
Simplicity of Kmeans versus Deepness of Deep
Learning: A Case of Unsupervised Feature Learning

with Limited Data

Murat Dundar∗, Qiang Kou†, Baichuan Zhang∗, Yicheng He∗ and Bartek Rajwa‡
∗Department of Computer and Information Sciences

Indiana University - Purdue University, Indianapolis, IN 46202
Email: dundar@cs.iupui.edu

†Department of Biohealth Informatics
Indiana University - Purdue University, Indianapolis, IN 46202

‡Bindley Bioscience Center
Purdue University, W. Lafayette, IN 47907

Abstract—We study a bio-detection application as a case
study to demonstrate that Kmeans–based unsupervised feature
learning can be a simple yet effective alternative to deep learning
techniques for small data sets with limited intra- as well as
inter-class diversity. We investigate the effect on the classifier
performance of data augmentation as well as feature extraction
with multiple patch sizes and at different image scales. Our data
set includes 1833 images from four different classes of bacteria,
each bacterial culture captured at three different wavelengths
and overall data collected during a three-day period. The limited
number and diversity of images present, potential random effects
across multiple days, and the multi-mode nature of class distribu-
tions pose a challenging setting for representation learning. Using
images collected on the first day for training, on the second day
for validation, and on the third day for testing Kmeans–based
representation learning achieves 97% classification accuracy on
the test data. This compares very favorably to 56% accuracy
achieved by deep learning and 74% accuracy achieved by
handcrafted features. Our results suggest that data augmentation
or dropping connections between units offers little help for deep-
learning algorithms, whereas significant boost can be achieved
by Kmeans–based representation learning by augmenting data
and by concatenating features obtained at multiple patch sizes
or image scales.

I. INTRODUCTION

Deep-learning (DL) algorithms harness large amount of data
to extract features at multiple levels of abstraction by nonlin-
early mapping raw data onto higher-level semantic descriptors
potentially interpretable by human beings. DL algorithms have
recently shown great promise in many benchmark image- and
speech-recognition challenges, outperforming state-of-the-art
techniques by a large margin and attracting tremendous interest
among researchers and practitioners alike.

Although significant effort has been devoted to scale DL
methods by addressing important problems in back propagation
and network initialization so they are applicable for large
data sets, only limited effort has gone into understanding the
potential pitfalls facing DL algorithms. The most important
limitation of DL that is yet to be fully addressed is possible
overfitting and lack of generalizability when the method is used
with limited data. Although randomly dropping connections

between units and/or augmenting data may offer some help,
there is little evidence suggesting that DL algorithms work well
with limited data.

Most object-classification tasks employed as benchmarks
involve natural images (a domain in which DL has proved very
effective), a plethora of which can be found on the web. How-
ever, there are other important imaging domains, for instance in
life sciences, where the amount of data produced is inherently
limited. Unlike natural images, successful classification of these
data requires identification of often complex yet subtle image
descriptors that may pose a serious challenge even for domain
experts.

In this study, we use a real biological data set representing
a classification task from the field of label-free biodetec-
tion/biosurveillance. The complete set contains only 1833
images. We compare Kmeans–based representation learning
against DL algorithms and handcrafted feature-extraction
techniques currently employed for these types of data. We study
the effect of patch size, image scale, number of descriptors, and
data augmentation on classifier performance. The results suggest
that when faced with the problem of limited data, Kmeans–
based unsupervised feature learning is a powerful alternative to
deep-learning algorithms as well as to conventional techniques
that rely on handcrafted features.

II. RELATED WORK

The term “unsupervised feature learning” describes the
task of utilizing unlabeled data to construct representations of
samples as feature vectors. It has wide applicability in computer
vision, speech recognition and audio classification, and natural-
language processing. Methodologies in this area can be broadly
categorized into single-layer and deep architectures.

Owing to speed and scalability the Kmeans–based approach
representing a single-layer unsupervised feature-learning frame-
work is a popular choice in image-classification [1], [2], [3],
[4] and object-recognition [5] tasks. Like Kmeans, sparse
coding [6] has also attracted a great deal of interest as a
single-layer unsupervised feature-learning method. Although

This is the author's manuscript of the article published in final edited form as:
Dundar, M., Kou, Q., Zhang, B., He, Y., & Rajwa, B. (2015). Simplicity of Kmeans Versus Deepness of Deep Learning: A Case of Unsupervised
Feature Learning with Limited Data. In 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA) (pp. 883–888).
https://doi.org/10.1109/ICMLA.2015.78

https://doi.org/10.1109/ICMLA.2015.78

sparse coding is computationally more expensive than Kmeans,
it can be more effective with higher-dimensional data.

DL algorithms that stack layers of features to build deep
architectures have been successfully employed for unsupervised
feature learning. The major drawbacks of these methods are
their complexity and the computational expense involved in
training and tuning. Many of these algorithms, in addition to
determining the network architecture, require adjustment of a
large number of parameters such as learning rate, momentum,
sparsity penalties, and weight decay. Finding the right combi-
nation of these parameters, especially when data are limited, is
not trivial and could be considered more of an art than science.

In this study we adopt the Kmeans–based representation-
learning framework discussed in [1] and characterize the appli-
cability of this approach to biological images by investigating
the effect of patch size, number of descriptors, image scale,
and data augmentation.

III. BACTERIA COLONY CLASSIFICATION AS A CASE
STUDY

The majority of tools for pathogen detection and classifica-
tion are based on physiological properties or genetic markers of
microorganisms. However, concerns about biosecurity have led
to an enormous interest among the scientific community and
government agencies in devising truly reagentless biosensors
that would operate utilizing the intrinsic properties of samples
without the need for sensing and reporting biochemistry. The
phenotypic biophysical sensors are closest to realizing this
goal. Whether they are based on spectroscopy or measurement
of elastic light scattering, the phenotypic methods rely on a
library of signatures/fingerprints generated for different bacterial
classes to subsequently detect and classify future samples of
unknown nature.

Our study uses laser-light forward-scatter patterns formed
by bacterial colonies and represented as gray-level images. The
data from four different genera of bacteria (E. coli, Listeria,
Salmonella, and Staphylococcus) are collected by the BARDOT
(BActeria Rapid Detection using Optical scattering Technology)
system [7]. This instrument employs lasers that illuminate
the centers of individual bacteria colonies at three different
wavelengths to create forward-scatter signatures dependent on
the colony structure and subsequently analyzed for classification.
For each colony three scatter patterns, one for each wavelength,
were captured. To ensure that the classification system is robust
to daily variations in experimental settings (amount of light
present, growth rate of colonies, agar media used, etc.) the
images were collected during a 3-day period. A total of 1833
bitmaps of size 1280 by 1024 were acquired (600/day and
450/genus) for analysis. Apart from containing a relatively
low number of images with limited diversity, this data set
is challenging to analyze by automated techniques for three
other reasons. First, owing to the three different wavelengths
at which each sample is interrogated, the classes exhibit
multi-modal distributions. Second, random effects due to daily
variations in experimental settings can be significant. Third,
unlike standard object-detection problems involving natural
images, the descriptive features across different bacteria classes
can be subtle and not easy to define. Sample images from
four bacteria classes captured at three different wavelengths
are shown in Figure 1.

IV. METHODS

A. Unsupervised Feature Learning by Kmeans

In this section we discuss the three main stages involved
in Kmeans–based representation learning. Before these stages
are executed, the image scale (s), the number of descriptors
(k) and the patch size (w) must be designated. The first stage
involves running the Kmeans algorithm with the image patches
obtained from all available images to learn image descriptors.
The centers of the k clusters obtained are treated as the k
image descriptors. For a data set with n images with each
image having r rows and c columns, and for a patch size of w,
there will be n(r−w+1)(c−w+1) many patches for running
the Kmeans algorithm. For larger data sets this number can
grow rapidly, so subsampling may be required. Normalization of
image patches plays a key role in the overall results. Although
the work in [1] recommends whitening for natural images, we
found that standardization, i.e., pre-processing each patch for
zero mean and unit variance, is a more effective approach for
these bacteria data sets.

The second stage involves obtaining image representations
for each scatter pattern in the data set by feature encoding.
For each patch in the image, the Euclidean distance from the
patch to each of the learned centroids is computed. Based on
these distances the patch is either hard-assigned to the closest
centroid or soft-assigned to multiple closer centroids. Although
soft assignment can be done in multiple ways as discussed in
[4] we used the triangle encoding technique proposed in [1]
for its effectiveness and speed. Once assignment vectors for all
patches in an image are obtained, an image-level representation
vector for an image is obtained, either by mean- or sum-pooling
over all assignment vectors. Throughout our experiments we
used sum pooling. During feature encoding the patches with
all pixels having the same value, i.e., patches with standard
deviation equal to zero, are ignored.

The third stage involves classification in which the feature
vectors obtained in the second stage are used. We split our
data set into three sets according to the day on which the
data set was collected. All images collected on day one were
used for training (606 images), on day two for validation (612
images), and on day three for final testing (615 images). For
classification we used the L2-regularized L2-loss linear support
vector machine available in the Liblinear package [8]. Each
feature in the feature matrix is preprocessed to have zero mean
and unit variance. The main steps involved in K means–based
representation learning used in this study are outlined below.

1) Set image scale s, patch size w, and number of
descriptors k.

2) For each image in the data set extract and normalize
patches, and reshape them into w2 by 1 vectors. Pool
together all patch vectors, subsample if needed, and
run the Kmeans algorithm to cluster the data into k
clusters.

3) For each patch in each image use triangle encoding
to obtain k−dimensional assignment vectors and sum-
pool assignment vectors belonging to the same image
to obtain feature vectors representing images.

4) Train a classifier using the image subset collected
on day one, tune classifier parameters to optimize
accuracy on the image subset collected on day two,

(a) E.coli 405nm (b) E.coli 635nm (c) E.coli 904nm (d) Listeria 405nm (e) Listeria 635nm (f) Listeria 904nm

(g) Salmo. 405nm (h) Salmo. 635nm (i) Salmo. 904nm (j) Staph. 405nm (k) Staph. 635nm (l) Staph. 904nm

Fig. 1. Sample images from four bacteria classes captured at three different wavelengths.

and perform a one-shot testing on the image subset
collected on day three; report classification accuracies
on day-two and -three image subsets as validation and
test accuracies, respectively.

B. Unsupervised Feature Learning by Deep Architectures

In this section we will briefly review three deep-learning
algorithms used in our experiments for comparison: convolu-
tional neural nets, deep neural nets with dropout, and stacked
denoising autoencoders.

1) Convolutional neural nets: Convolutional neural net-
works (CNNs) are ideally suited for recognizing visual patterns
directly from pixel data [9]. The network architecture is built
by repeated stacking of doublet layers of a convolutional layer
followed by a subsampling layer which are connected to a
multi-layer perceptron in the end. Each convolutional layer of
CNN exploits local spatial correlations among pixels, but as
more of these layers are stacked together increasingly global
and highly nonlinear image properties can be captured. CNNs
use the concept of feature maps, which are replicated groups
of units introduced to detect image descriptors regardless of
their spatial position. CNNs also use the idea of max-pooling
to implicitly down-sample images. The size of the receptive
field, the number of feature maps and units in each layer, the
size of the region over which max-pooling is done, the specific
data-preprocessing technique used, the learning rate, and the
learning rate decay are among the tunable parameters required
for successful implementation of a CNN. Owing to the large
number of parameters, exhaustive tuning of a CNN may become
impractical even for limited data sets. The general practice is to
start with a configuration that has proved effective in a similar
problem and adapt parameter values to the current problem by
taking into consideration the type and size of images involved.

2) Deep neural nets with dropout: Deep neural nets with
dropout (DNNs) [10] is a technique motivated by model
averaging, a concept that has proved very effective with limited
data. Model diversity is critical for model averaging to be
effective, and this can be achieved either by training multiple
neural nets with different architectures or by using different
data sets for training. The former is prohibitively expensive and
the latter requires partitioning already limited data into multiple
subsets. Dropout is a technique that gets around these limitations
by dropping units in a network with a certain probability, so
every time a training sample is presented to the network a

slightly different architecture is used. In addition to standard
parameters involved in the training of neural nets, in a dropout
network the probabilities of dropping units in each layer must
be tuned as well.

3) Stacked denoising autoencoders: An autoencoder is a
neural network that is trained to learn an approximation of
the identity function so that the output matches the input as
closely as possible. In a sparse autoencoder hidden layers are
forced to have a smaller number of units than the input layer
in order to obtain a compressed representation of the input.
A stacked denoising autoencoder (SDA) [11] is an extension
of the sparse autoencoder that applies stochastic noise to the
input so that a more robust representation of the input can be
achieved. In other words, an SDA reconstructs the input from
a corrupted version of it by exploiting statistical dependencies
between input variables. The SDA is trained with all available
data during the pretraining phase. During the classifier training
phase the network is updated, with the decoder replaced by a
softmax classifier.

C. Handcrafted Feature Extraction

The elastic-light-scatter colony classifiers implemented in
BARDOT currently use two groups of features: pseudo-Zernike
moments (PZM) [12] and Haralick texture features [13]. To
compute the Zernike moments of a given image, the center
of the image is taken as the origin and pixel coordinates are
mapped to the range of the unit circle. Rotational invariance
is obtained by using the magnitudes of the pseudo-Zernike
moments as features. Haralick texture descriptors are derived
from the gray-level co-occurrence matrix (GLCM). The GLCMs
are used to extract twelve low- and high-frequency texture
properties. We used the mean and the range of these twelve
texture descriptors as features.

V. EXPERIMENTS

In this section we present results of our experiments with
Kmeans–based representation learning, deep-learning tech-
niques, and handcrafted feature extraction. In all experiments
classifiers were trained using images collected on day one
(training set), classifier parameters were tuned to optimize
performance on images collected on day two (validation set),
and final models were tested on images collected on day
three (testing set). We report classification accuracies for both
validation and test sets.

TABLE I. CLASSIFICATION ACCURACIES ACHIEVED FOR DIFFERENT IMAGE DOWNSCALE RATES AND PATCH SIZES. ALL NUMBERS ARE IN PERCENT. FOR
EACH PAIR OF s AND w THE TOP ROW INCLUDES VALIDATION ACCURACIES AND THE BOTTOM ROW INCLUDES TEST ACCURACIES.

No data augmentation Training set augmented
k k

100 250 500 1000 100 250 500 1000
s = 10%, w = 6 89.71 94.28 94.28 93.95 80.23 85.78 90.20 94.12

48.46 52.52 54.80 43.74 68.29 82.11 87.15 85.37
s = 10%, w = 10 93.46 93.46 95.10 95.26 88.40 91.83 95.42 95.92

53.98 53.01 55.12 57.07 81.14 93.98 94.47 94.63
s = 5%, w = 6 92.16 92.65 93.46 93.46 86.27 93.63 95.26 96.41

51.71 59.51 57.72 55.45 84.39 89.27 94.80 95.45
s = 5%, w = 10 79.74 80.88 76.63 83.33 85.46 95.75 95.59 96.57

60.49 66.18 70.89 73.50 80.16 85.2 92.52 92.68

A. Experiments with K means–based Representation Learning

For Kmeans–based representation learning, we used multi-
ple choices for patch size, w = {6, 10}, image downscale
rate, s = {5%, 10%}, and number of descriptors k =
{100, 250, 500, 1000}. We investigated individual as well as
joint effects of these parameters on the overall classifier
performance with and without data augmentation. During
descriptor learning the Kmeans algorithm was run on a subset
of the data obtained by subsampling 100 patches per image.
However, during feature encoding all patches in an image were
used to obtain representation vectors.

1) Kmeans without data augmentation: With this set of
experiments we wanted to see the effects of number of
descriptors, patch size, and image downscale rate on the
overall classifier performance when no data augmentation was
performed. All results are included in the first part of Table
I. When we downscaled each image to 10% of its original
size we obtained classification accuracies of over 90% on the
validation set but only ∼50% on the test set, suggesting severe
overfitting of the validation set irrespective of the patch size
(w) and the number of descriptors (k) used.

When we repeated this experiment with images scaled down
to 5% of their original sizes, results were mostly similar to
those of the previous experiment. However, with a patch size
of w = 10 slightly better accuracies were obtained on the test
data compared to w = 6 and test accuracies trended higher as
k increased.

We also tried combining different pairs of patch sizes and
image scales by concatenating corresponding feature vectors,
but no significant improvement in validation and test accuracies
were obtained. Overall, without data augmentation we achieved
a moderately high classification accuracy on the validation set
that does not hold on the test set. Although there are specific
settings for which the classifier can generalize slightly better,
these results suggest that with only 606 images available for
training overfitting is almost unavoidable and using a different
number of descriptors, patch sizes, or image scales and their
combinations does not offer much help.

2) Kmeans with data augmentation: We repeated the
previous set of experiments, this time augmenting the original
data tenfold with each image flipped up-down, left-right, and
rotated by 45-degree steps. We split the experiments in this
section into two according to whether or not test and validation
data sets were also augmented along with the training data set
in order to see the effect of voting on the overall classifier
performance. Max voting is used to assign labels to each image
in the validation and test sets. The results of experiments

when only the training set was augmented are included in the
second part of Table I. Based on these results, the following
observations can be made. Although validation accuracies
did not improve much compared to the settings without data
augmentation, test accuracies improved significantly, reaching
over 95% accuracy for the setting k = 1000, s = 5%, and
w = 6. For most settings, test and validation accuracies were
comparable, suggesting significantly improved generalizability
of the classifier. For all pairs of (s, w) both validation and test
accuracies trended higher as k increased. Next, we augmented
validation and test sets in addition to the training set in order
to see the effect of voting on the overall classifier performance.
Results of these experiments are shown in Table II along with
the results of experiments when only the training set was
augmented. Although there was no obvious trend suggesting
that voting helps improve classifier generalizability for all
settings, it did improve classifier accuracy up to four percentage
points for (s = 5%, w = 10). For this setting, validation and
test accuracies reached 98.69% and 96.75%, respectively, for
k = 1000.

3) K-means by concatenating feature vectors obtained
at different patch sizes and image scales: Finally, we try
concatenating feature vectors for different (s, w) pairs to see
if combining feature vectors improve classifier accuracy. For
this experiment we use feature vectors obtained with all data
sets augmented. Results of these experiments are included in
Table III. These results suggest that significant benefit can be
gained by feature concatenation. When we concatenate feature
vectors corresponding to patch sizes w = 6 and w = 10
obtained with images downscaled to 5% test accuracy reach
97.89% for k = 1000. Perhaps what is most interesting about
feature concatenation is the last two rows of Table III that
show impressive validation and test accuracies of 99.02% and
96.42%, respectively, when feature vectors corresponding to
k = 100 are concatenated for all possible pairs of s and w.
Using as few as 400 descriptors extracted for multiple pairs
of image scale and patch size we can replicate classification
accuracy obtained with 1000 descriptors extracted for a single
pair of image scale and patch size. This result show that diverse
set of descriptors obtained by combining multiple image scales
and patch sizes can be more effective for classification. Image
descriptors obtained for k = 100 for all four possible pairs of
(w,s) are shown in Fig. 2.

B. Experiments with deep-learning techniques

For experiments with deep-learning techniques we used the
Theano [14] implementations of CNNs, DNNs with dropout,
and SDA. As with the Kmeans experiment, we ran these models
with two different image scales (s = 5%, s = 10%). Each

TABLE II. CLASSIFICATION ACCURACIES ACHIEVED FOR DIFFERENT IMAGE DOWNSCALE RATES AND PATCH SIZES WITH ALL DATA SETS AUGMENTED.

Training set augmented All sets augmented
k k

100 250 500 1000 100 250 500 1000
s = 10%, w = 6 80.23 85.78 90.20 94.12 81.70 86.27 91.34 93.14

68.29 82.11 87.15 85.37 71.71 83.90 84.88 86.67
s = 10%, w = 10 88.40 91.83 95.42 95.92 92.97 95.10 96.57 96.90

81.14 93.98 94.47 94.63 83.74 85.69 93.17 90.89
s = 5%, w = 6 86.27 93.63 95.26 96.41 90.03 94.77 96.57 98.20

84.39 89.27 94.80 95.45 89.11 89.59 94.96 93.82
s = 5%, w = 10 85.46 95.75 95.59 96.57 91.34 97.55 97.88 98.69

80.16 85.2 92.52 92.68 84.07 87.64 94.31 96.75

(a) s = 5%, w = 6 (b) s = 10%,w = 6 (c) s = 5%,w = 10 (d) s = 10%,w = 10

Fig. 2. One hundred descriptors obtained by K means–based representation learning with different settings after data augmentation. (a) s = 5%, w = 6 (b)
s = 10%, w = 6 (c) s = 5%, w = 10 (d) s = 10%, w = 10

TABLE III. CLASSIFICATION ACCURACIES ACHIEVED BY CONCATENATING FEATURE VECTORS OBTAINED FOR DIFFERENT PAIRS OF IMAGE DOWNSCALE
RATE AND PATCH SIZE.

Concatenations k
200 500 1000 2000

s = 5% s = 5% 96.57 98.04 97.88 98.53
w = 6 w = 10 94.96 93.98 97.24 97.89

s = 10% s = 10% 91.83 92.16 95.92 93.79
w = 6 w = 10 86.34 87.80 92.20 88.13

s = 10% s = 5% 94.93 95.75 96.57 97.88
w = 6 w = 10 89.27 92.36 93.82 95.61

s = 10% s = 5% 97.06 97.55 98.53 98.53
w = 10 w = 6 91.38 92.85 93.66 96.91

k
400 1000 2000 4000

s = 5% s = 5% s = 10% s = 10% 99.02 99.18 97.88 97.71
w = 6 w = 10 w = 6 w = 10 96.42 94.47 96.91 97.07

image was reshaped into a feature vector and preprocessed
to have zero mean and unit variance for CNN and DNN but
scaled to between zero and one for SDA. Model parameters
are coarsely tuned to optimize accuracy on the validation set.
For CNNs we used a receptive field size of 8 by 8, feature
maps of 20 and 50 for the first and second convolutional layers,
respectively, a batch size of 10, and a learning rate of 0.01.
For DNN with dropout we used a dropout probability of 0.2
for the input layer and 0.5 for the hidden layers, 1200 units in
each hidden layer, a batch size of 100, a learning rate of 1, and
a decay rate of 0.998. For SDA we used 2000, 1000, and 500
units for the first, second, and third hidden layer, respectively.
We used a corruption level of 0.1 for all three layers, a batch
size of 5, and learning rates of 0.01 and 0.1 for pretraining
and fine tuning, respectively. The results of experiments with
deep-learning techniques are shown in Table IV. It is interesting
to note that all three DL techniques generated similar results,
with SDA producing the highest test accuracy (56.43%) and
CNN the highest validation accuracy (73.93%), both far below
the validation (99.18%) and test accuracies (97.89%) achieved
by Kmeans–based representation learning.

TABLE IV. CLASSIFICATION ACCURACIES ACHIEVED BY
DEEP-LEARNING TECHNIQUES FOR DIFFERENT IMAGE DOWNSCALE RATES

WITH AND WITHOUT DATA AUGMENTATION.

No data augmentation Data augmentation
CNN DNN SDA CNN DNN SDA

s = 5% 70.82 66.50 64.92 72.95 68.95 69.02
52.14 45.69 30.75 51.80 49.27 56.43

s = 10% 73.93 65.85 65.58 71.80 72.36 68.70
40.50 32.52 40.98 49.50 45.37 51.87

C. Experiments with handcrafted features

For each image we used a total of 78 handcrafted features,
which were extracted using a combination of Zernike moments
and Haralick texture descriptors. These are standard features
computed for each bacterial scatter pattern collected by the
BARDOT system and have been demonstrated to be quite
effective in previously reported classification [7]. When we
trained a linear SVM using the training set and tuned the
regularization parameter to optimize the accuracy on the
validation set in the same way as for other experiments, we
achieved accuracies of 78.43% and 64.39% on the validation
and test sets, respectively. With a greedy feature subset selection
these results improved to 90.85% for validation and to 74.15%

for the test set. Although these results are better than those
obtained by deep-learning techniques, they are not comparable
with the near-perfect accuracies obtained by K means–based
representation learning. We believe that the high sensitivity of
Zernike moments and Haralick texture descriptors to random
effects makes these features less ideal for classification with
multi-day data sets.

VI. CONCLUSIONS

The biodetection application considered in this study is
interesting on many fronts: the limited number of images
available, data collection spread over three days, multi-modal
class distributions, and the limited image diversity within as
well as between classes. We believe that this is a unique
setting for testing unsupervised feature-learning techniques.
The fact that deep-learning techniques did not perform well
on this application is not a great surprise, as these techniques
rely on complex networks that are highly prone to overfitting
when data are limited. Nonetheless, the almost negligible
improvement recorded in classifier accuracy when data were
augmented tenfold presents an interesting case suggesting that
deep learning is not a remedy for every image-classification task.
We believe that the most interesting result of this study is the
robustness shown by Kmeans–based representation learning on
this challenging task. Although Kmeans–based representation
learning uses a single layer of descriptors during feature
encoding, by using multiple image scales and patch sizes
one can extract descriptors at different levels of abstraction,
mimicking the deep-learning behavior of multi-layer networks
with improved stability. Results of our experiments also suggest
that Kmeans–based representation learning can better tolerate
random effects compared to handcrafted features, which seem
to be more sensitive to potential variations in experimental
conditions. As a follow-up study we would like to test deep-
learning techniques on a similar problem containing many more
classes and images to see if the performance of deep-learning
techniques improves as we increase the data size or if the
nature of the classification problem puts an upper bound on the
performance of these techniques, at which point Kmeans–based
representation learning can be selected as a better alternative.

The bacteria data set used in this study is available on the
web 1.

ACKNOWLEDGMENT

This research was sponsored by the National Science Foun-
dation (NSF) under Grant Number IIS-1252648 (CAREER)
and by USDA-ARS project number 8072-42000-072-00D in
conjunction with the Center for Food Safety Engineering at
Purdue University. The content is solely the responsibility of
the authors and does not represent the official views of NSF
or USDA.

REFERENCES

[1] Adam Coates, Andrew Y Ng, and Honglak Lee. An analysis of
single-layer networks in unsupervised feature learning. In International
Conference on Artificial Intelligence and Statistics, pages 215–223, 2011.

1Purdue University Research Repository.
http://dx.doi.org/10.4231/R7N58J9Z

[2] Adam Coates and Andrew Y Ng. Learning feature representations with
k-means. In Neural Networks: Tricks of the Trade, pages 561–580.
Springer, 2012.

[3] Alon Vinnikov and Shai Shalev-Shwartz. K-means recovers ica filters
when independent components are sparse. In Proceedings of the 31st
International Conference on Machine Learning (ICML-14), pages 712–
720, 2014.

[4] Dong Wang and Xiaoyang Tan. C-svddnet: An effective single-
layer network for unsupervised feature learning. arXiv preprint
arXiv:1412.7259, 2014.

[5] Manuel Blum, Jost Tobias Springenberg, Jan Wülfing, and Martin
Riedmiller. On the applicability of unsupervised feature learning for
object recognition in rgb-d data. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning, 2011.

[6] Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Y Ng. Efficient
sparse coding algorithms. In Advances in neural information processing
systems, pages 801–808, 2006.

[7] Bulent Bayraktar, Padmapriya P Banada, E Daniel Hirleman, Arun K
Bhunia, J Paul Robinson, and Bartek Rajwa. Feature extraction
from light-scatter patterns of listeria colonies for identification and
classification. Journal of Biomedical Optics, 11:034006, 2006.

[8] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and
Chih-Jen Lin. LIBLINEAR: A library for large linear classification.
Journal of Machine Learning Research, 9:1871–1874, 2008.

[9] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the
IEEE, 86(11):2278–2324, 1998.

[10] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural
networks from overfitting. Journal of Machine Learning Research,
15:1929–1958, 2014.

[11] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine
Manzagol. Extracting and composing robust features with denoising
autoencoders. pages 1096–1103, 2008.

[12] A. Khotanzad and Y.H. Hong. Invariant image recognition by zernike
moments. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 12(5):489–497, 1990.

[13] Robert M. Haralick, K. Shanmugam, and Its’Hak Dinstein. Textural
features for image classification. Systems, Man and Cybernetics, IEEE
Transactions on, 3(6):610–621, 1973.

[14] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin,
Razvan Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-
Farley, and Yoshua Bengio. Theano: a CPU and GPU math expression
compiler. In Proceedings of the Python for Scientific Computing
Conference (SciPy), June 2010. Oral Presentation.

