
Graduate School Form
30 Updated

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s):

Approved by:
Head of the Departmental Graduate Program Date

Allenoush Hayrapetian

ANALYZING AND EVALUATING SECURITY FEATURES IN SOFTWARE REQUIREMENTS

Master of Science

Dr. Rajeev R. Raje
Chair

Dr. Mihran Tuceryan

Dr. Yao Liang

Dr. Rajeev R. Raje

Dr. Shiaofen Fang 11/1/2016

ANALYZING AND EVALUATING SECURITY FEATURES IN SOFTWARE REQUIREMENTS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Allenoush Hayrapetian

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

December 2016

Purdue University

Indianapolis, Indiana

ii

I am dedicating my thesis to my kind father to whom I owe my self-confidence and to
my dear mother who is a true example of learning continuously.

iii

ACKNOWLEDGEMENTS

Above everything I am so thankful to God who gifted me with life and all of the beauty

of it. If I have the ability of doing anything, it is because of His grace and love.

I am so thankful to my friends and family who always believe in me and my abilities and

have always been supportive of me to accomplish my goals.

I am very grateful to my professor and advisor Dr. Rajeev Raje, who always trusted my

abilities and encourages me to push myself to my full potential.

I would like to thank Dr. Mihran Tuceryan and Dr. Yao Liang for accepting to be

members of my thesis committee.

I would like to thank the Computer Science department for providing the opportunity

for high quality study and research.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES .. vi

LIST OF FIGURES .. viii

ABSTRACT .. ix

CHAPTER 1. INTRODUCTION ... 1

1. Motivation .. 1

1.1 Aim of Work .. 4

1.2 Outline .. 6

CHAPTER 2. LITERATURE REVIEW ... 7

2.1 Related Work .. 7

CHAPTER 3. METHODOLOGY .. 12

3.1 Approach .. 12

3.1.1 Identifying a list of prevalent security standards 13

3.1.2 Text Processing Module .. 15

3.1.2.1 LAP ... 18

3.1.2.1.1 Malt Parser .. 19

3.1.2.1.2 OpenNLP ... 19

3.1.2.1.3 TreeTagger .. 20

3.1.2.2 EDA .. 20

3.1.2.2.1 Tree Edit Distance Algorithm .. 21

3.1.2.2.2 Edit Distance Algorithm with Particle Swarm Optimization (PSO) 21

3.1.2.2.3 Maximum Entropy Classification Algorithm 22

3.1.3 Classifying Operators Using a Neural Network ... 23

v

Page

3.1.3.1 Defining Operators .. 24

3.1.3.1.1 Complete ... 24

3.1.3.1.2 Ambiguous .. 25

3.1.3.1.3 Missing .. 25

3.2 Implementation .. 26

3.2.1 Textual Entailment Implementation ... 26

3.2.1.1 Pre-Processing ... 26

3.2.1.2 EOP processing .. 27

3.2.1.3 Post-Processing ... 27

3.2.1.4 Annotations ... 28

3.2.2 Neural Network Implementation ... 29

3.2.2.1 Necessity of Pattern Detection ... 29

3.2.2.1.1 Pre-Processing ... 30

3.2.2.1.2 Model Creation ... 31

3.2.2.1.3 Model Training .. 34

3.2.2.1.4 NN Model Predictions, Statement to Statement level 36

3.2.2.1.5 Post-Processing ... 36

3.2.2.2 Model Evaluation .. 38

3.2.3 End-to-end Demonstration of the Project Two Implementation 41

CHAPTER 4. RESULTS AND DISCUSSION .. 53

4.1 Classification Report ... 53

4.2 Completeness Matrix .. 58

CHAPTER 5. CONCLUSION AND FUTURE WORK ... 64

REFERENCES .. 66

PUBLICATIONS ... 70

vi

LIST OF TABLES

Table .. Page

Table 3.1 Configurations Utilized .. 28

Table 3.2 Null Model Evaluation by Average F-score ... 39

Table 3.3 Comparing the Null and NN Trained Models .. 40

Table 3.4 Entailment Report One ... 42

Table 3.5 Entailment Report Nineteen ... 45

Table 3.6 Formatted Data and Target ... 49

Table 3.7 Classification Report for Operator Predictions ... 50

Table 3.8 Classification Report of Standard Statement One .. 50

Table 3.9 Classification Report of Statement Nineteen ... 51

Table 3.10 Standard Statement Actual and Predicted Classifications 51

Table 3.11 Overall Classification Report of Nineteen Standard Statements 52

Table 4.1 Project One Classification Report ... 54

Table 4.2 Project Two Classification Report ... 54

Table 4.3 Project Three Classification Report ... 54

Table 4.4 Project Four Classification Report ... 54

Table 4.5 Project Five Classification Report .. 54

Table 4.6 Project Six Classification Report .. 54

vii

Table .. Page

Table 4.7 Project Seven Classification Report .. 55

Table 4.8 Project Eight Classification Report .. 55

Table 4.9 Project Ten Classification Report .. 55

Table 4.10 Project Twelve Classification Report ... 55

Table 4.11 Project Thirteen Classification Report .. 55

Table 4.12 Project Fourteen Classification Report ... 55

Table 4.13 Project Fifteen Classification Report ... 56

Table 4.14 Evaluation of the Best Configuration Option .. 57

Table 4.15 Completeness Matrix of Configuration One ... 58

Table 4.16 Completeness Matrix of Configuration Two ... 59

Table 4.17 Completeness Matrix of Configuration Three .. 59

Table 4.18 Completeness Matrix of Configuration Four .. 60

Table 4.19 Completeness Matrix of Configuration Five ... 60

Table 4.20 Completeness Matrix of Configuration Six ... 61

Table 4.21 Completeness Matrix of Configuration Seven .. 61

Table 4.22 Completeness Matrix of Configuration Eight .. 62

Table 4.23 Completeness Matrix of Configuration Nine .. 62

Table 4.24 Completeness Matrix of All Configurations .. 63

viii

LIST OF FIGURES

Figure .. Page

Figure 1.1 Cost of Quality.. 2

Figure 3.1 End-to-End Process in Analyzing the Security Features 12

Figure 3.2 EOP Architecture .. 17

Figure 3.3 Linguistics analyzing pipeline ... 18

Figure 3.4 Part-Of-Speech Tagging ... 19

Figure 3.5 Entailment visualization of an H and T pair ... 20

Figure 3.6 Neural Network Project Set up .. 31

Figure 3.7 Model layers with 12 input features and 3 output classes 32

Figure 3.8 Model Compilation .. 34

Figure 3.9 Model Training ... 35

Figure 3.10 Algorithm for classifying complete, ambiguous and missing 37

Figure 4.1 Visualization of the Best Entailment Configuration ... 57

ix

ABSTRACT

Hayrapetian, Allenoush. M.S., Purdue University, December 2016. Analyzing and
Evaluating Security Features in Software Requirements. Major Professor: Dr. Rajeev Raje.

Software requirements, for complex projects, often contain specifications of non-

functional attributes (e.g., security-related features). The process of analyzing such

requirements for standards compliance is laborious and error prone. Due to the

inherent free-flowing nature of software requirements, it is tempting to apply Natural

Language Processing (NLP) and Machine Learning (ML) based techniques for analyzing

these documents. In this thesis, we propose a novel semi-automatic methodology that

assesses the security requirements of the software system with respect to completeness

and ambiguity, creating a bridge between the requirements documents and being in

compliance.

Security standards, e.g., those introduced by the ISO and OWASP, are compared against

annotated software project documents for textual entailment relationships (NLP), and

the results are used to train a neural network model (ML) for classifying security-based

requirements. Hence, this approach aims to identify the appropriate structures that

underlie software requirements documents. Once such structures are formalized and

empirically validated, they will provide guidelines to software organizations for

x

generating comprehensive and unambiguous requirements specification documents as

related to security-oriented features. The proposed solution will assist organizations

during the early phases of developing secure software and reduce overall development

effort and costs.

1

CHAPTER 1. INTRODUCTION

1. Motivation

A successful realization of large, complex, and software-intensive systems requires the

usage of best practices during the entire software life-cycle, including the initial phase of

requirements analysis.

Among non-functional requirements of software which identify the quality of software,

security is one of the most important features. Complete and unambiguous security

requirements will result in high quality software with minimum security vulnerabilities.

 Identifying the level of security features to be considered in the requirements analysis

phase of software has four major benefits.

First, identifying the completeness level of security requirements before deploying the

project results in the reduction of defects. Determining the adequacy of security

requirements which an organization can perform manually or through some automated

process, provides a fundamental basis for estimating costs, defining the scope of the

project, constructing the design and testing specifications, and helping understand the

possible consequences of either a successful or unsuccessful deployment. As a result,

the quality of the requirements gathering phase is related to the success of the software

project. If the requirements are ambiguous, it will result in more software defects.

2

In order to ensure that the requirements are complete, the process for gathering both

business and technical requirements needs to be approached in that respective order

and carried out methodically (Javed, Maqsood, & Durrani, 2004).

Secondly, it results in the early discovery of errors. The earlier the software

vulnerabilities (e.g., incompleteness) are discovered in the life cycle of a project, the

earlier they can be corrected and thus, the costs are decreased in future phases.

The below graph (Ambler, n.d.; Karg & Beckhaus, 2008) clearly demonstrates the cost

associated with creating poor quality software, and the sooner it is discovered, the less

costly it will be to change it.

Figure 1.1 Cost of Quality

Thirdly, assessing software requirements against specifically defined security standards,

such as security standards introduced by the International Organization for

Standardization (ISO) and the Open Web Application Security Project (OWASP), helps in

3

generating guidelines for the future creation of requirements, and therefore, results in

standardization.

Finally, this work will not only be beneficial for the software providers, but also for those

who have a vested interest in the development and the outcome of project (i.e.

stakeholders) who may not have enough technical knowledge about the security risks

involved in software, therefore enabling them to identify and request the security

features that they are looking for. Stakeholders may have a general idea about the risks

involved in software but not be familiar enough with the specifics of security features

that a developer could take and implement. For example, they would not want

unauthorized access to their software, but they may not know about the brute force

tactics which may enable adversaries to access their system and the ways to prevent

such access. Therefore, standards such as OWASP and ISO should be considered in

order to define all of the features that may be involved in security-related aspects of a

software system (Malhotra, Chug, Hayrapetian, & Raje, 2016).

These benefits do emphasize the need for a formal technique to analyze and evaluate

security requirements. Rojas and Sliesarieva (2010) indicate that the desirable qualities

of software requirements are accuracy, verifiability, and unambiguity.

Accordingly, this thesis aims to identify the degree of incompleteness and ambiguity of

security requirements, creating a bridge between the requirements and being in

compliance with the security standards before moving to the next phase of software

development.

4

1.1 Aim of Work

The goal of this thesis is to analyze the set of security requirements for any given

software project and to provide feedback about its completeness and inherent

ambiguity when evaluated with respect to a given security standard. Complex, and

often distributed, projects present a myriad of challenges to stakeholders, such as the

proper discovery and utilization of domain experts, designers, developers, testers, and

users. The process of analyzing these requirements is laborious and requires a large

amount of manual intervention and hence, is error prone. Due to the inherent free-

flowing nature of software requirements, it is tempting to apply NLP-based techniques

for achieving the necessary analysis.

In this thesis, a semi-automatic method is devised that can assess the completeness and

ambiguity of software documents with respect to certain security features. Security

standards introduced by the ISO and OWASP along with manually annotated project

requirements documents, are used to construct a model using NLP-based and machine

learning (ML) techniques. This method is used to analyze the level of completeness of

the given security requirements document and thus, to identify its vulnerability with

respect to certain security features at an earlier phase of software development.

The proposed approach identifies the appropriate structures that underlie software

requirements documents. Once such structures are formalized and empirically validated,

they will help various organizations to create guidelines for generating comprehensive

and unambiguous requirements documents. Regardless of the software methodology

(e.g., Agile or Waterfall) being used by organizations, this method for analyzing security

5

features in requirements documents can be beneficial to them as it will allow a

continuous analysis and enhance security requirements in their software projects.

Hence, the results of this thesis can assist organizations during the early phases of

developing secure software, and thereby, reduce overall development costs, and result

in secure software projects (Raje & Malhotra, 2015).

In summary, the goals of this thesis are as follows:

• To compile a gold standard for software security requirements documents

• To analyze software security requirements documents against a gold standard

for semantic relationships

• To provide feedback about the completeness and ambiguity of a software

security requirements document with respect to the gold standard

This thesis makes three main contributions: i) a generalized architecture for semantic

analysis, ii) a compiled software security gold standard, iii) an algorithm for interpreting

semantic classification with respect to the completeness of a given security

requirements document.

First, the generalized architecture devised in this thesis provides the benefit of

extendibility both within and outside of the given domain. The current features of this

thesis include assessing the completeness and ambiguity of a given software

requirements document with respect to security, however, it could also be expanded to

include contradictions or inconsistency, for example. In addition to assessing security

features, other features can be added as well, such as usability and maintainability. The

6

core components of the system can be reused in any other domain to accomplish similar

goals in determining the semantic relationships between statements.

Secondly, a gold standard was developed through gathering data from ISO, OWASP, and

PCI related to security requirements. This crafted standard document is the basis for all

completeness and ambiguity analysis performed on software security requirements

documents.

Thirdly, an algorithm was created to decide the final complete, ambiguous, and missing

classifications concerning the completeness of the requirements document with respect

to the standard document. This was performed during the post-processing of the NLP

and ML resulting data through a higher level of semantic interpretation.

1.2 Outline

In chapter two, related work within similar fields and approaches is described. In

chapter three, the methodology used to solve the challenge of analyzing software

requirements is explained. In chapter four, the results of using different algorithms and

approaches are discussed, and finally, in the last chapter, the conclusion and future

work can be found.

7

CHAPTER 2. LITERATURE REVIEW

2.1 Related Work

Automation of requirements engineering has been used in many applications, such as

within industrial software system, aerospace systems, and embedded systems. An

adequate software requirements analysis from the inception of any project is performed

by those with a vested interest (e.g. project manager, developer, testing engineer, etc.)

which include requirements definition, specification, architecture, design and synthesis

of software requirements for the development projects. Wilson et al. (1997) have

created an automated tool, called ARM, which specifically searches a software related

document based on quality indicators such as weak phrases. The reports produced by

ARM are used to identify specification statements and structural areas of the

requirements specification document. The tool does not attempt to assess the

correctness of the requirements specified, instead it assesses the structure of the

requirements document and individual specification statements. Particularly, the

vocabulary and vernacular used to state the requirements is assessed by ARM. Gnesi et

al. (2005) have developed a tool for the lexical and syntactic analyses of requirements

documents and have named it as the Quality Analyzer for Requirements Specification

(QuARS). It detects potential linguistic defects that can cause ambiguity in the later

8

phases of software development. Since QuARS is limited to the defect identification and

readability analysis, further amendments were made to the QuARS and an enhanced

version ‘QuARS Express’ was released in one of the research studies performed by

Bucchiarone et al. (2008). Many studies were found on classifying non-functional

requirements using information retrieval techniques. Cleland-Huang et al. (2007; 2006)

present a technique for automatically classifying non-functional requirements that are

related to attributes such as performance, usability, scalability, and security. The results

are evaluated on 30 requirements specifications developed by M.S. students as part of

their term projects. The approach is also validated on an industrial data set. The

outcome of this research is simply separating each software requirement into one of

twelve given non-functional requirements categories. Similarly, several researchers have

described automated classification approaches for predicting categories of software

requirements (Casamayor, Godoy, & Campo, 2010; Doerr, Kerkow, Koenig, Olsson, &

Suzuki, 2005; Kassab, Daneva, & and Ormandjieva, 2007). In (Takahashi, et al., 2014),

the authors provide the classification of security requirements based on multiple

dimensions such as function and risk. The purpose of the study is to help users to

identify and select the desired security requirements.

Casamayor et al. (2010) created a semi-supervised learning approach for the

identification of non-functional requirements and exploited the much needed feedback

from users to enhance the performance of the classifier, which is primarily based on a

reduced set of categorized requirements. Doerr et al. (2005) created an experience-

based systematic method to analyze non-functional requirements in order to capture

9

the important quality aspects and further used them as guidance during the

requirements elicitation process. In one of the studies conducted by Kassab et al. (2007),

an attempt was made to reduce the amount of uncertainty involved in non-functional

requirements.

MacDonell et al. (2005) also state the fact that since a systems analyst of specification

documents or customer requirements can be limited to his or her own knowledge,

certain aspects can be missed. Formal language can help to remove some elements of

ambiguity from the process since they use explicit syntax and semantics that define a

set of relations and objects. Therefore, they introduced a prototype toolset that assists

the systems analyst or the software engineer to select and verify terms relevant to a

project. The architecture of this autonomous requirements specification processing

system consists of NLP tools and a term management system.

The NLP tools are responsible for tokenizing and parsing each sentence to extract all

unique nouns. The term management system filters out unimportant terms. It then

classifies the remaining terms into functional categories, entities, or attributes, and

inserts the objects of interest into a project knowledgebase.

There are three advantages to this system. Firstly, it checks the syntax so that it finds

certain grammar errors. Secondly, it contributes to the knowledgebase by adding some

keywords. Thirdly, it connects the requirements phase to the design phase, so that in

the latter phase some requirements will not be missed.

There are four limitations to this system. Firstly, it is unable to disambiguate syntactic

parse trees, and it does not consider some of the nested terms. Secondly, it lacks

10

semantic analysis. Thirdly, it is semi-automatic, since it relies on a human to decide on

useful words. Fourthly, it is limited to only translating key words of requirements’ nouns

to a function, entity, or attribute in the knowledgebase.

Only one study performed by Takahashi et al. (2014) helped the users to identify and

select the desired security dimensions and additionally provides classification of security

requirements. Their approach attempts to maintain a balance between security and

usability by suggesting different security requirements to the user and generating the

software requirements based on the user’s selections. While convenient for users, this

design confines them to a limited questionnaire of suggested and available features,

rather than having the freedom to choose features outside of that list.

This literature review of related work demonstrates a range of approaches to the aim of

work as stated in this thesis. Some approaches use NLP, while others do not. Certain

approaches only classify the security related features within a software requirements

document but do nothing further. Yet others identify the completeness and ambiguity

of the requirements document, similar to the work in this thesis. However, none of the

approaches are making comparisons to a standard, e.g., for analyzing the completeness

or ambiguity of the requirements document. Furthermore, this thesis provides a

general architecture that can be expanded for both non-functional requirements (from

security to usability or maintainability) as well as operators (from completeness and

ambiguity to contradictions and inconsistency). In this thesis, we are advocating a semi-

automatic method that can assess the completeness, incompleteness, and ambiguity in

11

the security requirements of software systems. This unique methodology will be

discussed in the next section.

12

CHAPTER 3. METHODOLOGY

3.1 Approach

In order to analyze software requirements for their completeness and ambiguity, NLP,

ML, and Neural Network techniques have been utilized.

 Figure 3.1 End-to-End Process in Analyzing the Security Features

13

Instead of creating a monolithic system that is difficult to develop and maintain, this

thesis takes a modular approach by building a system composed of many components.

As shown in Figure 3.1, the output of one component becomes the input of the next,

making this approach flexible. Component modification and replacement is easily

achieved, giving reusability of each component for a different project or domain.

The approach used in this thesis is divided into three tasks: i) collecting a list of security

standards, ii) processing the text of the standards and test requirements documents,

and iii) defining the percentage of completeness or ambiguity of these test documents

with respect to these standards. Below we describe all these tasks in detail.

3.1.1 Identifying a list of prevalent security standards

Different organizations have always attempted to create a catalog for various software

standardizations, including security features. A few of these available catalogs have

been analyzed to be used as a base to create gold standards (standard security

requirements) for this thesis. The catalog used in this thesis are:

• International Organization for Standardization (ISO/IEC 27001:2005, ISO/IEC 13335-

1:2004, ISO/IEC 15408-1:2009). Each catalog contains more than sixty pages which

are designed specifically with the purpose of evaluating security properties of IT

products (Standards, 2015; ISO, 2015). The security specifications for software

applications introduced in these catalogs include features such as authentication,

authorization, access control, data integrity, and encryption.

14

• OWASP, the Open Web Application Security Project, is also a valuable resource

which suggests different security features and the levels of security that should be

considered in software development (OWASP, 2015). For example, the OWASP

application security requirements document draft is a source defining the

authentication and authorization requirements necessary for secure software

systems (Fisher, 2007).

• The Payment Card Industry (PCI) data security standard (PCI Security Standards

Council LLC, 2010) and other publicly available data sets.

Each of these resources contain a list of standards that organizations should establish,

implement, and maintain in order to secure their physical and intellectual properties. In

this thesis, all of these resources have been reviewed and a sample set relevant to the

software development security specification has been extracted.

As mentioned above, the standard data from which all the security standards have been

formed have been collected from ISO, OWASP, and PCI. Four examples of such standard

statements include (Standards, 2015):

1) “There shall be a formal user registration and de-registration procedure in place for

granting and revoking access to all information systems and services.”

2) “The allocation and use of privileges shall be restricted and controlled.”

3) “The allocation of passwords shall be controlled through a formal management

process.”

15

4) “Management shall review users’ access rights at regular intervals using a formal

process.”

For the purpose of this thesis, software requirements documents of stakeholders are

required. The 15 software requirements documents associated with the 15 software

projects used in study of Cleland-Huang et al. (Automated Detection and Classification

of Quality Requirements, August, 2007) have been used in this thesis as test documents.

Prior to their use in this thesis, the sentences containing security-related features were

extracted, reducing the overall size of total sentences for each project document. These

security features are then analyzed and evaluated against the standards.

Among these 15 projects, project 9 and project 11 do not contain any security related

requirements for further analysis.

As an example, the following are the three test statements for project two, which is one

of the above mentioned 15 projects (Cleland-Huang, Settimi, Xuchang, & Solc, 2006;

Mohamed Farid, 2011):

1) “Only registered realtors shall be able to access the system.”

2) “Every user of the system shall be authenticated and authorized.”

3)”The product shall prevent its data from incorrect data being introduced.”

3.1.2 Text Processing Module

Since both the standards collected and the requirements documents obtained from

stakeholders are free flowing text, Natural Language Processing (NLP) techniques have

been used to first parse the text, and then Machine Learning-based entailment

16

algorithms have been used to compare each test document against the standards,

identifying the relationships, i.e., entailment or non-entailment, between each standard

statement and each test document statement. According to the PASCAL Recognizing

Textual Entailment Challenge (Giampiccolo, Magnini, & Szpektor, 2006), textual

entailment is defined as the one-way relationship between two statements. Given two

text fragments, text (T) and hypothesis (H), entailment occurs when the meaning of H

can be inferred from T (T entails H). For example, the standard statement (T), "There

shall be a formal user registration and de-registration procedure in place for granting

and revoking access to all information systems and services." entails the first statement

in the test document (H) for project two, "Only registered realtors shall be able to access

the system."

This thesis mainly adopts, modifies, and leverages the open source Excitement Open

Platform (EOP) to determine whether two statements are semantically similar (Magnini,

et al., 2014).

The Excitement Open Platform (EOP) is a generic architecture for textual inference. It

consists of the two separate modules of Linguistic Analysis Pipeline (LAP) and the

Entailment Core (EC). This platform also includes knowledge resources containing lexical

and syntactic resources. The input of EOP is a pair of text and hypothesis and the output

is an entailment decision and a confidence score. The two main components of EOP

which make up the NLP module are: Linguistic Analysis Pipeline (LAP) and Entailment

Decision Algorithms (EDAs).

17

This thesis mainly adopts, modifies, and leverages the open source Excitement Open

Platform (EOP) to determine whether two statements are semantically similar (Magnini,

et al., 2014).

Figure 3.2 EOP Architecture

The Excitement Open Platform (EOP) is a generic architecture for textual inference. It

consists of the two separate modules of Linguistic Analysis Pipeline (LAP) and the

Entailment Core (EC). This platform also includes knowledge resources containing lexical

and syntactic resources. The input of EOP is a pair of text and hypothesis and the output

is an entailment decision and a confidence score. The two main components of EOP

18

which make up the NLP module are: Linguistic Analysis Pipeline (LAP) and Entailment

Decision Algorithms (EDAs).

3.1.2.1 LAP

LAP, which is responsible for linguistic annotations, is a collection of annotation

components for NLP, which can range from tokenization to part-of-speech tagging,

chunking, named entity recognition, and parsing.

Three types of LAP that are being used are:

1. Malt Parser

2. OpenNLP Tagger

3. Tree Tagger

Figure 3.3 Linguistics analyzing pipeline

19

3.1.2.1.1 Malt Parser

Malt Parser is a data-driven parser used for unstructured text. It generates a parser from

the given data using treebank data. Malt Parser uses the following nine deterministic

parsing algorithms to build labeled dependency graphs: Nivre arc-eager, Nivre arc-

standard, Covington non-projective, Covington projective, Stack projective, Stack swap-

eager, Stack swap-lazy, Planar (implemented by Carlos Gómez-Rodríguez), 2-planar

(implemented by Carlos Gómez-Rodríguez) (Nivre, 2008). It learns from the historic data

and determines the next parser action (Nivre, et al., 2007).

Figure 3.4 Part-Of-Speech Tagging

3.1.2.1.2 OpenNLP

OpenNLP is an ML-based tool which performs NLP tasks (tokenization, sentence

segmentation, part-of-speech tagging, named entity recognition, chunking, parsing, and

co-reference resolution) on unstructured data (The Apache Software Foundation, 2016).

20

3.1.2.1.3 TreeTagger

TreeTagger is a language independent tool developed by Helmut Schmid (1994) for

annotating text with part-of-speech and lemma information in order to perform

linguistic pipeline processing.

Figure 3.5 Entailment visualization of an H and T pair

3.1.2.2 EDA

Entailment Core (EC) consists of one or more Entailment Decision Algorithms (EDA),

such as the transformation-based EDA, edit distance EDAs, and classification-based

EDAs (Magnini, et al., 2014). It also contains zero or more subroutine components, such

as scoring, annotation, lexical knowledge, and syntactic knowledge components.

After linguistic, syntactic, and semantic analysis, three different algorithms are applied

for the purpose of additional semantic analysis at the statement level to determine

whether the test statement can be inferred from the standard statement.

The three main available entailment algorithms are the following:

21

1. Tree Edit Distance algorithm

2. Edit Distance algorithm with Particle Swarm Optimization (PSO)

3. Maximum Entropy Classification entailment decision algorithm

3.1.2.2.1 Tree Edit Distance Algorithm

In order to perform textual entailment using the Tree Edit Distance algorithm,

(Kouylekov & Magnini, 2005) a dependency tree of T is mapped to a dependency tree of

H. This mapping consists of the three operations insertion, deletion, and substitution,

each associated with a certain cost. Based on the cost of these mapping operations,

which can be a combination of the cost of insertion, deletion, or substitution, the

decision for entailment or non-entailment is made.

The entailment score of a given pair can be calculated as follows (Kouylekov & Magnini,

2005):

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑇𝑇,𝐻𝐻) =
𝑒𝑒𝑑𝑑(𝑇𝑇,𝐻𝐻)
𝑒𝑒𝑒𝑒(,𝐻𝐻)

In this formula, ed (T, H) calculates the edit distance cost and ed (,H) provides the cost

of inserting the tree H.

3.1.2.2.2 Edit Distance Algorithm with Particle Swarm Optimization (PSO)

Similar to the previous algorithm, the Edit Distance PSO algorithm (Mehdad & Magnini,

2009) maps the dependency tree of T to the dependency tree of H using the three

operations of insertion, deletion, and substitution, each associated with a certain cost.

In contrast to the Tree Edit Distance algorithm, this algorithm optimizes these three

22

operations. Based on the data in the training set, this algorithm generates a distance

model consisting of a distance threshold, then updates the configuration files with those

heuristics. In the testing phase, it first calculates the total cost of distance operations. If

the calculated number is less than the initially identified threshold, those two statement

pairs are classified as entailment, and if it is higher than that threshold, it is classified as

non-entailment. Two components can be used with this algorithm: Fixed Weight Token

Edit Distance or Fixed Weight Lemma Edit Distance (Zanoli, 2015).

3.1.2.2.3 Maximum Entropy Classification Algorithm

The Maximum Entropy Classification algorithm (Nigam, Lafferty, & McCallum, 1999) is

based on the general maximum entropy principle. Entropy is a measure of uncertainty in

the data.

The formal definition of entropy is:

If X is a discrete variable, X€x, X~P

The entropy of X is H(X)=-ΣP(X)logP(X)

When there is no information available about the data (equally predictable outcome),

the distribution of data is uniform and the entropy is maximum. Having less entropy

means that the system produces more contextual information, e.g., to be used as

weights for predication.

Labeled training data provides more insight, giving a set of constraints defining the class

distribution, which is no longer uniform. The improved iterative scaling algorithm finds

23

the maximum entropy distribution based on the defined constraints (Nigam, Lafferty, &

McCallum, 1999).

3.1.3 Classifying Operators Using a Neural Network

Once all of the data is annotated, a neural network model will be constructed, trained,

evaluated, and utilized for the given dataset for operator prediction. Operators will be

defined and discussed further in this section.

Neural network computing is analogous with how the human brain and nervous system

work. It is a series of nodes that are connected and are responsible for calculating and

making decisions. It consists of two main layers, input and output, with varied numbers

of hidden layers in between. Nodes in different layers are connected with different

weights. The way these nodes learn is based on backpropagation.

The steps of backpropagation are following:

1- First, random connection weights are initialized on the connection lines, and then for

a set of inputs, the desired outputs are being defined.

2- The network calculates the output based on the given random weight.

3- The difference between the desired and calculated output are measured, which is

referred to as network error. Based on that value, the connection weight is adjusted.

The new weights are being calculated based on the old weight, the node’s input value,

the network error, and the learning rate.

Error in the nodes is being calculated and pushed back to the previous nodes. The node

with the highest error gets the most adjustment (Russell & Norvig, 1995)

24

Wj,i← Wj,i +𝛼𝛼 × aj ×∆Ri

∆Ri=(Ti-Oi)×g’(∑ j,Wj,iaj)

4- After all nodes are calculated, step 3 is continuously repeated with the new

calculated weights and the original input until the result is closer to the desired output.

Keras (Chollet, 2015) is a deep neural network learning library written in Python and has

been utilized here to create a predictive neural network model. The basic model is

based on the sequential model composed of layers, which has been used in this thesis.

Keras is highly modular and easy to expand. It is running on top of TensorFlow or

Theano. In this thesis, Keras is deployed on top of Theano (Chollet, 2015).

3.1.3.1 Defining Operators

Requirements documents are analyzed according to three operators: complete,

ambiguous, and missing. These operators reflect the semantic relationships between

the standard and test document statements, derived from the text processing and

neural network stages.

3.1.3.1.1 Complete

“Property where all necessary parts of an entity have been provided and all relevant

information is covered, at such a level of detail that no further explanation is required at

that level of abstraction” (ISO, 2009).

25

3.1.3.1.2 Ambiguous

A requirement is ambiguous if it has multiple interpretations despite the reader’s

knowledge of the requirement engineering context (Kamsties, Berry, & Paech, 2001).

3.1.3.1.3 Missing

A requirement is missing if it fails to match both complete and ambiguous, meaning that

there is no direct relationship between entities.

Evaluating the standard statement, "There shall be a formal user registration and de-

registration procedure in place for granting and revoking access to all information

systems and services." against the test document for project two containing three test

statements should produce the operator "complete", since the aforementioned

standard statement semantically matches the first test document statement, "Only

registered realtors shall be able to access the system." The following standard

statement should produce the operator "missing", "Management shall review users’

access rights at regular intervals using a formal process.", since it doesn't semantically

match any of the three statements in the test document (Cleland-Huang, Settimi,

Xuchang, & Solc, 2006) :

1) “Only registered realtors shall be able to access the system.”

2) “Every user of the system shall be authenticated and authorized.”

3) “The product shall prevent its data from incorrect data being introduced.”

These three sections (3.1.1, 3.1.2, 3.1.3) have described the proposed approach, namely

starting with a defined set of security standards that will be evaluated against the

26

crafted test documents through text processing (entailment) and operator classification

(neural network) in order to arrive at the determination of how complete a given test

document is with respect to the given standards. Next, the implementation of this

approach will be explained.

3.2 Implementation

3.2.1 Textual Entailment Implementation

In order to evaluate the entailment relationships between the statements in the

standard document (T) and the statements in the test documents (H), a Java application

(referred to as SRA, Security Requirements Analysis, herein) was developed on top of

the EOP API. SRA implements its own modular framework to pre-process the inputs

prior to EOP processing, run EOP processing in serial or parallel, and post-process the

results into formatted report files.

3.2.1.1 Pre-Processing

The main task of pre-processing is transforming the standard and test document into

individual transactions, where each transaction is composed of two statements (one

from the standard document and one from the test document) and the entailment

configuration (one of nine pre-defined packages in SRA built on top of the built-in

configurations in EOP which can be extended) with which the two statements will be

evaluated for an entailment relationship. Every statement within the standard will be

evaluated against every statement within the test document. The combined standard

document (e.g., ISO and OWASP) is composed of 239 statements, and the combined test

27

document (i.e., extracted security statements across 13 different customer

requirements documents) is composed of 81 statements. When these documents are

compared for entailment relationships, there will be 19,359 (239 * 81) unique

statement pair transactions, and when each of these is evaluated using each pre-

defined entailment configuration, nine total, there will be a total of 174,231 (239 * 81 *

9) total transactions.

3.2.1.2 EOP processing

Once the transaction is prepared, it can be processed in serial or parallel with other

transactions (the thread pool dynamically expanding based on the number of available

CPU cores), the preference in practice being for the latter. The transactions are

formatted for consumption by the EOP engine, resulting in an entailment decision (i.e.,

Entailment, or NonEntailment) and associated confidence.

3.2.1.3 Post-Processing

The entailment decision and confidence results from each transaction are collected

along with other data about the transaction, such as the statements involved,

entailment configuration used, processing type (e.g., parallel), and the time duration of

the comparison. All of this collected data is then formatted into CSV reports. Each

report contains the transactions of one (1) standard statement against all other test

document statements (81 total) for all nine (9) entailment configurations, resulting in a

combined total of 729 transactions per report (1 * 81 * 9).

28

Table 3.1 describes all nine entailment configurations used. Most entailment

configurations differentiate themselves from the others based on different sets of

features (e.g., EDA, LAP, or components), however, all nine contain their own trained

models created during the training phase of the learner and applied during the testing

phase.

Table 3.1 Configurations Utilized

 LAP EDA Component
Configuration 1 Open NLP Tagger Max ENT classification

Configuration 2 Malt Parser Max ENT classification
Bag of Lexes Scoring: Verb Ocean
Lexicon Resource
Verb Ocean Lexical Resource

Configuration 3 Malt Parser Max ENT classification Bag of Lexes Scoring:
Wordnet Lexical Resource

Configuration 4 Tree Tagger Max ENT classification
Bag of Lexes Scoring:
Wordnet Lexical Resource
Verb Ocean Lexical Resource

Configuration 5 Malt Parser Max ENT classification

Bag of Lexes Scoring:
Wordnet Lexical Resource
Verb Ocean Lexical Resource
Different Model file than number 6,7

Configuration 6 Malt Parser Max ENT classification

Bag of Lexes Scoring:
Wordnet Lexical Resource
Verb Ocean Lexical Resource
Different Model file than number 5,7

Configuration 7 Malt Parser Max ENT classification

Bag of Lexes Scoring:
Wordnet Lexical Resource
Verb Ocean Lexical Resource
Different Model file than number 5, 6

Configuration 8 Open NLP Tagger Edit Distance Fixed Weight Token Edit Distance
Model based on threshold.

Configuration 9 Open NLP Tagger Edit Distance PSO Fixed Weight Token Edit Distance

3.2.1.4 Annotations

There is an additional empty field created for manually annotating each of the 81

entailment transactions (statement pairs), which can be one of three operators: "c" for

29

complete, "a" for ambiguous, or "n" for none. In total, 19 reports were annotated,

representing 1,539 entailment transaction pairs (81 * 19). These annotations will be

used during the neural network model training phase to create an operator classifier to

predict whether the entailment results for a statement pair signify a "complete",

"ambiguous", or "none" match, with respect to semantic meaning.

3.2.2 Neural Network Implementation

3.2.2.1 Necessity of Pattern Detection

Even when the entailment decision is not accurate in terms of the statements having

the same semantic meaning, which is the case a majority of the time across all

entailment configurations, there may be patterns in the data that can be identified and

used to correctly predict the semantic relationship between statements. For example,

most of the Maximum Entropy Classification configurations result in an entailment

decision of Entailment when most of them are not semantically similar. The statements

that are more similar will have higher confidences, whereas the ones that are not

semantically similar will have lower confidences. These patterns, among others, can be

found and utilized through machine learning.

In order to predict whether a standard statement matches a test document statement

semantically, an operator classifier can be built, in this case, using a neural network (NN)

through the Keras API within Python. The classifier is trained on specific data from the

entailment reports in order to predict whether the entailment transaction results

between two statements (one standard and one test) signifies that the match is

30

"complete", "ambiguous", or "none". In order to accomplish this, i) the data (entailment

results and operator annotations) in the entailment reports needs to be extracted,

formatted, and combined selectively; ii) the NN model needs to be carefully designed

for each layer; and lastly, iii) the model needs to be trained on this extracted data. Then,

the model can be used as a classifier to predict operators.

3.2.2.1.1 Pre-Processing

For the first step, each annotated entailment report is read in and the key information is

extracted, formatted, and combined to form three types of files: data, target, and target

int. The data file consists of the entailment configurations used and entailment decision

and confidence results. The target file contains the operator annotations, represented

in binary: [0,0,1] for "complete"; [0,1,0] for "ambiguous"; and [1,0,0] for "none". The

target int file is the integer representation of the operator annotations, i.e., 2 for

"complete", 1 for "ambiguous", and 0 for "none", where, for example, 2 as "complete"

represents index 2 of the zero-based index binary representation in the target file of

[0,0,1]. The data file is the input to the NN, whereas the target file indicates to the NN

what the output should be, i.e., the classification (e.g., "complete" which is represented

as [0,0,1]). The target int file is used in a later step during model prediction evaluation

and will be further discussed at that point. Each of these three files are generated on a

per entailment configuration and per test document basis, e.g., entailment

configuration 1 and the test document associated with project 1. In all, there are 130

31

sets of these generated files, since there are 10 entailment configuration options (1-9,

and all combined) and 13 test documents.

Figure 3.6 Neural Network Project Set up

3.2.2.1.2 Model Creation

During the second step, a sequential model is formed, layer by layer. Each layer is

Dense (2-dimensional) and describes the number of hidden units called neurons,

random weight initialization, and the activation function. The first layer has the

additional descriptor of the number of input features (vector dimension), which is

represented here by the data file containing the entailment configurations (9 values),

decisions (2 values), and confidences (1 value), resulting in a total of 12 input features

per entailment transaction.

32

 The output of one layer feeds into the input of the next, until the last layer is reached,

which is where the classification takes place. In this research, the output of the last

layer can be one of three representations: 2 for "complete", 1 for "ambiguous", or 0 for

"none". The model being used is shown in Figure 3.7.

Figure 3.7 Model layers with 12 input features and 3 output classes

As shown, the input layer contains 80 neurons, the two hidden layers 40 and 80, and the

last layer as the output of 3. The weight initialization selected is 'he_normal', which is a

Gaussian-based initializer. The input and hidden layers all use the rectified linear unit

(ReLU) activation function, whereas only the output layer uses softmax, which is ideal

for this multiclass classification problems.

These parameters were carefully selected after reviewing the results of a series of tests

involving 19 standard statements against each project test document for entailment

configuration 1. It iterated through every combination of the available initializations,

activations, and optimizers, the latter of which will be used in the next section during

model compilation. Please refer to Table 3.2 for a list of these available options. Each of

the 448 tests evaluated 1,539 statement pairs, comparing the predicted classification

(representing either "complete", "ambiguous", or "none") with the actual classification

as noted by the annotated data. There were five model combinations that performed

the best, each resulting in an average precision of 73%, recall of 79%, and F-score of

33

0.73 with an overall accuracy of 78%. The best layer initializers were related to normal

and uniform weights, which distribute the initial state best in this data through Gaussian

and uniform means. The activation function of the last layer is dependent on the type

of problem being solved, which in this case is a multi-class problem. Softmax is often

the best choice here due to how it ensures the output layer to be properly formatted

Table 3.2 Layer activations, initializations, optimizers

Table 3.3 Top 5 Models During Model Selection

Model
Components
Combination

Layer
Initialization

Last layer
Activation

Compilation
Optimizer Accuracy Precision Recall F-

score

1 he_normal Softmax Adamax 78% 73% 79% 0.73

2 glorot_
normal Softmax Adam 78% 73% 79% 0.73

3 Normal Softmax Nadam 78% 73% 79% 0.73
4 he_uniform Softplus Adamax 78% 73% 79% 0.73

5 glorot_
uniform Sigmoid Adamax 78% 73% 79% 0.73

(i.e., all three class probabilities must add up to 1), enabling a clear distinction between

the best operator match (e.g., complete) and the inferior matches for model prediction

classification. These models are shown in Table 3.3. Since all 5 top models have the

34

same F-score, model combination 1 was arbitrarily selected (he_normal, softmax,

Adamax) and used for model training.

3.2.2.1.3 Model Training

In the third step, the model formed in step two is trained on the data formatted in step

one in order to build a classifier that can reliably predict the relationship between two

statements (e.g., "complete", they are semantically the same) based on their

corresponding entailment transaction (entailment configuration, decision, and

confidence). First, the training process has to be configured by compiling the model

with a loss function, optimizer, and the metrics to observe (see Figure 3.8).

Figure 3.8 Model Compilation

Since there are three possible classifications to predict, this is a multi-classification

problem, and hence, the loss function should be 'categorical_crossentropy'. As

discussed previously, the Adamax optimizer was chosen during model selection based

on a series of tests. Other comparable optimizers are Adam and Nadam. The metric

should be set to 'accuracy' since this is a classification problem.

35

Figure 3.9 Model Training

Then, the training process can begin with the following parameters: data, target, batch

size, number of epochs, validation split, and optionally callbacks (see Figure 3.9). The

data and target files previously created in step one are read into memory and used as

the first two parameters of the model fitting. The next two parameters describe the

number of samples (batch size) of the data to process at a time as well as how many

times to iterate (epochs) over all the data. In this research, a batch size of 300 with

50,000 epochs was found to produce good results, which means that the data will be

processed 300 entries (entailment configuration, decision, and confidence) at a time

until it reaches the end of the data, and that whole process will repeat 50,000 times for

model training. Due to the high processing demands, parallel processing was utilized

within the Theano dependency of Keras, reducing the time to train in half. The

validation split is set to 0.2 (80% set aside as training data and 20% as validation data).

Callbacks allow custom processing to occur at certain stages during the training process,

e.g., to get statistics and other state information during each stage. In this case, the

ModelCheckpoint function was passed as a callback to allow the best model weights to

36

be saved at given stages with respect to the validation accuracy. These weights can

later be reloaded, along with the model architecture that is also stored, in order to

reload the trained model.

3.2.2.1.4 NN Model Predictions, Statement to Statement level

After the model is trained, it can be used to predict the operator that best describes the

semantic relationship between the two given statements (i.e., "complete", "ambiguous",

or "none") based on the input data of the entailment results (entailment configuration,

decision, and confidence). This is done by calling the predict classes method on the

model, i.e., model.predict_classes(inputData, verbose=0). For each standard statement,

the semantic relationship is predicted between itself and each statement in the test

document, creating a list of all relationships between every combination of each

standard statement and each statement within the test document. These individual

statement pair results alone are not useful, however, after they are interpreted at a

higher semantic level, they can be used to evaluate how much of the standard is found

within the given test document.

3.2.2.1.5 Post-Processing

In order to determine whether a given standard statement is satisfied within the test

document, a set of rules need to be applied against the predicted operators for each

test statement associated with the given single standard statement. The result will be a

single classification indicating whether the standard statement is satisfied within the

test document as a whole. As Figure 3.10 shows, in order to classify the standard

37

statement as "complete" overall (meaning it is found in the test document), at least one

predicted "complete" must be found between the standard statement and a test

document statement. In order to classify the standard statement as "ambiguous"

overall, there must not be even one "complete" prediction between the standard

statement and each test document statement, however, there must be at least one

"ambiguous" prediction. In order to classify the standard statement as "missing" (or

"none"), there must only be "none" predictions between the standard statement and

each test document statement.

Figure 3.10 Algorithm for classifying complete, ambiguous and missing

38

After this process is repeated for each standard statement, a list of the predicted

relationships (i.e., operators "complete", "ambiguous", or "missing") between each

standard statement and the test document as a whole is obtained, e.g., "missing"

signifying the standard statement was not found in the test document.

By applying the same set of rules to the manually annotated data, i.e., the operator

actual values, the same type of list of relationships can be obtained between each

standard statement and the test document as a whole, this time with the actual values.

Taking both of these lists of classifications, predicted and actual, the following metrics

can be calculated: accuracy, precision, recall, and F-score. This will be further discussed

in the results section.

3.2.2.2 Model Evaluation

In order to measure the ability of the NN trained model to make correct classification

predictions, the concept of the null model can be applied and evaluated against the

trained models. A null model is an untrained, simple approach to prediction. Since the

prediction is not correlated with the input data, it can be used to represent the worst

case scenario as the performance baseline (Hooper, Couglan, & Mullen, 2008). Since

there are three possible classifications to predict ("missing" as 0, "ambiguous" as 1, and

"complete" as 2), three different null models are used, each representing a different

potential classification. Within each null model, the same classification is hardcoded

and assumed as the prediction.

39

For example, for the first null model (referred to with the nomenclature of "null(0)")

representing the "missing" classification, it predicts that all standard statements are

missing from the respective test document. The second null model, "null(1)", predicts

that all standard statements are ambiguous with respect to the test document, and the

third null model, "null(2)", predicts that all standard statements are complete, satisfying

the standard within the test document. Table 3.2 indicates the null model results for

each project test document based on the average F-score.

Table 3.2 Null Model Evaluation by Average F-score

Null Model Evaluation by average 2
Project null(0) null(1) null(2)

1 0.42 0.15 0.02
2 0.25 0.11 0.15
3 0.15 0.20 0.15
4 0.25 0.25 0.04
5 0.36 0.07 0.11
6 0.25 0.04 0.25
7 0.42 0.11 0.04
8 0.25 0.11 0.15

10 0.70 0.02 0.02
12 0.00 0.85 0.02
13 0.42 0.11 0.04
14 0.56 0.02 0.07
15 0.42 0.11 0.04

 Average 0.34 0.17 0.08

 Minimum 0.00 0.02 0.02
Maximum 0.70 0.85 0.25

As the results show, the null(0) evaluation has the highest average F-score at 0.34,

followed by null(1) at nearly half the F-score, 0.17, and finally, null(2) at nearly half the

40

F-score of null(1), 0.08. This null model F-score distribution reveals the fact that the

data is imbalanced, that is, there are far more 0 or "missing" standard statements from

the test documents, followed by "ambiguous", and lastly, "complete".

Since most of the standard statements are annotated as missing from the respective

test documents, overall, the null(0) evaluation makes the best assumption based on this

imbalance for its predictions.

Table 3.3 Comparing the Null and NN Trained Models

NN Trained Models - comparison with the null model by average F-score

Project Worst
Model

null(0)
delta

Best
Model

null(0)
delta

entailment
configuration 9

null(0)
delta

1 0.51 0.09 0.91 0.49 0.91 0.49
2 0.37 0.12 0.73 0.48 0.73 0.48
3 0.21 0.06 0.63 0.48 0.63 0.48
4 0.35 0.10 0.72 0.47 0.49 0.24
5 0.39 0.03 0.79 0.43 0.65 0.29
6 0.37 0.12 0.69 0.44 0.57 0.32
7 0.51 0.09 0.79 0.37 0.64 0.22
8 0.33 0.08 0.68 0.43 0.52 0.27

10 0.74 0.04 0.94 0.24 0.79 0.09
12 0.79 0.79 0.94 0.94 0.79 0.79
13 0.59 0.17 0.89 0.47 0.84 0.42
14 0.64 0.08 0.84 0.28 0.84 0.28
15 0.46 0.04 0.79 0.37 0.70 0.28

 average 0.48 0.14 0.80 0.45 0.70 0.36

 minimum 0.21 0.03 0.63 0.24 0.49 0.09
maximum 0.79 0.79 0.94 0.94 0.91 0.79

Next, the trained NN models need to be compared against the baseline of the null

model evaluation, taking the best null model results, null(0). Table 3.3 shows this

41

comparison for each project test document using based on the average F-score. The

worst and best models, based on entailment configuration, are each compared against

the best null model, and the resulting delta is shown. Note that all deltas are positive

numbers, signifying that in every case, the models make better predictions in compare

to the null models. On average, the worst models have an F-score 0.14 higher than this

best null model, and the best models have an F-score of 0.45 higher on average. The

model for entailment configuration 9 is also evaluated since it is the best model overall,

and it has on average an F-score of 0.36 higher, indicating its superiority.

These results show that all models (entailment configurations 1 to 9) perform better

than the best baseline null model. The justification for why entailment configuration 9 is

the best will be further discussed in the results section.

3.2.3 End-to-end Demonstration of the Project Two Implementation

To illustrate the end-to-end process, project two with entailment configuration nine will

be explored in detail. Within this thesis test document (Cleland-Huang, Settimi,

Xuchang, & Solc, 2006) are the three following statements:

- “Only registered realtors shall be able to access the system.”

- “Every user of the system shall be authenticated and authorized.”

- “The product shall prevent its data from incorrect data being introduced.”

Using the Security Requirements Analysis Java application built during this research,

these three test statements, along with a subset of security standard statements, are

loaded and processed for entailment relationships. There are 19 reports generated,

42

each representing a standard statement against all test statements, and two of these

reports are shown below in Table 3.4 and Table 3.5.

Table 3.4 Entailment Report One

Standard document (text) statement:

User registration: There shall be a formal user registration and de-registration
procedure in place for granting and revoking access to all information systems and
services.
Classification
annotation Test document (hypothesis) statement

C Only registered realtors shall be able to access the system.

N Every user of the system shall be authenticated and authorized.

N The product shall prevent its data from incorrect data being
introduced.

 Decision Confidence Started on
Durati

on
(sec)

Process
ing

type

En
ta

ilm
en

t C
on

fig
 1

MaxEntClassification
EDA_Base+OpenNLP

_EN.xml
Entailment 0.8753

30079

Mon
2016.07.25

10:38:31
AM EDT

7.673 PARALLEL

MaxEntClassification
EDA_Base+

OpenNLP_EN.xml
Entailment 0.8753

30079

Mon
2016.07.25

10:38:31
AM EDT

7.657 PARALLEL

MaxEntClassification
EDA_Base+

OpenNLP_EN.xml
Entailment 0.6728

25835

Mon
2016.07.25

10:38:39
AM EDT

5.438 PARALLEL

En
ta

ilm
en

t C
on

fig
 2

MaxEntClassification
EDA_Base+VO+TP+
TPPos+TS_EN.xml

Entailment 0.8842
51369

Mon
2016.07.25

10:41:06
AM EDT

24.16 SERIAL

MaxEntClassification
EDA_Base+VO+TP+
TPPos+TS_EN.xml

Entailment 0.8835
53955

Mon
2016.07.25

10:41:31
AM EDT

23.437 SERIAL

MaxEntClassification
EDA_Base+VO+TP+
TPPos+TS_EN.xml

Entailment 0.6735
94449

Mon
2016.07.25

10:41:54
AM EDT

23.642 SERIAL

43

Table 3.4 Continued

 Decision Confidence Started on Duration
(sec)

Process
ing

type
En

ta
ilm

en
t C

on
fig

 3

MaxEntClassification
EDA_Base+WN+TP+
TPPos+TS_EN.xml

Entailment 0.8857
99892

Mon
2016.07.25

11:12:39
AM EDT

30.689 SERIAL

MaxEntClassification
EDA_Base+WN+TP+
TPPos+TS_EN.xml

Entailment 0.8848
06181

Mon
2016.07.25

11:13:09
AM EDT

30.597 SERIAL

MaxEntClassification
EDA_Base+WN+TP+
TPPos+TS_EN.xml

Entailment 0.6723
10192

Mon
2016.07.25
at 11:13:40

AM EDT

30.566 SERIAL

En
ta

ilm
en

t C
on

fig
 4

MaxEntClassification
EDA_Base+WN+

VO_EN.xml
Entailment 0.9384

91431

Mon
2016.07.25

11:53:24
AM EDT

18.943 PARALLEL

MaxEntClassification
EDA_Base+WN+

VO_EN.xml
Entailment 0.9384

91431

Mon
2016.07.25

11:53:24
AM EDT

18.49 PARALLEL

MaxEntClassification
EDA_Base

+WN+VO_EN.xml
Entailment 0.7694

71599

Mon
2016.07.25

11:53:43
AM EDT

16.554 PARALLEL

En
ta

ilm
en

t c
on

fig
 5

MaxEntClassification
EDA_Base+WN+VO+

TP+TPPos_EN.xml
Entailment 0.9309

32216

Mon
2016.07.25

11:59:48
AM EDT

30.218 SERIAL

MaxEntClassification
EDA_Base+WN+VO+

TP+TPPos_EN.xml
Entailment 0.9217

96657

Mon
2016.07.25

12:00:18
PM EDT

30.829 SERIAL

MaxEntClassification
EDA_Base+WN+VO+TP

+TPPos_EN.xml
Entailment 0.7481

22454

Mon
2016.07.25

12:00:49
PM EDT

29.875 SERIAL

 E
nt

ai
lm

en
t C

on
fig

 6

MaxEntClassification
EDA_Base+WN+VO+TP

+TPPos+TS_EN.xml
Entailment 0.8929

24711

Mon
2016.07.25

12:40:41
PM EDT

30.427 SERIAL

MaxEntClassification
EDA_Base+WN+VO+
TP+TPPos+TS_EN.xml

Entailment 0.8908
97041

Mon
2016.07.25

12:41:12
PM EDT

30.464 SERIAL

44

Table 3.4 Continued

 Decision Confidence Started on Duration
(sec)

Process
ing

type
Co

nf
ig

 6

MaxEntClassification
EDA_Base+WN+VO+
TP+TPPos+TS_EN.xml

Entailment 0.6839
44088

Mon
2016.07.25

12:41:42
PM EDT

30.179 SERIAL

En
ta

ilm
en

t C
on

fig
 7

MaxEntClassification
EDA_Base+WN+
VO+TS_EN.xml

Entailment 0.8993
74716

Mon
2016.07.25

01:21:43
PM EDT

30.235 SERIAL

MaxEntClassification
EDA_Base+

WN+VO+TS_EN.xml
Entailment 0.9029

70467

Mon
2016.07.25

01:22:13
PM EDT

30.314 SERIAL

MaxEntClassification
EDA_Base+WN+
VO+TS_EN.xml

Entailment 0.6959
27525

Mon
2016.07.25

01:22:43
PM EDT

30.177 SERIAL

En
ta

ilm
en

t C
on

fig
 8

EditDistance
EDA_EN.xml

Non
Entailment

0.0508
24176

Mon
2016.07.25

02:01:36
PM EDT

7.626 PARALLEL

EditDistance
EDA_EN.xml

Entailment 0.0741
75824

Mon
2016.07.25

02:01:36
PM EDT

7.641 PARALLEL

EditDistance

EDA_EN.xml

Non
Entailment

0.3147
13065

Mon
2016.07.25

02:01:43
PM EDT

5.297 PARALLEL

En
ta

ilm
en

t C
on

fig
 9

EditDistancePSO
EDA

_EN.xml
Entailment 0.0247

71018

Mon
2016.07.25

02:03:33
PM EDT

5.312 PARALLEL

EditDistance
PSOEDA
_EN.xml

Entailment 0.0893
98999

Mon
2016.07.25

02:03:33
PM EDT

5.328 PARALLEL

EditDistance
PSOEDA
_EN.xml

Non
Entailment

0.1232
87472

Mon
2016.07.25

02:03:38
PM EDT

4.377 PARALLEL

45

Table 3.5 Entailment Report Nineteen

Standard document (text) statement:

The risks to the organization’s information and information processing facilities from
business processes involving external parties shall be identified and appropriate
controls implemented before granting access.
Classification
Annotation Test document (hypothesis) statement

A Only registered realtors shall be able to access the system.

C Every user of the system shall be authenticated and authorized.

N The product shall prevent its data from incorrect data being introduced.

 Decision Confidence Started
on

Duration
(sec)

Process
ing

type

En
ta

ilm
en

t C
on

fig
 1

MaxEntClassification
EDA_Base+OpenNLP

_EN.xml
Entailment 0.91151

Sat
2016.07.30

03:34:38
PM EDT

5.564 PARALLEL

MaxEntClassification
EDA_Base+OpenNLP

_EN.xml
Entailment 0.87533

Sat
2016.07.30

03:34:38
PM EDT

5.58 PARALLEL

MaxEntClassification
EDA_Base+OpenNLP

_EN.xml
Entailment 0.80752

Sat
2016.07.30

03:34:43
PM EDT

6.594 PARALLEL

En
ta

ilm
en

t C
on

fig
 2

MaxEntClassification
EDA_Base+VO+TP+
TPPos+TS_EN.xml

Entailment 0.88968
1547

Sat
2016.07.30

at
03:37:24
PM EDT

22.876 SERIAL

MaxEntClassification
EDA_Base+VO+TP+
TPPos+TS_EN.xml

Entailment 0.86819
6797

Sat
2016.07.30

03:37:47
PM EDT

23.439 SERIAL

MaxEntClassification
EDA_Base+VO+TP+
TPPos+TS_EN.xml

Entailment 0.80195
1338

Sat
2016.07.30

03:38:11
PM EDT

21.829 SERIAL

46

Table 3.5 Continued

 Decision Confidence Started on Duration
(sec)

Process
ing

type
En

ta
ilm

en
t C

on
fig

 3

MaxEntClassification
EDA_Base+WN+TP+
TPPos+TS_EN.xml

Entailment 0.90015
3098

Sat
2016.07.30

04:08:42
PM EDT

29.844 SERIAL

MaxEntClassification
EDA_Base+WN+TP+
TPPos+TS_EN.xml

Entailment 0.87949
6338

Sat
2016.07.30

04:09:12
PM EDT

31.094 SERIAL

MaxEntClassification
EDA_Base+WN+TP+
TPPos+TS_EN.xml

Entailment 0.80273
3658

Sat
2016.07.30

04:09:43
PM EDT

31.191 SERIAL

En
ta

ilm
en

t C
on

fig
 4

MaxEntClassification
EDA_Base+

WN+VO_EN.xml
Entailment 0.95265

053

Sat
2016.07.30

04:50:12
PM EDT

22.842 PARALLEL

MaxEntClassification
EDA_Base+WN+

VO_EN.xml
Entailment 0.92741

8327

Sat
2016.07.30

04:50:12
PM EDT

21.619 PARALLEL

MaxEntClassification
EDA_Base+WN

+VO_EN.xml
Entailment 0.89050

0164

Sat
2016.07.30

04:50:33
PM EDT

18.566 PARALLEL

En
ta

ilm
en

t C
on

fig
 5

MaxEntClassification
EDA_Base+WN+VO+

TP+TPPos_EN.xml
Entailment 0.94308

0533

Sat
2016.07.30

04:57:49
PM EDT

31.596 SERIAL

MaxEntClassification
EDA_Base+WN+VO+

TP+TPPos_EN.xml
Entailment 0.93372

8804

Sat
2016.07.30

04:58:21
PM EDT

31.579 SERIAL

MaxEntClassification
EDA_Base+WN+VO+

TP+TPPos_EN.xml
Entailment 0.87806

1297

Sat
2016.07.30

04:58:52
PM EDT

31.658 SERIAL

47

Table 3.5 Continued

 Decision Confidence Started on Duration
(sec)

Process
ing

type
En

ta
ilm

en
t C

on
fig

 6

MaxEntClassification
EDA_Base+WN+VO+TP+

TPPos+TS_EN.xml
Entailment 0.90250

7066

Sat
2016.07.30

05:40:41
PM EDT

31 SERIAL

MaxEntClassification
EDA_Base+WN+VO+
TP+TPPos+TS_EN.xml

Entailment 0.88313
5585

Sat
2016.07.30

05:41:12
PM EDT

31.267 SERIAL

MaxEntClassification
EDA_Base+WN+

VO+TP+TPPos+TS_EN.xml
Entailment 0.81312

2023

Sat
2016.07.30

05:41:44
PM EDT

32.094 SERIAL

En
ta

ilm
en

t C
on

fig
 7

MaxEntClassification
EDA_Base+WN+
VO+TS_EN.xml

Entailment 0.90881
5576

Sat
2016.07.30

06:24:19
PM EDT

33.583 SERIAL

MaxEntClassification
EDA_Base+WN+
VO+TS_EN.xml

Entailment 0.88564
5664

Sat
2016.07.30

06:24:53
PM EDT

31.392 SERIAL

MaxEntClassification
EDA_Base+WN+
VO+TS_EN.xml

Entailment 0.82357
9864

Sat
2016.07.30

06:25:24
PM EDT

30.454 SERIAL

En
ta

ilm
en

t C
on

fig
 8

EditDistance
EDA_EN.xml

Non
Entailment

0.05082
4176

Sat
2016.07.30

07:05:43
PM EDT

8.21 PARALLEL

EditDistance
EDA_EN.xml

Non
Entailment

0.09249
0842

Sat
2016.07.30

07:05:43
PM EDT

8.257 PARALLEL

EditDistance
EDA_EN.xml

Non
Entailment

0.31471
3065

Sat
2016.07.30

07:05:51
PM EDT

5.25 PARALLEL

48

Table 3.5 Continued

 Decision Confidence Started on Duration
(sec)

Process
ing

type
En

ta
ilm

en
t C

on
fig

 9

EditDistancePSO
EDA_EN.xml Entailment 0.0046

33056

Sat 2016.
07.30

07:07:49
PM EDT

5.954 PARALLEL

EditDistancePSO
EDA_EN.xml

Non
Entailment

0.0365
37801

Sat
2016.07.30
at 7:07:49

PM EDT

6.048 PARALLEL

EditDistancePSO
EDA_EN.xml

Non
Entailment

0.1352
35939

Sat 2016.
07.30 at
07:07:55
PM EDT

5.172 PARALLEL

The first header, "Classification annotation", contains one of three manually entered

values: 'c' for complete, 'a' for ambiguous, and 'n' for none. This is the truth statement

regarding the semantic relationship between the standard statement and the test

statement in the given row for the given report. The date, time, and duration were

tracked per statement pair transaction for each entailment configuration, each

processed according to the respective type of parallel or serial. There is a corresponding

entailment decision and confidence for the respective entailment configuration.

Using Python, the report classification annotation (target classification) and entailment

configuration, decision, and confidence (input data) were extracted and formatted by

entailment configuration in order to be used by Keras for NN model selection, training,

and evaluation. Since there are three test statements and 19 standard statements,

there will be 57 statement pair relationships to represent per entailment configuration.

This representation for entailment configuration 9 is shown in Table 3.5 based on the

49

first 10 entries out of the total 57. For the input data header, the "Statement pair"

column represents the first 10 out of 57 statement comparisons, 1-9 represent

Table 3.6 Formatted Data and Target

Input Data Target
Classification

Statement
pair 1 2 3 4 5 6 7 8 9 E N Confidence n a C

1 0 0 0 0 0 0 0 0 1 0 1 0.154143911 0 1 0
2 0 0 0 0 0 0 0 0 1 0 1 0.157211363 0 1 0
3 0 0 0 0 0 0 0 0 1 0 1 0.209575348 1 0 0
4 0 0 0 0 0 0 0 0 1 1 0 0.079863614 0 1 0
5 0 0 0 0 0 0 0 0 1 1 0 0.019611428 0 1 0
6 0 0 0 0 0 0 0 0 1 0 1 0.105512411 1 0 0
7 0 0 0 0 0 0 0 0 1 1 0 0.004633056 0 1 0
8 0 0 0 0 0 0 0 0 1 0 1 0.036537801 0 0 1
9 0 0 0 0 0 0 0 0 1 0 1 0.135235939 1 0 0

10 0 0 0 0 0 0 0 0 1 0 1 0.022651949 1 0 0

entailment configurations 1-9, E is the decision Entailment, and N is the decision

NonEntailment. For the target classification header, ‘n’ is none (index 0), ‘a’ is

ambiguous (index 1), and ‘c’ is complete (index 2). Looking at the first row, represented

by statement pair 1, entailment 9 is used (the '9' column is set with the binary '1') and

resulted in the decision NonEntailment with a confidence of 0.154143911. The target

classification (manually annotated in the report) for this statement pair transaction is

ambiguous (index 1 in [0,1,0]). In a perfect classification system, the complete target

classification would correspond to the entailment decision of Entailment, the none

target classification to NonEntailment, and the ambiguous target classification to a

50

mixture of both entailment decisions. Most of the time, these patterns are true in the

sample set, the exception being for statement pair 8.

In order to discover existing patterns, i.e., the relationship between the entailment

results (input data) and annotations (target classification), this formatted input data and

target classifications are used to train a neural network to predict target classifications

based on the input data. The classification prediction results can be seen in Table 3.6 all

57 statement pairs.

Table 3.7 Classification Report for Operator Predictions

Combined Report Between 19 Standard Statements
and the 3 Test Statement

 Precision Recall F-score Support
None 93% 90% 0.92 42
Ambiguous 89% 100% 0.94 8
Complete 57% 57% 0.57 7

Avg/Total 88% 88% 0.88 57
Accuracy 87.7

Table 3.8 Classification Report of Standard Statement One

Individual Statement Classifications
 Precision Recall F-score Support
None 50% 50% 0.5 2
Complete 0% 0% 0 1

Avg/Total 33% 33% 0.33 3

Accuracy 33.3

51

Table 3.9 Classification Report of Statement Nineteen

Individual Statement Classifications
 Precision Recall F-score Support
None 100% 100% 1 1
Ambiguous 100% 100% 1 1
Complete 100% 100% 1 1

Avg/Total 100% 100% 1 3

Accuracy 100

There are 42 actual none classifications, 8 ambiguous, and 7 complete. The most

difficult classification to predict in this example is "complete". The neural network is

able to correctly identify 57% (recall) of the actual complete relationships, and when it

predicts complete, 57% (precision) of the time it's correct. Table 3.7 and Table 3.8 break

down the results by standard statement, corresponding with entailment reports 1 and

19 respectively. In each, there are three statement pair comparisons, each of the three

test statements against standard statement 1 from entailment report 1. Applying the

Table 3.10 Standard Statement Actual and Predicted Classifications

Standard
Statement

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Report Classification
Actual

2 0 0 0 0 1 2 1 0 0 2 2 2 1 0 0 2 1 1

Report Classification
Predicted

2 2 1 2 0 1 0 1 0 0 2 2 0 1 0 0 2 1 1

algorithm from Figure 3.10 to each of the 19 sets of classifications represented by a

single standard statement against each of the 3 test statements, a list of final

52

classifications can be obtained for both actual and predicted values, as shown in Table

3.9.

Table 3.10 shows the metrics calculated from the list of actual and predicted values.

This classification report shows the ability to correctly classify the relationship between

the standard statements and a given test document, i.e., whether the standard

statements are completely satisfied by the test document, partially, or not at all, that is,

missing.

Table 3.11 Overall Classification Report of Nineteen Standard Statements

Classification Report
 Precision Recall F-score Support
Missing 71% 62% 0.67 8
Ambiguous 83% 100% 0.91 5
Complete 67% 67% 0.67 6

 Avg/Total 73% 74% 0.73 19

 Accuracy 73.70%

53

CHAPTER 4. RESULTS AND DISCUSSION

The methodology adopted in this research leads to two main categories of results

centered around the analysis and presentation of the completeness for the given

software requirements document with respect to security. The first category of results

is classification reports, which demonstrate the ability of the NN model to predict

whether the standard statements are found, or satisfied, within the test document for

the given project using the defined operators (complete, ambiguous, and missing), per

entailment configuration option. The second category of results is the completeness

matrix, which asserts, through model predictions, the percentage of the given project

test document that is complete, ambiguous, and missing.

4.1 Classification Report

As was mentioned in the NN post-processing section, the two lists of classifications,

predicted and actual, representing the completeness of the standard statements in a

single test document, can be used to calculate the following metrics: accuracy, precision,

recall, and F-score. These metrics represent the results of one out of 130 possible

combinations of input test documents (13 projects) and entailment configurations (1

through 9 configuration and all combined) across the static set of standard statements.

Table 4.1 through Table 4.13 show the results of these 130 combinations.

54

Table 4.1 Project One Classification Report
Project 1

Entailment
Configuration Accuracy Precision Recall F-score

1 74% 77% 74% 0.74
2 84% 89% 84% 0.84
3 84% 89% 84% 0.85
4 79% 82% 79% 0.79
5 84% 84% 84% 0.84
6 79% 86% 79% 0.80
7 79% 86% 79% 0.80
8 63% 46% 63% 0.51
9 89% 95% 89% 0.91

all 58% 78% 58% 0.57

Table 4.2 Project Two Classification Report
Project 2

Entailment
Configuration Accuracy Precision Recall F-score

1 42% 42% 42% 0.38
2 58% 67% 58% 0.53
3 47% 48% 47% 0.44
4 53% 54% 53% 0.52
5 68% 76% 68% 0.68
6 68% 70% 68% 0.68
7 53% 54% 53% 0.50
8 47% 61% 47% 0.44
9 74% 73% 74% 0.73

all 42% 45% 42% 0.37

Table 4.3 Project Three Classification Report

Project 3
Entailment

Configuration Accuracy Precision Recall F-score

1 37% 37% 37% 0.37
2 58% 61% 58% 0.57
3 42% 44% 42% 0.42
4 53% 55% 53% 0.52
5 26% 25% 26% 0.25
6 42% 45% 42% 0.39
7 37% 37% 37% 0.36
8 37% 25% 37% 0.29
9 63% 65% 63% 0.63

all 26% 19% 26% 0.21

Table 4.4 Project Four Classification Report

Project 4
Entailment

Configuration Accuracy Precision Recall F-score

1 63% 64% 63% 0.63
2 47% 28% 47% 0.35
3 58% 73% 58% 0.54
4 74% 77% 74% 0.72
5 74% 77% 74% 0.72
6 53% 71% 53% 0.45
7 47% 48% 47% 0.45
8 53% 41% 53% 0.44
9 53% 58% 53% 0.49

all 68% 69% 68% 0.68

Table 4.5 Project Five Classification Report

Project 5
Entailment

Configuration Accuracy Precision Recall F-score

1 58% 56% 58% 0.46
2 79% 82% 79% 0.79
3 63% 53% 63% 0.57
4 63% 78% 63% 0.56
5 58% 45% 58% 0.50
6 58% 47% 58% 0.50
7 47% 35% 47% 0.39
8 58% 57% 58% 0.57
9 68% 75% 68% 0.65

all 47% 52% 47% 0.42

Table 4.6 Project Six Classification Report

Project 6
Entailment

Configuration Accuracy Precision Recall F-score

1 53% 62% 53% 0.44
2 58% 63% 58% 0.51
3 53% 67% 53% 0.52
4 58% 79% 58% 0.53
5 42% 65% 42% 0.37
6 58% 79% 58% 0.53
7 58% 54% 58% 0.50
8 53% 49% 53% 0.49
9 58% 62% 58% 0.57

all 68% 74% 68% 0.69

55

Table 4.7 Project Seven Classification Report
Project 7

Entailment
Configuration Accuracy Precision Recall F-score

1 74% 73% 74% 0.73
2 74% 75% 74% 0.72
3 68% 72% 68% 0.68
4 74% 77% 74% 0.72
5 63% 60% 63% 0.61
6 79% 81% 79% 0.77
7 79% 88% 79% 0.80
8 53% 53% 53% 0.53
9 63% 68% 63% 0.64

all 47% 65% 47% 0.51

Table 4.8 Project Eight Classification Report
Project 8

Entailment
Configuration Accuracy Precision Recall F-score

1 42% 29% 42% 0.33
2 53% 63% 53% 0.48
3 68% 76% 68% 0.68
4 42% 61% 42% 0.41
5 42% 46% 42% 0.42
6 58% 68% 58% 0.57
7 47% 33% 47% 0.34
8 63% 47% 63% 0.54
9 53% 53% 53% 0.52

all 58% 74% 58% 0.54

Table 4.9 Project Ten Classification Report

Project 10
Entailment

Configuration Accuracy Precision Recall F-score

1 84% 79% 84% 0.81
2 84% 94% 84% 0.86
3 84% 76% 84% 0.79
4 95% 95% 95% 0.94
5 84% 94% 84% 0.86
6 79% 82% 79% 0.80
7 95% 95% 95% 0.94
8 79% 70% 79% 0.74
9 79% 79% 79% 0.79

all 74% 92% 74% 0.78

Table 4.10 Project Twelve Classification
Report

Project 12
Entailment

Configuration
Accur

acy Precision Recall F-
score

1 89% 89% 100% 0.94
2 79% 95% 79% 0.85
3 84% 100% 82% 0.90
4 74% 88% 82% 0.85
5 74% 88% 74% 0.80
6 89% 95% 89% 0.91
7 84% 95% 84% 0.88
8 89% 89% 100% 0.94
9 74% 93% 74% 0.79

all 68% 100% 65% 0.79

Table 4.11 Project Thirteen Classification
Report

Project 13
Entailment

Configuration Accuracy Precision Recall F-score

1 68% 77% 68% 0.69
2 68% 81% 68% 0.69
3 58% 66% 58% 0.59
4 84% 84% 84% 0.84
5 68% 73% 68% 0.70
6 74% 72% 74% 0.73
7 89% 91% 89% 0.89
8 79% 85% 79% 0.74
9 84% 84% 84% 0.84

all 58% 76% 58% 0.59

Table 4.12 Project Fourteen Classification
Report

Project 14
Entailment

Configuration Accuracy Precision Recall F-score

1 68% 61% 68% 0.64
2 79% 82% 79% 0.79
3 84% 86% 84% 0.84
4 84% 83% 84% 0.83
5 74% 70% 74% 0.66
6 84% 86% 84% 0.84
7 74% 65% 74% 0.69
8 74% 65% 74% 0.69
9 84% 87% 84% 0.84

all 68% 82% 68% 0.70

56

Table 4.13 Project Fifteen Classification Report

Project 15
Entailment

Configuration Accuracy Precision Recall F-score

1 74% 75% 74% 0.74
2 63% 67% 63% 0.64
3 74% 84% 74% 0.73
4 58% 64% 58% 0.58
5 74% 74% 74% 0.74
6 58% 66% 58% 0.59
7 79% 84% 79% 0.79
8 58% 63% 58% 0.58
9 68% 75% 68% 0.70

all 47% 76% 47% 0.46

In order to determine the best entailment configuration option overall, the F-scores

across each project must be averaged per each entailment configuration option. The

results of this analysis is shown in Table 4.14 and Figure 4.1, which demonstrates that

entailment configuration 9 has the highest average F-score, 0.70, and thus, it is the best

candidate. As mentioned previously, entailment configuration 9 consists of the Open

NLP tagger (LAP), Edit Distance PSO (EDA), and Fixed Weight Token Edit Distance

(component).

It was unexpected to see that the entailment configuration "all" did not have the best

overall F-score since it combines all of the data for entailment configurations 1-9. It

appears, however, that this combination leads to confusion within the neural network,

resulting in lower predictive power. Entailment configuration 9 being the best

candidate for model predictions was also unexpected, given the fact that during the

entailment text processing phase, nearly every statement comparison between the

57

standard document and the test document resulted in the classification of

NonEntailment. However, as demonstrated in these results, while the entailment

decision in EOP was often biased towards missing entailment relationships,

 Table 4.14 Evaluation of the Best Configuration Option

Entailment
Configuration

Average F-
score Across
All Projects

1 0.61
2 0.66
3 0.66
4 0.68
5 0.63
6 0.66
7 0.64
8 0.58
9 0.70

all 0.56

Figure 4.1 Visualization of the Best Entailment Configuration

0.61
0.66 0.66 0.68

0.63 0.66 0.64
0.58

0.70

0.56

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

1 2 3 4 5 6 7 8 9 All

Av
er

ag
e

F-
Sc

or
e

Configuration File Number

Configuration Selection Based On F-Score

58

the combination of entailment decision and confidence result in more clearly delineated

patterns for the neural network to discover and utilize during model prediction.

4.2 Completeness Matrix

From the predicted classification results, within each project classification report

previously demonstrated, the overall completeness of the standard being satisfied

within each combination of test document and entailment configuration can be derived

and represented by each operator category. Table 4.15 through Table 4.24 show these

completeness results.

Table 4.15 Completeness Matrix of Configuration One

Entailment Configuration 1
Test Document Complete Ambiguous Missing

Project 1 15.8% 42.1% 42.1%
Project 2 15.8% 10.5% 73.7%
Project 3 26.3% 36.8% 36.8%
Project 4 15.8% 31.6% 52.6%
Project 5 5.3% 0.0% 94.7%
Project 6 10.5% 0.0% 89.5%
Project 7 10.5% 31.6% 57.9%
Project 8 0.0% 26.3% 73.7%

Project 10 21.1% 0.0% 78.9%
Project 12 0.0% 100.0% 0.0%
Project 13 15.8% 47.4% 36.8%
Project 14 21.1% 0.0% 78.9%
Project 15 21.1% 26.3% 52.6%

59

Table 4.16 Completeness Matrix of Configuration Two

Entailment Configuration 2
Test Document Complete Ambiguous Missing
Project 1 15.8% 42.1% 42.1%
Project 2 10.5% 10.5% 78.9%
Project 3 36.8% 21.1% 42.1%
Project 4 21.1% 0.0% 78.9%
Project 5 15.8% 26.3% 57.9%
Project 6 15.8% 0.0% 84.2%
Project 7 10.5% 15.8% 73.7%
Project 8 21.1% 5.3% 73.7%
Project 10 26.3% 5.3% 68.4%
Project 12 21.1% 68.4% 10.5%
Project 13 26.3% 42.1% 31.6%
Project 14 26.3% 15.8% 57.9%
Project 15 26.3% 26.3% 47.4%

Table 4.17 Completeness Matrix of Configuration Three

Entailment Configuration 3
Test Document Complete Ambiguous Missing
Project 1 21.1% 31.6% 47.4%
Project 2 10.5% 31.6% 57.9%
Project 3 36.8% 21.1% 42.1%
Project 4 21.1% 10.5% 68.4%
Project 5 31.6% 5.3% 63.2%
Project 6 15.8% 15.8% 68.4%
Project 7 5.3% 31.6% 63.2%
Project 8 15.8% 21.1% 63.2%
Project 10 0.0% 5.3% 94.7%
Project 12 26.3% 73.7% 0.0%
Project 13 31.6% 31.6% 36.8%
Project 14 21.1% 15.8% 63.2%
Project 15 26.3% 42.1% 31.6%

60

Table 4.18 Completeness Matrix of Configuration Four

Entailment Configuration 4
Test Document Complete Ambiguous Missing
Project 1 10.5% 42.1% 47.4%
Project 2 42.1% 21.1% 36.8%
Project 3 15.8% 47.4% 36.8%
Project 4 5.3% 47.4% 47.4%
Project 5 5.3% 5.3% 89.5%
Project 6 10.5% 5.3% 84.2%
Project 7 5.3% 31.6% 63.2%
Project 8 5.3% 52.6% 42.1%
Project 10 10.5% 5.3% 84.2%
Project 12 0.0% 84.2% 15.8%
Project 13 15.8% 21.1% 63.2%
Project 14 15.8% 10.5% 73.7%
Project 15 15.8% 47.4% 36.8%

Table 4.19 Completeness Matrix of Configuration Five

Entailment Configuration 5
Test Document Complete Ambiguous Missing
Project 1 10.5% 26.3% 63.2%
Project 2 15.8% 47.4% 36.8%
Project 3 47.4% 21.1% 31.6%
Project 4 5.3% 42.1% 52.6%
Project 5 21.1% 0.0% 78.9%
Project 6 5.3% 31.6% 63.2%
Project 7 26.3% 15.8% 57.9%
Project 8 21.1% 47.4% 31.6%
Project 10 26.3% 5.3% 68.4%
Project 12 10.5% 73.7% 15.8%
Project 13 21.1% 31.6% 47.4%
Project 14 5.3% 0.0% 94.7%
Project 15 15.8% 31.6% 52.6%

61

Table 4.20 Completeness Matrix of Configuration Six

Entailment Configuration 6
Test Document Complete Ambiguous Missing
Project 1 21.1% 36.8% 42.1%
Project 2 21.1% 36.8% 42.1%
Project 3 36.8% 10.5% 52.6%
Project 4 21.1% 5.3% 73.7%
Project 5 15.8% 0.0% 84.2%
Project 6 10.5% 5.3% 84.2%
Project 7 5.3% 26.3% 68.4%
Project 8 10.5% 26.3% 63.2%
Project 10 15.8% 5.3% 78.9%
Project 12 5.3% 89.5% 5.3%
Project 13 21.1% 21.1% 57.9%
Project 14 26.3% 5.3% 68.4%
Project 15 31.6% 31.6% 36.8%

Table 4.21 Completeness Matrix of Configuration Seven

Entailment Configuration 7
Test Document Complete Ambiguous Missing
Project 1 21.1% 36.8% 42.1%
Project 2 10.5% 42.1% 47.4%
Project 3 26.3% 31.6% 42.1%
Project 4 21.1% 21.1% 57.9%
Project 5 15.8% 0.0% 84.2%
Project 6 21.1% 0.0% 78.9%
Project 7 10.5% 47.4% 42.1%
Project 8 0.0% 10.5% 89.5%
Project 10 10.5% 5.3% 84.2%
Project 12 21.1% 73.7% 5.3%
Project 13 21.1% 15.8% 63.2%
Project 14 21.1% 0.0% 78.9%
Project 15 10.5% 42.1% 47.4%

62

Table 4.22 Completeness Matrix of Configuration Eight

Entailment Configuration 8
Test Document Complete Ambiguous Missing
Project 1 5.3% 0.0% 94.7%
Project 2 5.3% 31.6% 63.2%
Project 3 47.4% 5.3% 47.4%
Project 4 0.0% 26.3% 73.7%
Project 5 21.1% 15.8% 63.2%
Project 6 31.6% 5.3% 63.2%
Project 7 15.8% 26.3% 57.9%
Project 8 42.1% 0.0% 57.9%
Project 10 0.0% 10.5% 89.5%
Project 12 0.0% 100.0% 0.0%
Project 13 15.8% 5.3% 78.9%
Project 14 15.8% 0.0% 84.2%
Project 15 26.3% 36.8% 36.8%

Table 4.23 Completeness Matrix of Configuration Nine

Entailment Configuration 9
Test Document Complete Ambiguous Missing
Project 1 21.1% 31.6% 47.4%
Project 2 31.6% 31.6% 36.8%
Project 3 31.6% 47.4% 21.1%
Project 4 5.3% 21.1% 73.7%
Project 5 21.1% 5.3% 73.7%
Project 6 21.1% 21.1% 57.9%
Project 7 10.5% 36.8% 52.6%
Project 8 26.3% 21.1% 52.6%
Project 10 10.5% 10.5% 78.9%
Project 12 31.6% 63.2% 5.3%
Project 13 15.8% 21.1% 63.2%
Project 14 31.6% 5.3% 63.2%
Project 15 26.3% 31.6% 42.1%

63

Table 4.24 Completeness Matrix of All Configurations

Entailment Configuration all
Test Document Complete Ambiguous Missing
Project 1 26.3% 52.6% 21.1%
Project 2 42.1% 47.4% 10.5%
Project 3 57.9% 26.3% 15.8%
Project 4 21.1% 31.6% 47.4%
Project 5 73.7% 0.0% 26.3%
Project 6 57.9% 15.8% 26.3%
Project 7 47.4% 21.1% 31.6%
Project 8 42.1% 47.4% 10.5%
Project 10 36.8% 5.3% 57.9%
Project 12 42.1% 57.9% 0.0%
Project 13 31.6% 42.1% 26.3%
Project 14 42.1% 15.8% 42.1%
Project 15 52.6% 31.6% 15.8%

64

CHAPTER 5. CONCLUSION AND FUTURE WORK

Complete and unambiguous security requirements defined prior to deploying a software

development project will result in the reduction of defects, early discovery of errors,

generation of guidelines for the future creation of requirements, and lastly, enablement

of software providers and stakeholders to identify and request the necessary security

features. These demonstrate the need for a formal technique to analyze and evaluate

security requirements. This research seeks to identify the degree of incompleteness and

ambiguity of security requirements, assisting with security compliance before moving to

the software development phase.

Using NLP and ML-based tools, i.e., textual entailment and neural network modeling, a

given security requirements document can be evaluated against the security standards

in order to determine the level of completeness. In order to determine the best

entailment configuration out of the 10 options, the ability to correctly predict the

completeness (based on the average F-scores across all 13 analyzed projects) was

evaluated for each entailment configuration. The results demonstrate that entailment

configuration 9 has the highest average F-score, 0.70, and thus, it is the best predictor of

completeness.

65

Proposed future work for this research includes adding additional operators such as

contradiction, restricting the standard statements to only those that apply to the given

software project, analyzing additional non-functional software requirements such as

usability and maintainability, and finally, modifying the missing and ambiguous

requirements by receiving appropriate feedback to complete the requirements

specification and transfer it to the next phase of development.

66

REFERENCES

66

REFERENCES

Ambler, S. (n.d.). Examining the Agile Cost of Change Curve. Retrieved 2016, from Ambysoft:
http://www.ambysoft.com/essays/whyAgileWorksFeedback.html.

Bucchiarone, A., Fantechi, A., Gnesi, S. L., & Trentanni, G. (2008). QuARS Express - An automatic
analyzer of natural language requirements. Proceedings of 23rd IEEE/ACM International
Conference on Automated Software Engineering, (pp. 473-474).

Casamayor, A., Godoy, D., & Campo, M. (2010). Identification of non-functional requirements in
textual specifications: A semi-supervised learning approach. Information and Software
Technology 52, (pp. 436-445).

Chollet, F. (2015). Keras. Retrieved 2016, from https://keras.io/.

Cleland-Huang, J., Settimi, R., Xuchang, Z., & Solc, P. (2006). The Detection and Classification of
Non-Functional Requirements with Application to Early Aspects. 14th IEEE International
Requirements Engineering Conference (RE'06). Minneapolis/St. Paul, MN.

Cleland-Huang, J., Settimi, R., Zou, X., & Solc, P. (2007). Automated classification of non-
functional requirements. Requir. Eng. 12 (pp. 103-120).
DOI=http://dx.doi.org/10.1007/s00766-007-0045-1.

Cleland-Huang, J., Settimi, R., Zou, X., & Solc, P. (August, 2007). Automated Detection and
Classification of Quality Requirements. Requirements Engineering Journal, Springer-
Verlag, 36-45.

Doerr, J., Kerkow, D., Koenig, T., Olsson, T., & Suzuki, T. (2005). Non-functional requirements in
industry - Three case studies adopting an experience-based NFR method. 13th IEEE Int.
Conf. on Requirements Engineering.

Fisher, J. (2007, September 10). Owasp Application Security Requirements. Retrieved 2015, from
https://www.owasp.org/index.php/File:OWASP_Application_Security_Requirements_-
_Identification_and_Authorisation_v0.1_(DRAFT).doc.

Giampiccolo, D., Magnini, B., & Szpektor, I. (2006). The Second PASCAL Recognising Textual
Entailment Challenge.

Gnesi, S. F. (2005). An automatic tool for the analysis of natural language requirements.
Leicester: CRL Publishing.

67

Hooper, D., Couglan, J., & Mullen, M. (2008). Structural equation modelling: guidelines for
determining model fit. Electronic Journal of Business Research Methods, 6(1), 53-60.

ISO. (2009). Evaluation, ISO/IEC 15408: Information technology - Security techniques. Retrieved
2015, from http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.
htm.

ISO. (2015, January). ISO/IEC 27001 - Information security management. Retrieved from
International Organization for Standardization:
http://www.iso.org/iso/home/standards/management-standards/iso27001.htm.

Javed, T., Maqsood, M. e., & Durrani, Q. S. (2004, May). A Study to Investigate the Impact of
Requirements Instability on Software Defects. SIGSOFT Softw. Eng. Notes, 29, 1-7.
doi:10.1145/986710.986727.

Kamsties, E., Berry, D. M., & Paech, B. (2001). Detecting ambiguities in requirements documents
using inspections. In Proceedings of the first workshop on inspection in software
engineering (WISE’01), (pp. 68-80).

Karg, L., & Beckhaus, A. (2008). Analysis of software quality cost modeling’s industrial
applicability with focus on defect estimation. IEEE International Conference on Industrial
Engineering and Engineering Management, (pp. 287-291). Singapore.

Kassab, M., Daneva, M., & and Ormandjieva, O. (2007). Early quantitative assessment of non-
functional requirements. University of Twente Report.

Kouylekov, M., & Magnini, B. (2005). Recognizing Textual Entailment with Tree Edit Distance
Algorithms. Trento, Italy.

MacDonell, S., Min, K., & Connor, A. (2005). Autonomous Requirements Specification Processing
Using Natural Language Processing. Proceedings of the 14th International Conference on
Adaptive Systems and Software Engineering (IASSE05), (pp. 266-270).

Magnini, B., Zanoli, R., Dagan, I., Eichler, K., Neumann, G., Noh, T., . . . Levy, O. (2014). The
Excitement Open Platform for Textual Inferences. In ACL (System Demonstrations), (pp.
43-48).

Malhotra, R., Chug, A., Hayrapetian, A., & Raje, R. (2016). Analyzing and evaluating security
features in software requirements. 2016 International Conference on Innovation and
Challenges in Cyber Security (ICICCS-INBUSH) (pp. 26-30). Noida: doi:
10.1109/ICICCS.2016.7542334.

Mehdad, Y., & Magnini, B. (2009). Optimizing Textual Entailment Recognition Using Particle
Swarm Optimization. Proceedings of the 2009 Workshop on Applied Textual Inference
(pp. 36–43). Suntec, Singapore: ACL-IJCNLP.

68

Mohamed Farid, W. (2011). The NORMAP Methodology: Non-functional Requirements
Modeling for Agile Processes. Doctoral dissertation. Retrieved 2015, from
http://nsuworks.nova.edu/gscis_etd/147.

Nigam, K., Lafferty, J., & McCallum, A. (1999). Using Maximum Entropy for Text Classification.
IJCAI-99 Workshop on Machine Learning for Information Filtering, vol 1, (pp. 61–67).
Pittsburgh, PA.

Nivre, J. (2008). Algorithms for Deterministic Incremental Dependency Parsing. Computational
Linguistics (pp. 513-553). vol. 34, no. 4.

Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler, S., . . . Marsi, E. (2007). MaltParser: A
language-independent system for data-driven dependency parsing. Natural Language
Engineering, 13(2) (pp. 95–135). doi: 10.1017/S13513249.

OWASP, ". A. (2015, January). Category:OWASP Application Security Verification Standard
Project. Retrieved from OWASP: https://www.owasp.org/index.php/Main_Page.

PCI Security Standards Council LLC. (2010, Oct). Requirements and Security Assessment
Procedures. Retrieved January 2015, from Payment Card Industry (PCI) Data Security
Standard: https://www.pcisecuritystandards.org/document_library.

Raje, R., & Malhotra, R. (2015, May 27-28). Abstract Catalog. Retrieved June 2015, from S2ERC,
An NSF Industry/University Cooperative Research Center: http://www.serc.net.

Rojas, A., & Sliesarieva, G. (2010). Automated detection of language issues affecting accuracy,
ambiguity and verifiability in software requirements written in natural language.
Proceedings of the NAACL HLT Young Investigators Workshop on Computational
Approach, (pp. 100-108).

Russell, S., & Norvig, P. (1995). Artificial Intelligence A Modern Approach. Englewood Cliffs, New
Jersey : Alan Apt.

Schmid, H. (1994). Probablistic Part-of-Speech Tagging Using Decision Trees. in Proceedings of
International Conference on New Methods in Language Processing. Manchester, UK.

Standards. (2015, January). Retrieved from ISO: http://www.iso.org/iso/home.htm.

Takahashi, T., Kannisto, J., Harju, J., Kanaoka, A., Takano, Y., & Matsuo, S. (2014). Expressing
Security Requirements: Usability of Taxonomy-Based Requirement Identification
Scheme, Services (SERVICES). IEEE World Congress on, (pp. 121-128).

The Apache Software Foundation. (2016). Apache OpenNLP. Retrieved April 2016, from
OpenNLP: https://opennlp.apache.org.

Wilson, W., Rosenberg, L., & Hyatt, L. (1997). Automated analysis of requirement specifications.
Proceedings of the 19th ACM international conference on Software engineering, (pp.
161-171).

69

Zanoli, R. (2015, May). EditDistance. Retrieved April 2016, from Wiki for EOP-1.2.3 release:
https://github.com/hltfbk/EOP-1.2.3/wiki/EditDistance.

PUBLICATIONS

70

PUBLICATIONS

R. Malhotra, A. Chug, A. Hayrapetian and R. Raje, "Analyzing and evaluating security

features in software requirements," 2016 International Conference on Innovation and

Challenges in Cyber Security (ICICCS-INBUSH), Noida, 2016, pp. 26-30.doi:

10.1109/ICICCS.2016.7542334.

A. Mangaonkar, A. Hayrapetian and R. Raje, "Collaborative detection of cyberbullying

behavior in Twitter data," 2015 IEEE International Conference on Electro/Information

Technology (EIT), Dekalb, IL, 2015, pp. 611-616.

doi: 10.1109/EIT.2015.7293405.

	gs-form30-filled
	Thesis-AllenoushH-withoutform30
	CHAPTER 1. INTRODUCTION
	1. Motivation
	1.1 Aim of Work
	1.2 Outline

	CHAPTER 2. LITERATURE REVIEW
	2.1 Related Work

	CHAPTER 3. METHODOLOGY
	3.1 Approach
	3.1.1 Identifying a list of prevalent security standards
	3.1.2 Text Processing Module
	3.1.2.1 LAP
	3.1.2.1.1 Malt Parser
	3.1.2.1.2 OpenNLP
	3.1.2.1.3 TreeTagger

	3.1.2.2 EDA
	3.1.2.2.1 Tree Edit Distance Algorithm
	3.1.2.2.2 Edit Distance Algorithm with Particle Swarm Optimization (PSO)
	3.1.2.2.3 Maximum Entropy Classification Algorithm

	3.1.3 Classifying Operators Using a Neural Network
	3.1.3.1 Defining Operators
	3.1.3.1.1 Complete
	3.1.3.1.2 Ambiguous
	3.1.3.1.3 Missing

	3.2 Implementation
	3.2.1 Textual Entailment Implementation
	3.2.1.1 Pre-Processing
	3.2.1.2 EOP processing
	3.2.1.3 Post-Processing
	3.2.1.4 Annotations

	3.2.2 Neural Network Implementation
	3.2.2.1 Necessity of Pattern Detection
	3.2.2.1.1 Pre-Processing
	3.2.2.1.2 Model Creation
	3.2.2.1.3 Model Training
	3.2.2.1.4 NN Model Predictions, Statement to Statement level
	3.2.2.1.5 Post-Processing

	3.2.2.2 Model Evaluation

	3.2.3 End-to-end Demonstration of the Project Two Implementation

	CHAPTER 4. RESULTS AND DISCUSSION
	4.1 Classification Report
	4.2 Completeness Matrix

	CHAPTER 5. CONCLUSION AND FUTURE WORK

