Effects of Animal Source Food Supplementation on Neurocognitive Outcomes of HIV-Affected Kenyan School-Aged Children: A Randomized, Double-Blind, Controlled Intervention Trial

Charlotte G. Neumann, MD, MPH, (UCLA)
Kek Khee Loo, MD, (Kaiser, UCLA)
Robert E. Weiss, PhD (UCLA)
Catherine Sugar, PhD (UCLA)
Shemra Rizzo, PhD (UCLA, UC Riverside)
Qiaolin Chen, PhD (UCLA, Novartis)
Grace Ettyang, PhD (Moi University)
Judith A. Ernst, DMSc, RD (Indiana University)
Background

• Mothers with HIV and their offspring, HIV-positive and HIV-negative, are susceptible to the effects of malnutrition and infection

• Many families live in impoverished areas of the world where food insecurity, poor dietary quality, opportunistic infections, lethargy and encephalopathy, and lack of medical care can impact caregiver & child health

 • Which impacts caregivers’ abilities to cope and attend to the child’s developmental care

• Infants and young children born to HIV-positive mothers in resource-poor settings have demonstrated greater neurodevelopmental delays

• Nutritional interventions addressing diet quality (with animal source foods or soy) may address gaps in the diet and affect cognitive function

Objective

- Assess the effects of animal source food (ASF) versus soy versus wheat biscuit supplementation on the neurocognitive performance of HIV-affected, nutritionally at-risk school-aged children in rural Kenya
Methods: Study Location

Three rural communities near Eldoret in western Kenya
- Turbo,
- Mautuma,
- Soi

Image source: http://www.weather-forecast.com/locations/Eldoret
Methods

• Study Participants:
 • Sample of 49 school-aged children (4-8 years old) of HIV-positive drug-naïve women who received care at the Academic Model Providing Access to Healthcare (AMPATH) partnership clinics in western Kenya.
 • Some target children were found to be HIV-positive and receiving ART at baseline. The data from these children were excluded from the intervention effect analyses.
 • Participants enrolled over a two-year period (December 2008-December 2010).
Study Intervention

- Three-arm randomized, double-blind nutrition intervention trial
 - Isocaloric intervention biscuits made with either:
 - Dried powdered beef
 - Roasted soy flour
 - Wheat flour
 - Biscuits consumed at home via direct observation treatment (DOT), 5 days/week over 18 months
 - Follow-up at 6 months post intervention

(ERNST, et al. 2014)
Cognitive Assessments

- Performed at home every 6 months starting from the time children enrolled in study
 - Digit span forward,
 - Digit span backward,
 - Digit span total,
 - Raven’s Progressive Matrices (RPM), nonverbal test of cognitive performance, abstract reasoning and problem-solving (fluid intelligence),
 - Verbal meaning test,
 - Arithmetic test,
 - Embedded figure test,
 - Beery Test of Visual-Motor Integration (VMI), assesses integration of visual and motor abilities

(Beery and Beery 2010; Raven 1960; Sigman, Neumann et al. 1989; Weschler 1974)
Results: Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>SOY (n=18)</th>
<th>BEEF (n=20)</th>
<th>WHEAT (n=11)</th>
<th>All (n=49)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbo</td>
<td>11 (61.1)</td>
<td>12 (60.0)</td>
<td>2 (18.2)</td>
<td>26 (51)</td>
<td>0.117</td>
</tr>
<tr>
<td>Soi</td>
<td>3 (16.7)</td>
<td>5 (25.0)</td>
<td>6 (54.6)</td>
<td>14 (29)</td>
<td></td>
</tr>
<tr>
<td>Mautuma</td>
<td>4 (22.2)</td>
<td>3 (15.0)</td>
<td>3 (27.3)</td>
<td>10 (20)</td>
<td></td>
</tr>
<tr>
<td>Baseline Characteristics</td>
<td>n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males*</td>
<td>8 (47)</td>
<td>10 (50)</td>
<td>3 (27.3)</td>
<td>21 (43.8)</td>
<td>0.448</td>
</tr>
<tr>
<td>mean (sd)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline age (months)</td>
<td>73.2 (17.3)</td>
<td>68.4 (17.84)</td>
<td>62.7 (15.6)</td>
<td>68.9 (17.3)</td>
<td>0.289</td>
</tr>
<tr>
<td>CD4 count (cells/mm³)*</td>
<td>1046.3 (540.1)</td>
<td>950.9 (406.0)</td>
<td>1199.2 (467.0)</td>
<td>1041.5 (469.2)</td>
<td>0.378</td>
</tr>
<tr>
<td>HGB (g/dl)*</td>
<td>12.86 (0.9)</td>
<td>12.02 (1.4)</td>
<td>12.35 (1.3)</td>
<td>12.39 (1.2)</td>
<td>0.129</td>
</tr>
<tr>
<td>Weight (kg)*</td>
<td>18.1 (3.0)</td>
<td>17.1 (3.6)</td>
<td>15.5 (2.4)</td>
<td>17.0 (3.2)</td>
<td>0.124</td>
</tr>
<tr>
<td>Height (cm)*</td>
<td>110.7 (8.5)</td>
<td>106.0 (10.9)</td>
<td>105.2 (6.4)</td>
<td>107.4 (9.3)</td>
<td>0.219</td>
</tr>
<tr>
<td>BMI (kg/m²)*</td>
<td>14.7 (1.3)</td>
<td>15.0 (1.2)</td>
<td>14.0 (1.1)</td>
<td>14.6 (1.3)</td>
<td>0.100</td>
</tr>
<tr>
<td>Head circumference (cm)*</td>
<td>49.9 (1.7)</td>
<td>51.0 (2.2)</td>
<td>49.1 (1.2)</td>
<td>50.1 (1.9)</td>
<td>0.117</td>
</tr>
</tbody>
</table>

Missing data occurred in 2% of gender; in 4% of CD4 counts, and HGB; in 6% of weight, height and BMI measures; and in 53% of head circumference measures.
Baseline Cognitive Scores

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>SOY (n=18)</th>
<th>BEEF (n=20)</th>
<th>WHEAT (n=11)</th>
<th>All (n=49)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital span Forward</td>
<td>3.44 (1.2)</td>
<td>3.05 (1.8)</td>
<td>2.63 (1.3)</td>
<td>3.10 (1.5)</td>
<td>0.366</td>
</tr>
<tr>
<td>Digital span Backward</td>
<td>1.33 (1.4)</td>
<td>0.85 (1.4)</td>
<td>0.45 (0.8)</td>
<td>0.94 (1.3)</td>
<td>0.212</td>
</tr>
<tr>
<td>Digital span total</td>
<td>4.78 (2.3)</td>
<td>3.90 (2.9)</td>
<td>3.09 (1.6)</td>
<td>4.04 (2.5)</td>
<td>0.196</td>
</tr>
<tr>
<td>Raven's progressive matrix (RPM) total</td>
<td>13.6 (2.9)</td>
<td>13.6 (3.4)</td>
<td>12.9 (5.4)</td>
<td>13.4 (3.7)</td>
<td>0.867</td>
</tr>
<tr>
<td>Verbal meaning total</td>
<td>26.2 (6.2)</td>
<td>25.1 (6.1)</td>
<td>19.9 (8.1)</td>
<td>23.3 (6.9)</td>
<td>0.046</td>
</tr>
<tr>
<td>Arithmetic total</td>
<td>4.67 (2.9)</td>
<td>4.20 (3.0)</td>
<td>2.63 (2.4)</td>
<td>4.02 (2.9)</td>
<td>0.174</td>
</tr>
<tr>
<td>Embedded figure test total</td>
<td>9.50 (1.9)</td>
<td>9.15 (2.4)</td>
<td>8.00 (3.3)</td>
<td>9.02 (2.5)</td>
<td>0.269</td>
</tr>
<tr>
<td>Beery VMI total</td>
<td>7.44 (3.5)</td>
<td>6.70 (2.6)</td>
<td>5.81 (2.7)</td>
<td>6.78 (3.0)</td>
<td>0.368</td>
</tr>
</tbody>
</table>
Intervention Results

- All 3 groups: significant increases in the outcomes’ scores over time (as expected through developmental maturation).

- Significant differences in rates of increase over time among all three groups for Raven’s Progressive Matrices (RPM) performance

 - For RPM total score, there were significant differences in rates of increase over time (F test df=2, $p<0.05$)

 - Scores of children in Soy group almost two times higher than those in Beef and Wheat groups ($p=0.012$)

 - No significant difference in RPM scores between Beef and Wheat groups ($p=0.849$)
Intervention Results, continued

- No significant difference between biscuit groups over time for:
 - Verbal meaning,
 - Digit Span Backward, Forward and Total,
 - Embedded figure test,
 - Arithmetic test
 - Beery Visual Motor Integration scores
Discussion & Conclusions

- Soy nutrients may enhance neurocognitive skills in HIV-affected school-aged children.
 - Evidence exists that flavonoids in soy may enhance human memory and neurocognitive performance by protecting and enhancing neuronal function and stimulating neurogenesis.

- Cognitive effects may also be mediated by family members’:
 - Nutritional status
 - Developmental stimulation and educational support

- In this randomized feeding trial school-aged children provided with soy protein supplementation showed greater improvement in non-verbal cognitive (fluid intelligence) performance compared to peers receiving isocaloric beef or wheat biscuits.

 (Spencer 2008)
References

Acknowledgements

The authors acknowledge the late Professor Marian Sigman (UCLA), Susan D’Sousa, Mari Davies, Suzanne Murphy, Constance A. Gewa, Maria Pia Chaparro, and Natalie Drorbaugh

Funding:

- USAID Grant No. PCE-G-00-98-00036-00 National Institutes of Health-Eunice Kennedy Shriver National Institute of Child Health and Human Development 1R01HD57646-01A1 (CFDA #93.865), 5R01HD057646-04, Heifer Project International, Indiana University, UCLA, and Moi University