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ABSTRACT 

Hayrapetian, Allenoush. M.S., Purdue University, December 2016. Analyzing and 
Evaluating Security Features in Software Requirements. Major Professor: Dr. Rajeev Raje. 
 
 
Software requirements, for complex projects, often contain specifications of non-

functional attributes (e.g., security-related features). The process of analyzing such 

requirements for standards compliance is laborious and error prone. Due to the 

inherent free-flowing nature of software requirements, it is tempting to apply Natural 

Language Processing (NLP) and Machine Learning (ML) based techniques for analyzing 

these documents.  In this thesis, we propose a novel semi-automatic methodology that 

assesses the security requirements of the software system with respect to completeness 

and ambiguity, creating a bridge between the requirements documents and being in 

compliance.  

Security standards, e.g., those introduced by the ISO and OWASP, are compared against 

annotated software project documents for textual entailment relationships (NLP), and 

the results are used to train a neural network model (ML) for classifying security-based 

requirements.  Hence, this approach aims to identify the appropriate structures that 

underlie software requirements documents. Once such structures are formalized and 

empirically validated, they will provide guidelines to software organizations for 
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generating comprehensive and unambiguous requirements specification documents as 

related to security-oriented features. The proposed solution will assist organizations 

during the early phases of developing secure software and reduce overall development 

effort and costs. 
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CHAPTER 1. INTRODUCTION 

1. Motivation 

A successful realization of large, complex, and software-intensive systems requires the 

usage of best practices during the entire software life-cycle, including the initial phase of 

requirements analysis. 

Among non-functional requirements of software which identify the quality of software, 

security is one of the most important features. Complete and unambiguous security 

requirements will result in high quality software with minimum security vulnerabilities. 

 Identifying the level of security features to be considered in the requirements analysis 

phase of software has four major benefits.  

First, identifying the completeness level of security requirements before deploying the 

project results in the reduction of defects. Determining the adequacy of security 

requirements which an organization can perform manually or through some automated 

process, provides a fundamental basis for estimating costs, defining the scope of the 

project, constructing the design and testing specifications, and helping understand the 

possible consequences of either a successful or unsuccessful deployment. As a result, 

the quality of the requirements gathering phase is related to the success of the software 

project. If the requirements are ambiguous, it will result in more software defects. 
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In order to ensure that the requirements are complete, the process for gathering both 

business and technical requirements needs to be approached in that respective order 

and carried out methodically (Javed, Maqsood, & Durrani, 2004).   

Secondly, it results in the early discovery of errors. The earlier the software 

vulnerabilities (e.g., incompleteness) are discovered in the life cycle of a project, the 

earlier they can be corrected and thus, the costs are decreased in future phases.  

The below graph (Ambler, n.d.; Karg & Beckhaus, 2008)  clearly demonstrates the cost 

associated with creating poor quality software, and the sooner it is discovered, the less 

costly it will be to change it. 

 

Figure 1.1 Cost of Quality 

  

Thirdly, assessing software requirements against specifically defined security standards, 

such as security standards introduced by the International Organization for 

Standardization (ISO) and the Open Web Application Security Project (OWASP), helps in 
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generating guidelines for the future creation of requirements, and therefore, results in 

standardization. 

Finally, this work will not only be beneficial for the software providers, but also for those 

who have a vested interest in the development and the outcome of project (i.e. 

stakeholders) who may not have enough technical knowledge about the security risks 

involved in software, therefore enabling them to identify and request the security 

features that they are looking for.  Stakeholders may have a general idea about the risks 

involved in software but not be familiar enough with the specifics of security features 

that a developer could take and implement. For example, they would not want 

unauthorized access to their software, but they may not know about the brute force 

tactics which may enable adversaries to access their system and the ways to prevent 

such access.  Therefore, standards such as OWASP and ISO should be considered in 

order to define all of the features that may be involved in security-related aspects of a 

software system (Malhotra, Chug, Hayrapetian, & Raje, 2016). 

These benefits do emphasize the need for a formal technique to analyze and evaluate 

security requirements. Rojas and Sliesarieva (2010) indicate that the desirable qualities 

of software requirements are accuracy, verifiability, and unambiguity.  

Accordingly, this thesis aims to identify the degree of incompleteness and ambiguity of 

security requirements, creating a bridge between the requirements and being in 

compliance with the security standards before moving to the next phase of software 

development. 
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1.1 Aim of Work 

The goal of this thesis is to analyze the set of security requirements for any given 

software project and to provide feedback about its completeness and inherent 

ambiguity when evaluated with respect to a given security standard.  Complex, and 

often distributed, projects present a myriad of challenges to stakeholders, such as the 

proper discovery and utilization of domain experts, designers, developers, testers, and 

users. The process of analyzing these requirements is laborious and requires a large 

amount of manual intervention and hence, is error prone. Due to the inherent free-

flowing nature of software requirements, it is tempting to apply NLP-based techniques 

for achieving the necessary analysis. 

In this thesis, a semi-automatic method is devised that can assess the completeness and 

ambiguity of software documents with respect to certain security features. Security 

standards introduced by the ISO and OWASP along with manually annotated project 

requirements documents, are used to construct a model using NLP-based and machine 

learning (ML) techniques. This method is used to analyze the level of completeness of 

the given security requirements document and thus, to identify its vulnerability with 

respect to certain security features at an earlier phase of software development. 

The proposed approach identifies the appropriate structures that underlie software 

requirements documents. Once such structures are formalized and empirically validated, 

they will help various organizations to create guidelines for generating comprehensive 

and unambiguous requirements documents. Regardless of the software methodology 

(e.g., Agile or Waterfall) being used by organizations, this method for analyzing security 
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features in requirements documents can be beneficial to them as it will allow a 

continuous analysis and enhance security requirements in their software projects. 

Hence, the results of this thesis can assist organizations during the early phases of 

developing secure software, and thereby, reduce overall development costs, and result 

in secure software projects (Raje & Malhotra, 2015). 

In summary, the goals of this thesis are as follows: 

• To compile a gold standard for software security requirements documents 

• To analyze software security requirements documents against a gold standard 

for semantic relationships 

• To provide feedback about the completeness and ambiguity of a software 

security requirements document with respect to the gold standard 

This thesis makes three main contributions: i) a generalized architecture for semantic 

analysis, ii) a compiled software security gold standard,  iii) an algorithm for interpreting 

semantic classification with respect to the completeness of a given security 

requirements document. 

First, the generalized architecture devised in this thesis provides the benefit of 

extendibility both within and outside of the given domain.  The current features of this 

thesis include assessing the completeness and ambiguity of a given software 

requirements document with respect to security, however, it could also be expanded to 

include contradictions or inconsistency, for example.  In addition to assessing security 

features, other features can be added as well, such as usability and maintainability.  The 
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core components of the system can be reused in any other domain to accomplish similar 

goals in determining the semantic relationships between statements. 

Secondly, a gold standard was developed through gathering data from ISO, OWASP, and 

PCI related to security requirements.  This crafted standard document is the basis for all 

completeness and ambiguity analysis performed on software security requirements 

documents. 

Thirdly, an algorithm was created to decide the final complete, ambiguous, and missing 

classifications concerning the completeness of the requirements document with respect 

to the standard document.  This was performed during the post-processing of the NLP 

and ML resulting data through a higher level of semantic interpretation. 

 

1.2 Outline 

In chapter two, related work within similar fields and approaches is described. In 

chapter three, the methodology used to solve the challenge of analyzing software 

requirements is explained.  In chapter four, the results of using different algorithms and 

approaches are discussed, and finally, in the last chapter, the conclusion and future 

work can be found. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 Related Work 

Automation of requirements engineering has been used in many applications, such as 

within industrial software system, aerospace systems, and embedded systems. An 

adequate software requirements analysis from the inception of any project is performed 

by those with a vested interest (e.g. project manager, developer, testing engineer, etc.) 

which include requirements definition, specification, architecture, design and synthesis 

of software requirements for the development projects. Wilson et al. (1997) have 

created an automated tool, called ARM, which specifically searches a software related 

document based on quality indicators such as weak phrases. The reports produced by 

ARM are used to identify specification statements and structural areas of the 

requirements specification document. The tool does not attempt to assess the 

correctness of the requirements specified, instead it assesses the structure of the 

requirements document and individual specification statements. Particularly, the 

vocabulary and vernacular used to state the requirements is assessed by ARM. Gnesi et 

al. (2005) have developed a tool for the lexical and syntactic analyses of requirements 

documents and have named it as the Quality Analyzer for Requirements Specification 

(QuARS). It detects potential linguistic defects that can cause ambiguity in the later 
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phases of software development. Since QuARS is limited to the defect identification and 

readability analysis, further amendments were made to the QuARS and an enhanced 

version ‘QuARS Express’ was released in one of the research studies performed by 

Bucchiarone et al. (2008). Many studies were found on classifying non-functional 

requirements using information retrieval techniques. Cleland-Huang et al. (2007; 2006) 

present a technique for automatically classifying non-functional requirements that are 

related to attributes such as performance, usability, scalability, and security. The results 

are evaluated on 30 requirements specifications developed by M.S. students as part of 

their term projects.  The approach is also validated on an industrial data set. The 

outcome of this research is simply separating each software requirement into one of 

twelve given non-functional requirements categories. Similarly, several researchers have 

described automated classification approaches for predicting categories of software 

requirements (Casamayor, Godoy, & Campo, 2010; Doerr, Kerkow, Koenig, Olsson, & 

Suzuki, 2005; Kassab, Daneva, & and Ormandjieva, 2007).  In (Takahashi, et al., 2014), 

the authors provide the classification of security requirements based on multiple 

dimensions such as function and risk. The purpose of the study is to help users to 

identify and select the desired security requirements.   

Casamayor et al. (2010) created a semi-supervised learning approach for the 

identification of non-functional requirements and exploited the much needed feedback 

from users to enhance the performance of the classifier, which is primarily based on a 

reduced set of categorized requirements. Doerr et al. (2005) created an experience-

based systematic method to analyze non-functional requirements in order to capture 



9 

 

 

the important quality aspects and further used them as guidance during the 

requirements elicitation process. In one of the studies conducted by Kassab et al. (2007), 

an attempt was made to reduce the amount of uncertainty involved in non-functional 

requirements.  

MacDonell et al. (2005) also state the fact that since a systems analyst of specification 

documents or customer requirements can be limited to his or her own knowledge, 

certain aspects can be missed.  Formal language can help to remove some elements of 

ambiguity from the process since they use explicit syntax and semantics that define a 

set of relations and objects. Therefore, they introduced a prototype toolset that assists 

the systems analyst or the software engineer to select and verify terms relevant to a 

project. The architecture of this autonomous requirements specification processing 

system consists of NLP tools and a term management system. 

The NLP tools are responsible for tokenizing and parsing each sentence to extract all 

unique nouns. The term management system filters out unimportant terms.  It then 

classifies the remaining terms into functional categories, entities, or attributes, and 

inserts the objects of interest into a project knowledgebase. 

There are three advantages to this system.  Firstly, it checks the syntax so that it finds 

certain grammar errors.  Secondly, it contributes to the knowledgebase by adding some 

keywords.  Thirdly, it connects the requirements phase to the design phase, so that in 

the latter phase some requirements will not be missed.  

There are four limitations to this system.  Firstly, it is unable to disambiguate syntactic 

parse trees, and it does not consider some of the nested terms.  Secondly, it lacks 
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semantic analysis.  Thirdly, it is semi-automatic, since it relies on a human to decide on 

useful words. Fourthly, it is limited to only translating key words of requirements’ nouns 

to a function, entity, or attribute in the knowledgebase. 

Only one study performed by Takahashi et al. (2014) helped the users to identify and 

select the desired security dimensions and additionally provides classification of security 

requirements. Their approach attempts to maintain a balance between security and 

usability by suggesting different security requirements to the user and generating the 

software requirements based on the user’s selections.  While convenient for users, this 

design confines them to a limited questionnaire of suggested and available features, 

rather than having the freedom to choose features outside of that list. 

This literature review of related work demonstrates a range of approaches to the aim of 

work as stated in this thesis.  Some approaches use NLP, while others do not.  Certain 

approaches only classify the security related features within a software requirements 

document but do nothing further.  Yet others identify the completeness and ambiguity 

of the requirements document, similar to the work in this thesis.  However, none of the 

approaches are making comparisons to a standard, e.g., for analyzing the completeness 

or ambiguity of the requirements document.  Furthermore, this thesis provides a 

general architecture that can be expanded for both non-functional requirements (from 

security to usability or maintainability) as well as operators (from completeness and 

ambiguity to contradictions and inconsistency). In this thesis, we are advocating a semi-

automatic method that can assess the completeness, incompleteness, and ambiguity in 
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the security requirements of software systems. This unique methodology will be 

discussed in the next section.
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CHAPTER 3. METHODOLOGY 

3.1 Approach 

In order to analyze software requirements for their completeness and ambiguity, NLP, 

ML, and Neural Network techniques have been utilized. 

 

                       Figure 3.1 End-to-End Process in Analyzing the Security Features 
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Instead of creating a monolithic system that is difficult to develop and maintain, this 

thesis takes a modular approach by building a system composed of many components.  

As shown in Figure 3.1, the output of one component becomes the input of the next, 

making this approach flexible. Component modification and replacement is easily 

achieved, giving reusability of each component for a different project or domain. 

The approach used in this thesis is divided into three tasks: i) collecting a list of security 

standards, ii) processing the text of the standards and test requirements documents, 

and iii) defining the percentage of completeness or ambiguity of these test documents 

with respect to these standards. Below we describe all these tasks in detail. 

  

3.1.1 Identifying a list of prevalent security standards  

Different organizations have always attempted to create a catalog for various software 

standardizations, including security features. A few of these available catalogs have 

been analyzed to be used as a base to create gold standards (standard security 

requirements) for this thesis.  The catalog used in this thesis are: 

• International Organization for Standardization (ISO/IEC 27001:2005, ISO/IEC 13335-

1:2004, ISO/IEC 15408-1:2009). Each catalog contains more than sixty pages which 

are designed specifically with the purpose of evaluating security properties of IT 

products (Standards, 2015; ISO, 2015). The security specifications for software 

applications introduced in these catalogs include features such as authentication, 

authorization, access control, data integrity, and encryption. 
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• OWASP, the Open Web Application Security Project, is also a valuable resource 

which suggests different security features and the levels of security that should be 

considered in software development (OWASP, 2015). For example, the OWASP 

application security requirements document draft is a source defining the 

authentication and authorization requirements necessary for secure software 

systems (Fisher, 2007). 

• The Payment Card Industry (PCI) data security standard (PCI Security Standards 

Council LLC, 2010) and other publicly available data sets.  

Each of these resources contain a list of standards that organizations should establish, 

implement, and maintain in order to secure their physical and intellectual properties. In 

this thesis, all of these resources have been reviewed and a sample set relevant to the 

software development security specification has been extracted. 

As mentioned above, the standard data from which all the security standards have been 

formed have been collected from ISO, OWASP, and PCI. Four examples of such standard 

statements include (Standards, 2015): 

1) “There shall be a formal user registration and de-registration procedure in place for 

granting and revoking access to all information systems and services.” 

2) “The allocation and use of privileges shall be restricted and controlled.” 

3) “The allocation of passwords shall be controlled through a formal management 

process.” 
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4) “Management shall review users’ access rights at regular intervals using a formal 

process.” 

For the purpose of this thesis, software requirements documents of stakeholders are 

required. The 15 software requirements documents associated with the 15 software 

projects used in study of Cleland-Huang et al. (Automated Detection and Classification 

of Quality Requirements, August, 2007) have been used in this thesis as test documents.  

Prior to their use in this thesis, the sentences containing security-related features were 

extracted, reducing the overall size of total sentences for each project document. These 

security features are then analyzed and evaluated against the standards.  

Among these 15 projects, project 9 and project 11 do not contain any security related 

requirements for further analysis. 

As an example, the following are the three test statements for project two, which is one 

of the above mentioned 15 projects (Cleland-Huang, Settimi, Xuchang, & Solc, 2006; 

Mohamed Farid, 2011): 

1) “Only registered realtors shall be able to access the system.” 

2) “Every user of the system shall be authenticated and authorized.” 

3)”The product shall prevent its data from incorrect data being introduced.”  

 

3.1.2 Text Processing Module  

Since both the standards collected and the requirements documents obtained from 

stakeholders are free flowing text, Natural Language Processing (NLP) techniques have 

been used to first parse the text, and then Machine Learning-based entailment 
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algorithms have been used to compare each test document against the standards, 

identifying the relationships, i.e., entailment or non-entailment, between each standard 

statement and each test document statement.  According to the PASCAL Recognizing 

Textual Entailment Challenge (Giampiccolo, Magnini, & Szpektor, 2006), textual 

entailment is defined as the one-way relationship between two statements.  Given two 

text fragments, text (T) and hypothesis (H), entailment occurs when the meaning of H 

can be inferred from T (T entails H).  For example, the standard statement (T), "There 

shall be a formal user registration and de-registration procedure in place for granting 

and revoking access to all information systems and services." entails the first statement 

in the test document (H) for project two, "Only registered realtors shall be able to access 

the system." 

This thesis mainly adopts, modifies, and leverages the open source Excitement Open 

Platform (EOP) to determine whether two statements are semantically similar (Magnini, 

et al., 2014).  

The Excitement Open Platform (EOP) is a generic architecture for textual inference. It 

consists of the two separate modules of Linguistic Analysis Pipeline (LAP) and the 

Entailment Core (EC). This platform also includes knowledge resources containing lexical 

and syntactic resources. The input of EOP is a pair of text and hypothesis and the output 

is an entailment decision and a confidence score. The two main components of EOP 

which make up the NLP module are: Linguistic Analysis Pipeline (LAP) and Entailment 

Decision Algorithms (EDAs). 
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This thesis mainly adopts, modifies, and leverages the open source Excitement Open 

Platform (EOP) to determine whether two statements are semantically similar (Magnini, 

et al., 2014).  

 

Figure 3.2 EOP Architecture 

 

The Excitement Open Platform (EOP) is a generic architecture for textual inference. It 

consists of the two separate modules of Linguistic Analysis Pipeline (LAP) and the 

Entailment Core (EC). This platform also includes knowledge resources containing lexical 

and syntactic resources. The input of EOP is a pair of text and hypothesis and the output 

is an entailment decision and a confidence score. The two main components of EOP 
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which make up the NLP module are: Linguistic Analysis Pipeline (LAP) and Entailment 

Decision Algorithms (EDAs). 

3.1.2.1 LAP 

LAP, which is responsible for linguistic annotations, is a collection of annotation 

components for NLP, which can range from tokenization to part-of-speech tagging, 

chunking, named entity recognition, and parsing.  

Three types of LAP that are being used are: 

1.  Malt Parser 

2. OpenNLP Tagger 

3. Tree Tagger 

 

Figure 3.3 Linguistics analyzing pipeline 
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3.1.2.1.1 Malt Parser 

Malt Parser is a data-driven parser used for unstructured text. It generates a parser from 

the given data using treebank data. Malt Parser uses the following nine deterministic 

parsing algorithms to build labeled dependency graphs: Nivre arc-eager, Nivre arc-

standard, Covington non-projective, Covington projective, Stack projective, Stack swap-

eager, Stack swap-lazy, Planar (implemented by Carlos Gómez-Rodríguez), 2-planar 

(implemented by Carlos Gómez-Rodríguez) (Nivre, 2008). It learns from the historic data 

and determines the next parser action (Nivre, et al., 2007). 

 

 

Figure 3.4 Part-Of-Speech Tagging 

 

3.1.2.1.2 OpenNLP 

OpenNLP is an ML-based tool which performs NLP tasks (tokenization, sentence 

segmentation, part-of-speech tagging, named entity recognition, chunking, parsing, and 

co-reference resolution) on unstructured data (The Apache Software Foundation, 2016). 
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3.1.2.1.3 TreeTagger 

TreeTagger is a language independent tool developed by Helmut Schmid (1994) for 

annotating text with part-of-speech and lemma information in order to perform 

linguistic pipeline processing. 

 

Figure 3.5 Entailment visualization of an H and T pair 

 

3.1.2.2 EDA 

Entailment Core (EC) consists of one or more Entailment Decision Algorithms (EDA), 

such as the transformation-based EDA, edit distance EDAs, and classification-based 

EDAs (Magnini, et al., 2014). It also contains zero or more subroutine components, such 

as scoring, annotation, lexical knowledge, and syntactic knowledge components. 

After linguistic, syntactic, and semantic analysis, three different algorithms are applied 

for the purpose of additional semantic analysis at the statement level to determine 

whether the test statement can be inferred from the standard statement.  

The three main available entailment algorithms are the following: 
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1. Tree Edit Distance algorithm 

2. Edit Distance algorithm with Particle Swarm Optimization (PSO) 

3. Maximum Entropy Classification entailment decision algorithm  

3.1.2.2.1 Tree Edit Distance Algorithm 

In order to perform textual entailment using the Tree Edit Distance algorithm, 

(Kouylekov & Magnini, 2005)  a dependency tree of T is mapped to a dependency tree of 

H. This mapping consists of the three operations insertion, deletion, and substitution, 

each associated with a certain cost. Based on the cost of these mapping operations, 

which can be a combination of the cost of insertion, deletion, or substitution, the 

decision for entailment or non-entailment is made. 

The entailment score of a given pair can be calculated as follows (Kouylekov & Magnini, 

2005): 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑇𝑇,𝐻𝐻) =
𝑒𝑒𝑑𝑑(𝑇𝑇,𝐻𝐻)
𝑒𝑒𝑒𝑒(,𝐻𝐻)

 

In this formula, ed (T, H) calculates the edit distance cost and ed ( ,H) provides the cost 

of inserting the tree H. 

3.1.2.2.2 Edit Distance Algorithm with Particle Swarm Optimization (PSO) 

Similar to the previous algorithm, the Edit Distance PSO algorithm (Mehdad & Magnini, 

2009) maps the dependency tree of T to the dependency tree of H using the three 

operations of insertion, deletion, and substitution, each associated with a certain cost. 

In contrast to the Tree Edit Distance algorithm, this algorithm optimizes these three 
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operations. Based on the data in the training set, this algorithm generates a distance 

model consisting of a distance threshold, then updates the configuration files with those 

heuristics. In the testing phase, it first calculates the total cost of distance operations.  If 

the calculated number is less than the initially identified threshold, those two statement 

pairs are classified as entailment, and if it is higher than that threshold, it is classified as 

non-entailment. Two components can be used with this algorithm: Fixed Weight Token 

Edit Distance or Fixed Weight Lemma Edit Distance (Zanoli, 2015). 

3.1.2.2.3 Maximum Entropy Classification Algorithm 

The Maximum Entropy Classification algorithm (Nigam, Lafferty, & McCallum, 1999) is 

based on the general maximum entropy principle. Entropy is a measure of uncertainty in 

the data. 

The formal definition of entropy is:  

If X is a discrete variable, X€x, X~P 

The entropy of X is H(X)=-ΣP(X)logP(X) 

When there is no information available about the data (equally predictable outcome), 

the distribution of data is uniform and the entropy is maximum. Having less entropy 

means that the system produces more contextual information, e.g., to be used as 

weights for predication. 

Labeled training data provides more insight, giving a set of constraints defining the class 

distribution, which is no longer uniform.  The improved iterative scaling algorithm finds 
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the maximum entropy distribution based on the defined constraints (Nigam, Lafferty, & 

McCallum, 1999). 

3.1.3 Classifying Operators Using a Neural Network  

Once all of the data is annotated, a neural network model will be constructed, trained, 

evaluated, and utilized for the given dataset for operator prediction.  Operators will be 

defined and discussed further in this section. 

Neural network computing is analogous with how the human brain and nervous system 

work. It is a series of nodes that are connected and are responsible for calculating and 

making decisions. It consists of two main layers, input and output, with varied numbers 

of hidden layers in between. Nodes in different layers are connected with different 

weights. The way these nodes learn is based on backpropagation.  

The steps of backpropagation are following: 

1- First, random connection weights are initialized on the connection lines, and then for 

a set of inputs, the desired outputs are being defined.  

2- The network calculates the output based on the given random weight.  

3- The difference between the desired and calculated output are measured, which is 

referred to as network error. Based on that value, the connection weight is adjusted. 

The new weights are being calculated based on the old weight, the node’s input value, 

the network error, and the learning rate. 

Error in the nodes is being calculated and pushed back to the previous nodes.  The node 

with the highest error gets the most adjustment (Russell & Norvig, 1995)  
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Wj,i← Wj,i +𝛼𝛼 × aj ×∆Ri 

∆Ri=(Ti-Oi)×g’(∑ j,Wj,iaj) 

4- After all nodes are calculated, step 3 is continuously repeated with the new 

calculated weights and the original input until the result is closer to the desired output. 

Keras (Chollet, 2015) is a deep neural network learning library written in Python and has 

been utilized here to create a predictive neural network model. The basic model is 

based on the sequential model composed of layers, which has been used in this thesis. 

Keras is highly modular and easy to expand. It is running on top of TensorFlow or 

Theano. In this thesis, Keras is deployed on top of Theano (Chollet, 2015). 

3.1.3.1 Defining Operators 

Requirements documents are analyzed according to three operators: complete, 

ambiguous, and missing.  These operators reflect the semantic relationships between 

the standard and test document statements, derived from the text processing and 

neural network stages. 

3.1.3.1.1 Complete 

“Property where all necessary parts of an entity have been provided and all relevant 

information is covered, at such a level of detail that no further explanation is required at 

that level of abstraction” (ISO, 2009). 
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3.1.3.1.2 Ambiguous 

A requirement is ambiguous if it has multiple interpretations despite the reader’s 

knowledge of the requirement engineering context (Kamsties, Berry, & Paech, 2001). 

3.1.3.1.3 Missing 

A requirement is missing if it fails to match both complete and ambiguous, meaning that 

there is no direct relationship between entities. 

Evaluating the standard statement, "There shall be a formal user registration and de-

registration procedure in place for granting and revoking access to all information 

systems and services." against the test document for project two containing three test 

statements should produce the operator "complete", since the aforementioned 

standard statement semantically matches the first test document statement, "Only 

registered realtors shall be able to access the system."  The following standard 

statement should produce the operator "missing", "Management shall review users’ 

access rights at regular intervals using a formal process.", since it doesn't semantically 

match any of the three statements in the test document (Cleland-Huang, Settimi, 

Xuchang, & Solc, 2006) : 

1) “Only registered realtors shall be able to access the system.” 

2) “Every user of the system shall be authenticated and authorized.” 

3) “The product shall prevent its data from incorrect data being introduced.” 

These three sections (3.1.1, 3.1.2, 3.1.3) have described the proposed approach, namely 

starting with a defined set of security standards that will be evaluated against the 



26 

 

 

crafted test documents through text processing (entailment) and operator classification 

(neural network) in order to arrive at the determination of how complete a given test 

document is with respect to the given standards.  Next, the implementation of this 

approach will be explained. 

3.2 Implementation 

3.2.1 Textual Entailment Implementation 

In order to evaluate the entailment relationships between the statements in the 

standard document (T) and the statements in the test documents (H), a Java application 

(referred to as SRA, Security Requirements Analysis, herein) was developed on top of 

the EOP API.  SRA implements its own modular framework to pre-process the inputs 

prior to EOP processing, run EOP processing in serial or parallel, and post-process the 

results into formatted report files.   

3.2.1.1 Pre-Processing  

The main task of pre-processing is transforming the standard and test document into 

individual transactions, where each transaction is composed of two statements (one 

from the standard document and one from the test document) and the entailment 

configuration (one of nine pre-defined packages in SRA built on top of the built-in 

configurations in EOP which can be extended) with which the two statements will be 

evaluated for an entailment relationship.  Every statement within the standard will be 

evaluated against every statement within the test document.  The combined standard 

document (e.g., ISO and OWASP) is composed of 239 statements, and the combined test 
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document (i.e., extracted security statements across 13 different customer 

requirements documents) is composed of 81 statements.  When these documents are 

compared for entailment relationships, there will be 19,359 (239 * 81) unique 

statement pair transactions, and when each of these is evaluated using each pre-

defined entailment configuration, nine total, there will be a total of 174,231 (239 * 81 * 

9) total transactions. 

3.2.1.2 EOP processing 

Once the transaction is prepared, it can be processed in serial or parallel with other 

transactions (the thread pool dynamically expanding based on the number of available 

CPU cores), the preference in practice being for the latter.  The transactions are 

formatted for consumption by the EOP engine, resulting in an entailment decision (i.e., 

Entailment, or NonEntailment) and associated confidence.   

3.2.1.3 Post-Processing 

The entailment decision and confidence results from each transaction are collected 

along with other data about the transaction, such as the statements involved, 

entailment configuration used, processing type (e.g., parallel), and the time duration of 

the comparison.  All of this collected data is then formatted into CSV reports.  Each 

report contains the transactions of one (1) standard statement against all other test 

document statements (81 total) for all nine (9) entailment configurations, resulting in a 

combined total of 729 transactions per report (1 * 81 * 9). 
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Table 3.1 describes all nine entailment configurations used. Most entailment 

configurations differentiate themselves from the others based on different sets of 

features (e.g., EDA, LAP, or components), however, all nine contain their own trained 

models created during the training phase of the learner and applied during the testing 

phase. 

Table 3.1 Configurations Utilized 

 LAP EDA Component 
Configuration 1 Open NLP Tagger Max ENT classification  

 

Configuration 2 Malt Parser Max ENT classification 
Bag of Lexes Scoring: Verb Ocean 
Lexicon Resource 
Verb Ocean Lexical Resource 

Configuration 3 Malt Parser Max ENT classification Bag of Lexes Scoring: 
Wordnet Lexical Resource 

Configuration 4 Tree Tagger Max ENT classification 
Bag of Lexes Scoring: 
Wordnet Lexical Resource 
Verb Ocean Lexical Resource 

Configuration 5 Malt Parser Max ENT classification 

Bag of Lexes Scoring: 
Wordnet Lexical Resource 
Verb Ocean Lexical Resource 
Different Model file than number 6,7 

Configuration 6 Malt Parser Max ENT classification 

Bag of Lexes Scoring: 
Wordnet Lexical Resource 
Verb Ocean Lexical Resource 
Different Model file than number 5,7 

Configuration 7 Malt Parser Max ENT classification 

Bag of Lexes Scoring: 
Wordnet Lexical Resource 
Verb Ocean Lexical Resource 
Different Model file than number 5, 6 

Configuration 8 Open NLP Tagger Edit Distance Fixed Weight Token Edit Distance 
Model based on threshold. 

Configuration 9 Open NLP Tagger Edit Distance PSO Fixed Weight Token Edit Distance 

 

3.2.1.4 Annotations 

There is an additional empty field created for manually annotating each of the 81 

entailment transactions (statement pairs), which can be one of three operators: "c" for 
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complete, "a" for ambiguous, or "n" for none.  In total, 19 reports were annotated, 

representing 1,539 entailment transaction pairs (81 * 19).  These annotations will be 

used during the neural network model training phase to create an operator classifier to 

predict whether the entailment results for a statement pair signify a "complete", 

"ambiguous", or "none" match, with respect to semantic meaning. 

3.2.2 Neural Network Implementation 

3.2.2.1 Necessity of Pattern Detection 

Even when the entailment decision is not accurate in terms of the statements having 

the same semantic meaning, which is the case a majority of the time across all 

entailment configurations, there may be patterns in the data that can be identified and 

used to correctly predict the semantic relationship between statements.  For example, 

most of the Maximum Entropy Classification configurations result in an entailment 

decision of Entailment when most of them are not semantically similar.  The statements 

that are more similar will have higher confidences, whereas the ones that are not 

semantically similar will have lower confidences.  These patterns, among others, can be 

found and utilized through machine learning. 

In order to predict whether a standard statement matches a test document statement 

semantically, an operator classifier can be built, in this case, using a neural network (NN) 

through the Keras API within Python.  The classifier is trained on specific data from the 

entailment reports in order to predict whether the entailment transaction results 

between two statements (one standard and one test) signifies that the match is 
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"complete", "ambiguous", or "none".  In order to accomplish this, i) the data (entailment 

results and operator annotations) in the entailment reports needs to be extracted, 

formatted, and combined selectively; ii) the NN model needs to be carefully designed 

for each layer; and lastly, iii) the model needs to be trained on this extracted data.  Then, 

the model can be used as a classifier to predict operators. 

3.2.2.1.1 Pre-Processing 

For the first step, each annotated entailment report is read in and the key information is 

extracted, formatted, and combined to form three types of files: data, target, and target 

int.  The data file consists of the entailment configurations used and entailment decision 

and confidence results.  The target file contains the operator annotations, represented 

in binary: [0,0,1] for "complete"; [0,1,0] for "ambiguous"; and [1,0,0] for "none".  The 

target int file is the integer representation of the operator annotations, i.e., 2 for 

"complete", 1 for "ambiguous", and 0 for "none", where, for example, 2 as "complete" 

represents index 2 of the zero-based index binary representation in the target file of 

[0,0,1].  The data file is the input to the NN, whereas the target file indicates to the NN 

what the output should be, i.e., the classification (e.g., "complete" which is represented 

as [0,0,1]).  The target int file is used in a later step during model prediction evaluation 

and will be further discussed at that point.  Each of these three files are generated on a 

per entailment configuration and per test document basis, e.g., entailment 

configuration 1 and the test document associated with project 1.  In all, there are 130 
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sets of these generated files, since there are 10 entailment configuration options (1-9, 

and all combined) and 13 test documents. 

 

Figure 3.6 Neural Network Project Set up 

 

3.2.2.1.2 Model Creation 

During the second step, a sequential model is formed, layer by layer.  Each layer is 

Dense (2-dimensional) and describes the number of hidden units called neurons, 

random weight initialization, and the activation function.  The first layer has the 

additional descriptor of the number of input features (vector dimension), which is 

represented here by the data file containing the entailment configurations (9 values), 

decisions (2 values), and confidences (1 value), resulting in a total of 12 input features 

per entailment transaction.  
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 The output of one layer feeds into the input of the next, until the last layer is reached, 

which is where the classification takes place.  In this research, the output of the last 

layer can be one of three representations: 2 for "complete", 1 for "ambiguous", or 0 for 

"none".  The model being used is shown in Figure 3.7. 

 

Figure 3.7 Model layers with 12 input features and 3 output classes 

As shown, the input layer contains 80 neurons, the two hidden layers 40 and 80, and the 

last layer as the output of 3.  The weight initialization selected is 'he_normal', which is a 

Gaussian-based initializer.  The input and hidden layers all use the rectified linear unit 

(ReLU) activation function, whereas only the output layer uses softmax, which is ideal 

for this multiclass classification problems.  

These parameters were carefully selected after reviewing the results of a series of tests 

involving 19 standard statements against each project test document for entailment 

configuration 1.  It iterated through every combination of the available initializations, 

activations, and optimizers, the latter of which will be used in the next section during 

model compilation.  Please refer to Table 3.2 for a list of these available options. Each of 

the 448 tests evaluated 1,539 statement pairs, comparing the predicted classification 

(representing either "complete", "ambiguous", or "none") with the actual classification 

as noted by the annotated data.  There were five model combinations that performed 

the best, each resulting in an average precision of 73%, recall of 79%, and F-score of 
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0.73 with an overall accuracy of 78%.  The best layer initializers were related to normal 

and uniform weights, which distribute the initial state best in this data through Gaussian 

and uniform means.  The activation function of the last layer is dependent on the type 

of problem being solved, which in this case is a multi-class problem.  Softmax is often 

the best choice here due to how it ensures the output layer to be properly formatted 

Table 3.2 Layer activations, initializations, optimizers 

 

Table 3.3 Top 5 Models During Model Selection 

Model 
Components 
Combination 

Layer 
Initialization 

Last layer 
Activation 

Compilation 
Optimizer Accuracy Precision Recall F-

score 

1 he_normal Softmax Adamax 78% 73% 79% 0.73 

2 glorot_ 
normal Softmax Adam 78% 73% 79% 0.73 

3 Normal Softmax Nadam 78% 73% 79% 0.73 
4 he_uniform Softplus Adamax 78% 73% 79% 0.73 

5 glorot_ 
uniform Sigmoid Adamax 78% 73% 79% 0.73 

 

(i.e., all three class probabilities must add up to 1), enabling a clear distinction between 

the best operator match (e.g., complete) and the inferior matches for model prediction 

classification.  These models are shown in Table 3.3.  Since all 5 top models have the 
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same F-score, model combination 1 was arbitrarily selected (he_normal, softmax, 

Adamax) and used for model training. 

3.2.2.1.3 Model Training 

In the third step, the model formed in step two is trained on the data formatted in step 

one in order to build a classifier that can reliably predict the relationship between two 

statements (e.g., "complete", they are semantically the same) based on their 

corresponding entailment transaction (entailment configuration, decision, and 

confidence).  First, the training process has to be configured by compiling the model 

with a loss function, optimizer, and the metrics to observe (see Figure 3.8).   

 

 

Figure 3.8 Model Compilation 

 

Since there are three possible classifications to predict, this is a multi-classification 

problem, and hence, the loss function should be 'categorical_crossentropy'.  As 

discussed previously, the Adamax optimizer was chosen during model selection based 

on a series of tests.  Other comparable optimizers are Adam and Nadam.  The metric 

should be set to 'accuracy' since this is a classification problem.   
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Figure 3.9 Model Training 

 

Then, the training process can begin with the following parameters: data, target, batch 

size, number of epochs, validation split, and optionally callbacks (see Figure 3.9).  The 

data and target files previously created in step one are read into memory and used as 

the first two parameters of the model fitting.  The next two parameters describe the 

number of samples (batch size) of the data to process at a time as well as how many 

times to iterate (epochs) over all the data.  In this research, a batch size of 300 with 

50,000 epochs was found to produce good results, which means that the data will be 

processed 300 entries (entailment configuration, decision, and confidence) at a time 

until it reaches the end of the data, and that whole process will repeat 50,000 times for 

model training.  Due to the high processing demands, parallel processing was utilized 

within the Theano dependency of Keras, reducing the time to train in half.  The 

validation split is set to 0.2 (80% set aside as training data and 20% as validation data).  

Callbacks allow custom processing to occur at certain stages during the training process, 

e.g., to get statistics and other state information during each stage.  In this case, the 

ModelCheckpoint function was passed as a callback to allow the best model weights to 
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be saved at given stages with respect to the validation accuracy.  These weights can 

later be reloaded, along with the model architecture that is also stored, in order to 

reload the trained model. 

3.2.2.1.4 NN Model Predictions, Statement to Statement level 

After the model is trained, it can be used to predict the operator that best describes the 

semantic relationship between the two given statements (i.e., "complete", "ambiguous", 

or "none") based on the input data of the entailment results (entailment configuration, 

decision, and confidence).  This is done by calling the predict classes method on the 

model, i.e., model.predict_classes(inputData, verbose=0).  For each standard statement, 

the semantic relationship is predicted between itself and each statement in the test 

document, creating a list of all relationships between every combination of each 

standard statement and each statement within the test document.  These individual 

statement pair results alone are not useful, however, after they are interpreted at a 

higher semantic level, they can be used to evaluate how much of the standard is found 

within the given test document. 

3.2.2.1.5 Post-Processing 

In order to determine whether a given standard statement is satisfied within the test 

document, a set of rules need to be applied against the predicted operators for each 

test statement associated with the given single standard statement.  The result will be a 

single classification indicating whether the standard statement is satisfied within the 

test document as a whole.  As Figure 3.10 shows, in order to classify the standard 
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statement as "complete" overall (meaning it is found in the test document), at least one 

predicted "complete" must be found between the standard statement and a test 

document statement.  In order to classify the standard statement as "ambiguous" 

overall, there must not be even one "complete" prediction between the standard 

statement and each test document statement, however, there must be at least one 

"ambiguous" prediction.  In order to classify the standard statement as "missing" (or 

"none"), there must only be "none" predictions between the standard statement and 

each test document statement. 

 

Figure 3.10 Algorithm for classifying complete, ambiguous and missing 
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After this process is repeated for each standard statement, a list of the predicted 

relationships (i.e., operators "complete", "ambiguous", or "missing") between each 

standard statement and the test document as a whole is obtained, e.g., "missing" 

signifying the standard statement was not found in the test document.   

By applying the same set of rules to the manually annotated data, i.e., the operator 

actual values, the same type of list of relationships can be obtained between each 

standard statement and the test document as a whole, this time with the actual values.  

Taking both of these lists of classifications, predicted and actual, the following metrics 

can be calculated: accuracy, precision, recall, and F-score.  This will be further discussed 

in the results section.  

3.2.2.2 Model Evaluation 

In order to measure the ability of the NN trained model to make correct classification 

predictions, the concept of the null model can be applied and evaluated against the 

trained models.  A null model is an untrained, simple approach to prediction.  Since the 

prediction is not correlated with the input data, it can be used to represent the worst 

case scenario as the performance baseline (Hooper, Couglan, & Mullen, 2008). Since 

there are three possible classifications to predict ("missing" as 0, "ambiguous" as 1, and 

"complete" as 2), three different null models are used, each representing a different 

potential classification.  Within each null model, the same classification is hardcoded 

and assumed as the prediction.   
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For example, for the first null model (referred to with the nomenclature of "null(0)") 

representing the "missing" classification, it predicts that all standard statements are 

missing from the respective test document.  The second null model, "null(1)", predicts 

that all standard statements are ambiguous with respect to the test document, and the 

third null model, "null(2)", predicts that all standard statements are complete, satisfying 

the standard within the test document.  Table 3.2 indicates the null model results for 

each project test document based on the average F-score. 

Table 3.2 Null Model Evaluation by Average F-score 

Null Model Evaluation by average 2 
Project null(0) null(1) null(2) 

1 0.42 0.15 0.02 
2 0.25 0.11 0.15 
3 0.15 0.20 0.15 
4 0.25 0.25 0.04 
5 0.36 0.07 0.11 
6 0.25 0.04 0.25 
7 0.42 0.11 0.04 
8 0.25 0.11 0.15 

10 0.70 0.02 0.02 
12 0.00 0.85 0.02 
13 0.42 0.11 0.04 
14 0.56 0.02 0.07 
15 0.42 0.11 0.04 

    Average 0.34 0.17 0.08 

    Minimum 0.00 0.02 0.02 
Maximum 0.70 0.85 0.25 

 

As the results show, the null(0) evaluation has the highest average F-score at 0.34, 

followed by null(1) at nearly half the F-score, 0.17, and finally, null(2) at nearly half the 
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F-score of null(1), 0.08.  This null model F-score distribution reveals the fact that the 

data is imbalanced, that is, there are far more 0 or "missing" standard statements from 

the test documents, followed by "ambiguous", and lastly, "complete".   

Since most of the standard statements are annotated as missing from the respective 

test documents, overall, the null(0) evaluation makes the best assumption based on this 

imbalance for its predictions. 

Table 3.3 Comparing the Null and NN Trained Models 

NN Trained Models - comparison with the null model by average F-score 

Project Worst 
Model 

null(0) 
delta 

Best 
Model 

null(0) 
delta 

entailment 
configuration 9 

null(0) 
delta 

1 0.51 0.09 0.91 0.49 0.91 0.49 
2 0.37 0.12 0.73 0.48 0.73 0.48 
3 0.21 0.06 0.63 0.48 0.63 0.48 
4 0.35 0.10 0.72 0.47 0.49 0.24 
5 0.39 0.03 0.79 0.43 0.65 0.29 
6 0.37 0.12 0.69 0.44 0.57 0.32 
7 0.51 0.09 0.79 0.37 0.64 0.22 
8 0.33 0.08 0.68 0.43 0.52 0.27 

10 0.74 0.04 0.94 0.24 0.79 0.09 
12 0.79 0.79 0.94 0.94 0.79 0.79 
13 0.59 0.17 0.89 0.47 0.84 0.42 
14 0.64 0.08 0.84 0.28 0.84 0.28 
15 0.46 0.04 0.79 0.37 0.70 0.28 

       average 0.48 0.14 0.80 0.45 0.70 0.36 

       minimum 0.21 0.03 0.63 0.24 0.49 0.09 
maximum 0.79 0.79 0.94 0.94 0.91 0.79 

 

Next, the trained NN models need to be compared against the baseline of the null 

model evaluation, taking the best null model results, null(0).  Table 3.3 shows this 
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comparison for each project test document using based on the average F-score.  The 

worst and best models, based on entailment configuration, are each compared against 

the best null model, and the resulting delta is shown.  Note that all deltas are positive 

numbers, signifying that in every case, the models make better predictions in compare 

to the null models.  On average, the worst models have an F-score 0.14 higher than this 

best null model, and the best models have an F-score of 0.45 higher on average.  The 

model for entailment configuration 9 is also evaluated since it is the best model overall, 

and it has on average an F-score of 0.36 higher, indicating its superiority.  

These results show that all models (entailment configurations 1 to 9) perform better 

than the best baseline null model. The justification for why entailment configuration 9 is 

the best will be further discussed in the results section. 

3.2.3 End-to-end Demonstration of the Project Two Implementation 

To illustrate the end-to-end process, project two with entailment configuration nine will 

be explored in detail.  Within this thesis test document (Cleland-Huang, Settimi, 

Xuchang, & Solc, 2006) are the three following statements: 

- “Only registered realtors shall be able to access the system.” 

- “Every user of the system shall be authenticated and authorized.” 

- “The product shall prevent its data from incorrect data being introduced.” 

Using the Security Requirements Analysis Java application built during this research, 

these three test statements, along with a subset of security standard statements, are 

loaded and processed for entailment relationships.  There are 19 reports generated, 
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each representing a standard statement against all test statements, and two of these 

reports are shown below in Table 3.4 and Table 3.5. 

 

Table 3.4 Entailment Report One 

Standard document (text) statement:  

User registration: There shall be a formal user registration and de-registration 
procedure in place for granting and revoking access to all information systems and 
services. 
Classification  
annotation Test document (hypothesis) statement 

C Only registered realtors shall be able to access the system. 

N Every user of the system shall be authenticated and authorized. 

N The product shall prevent its data from incorrect data being 
introduced. 

  Decision Confidence Started on 
Durati

on 
(sec) 

Process 
ing 

type 

En
ta

ilm
en

t C
on

fig
 1

 

MaxEntClassification 
EDA_Base+OpenNLP 

_EN.xml 
Entailment 0.8753 

30079 

Mon 
2016.07.25 

10:38:31 
AM EDT 

7.673 PARALLEL 

MaxEntClassification 
EDA_Base+ 

OpenNLP_EN.xml 
Entailment 0.8753 

30079 

Mon 
2016.07.25 

10:38:31 
AM EDT 

7.657 PARALLEL 

MaxEntClassification 
EDA_Base+ 

OpenNLP_EN.xml 
Entailment 0.6728 

25835 

Mon 
2016.07.25 

10:38:39 
AM EDT 

5.438 PARALLEL 

En
ta

ilm
en

t C
on

fig
 2

 

MaxEntClassification 
EDA_Base+VO+TP+ 
TPPos+TS_EN.xml 

Entailment 0.8842 
51369 

Mon 
2016.07.25 

10:41:06 
AM EDT 

24.16 SERIAL 

MaxEntClassification 
EDA_Base+VO+TP+ 
TPPos+TS_EN.xml 

Entailment 0.8835 
53955 

Mon 
2016.07.25 

10:41:31 
AM EDT 

23.437 SERIAL 

MaxEntClassification 
EDA_Base+VO+TP+ 
TPPos+TS_EN.xml 

Entailment 0.6735 
94449 

Mon 
2016.07.25 

10:41:54 
AM EDT 

23.642 SERIAL 
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Table 3.4 Continued 

  Decision Confidence Started on Duration 
(sec) 

Process 
ing 

type 
En

ta
ilm

en
t C

on
fig

 3
 

MaxEntClassification 
EDA_Base+WN+TP+ 
TPPos+TS_EN.xml 

Entailment 0.8857 
99892 

Mon 
2016.07.25 

11:12:39 
AM EDT 

30.689 SERIAL 

MaxEntClassification 
EDA_Base+WN+TP+ 
TPPos+TS_EN.xml 

Entailment 0.8848 
06181 

Mon 
2016.07.25 

11:13:09 
AM EDT 

30.597 SERIAL 

MaxEntClassification 
EDA_Base+WN+TP+ 
TPPos+TS_EN.xml 

Entailment 0.6723 
10192 

Mon 
2016.07.25 
at 11:13:40 

AM EDT 

30.566 SERIAL 

En
ta

ilm
en

t C
on

fig
 4

 

MaxEntClassification 
EDA_Base+WN+ 

VO_EN.xml 
Entailment 0.9384 

91431 

Mon 
2016.07.25 

11:53:24 
AM EDT 

18.943 PARALLEL 

MaxEntClassification 
EDA_Base+WN+ 

VO_EN.xml 
Entailment 0.9384 

91431 

Mon 
2016.07.25  

11:53:24 
AM EDT 

18.49 PARALLEL 

MaxEntClassification 
EDA_Base 

+WN+VO_EN.xml 
Entailment 0.7694 

71599 

Mon 
2016.07.25  

11:53:43 
AM EDT 

16.554 PARALLEL 

En
ta

ilm
en

t c
on

fig
 5

 

MaxEntClassification 
EDA_Base+WN+VO+ 

TP+TPPos_EN.xml 
Entailment 0.9309 

32216 

Mon 
2016.07.25  

11:59:48 
AM EDT 

30.218 SERIAL 

MaxEntClassification 
EDA_Base+WN+VO+ 

TP+TPPos_EN.xml 
Entailment 0.9217 

96657 

Mon 
2016.07.25  

12:00:18 
PM EDT 

30.829 SERIAL 

MaxEntClassification 
EDA_Base+WN+VO+TP

+TPPos_EN.xml 
Entailment 0.7481 

22454 

Mon 
2016.07.25 

12:00:49 
PM EDT 

29.875 SERIAL 

 E
nt

ai
lm

en
t C

on
fig

 6
 

MaxEntClassification 
EDA_Base+WN+VO+TP

+TPPos+TS_EN.xml 
Entailment 0.8929 

24711 

Mon 
2016.07.25 

12:40:41 
PM EDT 

30.427 SERIAL 

MaxEntClassification 
EDA_Base+WN+VO+ 
TP+TPPos+TS_EN.xml 

Entailment 0.8908 
97041 

Mon 
2016.07.25 

12:41:12 
PM EDT 

30.464 SERIAL 
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Table 3.4 Continued 

  Decision Confidence Started on Duration 
(sec) 

Process 
ing 

type 
Co

nf
ig

 6
 

MaxEntClassification 
EDA_Base+WN+VO+ 
TP+TPPos+TS_EN.xml 

Entailment 0.6839 
44088 

Mon 
2016.07.25  

12:41:42 
PM EDT 

30.179 SERIAL 

En
ta

ilm
en

t C
on

fig
 7

 

MaxEntClassification 
EDA_Base+WN+ 
VO+TS_EN.xml 

Entailment 0.8993 
74716 

Mon 
2016.07.25 

01:21:43 
PM EDT 

30.235 SERIAL 

MaxEntClassification 
EDA_Base+ 

WN+VO+TS_EN.xml 
Entailment 0.9029 

70467 

Mon 
2016.07.25 

01:22:13 
PM EDT 

30.314 SERIAL 

MaxEntClassification 
EDA_Base+WN+ 
VO+TS_EN.xml 

Entailment 0.6959 
27525 

Mon 
2016.07.25 

01:22:43 
PM EDT 

30.177 SERIAL 

En
ta

ilm
en

t C
on

fig
 8

 

 
EditDistance 
EDA_EN.xml 

Non 
Entailment 

0.0508 
24176 

Mon 
2016.07.25 

02:01:36 
PM EDT 

7.626 PARALLEL 

 
EditDistance 
EDA_EN.xml 

Entailment 0.0741 
75824 

Mon 
2016.07.25  

02:01:36 
PM EDT 

7.641 PARALLEL 

EditDistance 
 

EDA_EN.xml 

Non 
Entailment 

0.3147 
13065 

Mon 
2016.07.25 

02:01:43 
PM EDT 

5.297 PARALLEL 

En
ta

ilm
en

t C
on

fig
 9

 

EditDistancePSO 
EDA 

_EN.xml 
Entailment 0.0247 

71018 

Mon 
2016.07.25 

02:03:33 
PM EDT 

5.312 PARALLEL 

EditDistance 
PSOEDA 
_EN.xml 

Entailment 0.0893 
98999 

Mon 
2016.07.25 

02:03:33 
PM EDT 

5.328 PARALLEL 

EditDistance 
PSOEDA 
_EN.xml 

Non 
Entailment 

0.1232 
87472 

Mon 
2016.07.25  

02:03:38 
PM EDT 

4.377 PARALLEL 
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Table 3.5 Entailment Report Nineteen 

Standard document (text) statement:  

The risks to the organization’s information and information processing facilities from 
business processes involving external parties shall be identified and appropriate 
controls implemented before granting access. 
Classification  
Annotation Test document (hypothesis) statement 

A Only registered realtors shall be able to access the system. 

C Every user of the system shall be authenticated and authorized. 

N The product shall prevent its data from incorrect data being introduced. 

  Decision Confidence Started 
on 

Duration 
(sec) 

Process 
ing 

type 

En
ta

ilm
en

t C
on

fig
 1

 

MaxEntClassification 
EDA_Base+OpenNLP 

_EN.xml 
Entailment 0.91151 

Sat 
2016.07.30 

03:34:38 
PM EDT 

5.564 PARALLEL 

MaxEntClassification 
EDA_Base+OpenNLP 

_EN.xml 
Entailment 0.87533 

Sat 
2016.07.30 

03:34:38 
PM EDT 

5.58 PARALLEL 

MaxEntClassification 
EDA_Base+OpenNLP 

_EN.xml 
Entailment 0.80752 

Sat 
2016.07.30 

03:34:43 
PM EDT 

6.594 PARALLEL 

En
ta

ilm
en

t C
on

fig
 2

 
 

MaxEntClassification 
EDA_Base+VO+TP+ 
TPPos+TS_EN.xml 

Entailment 0.88968 
1547 

Sat 
2016.07.30 

at 
03:37:24 
PM EDT 

22.876 SERIAL 

MaxEntClassification 
EDA_Base+VO+TP+ 
TPPos+TS_EN.xml 

Entailment 0.86819 
6797 

Sat 
2016.07.30 

03:37:47 
PM EDT 

23.439 SERIAL 

MaxEntClassification 
EDA_Base+VO+TP+ 
TPPos+TS_EN.xml 

Entailment 0.80195 
1338 

Sat 
2016.07.30 

03:38:11 
PM EDT 

21.829 SERIAL 
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Table 3.5 Continued 

  Decision Confidence Started on Duration 
(sec) 

Process 
ing 

type 
En

ta
ilm

en
t C

on
fig

 3
 

MaxEntClassification 
EDA_Base+WN+TP+ 
TPPos+TS_EN.xml 

Entailment 0.90015 
3098 

Sat 
2016.07.30 

04:08:42 
PM EDT 

29.844 SERIAL 

MaxEntClassification 
EDA_Base+WN+TP+ 
TPPos+TS_EN.xml 

Entailment 0.87949 
6338 

Sat 
2016.07.30 

04:09:12 
PM EDT 

31.094 SERIAL 

MaxEntClassification 
EDA_Base+WN+TP+ 
TPPos+TS_EN.xml 

Entailment 0.80273 
3658 

Sat 
2016.07.30 

04:09:43 
PM EDT 

31.191 SERIAL 

En
ta

ilm
en

t C
on

fig
 4

 

MaxEntClassification 
EDA_Base+ 

WN+VO_EN.xml 
Entailment 0.95265 

053 

Sat 
2016.07.30  

04:50:12 
PM EDT 

22.842 PARALLEL 

MaxEntClassification 
EDA_Base+WN+ 

VO_EN.xml 
Entailment 0.92741 

8327 

Sat 
2016.07.30  

04:50:12 
PM EDT 

21.619 PARALLEL 

MaxEntClassification 
EDA_Base+WN 

+VO_EN.xml 
Entailment 0.89050 

0164 

Sat 
2016.07.30 

04:50:33 
PM EDT 

18.566 PARALLEL 

En
ta

ilm
en

t C
on

fig
 5

 

MaxEntClassification 
EDA_Base+WN+VO+ 

TP+TPPos_EN.xml 
Entailment 0.94308 

0533 

Sat 
2016.07.30 

04:57:49 
PM EDT 

31.596 SERIAL 

MaxEntClassification 
EDA_Base+WN+VO+ 

TP+TPPos_EN.xml 
Entailment 0.93372 

8804 

Sat 
2016.07.30 

04:58:21 
PM EDT 

31.579 SERIAL 

MaxEntClassification 
EDA_Base+WN+VO+ 

TP+TPPos_EN.xml 
Entailment 0.87806 

1297 

Sat 
2016.07.30 

04:58:52 
PM EDT 

31.658 SERIAL 
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Table 3.5 Continued 

  Decision Confidence Started on Duration 
(sec) 

Process 
ing 

type 
En

ta
ilm

en
t C

on
fig

 6
 

MaxEntClassification 
EDA_Base+WN+VO+TP+ 

TPPos+TS_EN.xml 
Entailment 0.90250 

7066 

Sat 
2016.07.30 

05:40:41 
PM EDT 

31 SERIAL 

MaxEntClassification 
EDA_Base+WN+VO+ 
TP+TPPos+TS_EN.xml 

Entailment 0.88313 
5585 

Sat 
2016.07.30 

05:41:12 
PM EDT 

31.267 SERIAL 

MaxEntClassification 
EDA_Base+WN+ 

VO+TP+TPPos+TS_EN.xml 
Entailment 0.81312 

2023 

Sat 
2016.07.30 

05:41:44 
PM EDT 

32.094 SERIAL 

En
ta

ilm
en

t C
on

fig
 7

 

MaxEntClassification 
EDA_Base+WN+ 
VO+TS_EN.xml 

Entailment 0.90881 
5576 

Sat 
2016.07.30 

06:24:19 
PM EDT 

33.583 SERIAL 

MaxEntClassification 
EDA_Base+WN+ 
VO+TS_EN.xml 

Entailment 0.88564 
5664 

Sat 
2016.07.30 

06:24:53 
PM EDT 

31.392 SERIAL 

MaxEntClassification 
EDA_Base+WN+ 
VO+TS_EN.xml 

Entailment 0.82357 
9864 

Sat 
2016.07.30 

06:25:24 
PM EDT 

30.454 SERIAL 

En
ta

ilm
en

t C
on

fig
 8

 

EditDistance 
EDA_EN.xml 

Non 
Entailment 

0.05082 
4176 

Sat 
2016.07.30  

07:05:43 
PM EDT 

8.21 PARALLEL 

EditDistance 
EDA_EN.xml 

Non 
Entailment 

0.09249 
0842 

Sat 
2016.07.30 

07:05:43 
PM EDT 

8.257 PARALLEL 

EditDistance 
EDA_EN.xml 

Non 
Entailment 

0.31471 
3065 

Sat 
2016.07.30  

07:05:51 
PM EDT 

5.25 PARALLEL 

 

 

 



48 

 

 

Table 3.5 Continued 

  Decision Confidence Started on Duration 
(sec) 

Process 
ing 

type 
En

ta
ilm

en
t C

on
fig

 9
 

EditDistancePSO 
EDA_EN.xml Entailment 0.0046 

33056 

Sat 2016. 
07.30  

07:07:49 
PM EDT 

5.954 PARALLEL 

EditDistancePSO 
EDA_EN.xml 

Non 
Entailment 

0.0365 
37801 

Sat 
2016.07.30 
at 7:07:49 

PM EDT 

6.048 PARALLEL 

EditDistancePSO 
EDA_EN.xml 

Non 
Entailment 

0.1352 
35939 

Sat 2016. 
07.30 at 
07:07:55 
PM EDT 

5.172 PARALLEL 

 

The first header, "Classification annotation", contains one of three manually entered 

values: 'c' for complete, 'a' for ambiguous, and 'n' for none.  This is the truth statement 

regarding the semantic relationship between the standard statement and the test 

statement in the given row for the given report.  The date, time, and duration were 

tracked per statement pair transaction for each entailment configuration, each 

processed according to the respective type of parallel or serial.  There is a corresponding 

entailment decision and confidence for the respective entailment configuration. 

Using Python, the report classification annotation (target classification) and entailment 

configuration, decision, and confidence (input data) were extracted and formatted by 

entailment configuration in order to be used by Keras for NN model selection, training, 

and evaluation.  Since there are three test statements and 19 standard statements, 

there will be 57 statement pair relationships to represent per entailment configuration.  

This representation for entailment configuration 9 is shown in Table 3.5 based on the 
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first 10 entries out of the total 57. For the input data header, the "Statement pair" 

column represents the first 10 out of 57 statement comparisons, 1-9 represent 

Table 3.6 Formatted Data and Target 

Input Data Target 
Classification 

Statement 
pair 1 2 3 4 5 6 7 8 9 E N Confidence n a C 

1 0 0 0 0 0 0 0 0 1 0 1 0.154143911 0 1 0 
2 0 0 0 0 0 0 0 0 1 0 1 0.157211363 0 1 0 
3 0 0 0 0 0 0 0 0 1 0 1 0.209575348 1 0 0 
4 0 0 0 0 0 0 0 0 1 1 0 0.079863614 0 1 0 
5 0 0 0 0 0 0 0 0 1 1 0 0.019611428 0 1 0 
6 0 0 0 0 0 0 0 0 1 0 1 0.105512411 1 0 0 
7 0 0 0 0 0 0 0 0 1 1 0 0.004633056 0 1 0 
8 0 0 0 0 0 0 0 0 1 0 1 0.036537801 0 0 1 
9 0 0 0 0 0 0 0 0 1 0 1 0.135235939 1 0 0 

10 0 0 0 0 0 0 0 0 1 0 1 0.022651949 1 0 0 
 

entailment configurations 1-9, E is the decision Entailment, and N is the decision 

NonEntailment. For the target classification header, ‘n’ is none (index 0), ‘a’ is 

ambiguous (index 1), and ‘c’ is complete (index 2). Looking at the first row, represented 

by statement pair 1, entailment 9 is used (the '9' column is set with the binary '1') and 

resulted in the decision NonEntailment with a confidence of 0.154143911.  The target 

classification (manually annotated in the report) for this statement pair transaction is 

ambiguous (index 1 in [0,1,0]). In a perfect classification system, the complete target 

classification would correspond to the entailment decision of Entailment, the none 

target classification to NonEntailment, and the ambiguous target classification to a 
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mixture of both entailment decisions.  Most of the time, these patterns are true in the 

sample set, the exception being for statement pair 8.  

In order to discover existing patterns, i.e., the relationship between the entailment 

results (input data) and annotations (target classification), this formatted input data and 

target classifications are used to train a neural network to predict target classifications 

based on the input data.  The classification prediction results can be seen in Table 3.6 all 

57 statement pairs.   

Table 3.7 Classification Report for Operator Predictions 

Combined Report Between 19 Standard Statements 
and the 3 Test Statement 

    Precision Recall F-score Support 
None 93% 90% 0.92 42 
Ambiguous 89% 100% 0.94 8 
Complete 57% 57% 0.57 7 
  

   
  

Avg/Total 88% 88% 0.88 57 
Accuracy 87.7 

  
  

 

Table 3.8 Classification Report of Standard Statement One 

Individual Statement Classifications 
   Precision Recall F-score Support 
None 50% 50% 0.5 2 
Complete  0% 0% 0 1 
  

   
  

Avg/Total 33% 33% 0.33 3 
  

   
  

Accuracy 33.3 
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Table 3.9 Classification Report of Statement Nineteen 

Individual Statement Classifications 
   Precision Recall F-score Support 
None 100% 100% 1 1 
Ambiguous 100% 100% 1 1 
Complete 100% 100% 1 1 
  

   
  

Avg/Total 100% 100% 1 3 
  

   
  

Accuracy 100 
  

  
 

There are 42 actual none classifications, 8 ambiguous, and 7 complete. The most 

difficult classification to predict in this example is "complete". The neural network is 

able to correctly identify 57% (recall) of the actual complete relationships, and when it 

predicts complete, 57% (precision) of the time it's correct. Table 3.7 and Table 3.8 break 

down the results by standard statement, corresponding with entailment reports 1 and 

19 respectively. In each, there are three statement pair comparisons, each of the three 

test statements against standard statement 1 from entailment report 1. Applying the 

 

Table 3.10 Standard Statement Actual and Predicted Classifications 

Standard  
Statement 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Report Classification  
Actual 

2 0 0 0 0 1 2 1 0 0 2 2 2 1 0 0 2 1 1 

Report Classification  
Predicted 

2 2 1 2 0 1 0 1 0 0 2 2 0 1 0 0 2 1 1 

 

algorithm from Figure 3.10 to each of the 19 sets of classifications represented by a 

single standard statement against each of the 3 test statements, a list of final 



52 

 

 

classifications can be obtained for both actual and predicted values, as shown in Table 

3.9. 

Table 3.10 shows the metrics calculated from the list of actual and predicted values.  

This classification report shows the ability to correctly classify the relationship between 

the standard statements and a given test document, i.e., whether the standard 

statements are completely satisfied by the test document, partially, or not at all, that is, 

missing. 

Table 3.11 Overall Classification Report of Nineteen Standard Statements 

Classification Report 
  Precision Recall F-score Support 
Missing 71% 62% 0.67 8 
Ambiguous 83% 100% 0.91 5 
Complete 67% 67% 0.67 6 
  

    Avg/Total 73% 74% 0.73 19 
  

    Accuracy 73.70% 
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CHAPTER 4. RESULTS AND DISCUSSION 

The methodology adopted in this research leads to two main categories of results 

centered around the analysis and presentation of the completeness for the given 

software requirements document with respect to security.  The first category of results 

is classification reports, which demonstrate the ability of the NN model to predict 

whether the standard statements are found, or satisfied, within the test document for 

the given project using the defined operators (complete, ambiguous, and missing), per 

entailment configuration option. The second category of results is the completeness 

matrix, which asserts, through model predictions, the percentage of the given project 

test document that is complete, ambiguous, and missing.   

4.1 Classification Report 

As was mentioned in the NN post-processing section, the two lists of classifications, 

predicted and actual, representing the completeness of the standard statements in a 

single test document, can be used to calculate the following metrics: accuracy, precision, 

recall, and F-score.  These metrics represent the results of one out of 130 possible 

combinations of input test documents (13 projects) and entailment configurations (1 

through 9 configuration and all combined) across the static set of standard statements.  

Table 4.1 through Table 4.13 show the results of these 130 combinations.
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Table 4.1 Project One Classification Report 
Project 1 

Entailment 
Configuration Accuracy Precision Recall F-score 

1 74% 77% 74% 0.74 
2 84% 89% 84% 0.84 
3 84% 89% 84% 0.85 
4 79% 82% 79% 0.79 
5 84% 84% 84% 0.84 
6 79% 86% 79% 0.80 
7 79% 86% 79% 0.80 
8 63% 46% 63% 0.51 
9 89% 95% 89% 0.91 

all 58% 78% 58% 0.57 
 

Table 4.2 Project Two Classification Report 
Project 2 

Entailment 
Configuration Accuracy Precision Recall F-score 

1 42% 42% 42% 0.38 
2 58% 67% 58% 0.53 
3 47% 48% 47% 0.44 
4 53% 54% 53% 0.52 
5 68% 76% 68% 0.68 
6 68% 70% 68% 0.68 
7 53% 54% 53% 0.50 
8 47% 61% 47% 0.44 
9 74% 73% 74% 0.73 

all 42% 45% 42% 0.37 
 

Table 4.3 Project Three Classification Report 

Project 3 
Entailment 

Configuration Accuracy Precision Recall F-score 

1 37% 37% 37% 0.37 
2 58% 61% 58% 0.57 
3 42% 44% 42% 0.42 
4 53% 55% 53% 0.52 
5 26% 25% 26% 0.25 
6 42% 45% 42% 0.39 
7 37% 37% 37% 0.36 
8 37% 25% 37% 0.29 
9 63% 65% 63% 0.63 

all 26% 19% 26% 0.21 
 

Table 4.4 Project Four Classification Report 

Project 4 
Entailment 

Configuration Accuracy Precision Recall F-score 

1 63% 64% 63% 0.63 
2 47% 28% 47% 0.35 
3 58% 73% 58% 0.54 
4 74% 77% 74% 0.72 
5 74% 77% 74% 0.72 
6 53% 71% 53% 0.45 
7 47% 48% 47% 0.45 
8 53% 41% 53% 0.44 
9 53% 58% 53% 0.49 

all 68% 69% 68% 0.68 
 

Table 4.5 Project Five Classification Report 

Project 5 
Entailment 

Configuration Accuracy Precision Recall F-score 

1 58% 56% 58% 0.46 
2 79% 82% 79% 0.79 
3 63% 53% 63% 0.57 
4 63% 78% 63% 0.56 
5 58% 45% 58% 0.50 
6 58% 47% 58% 0.50 
7 47% 35% 47% 0.39 
8 58% 57% 58% 0.57 
9 68% 75% 68% 0.65 

all 47% 52% 47% 0.42 
 

Table 4.6 Project Six Classification Report 

Project 6 
Entailment 

Configuration Accuracy Precision Recall F-score 

1 53% 62% 53% 0.44 
2 58% 63% 58% 0.51 
3 53% 67% 53% 0.52 
4 58% 79% 58% 0.53 
5 42% 65% 42% 0.37 
6 58% 79% 58% 0.53 
7 58% 54% 58% 0.50 
8 53% 49% 53% 0.49 
9 58% 62% 58% 0.57 

all 68% 74% 68% 0.69 
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Table 4.7 Project Seven Classification Report 
Project 7 

Entailment 
Configuration Accuracy Precision Recall F-score 

1 74% 73% 74% 0.73 
2 74% 75% 74% 0.72 
3 68% 72% 68% 0.68 
4 74% 77% 74% 0.72 
5 63% 60% 63% 0.61 
6 79% 81% 79% 0.77 
7 79% 88% 79% 0.80 
8 53% 53% 53% 0.53 
9 63% 68% 63% 0.64 

all 47% 65% 47% 0.51 
 

Table 4.8 Project Eight Classification Report 
Project 8 

Entailment 
Configuration Accuracy Precision Recall F-score 

1 42% 29% 42% 0.33 
2 53% 63% 53% 0.48 
3 68% 76% 68% 0.68 
4 42% 61% 42% 0.41 
5 42% 46% 42% 0.42 
6 58% 68% 58% 0.57 
7 47% 33% 47% 0.34 
8 63% 47% 63% 0.54 
9 53% 53% 53% 0.52 

all 58% 74% 58% 0.54 
 

Table 4.9 Project Ten Classification Report 

Project 10 
Entailment 

Configuration Accuracy Precision Recall F-score 

1 84% 79% 84% 0.81 
2 84% 94% 84% 0.86 
3 84% 76% 84% 0.79 
4 95% 95% 95% 0.94 
5 84% 94% 84% 0.86 
6 79% 82% 79% 0.80 
7 95% 95% 95% 0.94 
8 79% 70% 79% 0.74 
9 79% 79% 79% 0.79 

all 74% 92% 74% 0.78 
 

 

Table 4.10 Project Twelve Classification 
Report 

Project 12 
Entailment 

Configuration 
Accur

acy Precision Recall F-
score 

1 89% 89% 100% 0.94 
2 79% 95% 79% 0.85 
3 84% 100% 82% 0.90 
4 74% 88% 82% 0.85 
5 74% 88% 74% 0.80 
6 89% 95% 89% 0.91 
7 84% 95% 84% 0.88 
8 89% 89% 100% 0.94 
9 74% 93% 74% 0.79 

all 68% 100% 65% 0.79 
 

Table 4.11 Project Thirteen Classification 
Report 

Project 13 
Entailment 

Configuration Accuracy Precision Recall F-score 

1 68% 77% 68% 0.69 
2 68% 81% 68% 0.69 
3 58% 66% 58% 0.59 
4 84% 84% 84% 0.84 
5 68% 73% 68% 0.70 
6 74% 72% 74% 0.73 
7 89% 91% 89% 0.89 
8 79% 85% 79% 0.74 
9 84% 84% 84% 0.84 

all 58% 76% 58% 0.59 
 

 

Table 4.12 Project Fourteen Classification 
Report 

Project 14 
Entailment 

Configuration Accuracy Precision Recall F-score 

1 68% 61% 68% 0.64 
2 79% 82% 79% 0.79 
3 84% 86% 84% 0.84 
4 84% 83% 84% 0.83 
5 74% 70% 74% 0.66 
6 84% 86% 84% 0.84 
7 74% 65% 74% 0.69 
8 74% 65% 74% 0.69 
9 84% 87% 84% 0.84 

all 68% 82% 68% 0.70 
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Table 4.13 Project Fifteen Classification Report 

Project 15 
Entailment  

Configuration Accuracy Precision Recall F-score 

1 74% 75% 74% 0.74 
2 63% 67% 63% 0.64 
3 74% 84% 74% 0.73 
4 58% 64% 58% 0.58 
5 74% 74% 74% 0.74 
6 58% 66% 58% 0.59 
7 79% 84% 79% 0.79 
8 58% 63% 58% 0.58 
9 68% 75% 68% 0.70 

all 47% 76% 47% 0.46 
 

In order to determine the best entailment configuration option overall, the F-scores 

across each project must be averaged per each entailment configuration option.  The 

results of this analysis is shown in Table 4.14 and Figure 4.1, which demonstrates that 

entailment configuration 9 has the highest average F-score, 0.70, and thus, it is the best 

candidate.  As mentioned previously, entailment configuration 9 consists of the Open 

NLP tagger (LAP), Edit Distance PSO (EDA), and Fixed Weight Token Edit Distance 

(component). 

It was unexpected to see that the entailment configuration "all" did not have the best 

overall F-score since it combines all of the data for entailment configurations 1-9.  It 

appears, however, that this combination leads to confusion within the neural network, 

resulting in lower predictive power.  Entailment configuration 9 being the best 

candidate for model predictions was also unexpected, given the fact that during the 

entailment text processing phase, nearly every statement comparison between the 
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standard document and the test document resulted in the classification of 

NonEntailment.  However, as demonstrated in these results, while the entailment 

decision in EOP was often biased towards missing entailment relationships, 

 Table 4.14 Evaluation of the Best Configuration Option 

Entailment 
Configuration  

Average F-
score Across 
All Projects 

1 0.61 
2 0.66 
3 0.66 
4 0.68 
5 0.63 
6 0.66 
7 0.64 
8 0.58 
9 0.70 

all 0.56 

 

 

Figure 4.1 Visualization of the Best Entailment Configuration 
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the combination of entailment decision and confidence result in more clearly delineated 

patterns for the neural network to discover and utilize during model prediction. 

 

4.2 Completeness Matrix 

From the predicted classification results, within each project classification report 

previously demonstrated, the overall completeness of the standard being satisfied 

within each combination of test document and entailment configuration can be derived 

and represented by each operator category.  Table 4.15 through Table 4.24 show these 

completeness results. 

 

Table 4.15 Completeness Matrix of Configuration One 

Entailment Configuration 1 
Test Document Complete Ambiguous Missing 

Project 1 15.8% 42.1% 42.1% 
Project 2 15.8% 10.5% 73.7% 
Project 3 26.3% 36.8% 36.8% 
Project 4 15.8% 31.6% 52.6% 
Project 5 5.3% 0.0% 94.7% 
Project 6 10.5% 0.0% 89.5% 
Project 7 10.5% 31.6% 57.9% 
Project 8 0.0% 26.3% 73.7% 

Project 10 21.1% 0.0% 78.9% 
Project 12 0.0% 100.0% 0.0% 
Project 13 15.8% 47.4% 36.8% 
Project 14 21.1% 0.0% 78.9% 
Project 15 21.1% 26.3% 52.6% 
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Table 4.16 Completeness Matrix of Configuration Two 

Entailment Configuration 2 
Test Document Complete Ambiguous Missing 
Project 1 15.8% 42.1% 42.1% 
Project 2 10.5% 10.5% 78.9% 
Project 3 36.8% 21.1% 42.1% 
Project 4 21.1% 0.0% 78.9% 
Project 5 15.8% 26.3% 57.9% 
Project 6 15.8% 0.0% 84.2% 
Project 7 10.5% 15.8% 73.7% 
Project 8 21.1% 5.3% 73.7% 
Project 10 26.3% 5.3% 68.4% 
Project 12 21.1% 68.4% 10.5% 
Project 13 26.3% 42.1% 31.6% 
Project 14 26.3% 15.8% 57.9% 
Project 15 26.3% 26.3% 47.4% 

 

 

Table 4.17 Completeness Matrix of Configuration Three 

Entailment Configuration 3 
Test Document Complete Ambiguous Missing 
Project 1 21.1% 31.6% 47.4% 
Project 2 10.5% 31.6% 57.9% 
Project 3 36.8% 21.1% 42.1% 
Project 4 21.1% 10.5% 68.4% 
Project 5 31.6% 5.3% 63.2% 
Project 6 15.8% 15.8% 68.4% 
Project 7 5.3% 31.6% 63.2% 
Project 8 15.8% 21.1% 63.2% 
Project 10 0.0% 5.3% 94.7% 
Project 12 26.3% 73.7% 0.0% 
Project 13 31.6% 31.6% 36.8% 
Project 14 21.1% 15.8% 63.2% 
Project 15 26.3% 42.1% 31.6% 
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Table 4.18 Completeness Matrix of Configuration Four 

Entailment Configuration 4 
Test Document Complete Ambiguous Missing 
Project 1 10.5% 42.1% 47.4% 
Project 2 42.1% 21.1% 36.8% 
Project 3 15.8% 47.4% 36.8% 
Project 4 5.3% 47.4% 47.4% 
Project 5 5.3% 5.3% 89.5% 
Project 6 10.5% 5.3% 84.2% 
Project 7 5.3% 31.6% 63.2% 
Project 8 5.3% 52.6% 42.1% 
Project 10 10.5% 5.3% 84.2% 
Project 12 0.0% 84.2% 15.8% 
Project 13 15.8% 21.1% 63.2% 
Project 14 15.8% 10.5% 73.7% 
Project 15 15.8% 47.4% 36.8% 

 

 

Table 4.19 Completeness Matrix of Configuration Five 

Entailment Configuration 5 
Test Document Complete Ambiguous Missing 
Project 1 10.5% 26.3% 63.2% 
Project 2 15.8% 47.4% 36.8% 
Project 3 47.4% 21.1% 31.6% 
Project 4 5.3% 42.1% 52.6% 
Project 5 21.1% 0.0% 78.9% 
Project 6 5.3% 31.6% 63.2% 
Project 7 26.3% 15.8% 57.9% 
Project 8 21.1% 47.4% 31.6% 
Project 10 26.3% 5.3% 68.4% 
Project 12 10.5% 73.7% 15.8% 
Project 13 21.1% 31.6% 47.4% 
Project 14 5.3% 0.0% 94.7% 
Project 15 15.8% 31.6% 52.6% 
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Table 4.20 Completeness Matrix of Configuration Six 

Entailment Configuration 6 
Test Document Complete Ambiguous Missing 
Project 1 21.1% 36.8% 42.1% 
Project 2 21.1% 36.8% 42.1% 
Project 3 36.8% 10.5% 52.6% 
Project 4 21.1% 5.3% 73.7% 
Project 5 15.8% 0.0% 84.2% 
Project 6 10.5% 5.3% 84.2% 
Project 7 5.3% 26.3% 68.4% 
Project 8 10.5% 26.3% 63.2% 
Project 10 15.8% 5.3% 78.9% 
Project 12 5.3% 89.5% 5.3% 
Project 13 21.1% 21.1% 57.9% 
Project 14 26.3% 5.3% 68.4% 
Project 15 31.6% 31.6% 36.8% 

 

 

Table 4.21 Completeness Matrix of Configuration Seven 

Entailment Configuration 7 
Test Document Complete Ambiguous Missing 
Project 1 21.1% 36.8% 42.1% 
Project 2 10.5% 42.1% 47.4% 
Project 3 26.3% 31.6% 42.1% 
Project 4 21.1% 21.1% 57.9% 
Project 5 15.8% 0.0% 84.2% 
Project 6 21.1% 0.0% 78.9% 
Project 7 10.5% 47.4% 42.1% 
Project 8 0.0% 10.5% 89.5% 
Project 10 10.5% 5.3% 84.2% 
Project 12 21.1% 73.7% 5.3% 
Project 13 21.1% 15.8% 63.2% 
Project 14 21.1% 0.0% 78.9% 
Project 15 10.5% 42.1% 47.4% 
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Table 4.22 Completeness Matrix of Configuration Eight 

Entailment Configuration 8 
Test Document Complete Ambiguous Missing 
Project 1 5.3% 0.0% 94.7% 
Project 2 5.3% 31.6% 63.2% 
Project 3 47.4% 5.3% 47.4% 
Project 4 0.0% 26.3% 73.7% 
Project 5 21.1% 15.8% 63.2% 
Project 6 31.6% 5.3% 63.2% 
Project 7 15.8% 26.3% 57.9% 
Project 8 42.1% 0.0% 57.9% 
Project 10 0.0% 10.5% 89.5% 
Project 12 0.0% 100.0% 0.0% 
Project 13 15.8% 5.3% 78.9% 
Project 14 15.8% 0.0% 84.2% 
Project 15 26.3% 36.8% 36.8% 

 

 

Table 4.23 Completeness Matrix of Configuration Nine 

Entailment Configuration 9 
Test Document Complete Ambiguous Missing 
Project 1 21.1% 31.6% 47.4% 
Project 2 31.6% 31.6% 36.8% 
Project 3 31.6% 47.4% 21.1% 
Project 4 5.3% 21.1% 73.7% 
Project 5 21.1% 5.3% 73.7% 
Project 6 21.1% 21.1% 57.9% 
Project 7 10.5% 36.8% 52.6% 
Project 8 26.3% 21.1% 52.6% 
Project 10 10.5% 10.5% 78.9% 
Project 12 31.6% 63.2% 5.3% 
Project 13 15.8% 21.1% 63.2% 
Project 14 31.6% 5.3% 63.2% 
Project 15 26.3% 31.6% 42.1% 
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Table 4.24 Completeness Matrix of All Configurations 

Entailment Configuration all 
Test Document Complete Ambiguous Missing 
Project 1 26.3% 52.6% 21.1% 
Project 2 42.1% 47.4% 10.5% 
Project 3 57.9% 26.3% 15.8% 
Project 4 21.1% 31.6% 47.4% 
Project 5 73.7% 0.0% 26.3% 
Project 6 57.9% 15.8% 26.3% 
Project 7 47.4% 21.1% 31.6% 
Project 8 42.1% 47.4% 10.5% 
Project 10 36.8% 5.3% 57.9% 
Project 12 42.1% 57.9% 0.0% 
Project 13 31.6% 42.1% 26.3% 
Project 14 42.1% 15.8% 42.1% 
Project 15 52.6% 31.6% 15.8% 
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CHAPTER 5. CONCLUSION AND FUTURE WORK 

Complete and unambiguous security requirements defined prior to deploying a software 

development project will result in the reduction of defects, early discovery of errors, 

generation of guidelines for the future creation of requirements, and lastly, enablement 

of software providers and stakeholders to identify and request the necessary security 

features.  These demonstrate the need for a formal technique to analyze and evaluate 

security requirements.  This research seeks to identify the degree of incompleteness and 

ambiguity of security requirements, assisting with security compliance before moving to 

the software development phase.   

Using NLP and ML-based tools, i.e., textual entailment and neural network modeling, a 

given security requirements document can be evaluated against the security standards 

in order to determine the level of completeness.  In order to determine the best 

entailment configuration out of the 10 options, the ability to correctly predict the 

completeness (based on the average F-scores across all 13 analyzed projects) was 

evaluated for each entailment configuration.  The results demonstrate that entailment 

configuration 9 has the highest average F-score, 0.70, and thus, it is the best predictor of 

completeness.
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Proposed future work for this research includes adding additional operators such as 

contradiction, restricting the standard statements to only those that apply to the given 

software project, analyzing additional non-functional software requirements such as 

usability and maintainability, and finally, modifying the missing and ambiguous 

requirements by receiving appropriate feedback to complete the requirements 

specification and transfer it to the next phase of development.
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