Coiled-coil domain containing 42 (Ccdc42) is necessary for proper sperm development and male fertility in the mouse

Raymond C. Pasek, Erik Malarkey, Nicolas F. Berbari, Neeraj Sharma, Robert A. Kesterson, Laura L. Tres, Abraham L. Kierszenbaum, and Bradley K. Yoder

Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL USA
Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN USA
Department of Genetics, University of Alabama at Birmingham, Birmingham, AL USA
Department of Cell Biology and Anatomy, The Sophie Davis School of Biomedical Education; The City University of New York; New York, NY USA

Summary

Spermiogenesis is the differentiation of spermatids into motile sperm consisting of a head and a tail. The head harbors a condensed elongated nucleus partially covered by the acrosome-acroplaxome complex. Defects in the acrosome-acroplaxome complex are associated with abnormalities in sperm head shaping. The head-tail coupling apparatus (HTCA), a complex structure consisting of two cylindrical microtubule-based centrioles and associated components, connects the tail or flagellum to the sperm head. Defects in the development of the HTCA cause sperm decapitation and disrupt sperm motility, two major contributors to male infertility. Here, we provide data indicating that mutations in the gene Coiled-coil domain containing 42 (Ccdc42) is associated with malformation of the mouse sperm flagella. In contrast to many other flagella and motile cilia genes, Ccdc42 expression is only observed in the brain and developing sperm. Male mice homozygous for a loss-of-function Ccdc42 allele (Ccdc42KO) display defects in the number and location of the HTCA, lack flagellated sperm, and are sterile. The testes enriched expression of Ccdc42 and lack of other phenotypes in mutant mice make it an ideal candidate for screening cases of azoospermia in humans.

Keywords

sperm; infertility; sperm head-tail coupling apparatus; Ccdc42; intramanchette transport

Corresponding Author: Bradley K. Yoder, Ph.D., Department of Cell, Developmental and Integrative Biology, 1918 University Blvd., Birmingham, AL 35294. Tel.: (205) 934-0995; FAX: (205) 934-0990., byoder@uab.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Introduction

Impaired fertility is common among the general human population, occurring in about 1 in 20 men of reproductive age and is frequently due to reduced sperm motility and structural defects (De Kretser and Baker, 1999; Holden et al., 2005). To understand the biology of reproduction and the causes of these reproductive deficits, it is essential that genes required for sperm development, maturation, and motility be identified and their molecular functions be assessed (Borg et al., 2010).

Spermatogenesis is a complex process characterized by sequential morphological changes in the seminiferous tubules initiated during puberty. At this time, spermatogonia cease mitotic proliferation and become primary spermatocytes that are committed to undergo two consecutive meiotic divisions to produce haploid spermatids (Schultz et al., 2003). Once meiosis is completed, spermatids condense their nucleus, eliminate residual components, develop the acrosome-acroplaxome complex and the manchette, and form the flagellum of the sperm tail (Kierszenbaum and Tres, 2004). Spermatids are then released from Sertoli cell apical crypts into the lumen of the seminiferous tubules and reach the epididymis to acquire forward motility.

The acrosome-acroplaxome complex is an essential structure during spermatid development needed for successful fertilization. The acrosome is a Golgi derived structure that stores hydrolytic enzymes released at fertilization upon completion of the acrosome reaction (Meizel, 1984). The acroplaxome is an F-actin-keratin cytoskeletal plate with a desmosome-like marginal ring anchoring the acrosome to the nucleus and modulating spermatid nuclear shaping (Buffone et al., 2012; Kierszenbaum et al., 2003). Caudally to the acrosome-acroplaxome is the manchette, a transient microtubule/F-actin-containing structure with a role in spermatid head shaping (Russell et al., 1991) in conjunction with the acrosome-acroplaxome complex. It is along the microtubules and F-actin tracts of the manchette that proteins are ferried by molecular motor proteins to the head-tail coupling apparatus (HTCA) and then along the flagellum through processes referred to as intramanchette transport (IMT) (Kierszenbaum, 2002) and intraflagellar transport (IFT) (Rosenbaum and Witman, 2002).

The flagellum is anchored to the head of the sperm through the HTCA, a centrosome-based structure that also contributes a basal body to initiate assembly of the microtubule axoneme of the flagellum (Irons, 1983; Rivkin et al., 2009). The importance of a functional HTCA to sperm development and male fertility is demonstrated by a truncating mutation in the rat hypodactylous (hd) locus that results in the expression of a truncated form of centrobin (Cntrob, for centrosome BRCA2 interacting protein, Zou et al., 2005). In hd mutant spermatids, there is a separation between the centrosome and its normal site of attachment to the nucleus. This separation results in the decapitation of the spermatid heads during final steps in the formation of spermatozoa. The decapitated tails became bundled in the lumen leading to an absence of functional sperm in the epididymis and to male infertility. This decapitation occurs due to a defective HTCA that is unable to stabilize the connection of the tail to the sperm nucleus (Liska et al., 2009). Similarly, decapitation and/or absence of flagellum assembly is also a common cause of infertility in mice and humans (Moretti et al., 2011; Mundy et al., 1995; Sauvalle et al., 1983; Wilton et al., 1992).
Despite the detailed knowledge about the sequence of events involved in spermatogenesis, our understanding of the process at the molecular level remains limited. Because the sperm flagellum is homologous to the motile cilia and flagella found on other eukaryotes, model systems such as Tetrahymena thermophila and Chlamydomonas reinhardtii have proven exceptionally useful in the discovery of genes linked to male infertility (Diniz et al., 2012). For example, the gene product for MIA2 produces an axonemal dynein necessary for proper flagella movement in C. reinhardtii (Yamamoto et al., 2013). Mammals possess a potential homolog of the MIA2 gene which is named Coiled-coil domain containing 42 (Ccedc42) in mice, and whose function has yet to be reported. Other examples are Ccdc39 and Ccdc40, both of which are necessary for the proper assembly and function of flagella and motile cilia in a variety of vertebrates and invertebrates (Blanchon et al., 2012; Merveille et al., 2011; Sui et al., 2015). We hypothesized that Ccedc42 would have a similar role in motile cilia or flagella assembly and would thus be a candidate ciliopathy and infertility gene.

Here, we report our findings on mice with mutations in Ccedc42, a gene whose expression is greatly enriched in the testes at the onset of puberty and also in several regions in the brain. While we were unable to generate specific antisera to mammalian Ccedc42, utilizing T. thermophila, we demonstrate that the Ccedc42 homolog localizes to the base of motile cilia. Importantly, loss of Ccedc42 in mice is associated with male infertility and an abnormal number and positioning of the HTCA and the mutant sperm lack an attached flagellum.

While Ccedc42 expression is also observed in the Purkinje cells of the cerebellum, Ccedc42 null mutant mice did not display defects in coordinated motor activity or obvious behavioral abnormalities. In contrast to organisms with mutations in Ccdc39 and Ccdc40, there were no overt defects observed in motile cilia in other tissues.

Materials and Methods

Generation of Ccedc42 Knockout Mice

The Ccedc42 knockout allele (Ccedc42^{KO}tm(KOMP)Vlcg, Knockout Mouse Project Repository, Davis, CA USA; hereinafter referred to as Ccedc42^{KO}) was generated using embryonic stem cells in which all seven exons of the wild-type Ccedc42 allele were removed and replaced with a β-galactosidase cassette. The correct targeting of the construct into Ccedc42 was confirmed by genomic PCR and sequence analysis. PCR primers for genotyping were designed based on the insertion site (upstream: ACTAAAGCAGCCTCTAGCTG, lacZ: GTCTGTCCTAGCTTCCTCACTG, WT intron 1: GGTAAGGCAATTAGGAGCACTG). The knock-out allele generates a 313 bp band, while the wild-type allele generates a 392 bp band. The embryonic stem cells containing the targeted allele were derived from a C57BL/6N background and were injected into albino C57BL/6 blastocysts (C57BL/6-J-Tyrc-2J, JAX Laboratories) by the UAB Transgenic Mouse Facility. Chimeras were then crossed with albino C57BL/6 females and germline transmission was confirmed by coat color of the offspring and subsequent PCR genotyping. All mice were maintained in accordance with IACUC regulations at the University of Alabama at Birmingham.
Ccdc42 Homolog Analysis

Homologs of Ccdc42 in other organisms was determined through analysis of the full length mouse polypeptide sequence of Ccdc42 using NCBI/BLAST (blast.ncbi.nlm.nih.gov/Blast.cgi). Coiled-coil domains present in Ccdc42 was determined using HMMER biosequence analysis (http://hmmer.janelia.org/) (Finn et al., 2011).

Reverse Transcription PCR Analysis

To assess Ccdc42 expression, RNA was isolated using Trizol reagent according to the manufacturer’s protocol (15596-026, Life Technologies, Carlsbad, CA USA). Once extracted, total RNA was used to synthesize cDNA using the Verso cDNA kit according to the manufacturer’s protocol (AB-1453, Thermoscientific, Pittsburgh, PA USA). PCR analysis was then performed using two sets of primers to determine expression of Ccdc42 (written 5’ to 3’): ACTTGCGCTGGGAAGAACTA and CTTGCAGCTTGACACTCAGC which span intron 3 and 4, in some experiments the primers GGACTCGAGACCATGAGTTTGGGCATGGAA and GTACCAGGACATCCGGACTTGCTGTTG were used which flank the sequence between the first and last exons of the Ccdc42WT allele. Both sets of primers yielded identical results. Control actin primers were used in all samples: ATGGGTCAGAAGGACTCCTA and GGTGTAAAACGCAGCTCA. All results were confirmed in at least three animals.

β-Galactosidase Assays

Organs were dissected from Ccdc42WT, Ccdc42Het, and Ccdc42KO mice at 8 weeks of age. Organs were fixed overnight at 4°C in 4% PFA in PBS and subsequently washed in PBS. Tissues were then cryoprotected with 30% sucrose in PBS for 24 hours, and snap frozen in OCT freezing compound (Tissue-Tek, Torrance, CA USA). 10 μm thick cryosections were cut with a Leica CM1900 cryostat mounted on slides and postfixed in 4% PFA in PBS for 10 minutes, washed three times with LacZ wash buffer (2 mM MgCl2, 0.01% sodium deoxycholate, 0.02% NP-40, in 100 mM sodium phosphate buffer, pH 7.3), and then incubated in X-gal staining solution (2 mM MgCl2, 5 mM potassium ferrocyanide, 5 mM potassium ferricyanide, 1 mg/ml X-Gal, in PBS) at 37°C overnight. Sections were then counterstained in Fast Red for 5 minutes, dehydrated using an ethanol and xylene series and cover slipped with Permount mounting media (Fisher Scientific, Pittsburg, PA USA). Images were captured on a Nikon TE2000s microscope (Nikon instruments inc., Melville, NY) equipped with a Micropublisher 3.3 CCD camera (Qimaging, Surrey, BC, Canada) using Qcapture Pro 5.1.

Testing Fertility of Ccdc42KO Mice

To determine if Ccdc42KO mice were capable of producing offspring, a Ccdc42KO mouse was paired with a wild-type (Ccdc42WT) mouse of the opposite sex. Copulation was determined by the presence of a vaginal mucous plug the next day, after which the female was isolated and observed to determine the number of pups born. Fertility was considered as a measurement of the average litter size. Statistically significant differences in litter size were determined by Kruskal-Wallis one way ANOVA followed by Dunn’s post-hoc test.
Histology

Testes were dissected from Ccdc42^{WT} and Ccdc42^{KO} mice, cut in half, and fixed with Bouin’s fixative solution (1120–16, Ricca Chemical Company, Arlington, TX USA) for 24 hours. Tissue was then rinsed thoroughly in tap water, dehydrated, embedded in paraffin, and cut into 10 μm sections following standard procedures. Sections were stained with periodic acid-Schiff (PAS) stain and counterstained with hematoxylin. Sections were imaged as described above. In addition, 1μm-thick sections of epoxy-embedded testis and epididymis Ccdc42^{WT} and Ccdc42^{KO} mice, fixed sequentially in glutaraldehyde and osmium tetroxide according to a standard procedure (see below), were stained with 1% toluidine blue (Kierszenbaum et al., 2003) and examined using a Zeiss microscope (Thornwood, NY) equipped with an Optronics Magnafire (Goleta, CA) digital camera.

Transmission electron microscopy of mouse testes

Testes and epididymides from Ccdc42^{WT} and Ccdc42^{KO} mice were fixed in 2.5% glutaraldehyde in 0.1M phosphate buffer (pH 6.9), then postfixed in 2% osmium tetroxide in the same buffer and embedded in a plastic resin. Thin sections were stained with 5% uranyl acetate in methanol followed by lead citrate and examined using a JEM-100CX transmission electron microscope (JEOL Ltd., Japan) operated at an accelerating voltage of 60 kV.

Coordination testing of mice

Mice were placed on a Rotor-Rod apparatus (San Diego Instruments Inc, San Diego, CA) starting at a speed of 4rpm. After 10 seconds the rod was accelerated at a constant rate up to 50rpm over 140 seconds. Fall time was recorded electronically by an infrared beam. Animals were removed from the apparatus and returned to their home cage for 15 minutes between each trial. Each mouse was tested 3 times. Latency to fall and total distance run was recorded for each trial. Statistically significant differences in fall latency were assessed by Student’s t-test.

Generation of GFP-Ccdc42 Tetrahymena thermophila

To express GFP-tagged Ccdc42 in Tetrahymena thermophila cells, the coding region of the putative T. thermophila Ccdc42 homolog (THERM_00730320) was cloned into pMTT1-GFP to generate pMTT1-GFP-Ccdc42. The DNA was amplified with primers carrying MluI (5’-TATATACGCGTCATGATTAATAAAATAAAATCTAAT-3’) and BamHI (5’-TAATTGGATCCATCAATAGTTGTATTTAGTTATTT-3’) sites. The transgene was introduced into starved CU522 Tetrahymena thermophila cells with a Bio-Rad Model PDS-1000/He Biolistic Particle Delivery System. Briefly, T. Thermophila were bombarded with SacII- and XhoI-digested pMTT1-GFP-Ccdc42 plasmid and transformants were selected from SPP medium (1% proteose peptone, 0.2% glucose, 0.1% yeast extract, and 0.003% EDTA ferric sodium salt) with 20 μM paclitaxel. Using this approach, the transgene integrated by homologous recombination into the nonessential BTU1 gene which carries a mutation conferring sensitivity to paclitaxel(Shang et al., 2002). The copy number of the transgene was increased by allowing cells to sort the mutant BTU1 allele during vegetative propagation in the presence of paclitaxel. To induce expression of GFP-Ccdc42, cells were incubated in 2.5 μg/ml CdCl₂ (202908, Sigma-Aldrich, St. Louis, MO) for 2 hours.
Immunofluorescence of Tetrahymena thermophila

GFP-Ccdc42 Tetrahymena cells were isolated onto coverslips and were fixed and permeabilized with 2% paraformaldehyde and 0.5% Triton X-100 in PBS buffer. Cells were then air dried at 30°C and blocked with 1% BSA in PBS for 1 hour. Immunofluorescence with 12G10 anti-α-tubulin monoclonal antibody (1:10, Developmental Studies Hybridoma Bank, University of Iowa) and 2302 anti-polyglycylation polyclonal antibody (1:300, generously provided by Martin A. Gorovsky) was performed by incubating cells in primary antibody diluted in 1% BSA in PBS overnight at 4°C. Cells were then washed with PBS and incubated in secondary antibodies for one hour at room temperature. Secondary antibodies included Alexa Fluor-647 and 594 conjugated donkey anti-rabbit and anti-mouse (Invitrogen, Carlsbad, CA USA). Nuclei were visualized by Hoechst nuclear stain (Invitrogen, Carlsbad, CA USA). Stained cells were mounted using DABCO mounting media (10 mg of DABCO (Sigma-Aldrich, St. Louis, MO USA) in 1 mL of PBS and 9 mL of glycerol).

Results

Amino acid sequence of Ccdc42 and its primary structure

To assess the level of conservation of Ccdc42, we compared protein sequences of the Ccdc42 homologs in mice, humans, Tetrahymena thermophila, and Chlamydomonas reinhardtii using NCBI/BLAST (blast.ncbi.nlm.nih.gov/Blast.cgi) (Fig. 1A). Both human and mouse proteins have a calculated mass of approximately 38 kDa, are 316 amino acids in length, and have an 86 pairwise score (86% identity). The Ccdc42 homolog in C. reinhardtii, named FAP73 (protein product of MIA2) is necessary for proper flagella mediated cell motility, and has an approximate 25 pairwise score with the mouse Ccdc42 protein (Yamamoto et al., 2013). Sequence analysis determined the protein product of the T. thermophila gene THERM_00730320 has a pairwise score of 22 with mouse Ccdc42, but no studies on this gene or protein product in T. thermophila have been previously reported. Notably, another annotation of the T. thermophila genome lists a start codon 177 bases downstream of the start codon for THERM_00730320, shifting the reading frame and generating an alternate gene, named THERM_00730311 that has minimal homology with Ccdc42. Potentially, this is indicative that the two are overlapping genes, but further research is necessarily to clarify this possibility. Ccdc42 is named after the coiled-coil domains found in the protein structure, which are present in all four listed homologs (Coiled-coil domains were found using HMMER(Finn et al., 2011)). Additionally, portions of the coiled-coil domains overlap in mouse, human, T. thermophila, and C. reinhardtii (Fig. 1). This suggests the coiled-coil domains may be important for function of the Ccdc42 protein.

Ccdc42KO mice are viable

To determine the function of Ccdc42 in a mammalian system, a knockout mouse line was established using a null allele that resulted in loss of all seven exons of the wild-type Ccdc42 allele and replaced it with a lacZ reporter and neomycin resistance cassette (Fig. 1B). Ccdc42 heterozygotes were crossed to one another to produce wild-type (Ccdc42WT), Ccdc42 heterozygous (Ccdc42Het), and Ccdc42 homozygous knockout mice (Ccdc42KO), which were differentiated through genomic DNA PCR genotyping (Fig. 1D). Ccdc42KO
mice are born at a rate that did not significantly deviate from the Mendelian ratio (69 WT, 132 Het, 66 Mut, $\chi^2 = 0.101, P = 0.95$) and showed no obvious physical signs of improper development or ill-health (Fig. 1C).

Testes express Ccdc42 in an age- and cell-dependent manner

Survival of Ccdc42KO mice indicates that Ccdc42 is dispensable to proper development. To better understand what potential biological processes were being disrupted in Ccdc42KO mice, we conducted RT-PCR analysis on tissue harvested from adult mice (8 weeks of age) to determine where Ccdc42 is expressed. We found that Ccdc42 is predominantly expressed in the testes and also in the brain (Fig. 2A). Ccdc42 expression in the testes appears in a developmentally-dependent manner. Ccdc42 expression in the testes is initiated at approximately ten days of age and is maintained into adulthood (Fig. 2A, B). This time course corresponds with the onset of meiosis, providing evidence for a role for Ccdc42 in sperm production. In contrast, no expression of Ccdc42 was observed in ovaries harvested from 8-week-old female mice.

We used the β-galactosidase (β-gal) reporter cassette incorporated into the mutant allele to determine which cells in the brain and testes express Ccdc42. Strong β-galactosidase activity was observed in the spermatids within the lumen of the seminiferous tubules in testes from 8-week-old Ccdc42Het mice (Fig. 2C), while cells adjacent to the basement membrane of the tubule, including Sertoli cells, spermatogonia and spermatocytes (identified by morphology and histology) did not display β-galactosidase activity. The testosterone-producing Leydig cells, scattered in-between the seminiferous tubules, also lacked β-galactosidase activity. This pattern of staining indicates that Ccdc42 expression in the testes appears limited to adluminal spermatids that are engaged in the assembly of flagella.

β-galactosidase activity was clearly observed in the Purkinje cells of the cerebellum (Fig. 2C) with very slight staining in the pyramidal layer of the hippocampus, the striatum, and amygdala and speckled throughout the cerebral cortex (Supp. Fig. 1). Since the Purkinje cells are involved in coordinating motor activity and cilia are important for normal cerebellar development, we tested the Ccdc42KO mice for any muscle coordination defects using the rotarod behavioral test (Chizhikov et al., 2007). No significant difference were observed between the performance of the Ccdc42KO mice and their wild-type littermates (latency to fall: 54.5±13.9s vs. 45.7±5.1s, p=0.54, Student’s t-test), indicating Ccdc42 is not necessary for proper muscle coordination.

Male Ccdc42KO mice are sterile

Given the expression of Ccdc42 in the testes, we assessed whether the Ccdc42KO mice display reduced fertility. Ccdc42KO males were able to mate with females, as evidenced by the presence of a vaginal mucous plug the morning after a mating pair was established, however, no offspring were ever produced from these pairings (Table 1.). When crossed with Ccdc42WT males, Ccdc42KO females produced litters at a frequency and of a size that did not significantly deviate from control Ccdc42WT male by Ccdc42WT female matings.

Dev Biol. Author manuscript; available in PMC 2017 April 15.
Structural characteristics of the testes and epididymides of Ccdc42WT and Ccdc42KO mice

As we observed β-galactosidase reporter activity in the developing spermatids of Ccdc42Het and Ccdc42KO males, we next examined spermatid development in Ccdc42KO males to determine if infertility was a result of improper spermatid structure. A histologic screening of testes and epididymides revealed that the seminiferous tubules of Ccdc42WT displayed a lumen with flagella projecting from developing spermatids with periodic acid Schiff-stained acrosomes (Fig. 3A). In contrast, the seminiferous tubules of Ccdc42KO mice lacked flagella projecting into a well-defined lumen (Fig. 3B). At high magnification, the seminiferous epithelium of Ccdc42WT mice shows structurally normal spermatogenic cells, including flagellated mature spermatids being released into the seminiferous tubular lumen during spermiation (Fig. 3C). Ccdc42KO testes have elongating spermatids with abnormally shaped heads coexisting with structurally unaffected spermatogenic cells populating the adjacent region of seminiferous epithelium (Fig. 3D). The lumen of the epididymal duct of Ccdc42WT mice is filled with abundant flagellated sperm (Fig. 3E) but there is a complete lack of sperm in the epididymal lumen of Ccdc42KO mice, which instead contain only cellular debris (Fig. 3F). These observations indicate that the structural defects of spermiogenesis in Ccdc42KO mice, including irregular spermatid head shaping, coincide with a failure of spermiation and degradation of maturing spermatids within the testis.

Morphological abnormalities of Ccdc42KO sperm cells

We used transmission electron microscopy to understand the mechanism underlying the defect in flagella assembly in the spermatids of Ccdc42KO mice. We focused on the HTCA (also known as the connecting piece), which is the site of origin of the axoneme and also a critical structure involved in sperm head-tail joining. Spermatids of wild-type mice have a centrosome consisting of a proximal centriole closely associated with the implantation fossa of the spermatid nucleus and a distal centriole engaged in the development of the axoneme (Fig. 4A). A banded collar encircles the centriolar complex. Three significant alterations are observed in spermatids of Ccdc42KO mice: there is often a multiplicity of HTCAs (three HTCAs are shown in Fig. 4B, indicated with arrows), aberrant in-folding of the acrosome-acroplaxome complex leading to abnormal nuclear shaping (Fig. 4D), and the dislocation of the HTCA from its native implantation site (Fig. 4C). A consistent structural feature is the presence of multiple vesicles at the HTCA developmental sites (one of the three HTCAs shown in Fig. 4B and a single HTCA seen in Fig. 4C), some of them containing dense material of unknown nature. Although microtubular manchettes are observed in elongating spermatids (Fig. 4B–D), no assembly of axonemal microtubules emerge from the HTCA as is seen in the equivalent wild-type spermatids (see Fig. 4A, label number 6). In what appears to be a mature degenerating Ccdc42KO spermatid we observe that the nuclear envelope surrounding the condensed nucleus has begun to rupture along with an abortive and detached acrosome-acroplaxome complex (Fig. 4E). The mitochondria, which under normal conditions would migrate to encircle the middle segment of the axoneme, have clustered around the nucleus, while a pair of HTCAs, still lacking axonemes, remains anchored to a fragment of condensed nuclear material. Even though a microtubular manchette is available for intramanchette transport of cargo toward the HTCA and the developing axoneme and associated outer dense fibers and fibrous sheath are all present in the Ccdc42KO spermatids,
the HTCA’s do not seem to be initiating flagellogenesis, concurrent with defective nuclear shaping and abortive acrosome development in mature spermatids.

Tetrahymena thermophila have a putative homolog of Ccdc42 that localizes to the base of the cilia

Assessing the function of a gene and its protein product in sperm cells can be difficult. By their nature, sperm are short-lived and non-dividing cells, making them difficult to maintain in culture. The highly condensed nature of the sperm nucleus renders the cell essentially transcriptionally silent which makes the expression of fluorescently tagged proteins nearly impossible. Multiple attempts to generate Ccdc42 specific antisera and the use of commercial Ccdc42 antibodies were unsuccessful using both western blot and by immunofluorescence approaches, as were attempts to localize the protein by transfecting GFP tagged Ccdc42 into cultured cell lines and testes explants (Supp. Fig. 2). Therefore, we sought other organisms with homologs of Ccdc42 where gene function could be assessed at the cellular level. Interestingly, organisms with only primary cilia (e.g. *C. elegans*) do not possess putative Ccdc42 homologs, but most organisms with motile cilia (e.g. *C. reinhardtii*, *T. thermophile*, mice, and humans) do have a homolog. Using NCBI/BLAST (blast.ncbi.nlm.nih.gov/Blast.cgi), we found a putative homolog of Ccdc42 in *T. thermophila* designated TThERM_00730320 (which will hereafter be referred to as Ccdc42). To determine the localization of Ccdc42 in *T. thermophila*, we cloned Ccdc42 into the pMTT1-GFP plasmid, which expresses a gene of interest tagged with GFP in response to the presence of cadmium chloride (CdCl$_2$). In the uninduced state (−CdCl$_2$), no GFP signal was detected, but two hours after CdCl$_2$ administration, robust expression of GFP was observed. Co-staining the induced GFP-Ccdc42 *T. thermophila* with an antibody against α-tubulin (12G10) to label cilia tips and an antibody against polyglycylated tubulin (2302) to label the axoneme of cilia, revealed that GFP localizes specifically to the base of each motile cilium (Fig. 5B). This localization would be consistent with a role in basal bodies similar to the HTCA in sperm.

Discussion

Our studies of Ccdc42 reveal a gene whose expression pattern in testes coincides with onset of puberty and sperm development, the loss of which is associated with male infertility. Despite some expression of Ccdc42 in the brain, the Ccdc42KO mice display no obvious signs of abnormal development, motor activity, or behavior. The Ccdc42KO mutants were visually indistinguishable from wild-type siblings. Furthermore, the entire coding sequence of Ccdc42 is deleted from our Ccdc42KO allele, making it unlikely that alternate transcripts might mask other phenotypes. One possibility is that expression of a related gene, Ccdc42b, is compensating for loss of Ccdc42 expression in certain cell types of the mouse. Furthermore, the possibility remains that the observed mutant phenotypes could be due to perturbing regulatory elements of genes located near Ccdc42. However, current genome annotations do not list any other genes overlapping Ccdc42. Additionally, the localization of the Ccdc42 homolog to the base of the motile cilia in *T. thermophila*, and the defect in flagella motility observed in mutant *C. reinhardtii* suggests that our observations in male Ccdc42KO mice are due to loss of functional Ccdc42.
The observation that Ccdc42 expression was upregulated in the testes between 10 – 15 days of age is informative, as previous reports found that at approximately 12 days of age the expression of many genes necessary for sperm development and flagella assembly is significantly increased (Horowitz et al., 2005). Male mice are not capable of producing mature sperm cells until approximately 35 days of age and it is believed that the increased expression of genes allows the first wave of morphological changes (including nuclear condensation and flagellum assembly) necessary to create mature sperm (Leblond and Clermont, 1952). Before 12 days of age, spermatogenic cells within the testes are generally undergoing mitotic cell divisions, initiate meiosis and are not yet engaged in spermiogenesis involved in building a flagellum or undergoing nuclear condensation. The fact that Ccdc42 is not expressed before 10–15 days of age indicates that the gene is dispensable for these early cell divisions, and instead suggests a role with the morphogenesis of the cells into mature sperm. In fact, the β-galactosidase activity staining assays for Ccdc42 expression show that Sertoli cells, Leydig cells, spermatogonia, and spermatocytes do not express significant levels of Ccdc42. The appearance of staining in spermatids argues in favor of a specialized function of the gene in spermiogenesis during formation of the flagellum.

Also of importance is the fact that Ccdc42KO males still produced copulatory plugs and were mating with females, thus confirming that the sterility phenotype was not due to reproductive behavior abnormalities. Ccdc42KO females had normal fertility, consistent with the fact that expression was found in the testes, but not in the ovaries or oviducts. As motile cilia are needed to move embryos to the uterus, the normal fertility of Ccdc42KO females indirectly supports the notion that Ccdc42 is not necessarily for motile cilia assembly or function.

One of the causes of sperm decapitation and abnormal tail development is the disruption of the delivery of cargo to specific assembly sites by intramanchette transport and intraflagellar transport(Kierszenbaum et al., 2011). A previous study of hd mutant rats expressing truncatedCntrob, a coiled-coil protein similar to Ccdc42, displayed spermatid/sperm decapitation at the HTCA (Liska et al., 2009).Cntrob generates the protein centrobin, which is a daughter centriole protein essential for centrosome duplication and elongation, two functions depending on centrobin-tubulin interaction (Gudi et al., 2011). However, the Ccdc42KO sperm with multiple HTCAsand no axoneme differ from the decapitated sperm of the hd mutant rats that have a single HTCA and a developed axoneme. Ccdc42KO spermatids often display detached and degraded acrosomes, in addition to abnormalities in nuclear folding. hd and Ccdc42KO mutants display head shaping abnormalities, suggesting that both the expression of truncatedCntrob and a lack of Ccdc42 expression impact the normal function of the acrosome-acroplaxome-manchette complex. Nevertheless, other mutant mice with acrosome and nuclear shaping defects are often still able to assemble flagella, such as in the acrosome-deficient Hrb mutant mice (Kierszenbaum and Tres, 2004). In contrast, Ccdc42KO sperm demonstrate defects not only in the acrosome-acroplaxome, but also the HTCA and flagellum.

Cargo transport along the transiently formed manchette is essential for spermiogenesis and may not only require the developmental timed function of microtubule- and F-actin-based molecular motors and intraflagellar proteins such as IFT88, but also the stabilizing role of
coiled-coil proteins, including Ccdc42 and centrobin among others. In this scenario, loss of Ccdc42 expression could prevent the transport of proteins leading to defects in the HTCA and subsequent inability to build a flagellum, in addition to contributing to the mispositioning of the mitochondria. Alternatively, Ccdc42 may be a passenger protein transported along the manchette from the acrosome-acroplaxome complex to the HTCA where it may then determine the proper number, placement and stability of the HTCA. Oddly, *C. reinhardtii* mutant for the putative Ccdc42 homolog, FAP73 (protein product of *MIA2*), only display defects in flagella beating, while Ccdc42 KO spermatozoa are completely lacking in flagella altogether (Yamamoto et al., 2013). FAP73 is located within the flagella axoneme and thought to be a regulator of inner and outer dynein arm activity. These differences could indicate evolutionary divergence in function between the two genes.

The extra number of centrosome-based HTCA in Ccdc42 KO sperm raises the possibility that centrosomes are being asymmetrically partitioned after meiosis or that the mechanism that ensures a single centrosome in developing haploid spermatids is faulty. Mouse spermatids developed in vitro from pre-existing spermatocytes can display up to four motile axonemes (Marh et al., 2003), each presumably derived from an independent basal body. During meiosis, the centrosomes duplicate and are sorted into what will become the two new daughter cells. Given the fact that some Cdc42 KO sperm cells contain a loss of the HTCA while others contain an excess, it remains possible that Ccdc42 is necessary for the sorting of the centrosomes in spermatid cell division. The abnormal number of HTCA structures might also indicate that loss of Ccdc42 causes abnormal degradation and *de novo* assembly of new centrosomes, also leading to disruption of flagella assembly.

The infertility phenotype in male Ccdc42 KO mice in the absence of other maladies raises the possibility that homozygous loss of function mutations in *CCDC42* are a cause of male infertility in human patients with no additional overt phenotypes. As female Ccdc42 KO mice show no defects in fertility, such a deleterious allele would have a higher chance of being passed onto future generations compared to those that affect both male and female fertility. Similar findings have been documented with other mutant mice. For example, azh mutant mice also have a male infertility phenotype due to abnormal sperm head shaping (Meistrich et al., 1990; Mochida et al., 1999). The azh mutant mice were later found to harbor mutations in the gene *Hook1*, whose protein product localizes to the acrosome-acroplaxome complex and manchette in a similar fashion to Ccdc42 (Mendoza-Lujambio et al., 2002). However, unlike Ccdc42 KO, the azh mutant spermatids are still able to assemble flagella, indicating distinct differences in molecular function. Future studies screening male infertility patients for mutations in *CCDC42* will help to address this question and provide more insights into its molecular function.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported in part by RO1 DK065655 (BKY) and P30 DK074038 (BKY), T32 graduate training award (T32 GM008111, BKY) to RCP and F32 postdoctoral awards (F32 DK088404) to NFB. The UAB

Dev Biol. Author manuscript; available in PMC 2017 April 15.
Transgenic Mouse Facility and RAK are supported by NIH P30 CA13148, P30 AR048311 and P30 DK074038. We would like to thank Mandy J. Croyle and Devan Rockwell for technical assistance and Dr. Michael A. Miller (UAB) for generously allowing us use of his Bio-Rad Model PDS-1000/He Biolistic Particle Delivery System.

References

Kierszenbaum AL, Rivkin E, Tres LL. Acroplaxome, an F-actin-keratin-containing plate, anchors the acrosome to the nucleus during shaping of the spermatid head. Molecular biology of the cell. 2003; 14:4628–4640. [PubMed: 14551252]

Highlights

• *Ccdc42* is expressed in the testes at the onset of puberty and in the brain
• *Ccdc42* is required for spermatogenesis
• *Ccdc42* mutations cause sperm decapitation and disrupts sperm motility
Figure 1. Ccdc42 homologs and generation of a knockout mouse allele

(A) ClustalW protein alignment of the human, mouse, *Tetrahymena thermophila*, and *Chlamydomonas reinhardtii* Ccdc42 homologs. Below the alignment (*) indicates identical, (:) conserved, and (.) semi-conservative amino acids. Gray highlight indicates coiled-coil motif. Green highlight indicates DUF4200 domains. (B) The Ccdc42 knockout allele was generated by replacing all 7 exons with a lacZ-p(A) reporter cassette (blue box). Location of primers used for genotyping are indicated by the blue and green triangles. (C) Wild-type control (*Ccdc42\(^{WT}\)*) mouse next to a knockout (*Ccdc42\(^{KO}\)*) sibling show no overt phenotypes in the mutants. (D) Genomic DNA PCR genotyping of wild-type (*Ccdc42\(^{WT}\)*), heterozygous (*Ccdc42\(^{Het}\)*) and knockout (*Ccdc42\(^{KO}\)*) mice.
Figure 2. Ccdc42 expression in the mouse

(A) RT-PCR for Ccdc42 in several tissues derived from 8-week old mice. Expression is limited to testes and brain. (B) RT-PCR analysis for Ccdc42 in the developing testes. Expression begins at approximately 10 days of age. Brain Ccdc42 expression was present in 8 day old mice prior to testes expression. (A and B) β-Actin is used as a template control. (C) β-galactosidase staining assay for Ccdc42-β-gal reporter in the testes and brain. β-galactosidase activity is present in maturing spermatids in the adluminal region of the seminiferous tubule of Ccdc42Het testes. Ccdc42KO sections reveal staining in malformed spermatids. Ccdc42WT testes are a negative control for staining. Purkinje cells of the cerebellum stain positive for β-galactosidase activity. Sections counterstained with Fast Red. All scale bars 60 μm.
Figure 3. Testicular and epididymal phenotypes in Ccdc42KO mice
(A) Periodic acid-Schiff and hematoxylin staining of testes cross sections from 8 week old control (Ccdc42WT) and mutant (Ccdc42KO) mice. Ccdc42KO mice display both an absence of a lumen and spermatid flagella. Scale bars 60 μm. (C) High magnification plastic section through a seminiferous tubule stained with toluidine blue. Mature spermatids are released into the lumen during spermiation in Ccdc42WT mice. (D) Spermiation stage in the seminiferous tubule of Ccdc42KO mice. Arrows indicate mature spermatids with abnormal shaped heads. No flagella tails are observed in Ccdc42KO. (E) Epididymal duct in a Ccdc42WT mouse with flagellated sperm. (F) Epididymis from an age matched Ccdc42KO mouse devoid of sperm contains only cellular debris. (C–F) Scale bars 5 μm.
Figure 4. Morphological defects in Ccdc42KO spermatids

(A–E) Transmission electron micrographs of spermatids. (A) The HTCA in an elongating spermatid of a Ccdc42WT mouse. The following are indicated: (1) nuclear implantation fossa, (2) capitulum, a dense plate facing the implantation fossa, (3) proximal centriole, (4) distal centriole, the emerging site of the, (6) axoneme, (5) banded collar surrounding the HTCA. A typical chromatoid body and adjacent vesicles are also visible. (B) Elongating spermatid of a Ccdc42KO mouse. Three HTCAs (arrows) are present in this section, surrounded by numerous particle-filled vesicles. Two HTCAs are anchored to implantation fossae, the other HTCA is separate from the nucleus. The microtubules of the manchette are present, but no microtubule axonemes are observed from any of the HTCAs. The marginal ring of the acroplaxome (Mr apx) and the associated acrosome are present but mitochondria are dispersed. There is no indication of outer dense fiber assembly. (C) A structurally normal looking HTCA from a mutant mouse is dissociated from its anchoring site and has no axoneme. The microtubules of the manchette and adjacent vesicles in the elongating spermatid of a Ccdc42KO mouse appear normal. (D) A Ccdc42KO condensed spermatid nucleus with abnormal nuclear folding. The manchette is still present. (E) A nearly mature
spermatid in the Ccdc42KO with two HTCAs (arrows) attached to a fragment of nucleus (*). There is no evidence of flagellogenesis. The nuclear envelope (Nucl Env) is detached from the condensed chromatin and clusters of mitochondria can be seen.
Figure 5. GFP-Ccde42 localizes to the base of cilia in transgenic Tetrahymena thermophila
(A) In the uninduced state, no GFP signal is detected in transgenic GFP-Ccde42 cells. Cilia axonemes (red) have been labeled with a polyglycylated tubulin (2302) antibody. Cilia tips (white) have been labeled with an α-tubulin antibody (12G10). (B) Two hours after the addition of CdCl₂ to induce transgene expression, GFP-Ccde42 (green) can be seen at the bases of the cilia. Nuclei have been labeled with Hoechst. Scale bar is 30 μm. Higher magnification images are shown in the bottom panels.
Table 1

Fertility of Ccdc42WT and Ccdc42KO mice

<table>
<thead>
<tr>
<th></th>
<th>WT♂ x WT♀</th>
<th>WT♂ x KO♀</th>
<th>KO♂ x WT♀</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matings</td>
<td>7</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Fertility (Litters/plug)</td>
<td>0.86</td>
<td>0.86</td>
<td>0</td>
</tr>
<tr>
<td>Mean Litter Size</td>
<td>7.8 ± 0.4</td>
<td>6.3 ± 0.6</td>
<td>0</td>
</tr>
</tbody>
</table>

Males and females (8 – 12 weeks of age) from both Ccdc42WT and Ccdc42KO mice were tested for fertility (number of litters per copulatory plug) and for average litter size. No significant difference was found in the mean litter size between Ccdc42WT and Ccdc42KO females (p=0.1487; Dunn’s post hoc after Kruskal-Wallis). In contrast, Ccdc42KO males were completely sterile (p<0.01). Copulation was determined by the presence of a vaginal plug the morning after a mating was established.