHFQ, Minnesota Living with Heart Failure Questionaire. ACEi, angiotensin converting enzyme inhibitor. AR, angiotensin receptor blocker.
Table 2. Cardiorespiratory and perceptual responses to steady-state exercise.

<table>
<thead>
<tr>
<th>Power output (W)</th>
<th>Trial</th>
<th>20</th>
<th>40</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>VO₂ (L/min)</td>
<td>Placebo</td>
<td>0.81 ± 0.09</td>
<td>1.00 ± 0.09</td>
<td>1.26 ± 0.12</td>
</tr>
<tr>
<td></td>
<td>Nitrate</td>
<td>0.87 ± 0.10</td>
<td>1.08 ± 0.11</td>
<td>1.34 ± 0.13</td>
</tr>
<tr>
<td>VO₂ (mL·min⁻¹·kg⁻¹)</td>
<td>Placebo</td>
<td>7.8 ± 0.4</td>
<td>9.8 ± 0.7</td>
<td>12.3 ± 1.0</td>
</tr>
<tr>
<td></td>
<td>Nitrate</td>
<td>8.4 ± 0.5</td>
<td>10.5 ± 0.7</td>
<td>13.1 ± 1.0</td>
</tr>
<tr>
<td>% of VO₂ peak</td>
<td>Placebo</td>
<td>38.5 ± 3.9</td>
<td>48.1 ± 5.0</td>
<td>60.6 ± 6.6</td>
</tr>
<tr>
<td></td>
<td>Nitrate</td>
<td>38.0 ± 3.2</td>
<td>47.5 ± 4.0</td>
<td>59.1 ± 4.9</td>
</tr>
<tr>
<td>Ve (L/min)</td>
<td>Placebo</td>
<td>22.5 ± 2.7</td>
<td>26.8 ± 2.9</td>
<td>33.9 ± 4.1</td>
</tr>
<tr>
<td></td>
<td>Nitrate</td>
<td>24.1 ± 3.6</td>
<td>29.5 ± 4.6</td>
<td>36.1 ± 5.3</td>
</tr>
<tr>
<td>Ve/VO₂ (L/L)</td>
<td>Placebo</td>
<td>27.5 ± 1.0</td>
<td>26.5 ± 1.0</td>
<td>26.6 ± 1.3</td>
</tr>
<tr>
<td></td>
<td>Nitrate</td>
<td>27.2 ± 1.5</td>
<td>26.6 ± 1.7</td>
<td>26.4 ± 1.7</td>
</tr>
<tr>
<td>Ve/VCO₂ (L/L)</td>
<td>Placebo</td>
<td>33.9 ± 1.2</td>
<td>31.8 ± 1.3</td>
<td>30.6 ± 1.2</td>
</tr>
<tr>
<td></td>
<td>Nitrate</td>
<td>33.5 ± 1.7</td>
<td>32.2 ± 1.6</td>
<td>30.9 ± 1.6</td>
</tr>
<tr>
<td>Respiratory exchange ratio</td>
<td>Placebo</td>
<td>0.81 ± 0.01</td>
<td>0.83 ± 0.01</td>
<td>0.87 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>Nitrate</td>
<td>0.81 ± 0.02</td>
<td>0.82 ± 0.02</td>
<td>0.85 ± 0.02</td>
</tr>
<tr>
<td>Gross efficiency (%)</td>
<td>Placebo</td>
<td>7.6 ± 0.8</td>
<td>12.1 ± 1.2</td>
<td>14.4 ± 1.4</td>
</tr>
<tr>
<td></td>
<td>Nitrate</td>
<td>7.2 ± 0.6</td>
<td>11.3 ± 0.9</td>
<td>13.6 ± 1.1</td>
</tr>
<tr>
<td>Heart rate (beats/min)</td>
<td>Placebo</td>
<td>85 ± 3</td>
<td>98 ± 7</td>
<td>103 ± 5</td>
</tr>
<tr>
<td></td>
<td>Nitrate</td>
<td>96 ± 5</td>
<td>101 ± 4</td>
<td>107 ± 9</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>Placebo</td>
<td>136 ± 7</td>
<td>141 ± 7</td>
<td>143 ± 8</td>
</tr>
<tr>
<td></td>
<td>Nitrate</td>
<td>132 ± 9</td>
<td>137 ± 9</td>
<td>136 ± 8</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
<td>Placebo</td>
<td>76 ± 5</td>
<td>75 ± 5</td>
<td>76 ± 5</td>
</tr>
<tr>
<td></td>
<td>Nitrate</td>
<td>84 ± 5</td>
<td>81 ± 4</td>
<td>78 ± 5</td>
</tr>
<tr>
<td>Perceived exertion (units)</td>
<td>Placebo</td>
<td>8 ± 1</td>
<td>9 ± 1</td>
<td>10 ± 1</td>
</tr>
<tr>
<td></td>
<td>Nitrate</td>
<td>8 ± 1</td>
<td>10 ± 1</td>
<td>12 ± 1</td>
</tr>
</tbody>
</table>

Values are mean±S.E. for n=8. VO₂, oxygen uptake. Ve, ventilation. VCO₂, carbon dioxide production.
Table 3. Responses to incremental exercise.

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>Nitrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUES (L/log L)</td>
<td>2.73 ± 0.39</td>
<td>2.77 ± 0.39</td>
</tr>
<tr>
<td>Ve/VCO₂ slope (L/L)</td>
<td>25.6 ± 1.9</td>
<td>24.6 ± 2.5</td>
</tr>
<tr>
<td>VT (L/min)</td>
<td>1.42 ± 0.15</td>
<td>1.49 ± 0.19</td>
</tr>
<tr>
<td>VT (mL min⁻¹ kg⁻¹)</td>
<td>14.4 ± 2.1</td>
<td>14.9 ± 1.8</td>
</tr>
<tr>
<td>VT (% of VO₂peak)</td>
<td>66.1 ± 3.7</td>
<td>64.1 ± 2.5</td>
</tr>
<tr>
<td>Peak respiratory exchange ratio</td>
<td>1.05 ± 0.03</td>
<td>1.05 ± 0.02</td>
</tr>
<tr>
<td>Peak heart rate (bts/min)</td>
<td>134 ± 6</td>
<td>139 ± 7</td>
</tr>
<tr>
<td>Peak systolic blood pressure (mmHg)</td>
<td>158 ± 8</td>
<td>155 ± 10</td>
</tr>
<tr>
<td>Peak diastolic blood pressure (mmHg)</td>
<td>90 ± 11</td>
<td>82 ± 6</td>
</tr>
<tr>
<td>Peak power (W)</td>
<td>154 ± 14</td>
<td>160 ± 14*</td>
</tr>
<tr>
<td>Peak power (W/kg)</td>
<td>1.53 ± 0.24</td>
<td>1.57 ± 0.23*</td>
</tr>
<tr>
<td>VO₂peak (L/min)</td>
<td>2.42 ± 0.34</td>
<td>2.60 ± 0.35*</td>
</tr>
</tbody>
</table>

Values are mean±S.E. for n=8. OUES, oxygen uptake efficiency slope (Ref. 4). Ve, ventilation. VCO₂, carbon dioxide production. VT, ventilatory threshold (Ref. 6). VO₂peak, peak oxygen uptake. *P<0.05 vs. Placebo.
Figure legends

Figure 1. CONSORT diagram illustrating flow of subjects through the study.

Figure 2. Experimental design (top panel) and protocol (bottom panel).

Figure 3. Effect of acute ingestion of beetroot juice either devoid of (Placebo; open bars) or containing (Nitrate; solid bars) 11.2 mmol of NO$_3^-$ on plasma NO$_3^-$ (top panel) and NO$_2^-$ (middle panel) concentrations and breath NO levels (bottom panel) in patients with heart failure with reduced ejection fraction. Values are mean ± SE for n=8. 10' Post = 10 min post-exercise. Nitrate significantly higher than Placebo at same time point: *P<0.05, †P<0.01, ‡P<0.001.

Figure 4. Effect of acute ingestion of beetroot juice either devoid of (Placebo; open bar or symbols) or containing (Nitrate; solid bar or symbols) 11.2 mmol of NO$_3^-$ on time to fatigue (top panel) and peak O$_2$ consumption (VO$_2$peak; bottom panel) during an incremental exercise test in patients with heart failure with reduced ejection fraction. Values are mean ± SE for n=8; individual results are also shown (circles, men; squares, women). *Nitrate significantly higher than Placebo: P<0.05.
N=33 assessed for eligibility

N=8 met exclusion criteria

N=25 met inclusion criteria

N=9 declined to participate
N=6 unable to contact

N=10 enrolled in study

N=1 exercise capacity too low
N=1 received NO₃⁻ twice

N=8 completed protocol
Semi-recumbent cycle ergometer exercise

Efficiency, Ve/VO₂, Ve/VCO₂

OUES, Ve/VCO₂ slope, VT, VO₂peak

BRJ +/- NO₃⁻ (11.2 mmol)

Pre 60 120 20 W 40 W 60 W +10 W per min

Time (min)

Post

Plasma NO₃⁻ & NO₂⁻ ↑ ↑ ↑

Breath NO ↑ ↑ ↑