Loss of F-box Only Protein 2 (Fbxo2) Disrupts Levels and Localization of Select NMDA Receptor Subunits, and Promotes Aberrant Synaptic Connectivity

Graham Atkin,1 Shannon Moore,2 Yuan Lu,4,5 Rick F. Nelson,6 Nathan Tipper,1 Gautam Rajpal,1 Jack Hunt,1 William Tennant,1,4 Johannes W. Hell,1 Geoffrey G. Murphy,2,3 and Henry Paulson1

1Department of Neurology, 2Department of Pharmacology, University of California, Davis, California 95615, 3Department of Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109, 4Department of Psychiatry, University of Iowa, Iowa City, Iowa 52242, and 5Department of Otolaryngology, Indiana University, Indiana 46202

NMDA receptors (NMDARs) play an essential role in some forms of synaptic plasticity, learning, and memory. Therefore, these receptors are highly regulated with respect to their localization, activation, and abundance both within and on the surface of mammalian neurons. Fundamental questions remain, however, regarding how this complex regulation is achieved. Using cell-based models and F-box Only Protein 2 (Fbxo2) knock-out mice, we found that the ubiquitin ligase substrate adaptor protein Fbxo2, previously reported to facilitate the degradation of the NMDAR subunit GluN1 in vitro, also functions to regulate GluN1 and GluN2A subunit levels in the adult mouse brain. In contrast, GluN2B subunit levels are not affected by the loss of Fbxo2. The loss of Fbxo2 results in greater surface localization of GluN1 and GluN2A, together with increases in the synaptic markers PSD-95 and Vglut1. These synaptic changes do not manifest as neurophysiological differences or alterations in dendritic spine density in Fbxo2 knock-out mice, but result instead in increased axo-dendritic shaft synapses. Together, these findings suggest that Fbxo2 controls the abundance and localization of specific NMDAR subunits in the brain and may influence synapse formation and maintenance.

Key words: Fbxo2; GluN1; GluN2A; NMDA; synapse

Introduction

NMDA receptors (NMDARs) have profound effects on neuronal function health, survival (Hardingham, 2009), and memory formation (Morris et al., 1986). NMDAR dysregulation is linked to cognitive deficits and glutamate-induced excitotoxicity in neurodegenerative disease (Rowland et al., 2005; Parsons et al., 2007; Gladding et al., 2012; Pollak et al., 2014) Here, we examined the regulation of these important receptors by the ubiquitin ligase substrate adaptor protein F-box Only Protein 2 (Fbxo2).

NMDARs are heterotetramers containing the obligatory GluN1 subunit and various GluN2 subunits (Monyer et al., 1992). GluN2A-containing receptors are preferentially localized at synapses and GluN2B-containing receptors at extrasynaptic sites (Barria and Malinow, 2002). Synaptic NMDAR activation supports neuroprotection; extrasynaptic activation promotes apoptosis (Hardingham and Bading, 2010). GluN2A and GluN2B are the most expressed GluN2 types in mammalian hippocampus (Al-Hallaj et al., 2007; Gray et al., 2011), mediating the majority of NMDAR-dependent learning and memory (Morris et al., 1986; Lee and Kesner, 2002).

Fbxo2 facilitates the turnover of GluN1 in vitro (Kato et al., 2005), but it remains unclear whether GluN2 subunits are similarly handled and if Fbxo2 regulates the turnover and trafficking of NMDAR subunits in vivo. Here, we show that Fbxo2 facilitates the degradation of select NMDAR subunits in the brain. In addition, we find that loss of Fbxo2 affects subunit localization and significantly increases synaptic connections.

Materials and Methods

Animals. Fbxo2−/− mice were generated previously via the targeted deletion of the first five of six exons encoding Fbxo2 (Nelson et al., 2007). Mice used for these experiments were maintained on a C57BL/6J background strain. Examination showed that there were no abnormalities in brain size, weight, development, or adult gross brain structure. However, the cochleae of Fbxo2 knock-out mice demonstrate degeneration (Nelson et al., 2007). Animal care, handling, and experimental procedures described were approved by the University of Michigan’s University Committee on the Use and Care of Animals.
DNA constructs, HEK cell culture, and cell lysate preparation. HEK-293 cell cultures were prepared and maintained as described previously (Nelson et al., 2007). Transfection of constructs for GFP-GluN1, GluN2A, GluN2B (gifts from W. Rebeck, Georgetown University), or Fbxo2 (gift from K. Glenn, University of Iowa) was performed using Lipofectamine 2000 (Invitrogen) following the manufacturer's directions. Forty-eight hours after transfection, cells were lysed in hot denaturing buffer containing 2% SDS and 100 mM DTT. Cell lysates were boiled for 5 min, centrifuged, and loaded onto 4–15% or 4–20% gradient SDS-PAGE gels for Western blot analysis (Bio-Rad). Cultured neurons were also processed in this manner for Western blot experiments.

Brain extraction/lysis To prepare samples for immunoblotting, animals were anesthetized using ketamine/xylazine, followed by cardiac perfusion with prewarmed PBS. Brains were dissected out after decapitation. As necessary, hippocampi were rapidly removed under a dissecting microscope. Using a Dounce homogenizer, brain tissues were then homogenized in hot SDS (2%) lysis buffer with 100 mM DTT, centrifuged, and boiled for 5 min. A protein quantification kit (Macherey-Nagel) was used to measure the equal amounts of samples. Equal protein amounts were electrophoresed on 4–15% or 4–20% SDS-PAGE gels.

Western blot analysis Proteins were immunoblotted using antibodies against GluN1 (catalog #S56306; 1:1000 dilution; BD Biosciences) or its extracellular epitope (catalog #AGC-001; 1:500; Alomone), GluN2A (catalog #AGC-002; 1:500; Alomone), GluN2B (catalog #AGC-003; 1:500; Alomone), GluR1 (catalog #MAB2263; 1:1000; Millipore), Fbxo2 (a gift from K. Glenn, University of Iowa, directed against the PEST domain of Fbxo2; 1:2000), Transferrin Receptor (catalog #A11130; 1:500; Invitrogen), or GAPDH (catalog #MAB374; 1:10,000; Millipore).

Deglycosylation of NMDA subunits The glycosylation status of GluN2A and GluN2B was assessed as described previously (Hu and Wenthold, 1999) with one modification: to increase the substrate-to-enzyme ratio, GluN2 subunits were immunoprecipitated from separate hippocampal membrane fractions using antibodies directed against GluN2A (catalog #AHB0052; 1:500; Invitrogen) or GluN2B (catalog #A16629; 1:500; Invitrogen) conjugated to protein G beads (Invitrogen). Glycolytic enzyme Endo H or PNGaseF (Sigma) were added directly to pelleted beads after 24 h of precipitation in reaction buffer. Reaction products were then examined by Western blotting as described above.

Immunohistochemistry of frozen brain sections Mice were processed as above, but were perfused with 4% paraformaldehyde in PBS after the PBS flush. Upon extraction, brains were postfixed in 4% paraformaldehyde, rinsed in PBS, and cryopreserved. After freezing, brains were cut into 12 µm sections and stored at −80°C until use. Antibodies against GluN1 (catalog #556306; 1:500; BD Biosciences), GluN2A (catalog #AHB0052; 1:1000; Invitrogen and catalog #AGC-002; 1:1000; Alomone), or GAPDH (catalog #MAB374; 1:10,000; Millipore).

Coexpression of Fbxo2 decreases levels of unassembled NMDAR subunits. HEK293 cells expressing GFP-GluN1 together with vector encoding Fbxo2 or empty vector (EV) were harvested 48 h after transfection and lysates were examined by Western blot with antibodies recognizing GluN1, Fbxo2, or GAPDH. b, c, GluN2A (b) and GluN2B (c) levels are similarly decreased after coexpression with Fbxo2. Fbxo2 and GluN2A or GluN2B were coexpressed as in a and subunit levels assessed by Western blot with anti-GluN2A or anti-GluN2B antibody. Results shown are representative of triplicate experiments. d, Quantification of results from a–c. Data are presented as mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001, unpaired t-test.
Increased levels of GluN1 and GluN2A, but not GluN2B, in Fbxo2−/− brain. a, Confocal immunofluorescence microscopy in the CA1 region of hippocampus shows increased levels of GluN1 (left) and GluN2A (center) in 6-month-old Fbxo2 knock-out mice (bottom) compared with wild-type mice (top). All images for each antibody were collected using identical settings for both genotypes (see Materials and Methods). Scale bar, 50 μm. b–d, The absence of Fbxo2 increases GluN1 (b) and GluN2A (c) subunit levels, but not GluN2B subunit (d) levels, in whole brain. Subunit levels in brain lysates from wild-type and Fbxo2 null mice were assessed by Western blot, with representative immunoblots (top) shown for three mice of each genotype at 3 months of age. Subunit levels were quantified (bottom) and normalized at four ages, with an n of three animals per genotype at each age. e, f, GluN2A (e) and GluN2B (f) associated with hippocampal membranes remain Endo H sensitive. GluN2A or GluN2B was immuno-precipitated from hippocampal membrane fractions of 6-month-old wild-type mice and then incubated with Endo H, PNGase F, or (as a control) PBS alone. Deglycosylation of GluN2A or GluN2B was then assessed by Western blot with anti-GluN2A or GluN2B antibody, respectively. The observed sensitivity to Endo H, indicating the presence of retained high-mannose glycans on GluN2A and GluN2B, was not altered in Fbxo2 null mice. Data are presented as mean ± SEM. *p < 0.05, unpaired t test.

Electrophysiology of synaptic transmission in the hippocampus. Extracellular recordings of field EPSPs (fEPSPs) were made in the stratum radiatum of CA1 with a differential amplifier (DP-301; Warner Instruments) using borosilicate glass (Sutter Instruments) to make pipettes with a P-97Flaming-Brown pipette puller (Sutter Instruments) with a tip resistance of ~1 MΩ filled with acSF. Recordings were digitized using an Molecular Devices 1440A Digidata A/D converter and stored on a Dell desktop computer running pClamp 10.2 (Molecular Devices). fEPSPs were evoked by stimulating the Schaffer collateral afferent fibers with bipolar platinum electrodes (square pulse 100 μs in duration). An input/output curve was first generated in acSF by delivering test stimuli every 10 s with increasing stimulus intensity (from 0 to 0.5 mA). To isolate the NMDA-mediated component of the fEPSP response, acSF containing CNQX (50 μM; Sigma-Aldrich) was then washed into the bath while continuously monitoring the fEPSP amplitude at the half-maximum stimulus intensity (once every 30 s). As expected, the amplitude of the fEPSP significantly decreased in the presence of CNQX; when there was no further decrease in fEPSP amplitude, another input/output curve was generated (as above) in the presence of CNQX. The amplitude of the fiber volley and the fEPSP were quantified relative to baseline. Statistical comparisons between conditions were made using repeated-measures ANOVA.

Electrophysiology of miniature synaptic currents and long-term potentiation. acSF-filled glass electrodes (resistance <1 MΩ) were positioned in
the stratum radiatum of area CA1 for extracellular recording. Synaptic responses were evoked by stimulating Schaffer collaterals with 0.1 ms pulses with a bipolar tungsten electrode (WPI.) once every 15 s. The stimulation intensity was systematically increased to determine the maximal fEPSP slope and then adjusted to yield 40–60% of the maximal fEPSP slope. Experiments with maximal fEPSPs of <0.5 mV or with substantial changes in the fiber volley were rejected. After recording of a stable baseline for 15 min, LTP was induced by a 1 s/100 Hz stimulus train.

fEPSPs were recorded (AxoClamp 2B amplifier; Molecular Devices), filtered at 1 kHz, digitized at 10 kHz (Axon Digidata 1200), and stored for offline analysis (Clampfit 9). Initial slopes of fEPSPs were expressed as percentages of baseline averages. In summary graphs, each point represents the average of four consecutive responses. The time-matched, normalized data were averaged across experiments and expressed as means ± SEM. For statistical analysis, the last 5 minutes in each measurement were averaged and normalized to the average of the baseline preceding LTP induction before comparison with the corresponding control values.

Whole-cell recordings from pyramidal neurons in CA1 with a holding potential at −70 mV provided miniature EPSCs (mEPSCs). Patch pipettes (−3–6 MΩ), were pulled from KG-33 glass capillaries (1.1 mm inner diameter, 1.7 mm outer diameter; Garner Glass) on a Flaming-Brown electrode puller (P-97; Sutter Instruments) and filled with internal solution containing the following (in mM): 125 K-gluc, 20 KCl, 2 Mg-ATP, 0.3 Na-GTP, 2.5 QX314, 10 PIPES, 0.2 EGTA, pH 7.3, adjusted with KOH. Slices were perfused with aCSF. GABA receptor currents were blocked with 50 μm picrotoxin (Sigma), NMDAR currents with 10 μM APV (Sigma), and Na⁺ channel currents with 1 μM TTX (Sigma). Recordings were made using an Axopatch 200B amplifier (Molecular Devices), filtered at 1 kHz, digitized at 10 kHz via an Axon Digidata 1322A, and stored for offline analysis.

Dendritic spine labeling. Acute hippocampal slices were prepared as above and then immediately fixed using 2% paraformaldehyde in PBS (Kim et al., 2007). After fixation, slices were rinsed and labeled with DiI (Invitrogen) and visualized as above. 2-stack images were reconstructed and dendrites were modeled in a semiautomated manner using Imaris software, as described previously (Swanger et al., 2011). Dendritic segments from the stratum radiatum of four male mice per genotype were analyzed, totaling 60 dendritic segments per genotype. Data were compiled using Microsoft Excel and analyzed using Prism 6 software (GraphPad).

Transmission electron microscopy. For transmission electron microscopy (TEM), mice were anesthetized and flushed as above and then fixed with 2.5% glutaraldehyde in 0.1 M Sorensen’s buffer. Hippocampi were then dissected and immediately fixed using 2% paraformaldehyde in 0.1 M Sorensen’s buffer. Hippocampi were then fixed with 2.5% glutaraldehyde in 0.1 M Sorensen’s buffer. Hippocampi were then fixed with 2.5% glutaraldehyde in 0.1 M Sorensen’s buffer. Hippocampi were then fixed with 2.5% glutaraldehyde in 0.1 M Sorensen’s buffer. Hippocampi were then fixed with 2.5% glutaraldehyde in 0.1 M Sorensen’s buffer. Hippocampi were then fixed with 2.5% glutaraldehyde in 0.1 M Sorensen’s buffer. Hippocampi were then fixed with 2.5% glutaraldehyde in 0.1 M Sorensen’s buffer. Hippocampi were then fixed with 2.5% glutaraldehyde in 0.1 M Sorensen’s buffer. Hippocampi were then fixed with 2.5% glutaraldehyde in 0.1 M Sorensen’s buffer. Hippocampi were then fixed with 2.5% glutaraldehyde in 0.1 M Sorensen’s buffer. Hippocampi were then fixed with 2.5% glutaraldehyde in 0.1 M Sorensen’s buffer. Hippocampi were then fixed with 2.5% glutaraldehyde in 0.1 M Sorensen’s buffer. Hippocampi were then fixed with 2.5% glutaraldehyde in 0.1 M Sorensen’s buffer. Hippocampi were then fixed with 2.5% glutaraldehyde in 0.1 M Sorensen’s buffer. Hippocampi were then fixed with 2.5% glutaraldehyde in 0.1 M Sorensen’s buffer. Hippocampi were then fixed with 2.5% glutaraldehyde in 0.1 M Sorensen’s buffer. Hippocampi were then fixed with 2.5% glutaraldehyde in 0.1 M Sorensen’s buffer. Hippocampi were then fixed with 2.5% glutaraldehyde in 0.1 M Sorensen’s buffer. Hippocampi were then fixed with 2.5% glutaraldehyde in 0.1 M Sorensen’s buffer. Hippocampi were then fixed with 2.5% glutaraldehyde in 0.1 M Sorensen’s buffer. Hippocampi were then fixed with 2.5% glutaraldehyde in 0.1 M Sorensen’s buffer. Hippocampi were then fixed with 2.5% glutaraldehyde in 0.1 M Sorensen’s buffer. Hippocampi were then fixed with 2.5% glutaraldehyde in 0.1 M Sorensen’s buffer. Hippocampi were then fixed with 2.5% glutaraldehyde in 0.1 M Sorensen’s buffer. Hippocampi were then fixed with 2.5% glutaraldehyde in 0.1 M Sorensen’s buffer. Hippocampi were then fixed with 2.5% glutaraldehyde in 0.1 M Sorensen’s buffer. Hippocampi were then fix...
Figure 5. NMDAR levels and cell surface localization are increased in cultured Fbxo2−/− hippocampal neurons. a, GluN1 and GluN2A levels are increased in cultured Fbxo2-null neurons, whereas GluN2B levels are decreased. Cultured hippocampal neurons isolated from postnatal day 3 wild-type and Fbxo2-null mice, DIV 14, were lysed and NMDAR subunit levels assessed by Western blot. Representative results from three dishes per genotype are shown (left) and quantified (right). b, Fbxo2 absence results in greater cell surface localization of GluN1. Intact neurons were treated with chymotrypsin for 15 minutes or left untreated, and then lysed and GluN1 levels were assessed by Western blot. Representative immunoblot results from a single experiment are shown (left, with lighter exposure at immediate right) and results from triplicate experiments were quantified (right). c, Amount of surface GluN1 remaining after 48 h exposure to 50 μM bicuculline, as detected by cell-surface ELISA assay, is reduced by ~50% in wild-type neurons, but for Fbxo2 knock-out neurons, little or no surface GluN1 is lost after treatment. Treated and untreated cultures were labeled with an antibody against the extracellular loop of GluN1 followed by horseradish peroxidase (HRP)-conjugated secondary antibody. HRP cleavage of tetramethylbenzidine in triplicate cultures per genotype per treatment was then detected and quantified. Data are presented as mean ± SEM. *p < 0.05, **p < 0.005, ***p < 0.001, ****p < 0.0001, unpaired t test.

Results

Fbxo2 has been shown to facilitate the degradation of the NMDAR subunits GluN1 in cultured neurons (Kato et al., 2005) and GluN2A in transfected, non-neuronal cells (Nelson et al., 2006). To investigate whether Fbxo2 similarly participates in the clearance of the NMDAR subunit GluN2B, we transiently expressed plasmids encoding GluN1, N2A, or N2B in HEK293 cells together with either FLAG-tagged Fbxo2 or empty vector (Fig. 1). Whereas levels of GluN1 and GluN2A were markedly reduced when coexpressed with Fbxo2 (Fig. 1a,b), consistent with prior studies (Kato et al., 2005; Nelson et al., 2006), GluN2B levels were decreased by only ~50% (Fig. 1c). When individually expressed, NMDAR subunits are unable to transit from the ER to the Golgi and cell surface (Horak et al., 2008), so these results support a role for Fbxo2 in the ER-associated degradation (ERAD) of GluN1, N2A, and N2B subunits.

Because NMDARs are specific to the nervous system and Fbxo2 is enriched in the brain, we next sought to examine the physiological significance of Fbxo2 on GluN1, N2A, and N2B in the brain. Using Fbxo2 knock-out mice previously generated in our laboratory (Nelson et al., 2007), we observed increased GluN1 and GluN2A in Fbxo2 knock-out mice, as visualized by confocal immunofluorescence microscopy of 6-month old mouse brains. Throughout the brain, we observed increased immunofluorescence for GluN1 both in neuronal cell bodies and throughout the neuropil, as demonstrated in region CA1 of the hippocampus (Fig. 2a). Elevated GluN2A appeared predominantly throughout the neuropil. No obvious subregional differences between cortex and
hippocampus were observed (quantification of immunofluorescence not shown). The extent of these increases across all brain regions was quantified using Western blot, revealing that, in Fbxo2 knock-out brains GluN1 levels are increased almost 3-fold over wild-type mice at 3 months of age and increased 1.5 to 2-fold at 6 and 9 months of age (Fig. 2b). GluN2A levels in the brain are also consistently increased in the absence of Fbxo2, to ~1.5-fold that of wild-type control levels from 3 through 9 months of age (Fig. 2c). This is consistent with the previously reported finding that a greater amount of GluN1 than GluN2 is produced, resulting in two intracellular pools of GluN1. The first pool correctly assembles with GluN2 subunits and transits to the plasma membrane, where it is long lived (Huh and Wenthold, 1999). In the second pool of excess, unassembled GluN1 subunits may serve as a reserve pool that is readily available when rapid upregulation of NMDARs is required. This pool of unassembled GluN1 subunits is retained in the ER and is short lived (Huh and Wenthold, 1999). In contrast to GluN1 and N2A, GluN2B levels remain unchanged in Fbxo2 knock-out brains at all ages examined (Fig. 2d), suggesting that Fbxo2 may not regulate clearance of this subunit in the brain. This result is not inconsistent with the transient expression studies described above, in which Fbxo2 had much less effect on the levels of GluN2B than GluN1 or GluN2A.

How Fbxo2 might selectively regulate certain subunits but not others remains unclear. As a substrate-binding ubiquitin ligase subunit, Fbxo2 preferentially targets glycoproteins that contain N-linked oligosaccharides (Yoshida et al., 2002). As glycoproteins transit from the ER through the Golgi apparatus, high-mannose N-linked oligosaccharides are typically processed to a complex (i.e., not high-mannose) form that should not be recognized by Fbxo2 (Helenius and Aebi, 2004). It has been suggested, however, that NMDAR subunits may not traffic through this canonical system, instead taking an alternate route for transport from the ER to the cell surface (Jeyifous et al., 2009). Bypassing glycan-processing enzymes in the Golgi would allow the high-mannose glycans placed on NMDAR subunits in the ER to be retained by these receptors on the cell surface. As a result, NMDAR subunits would remain sensitive to endoglycosidase H (Endo H), which selectively cleaves high-mannose glycans on glycoproteins. This was shown previously to be the case for GluN1 (Huh and Wenthold, 1999), raising two intriguing possibilities: (1) that the differential effect on GluN2A and GluN2B levels in Fbxo2 knock-out brain reflects a subunit difference in the retention of high-mannose glycans on GluN2A versus GluN2B subunits and/or (2) that, even in the peripheral membrane, NMDAR subunits remain high-mannose glycans on GluN2A versus GluN2B subunits and/or (2) that NMDAR subunits may not traffic through this canonical ER and is short lived (Helenius and Aebi, 2004). This result is not inconsistent with the transient expression studies described above, in which Fbxo2 had much less effect on the levels of GluN2B than GluN1 or GluN2A.

With regard to the second possibility, that Fbxo2 plays a role in regulating NMDARs at the cell surface, heightened levels of GluN1 subunits could represent an increase in receptor levels at the plasma membrane or the retention of NMDAR subunits in intracellular pools. Previously, pharmacologic elevation of NMDAR subunit levels was shown to increase NMDA synaptic currents and enhance postsynaptic plasticity (Rinaldi et al., 2007). Overexpression of GluN2A and GluN2B has also been shown to cause the formation of increased synaptic NMDARs (Tang et al., 1999; Foster et al., 2010), but whether the robust increase in endogenous NMDAR subunits observed in Fbxo2 knock-out mice would increase synaptic levels remains unclear. Fbxo2 is expressed throughout the cytoplasm, including along dendrites and at synapses (Kato et al., 2005). To address whether the increased endogenous NMDAR subunits in Fbxo2 knock-out mice were present on the cell surface and at synapses, we used several lines of investigation. First, we hypothesized that a substantial increase in
NMDAR content at synapses would involve a concomitant increase in the extent of postsynaptic architecture necessary to stabilize those receptors. PSD-95 has been shown to anchor GluN2A-containing receptors at synaptic sites on the cell surface (Elias et al., 2008). In addition, presynaptic markers might also increase as a response to additional postsynaptic content. We previously reported an increase in PSD-95 and Vglut1 in cultured hippocampal neurons from mice lacking Fbxo2 (Atkin et al., 2014) and therefore inquired whether this same phenomenon was present in vivo. Using confocal immunofluorescence microscopy, we observed significantly increased PSD-95 and Vglut1 levels in the CA1 region of the hippocampus from 6-month-old Fbxo2 knock-out mice (Fig. 3a, b). In contrast, we did not observe significant changes in the levels of spinophilin, a protein enriched in dendritic spines, or of the vesicular GABA transporter (VGAT) present at synapses of inhibitory interneurons. Despite the increase in presynaptic and postsynaptic markers, we did not observe a difference in the levels of the AMPA receptor (AMPAR) subunit GluA1 (Fig. 3c, d). NMDAR function is voltage dependent, with AMPARs playing the role of a depolarizing agent for the postsynaptic cell. Several identified Fbxo2 substrates have been implicated in synapse formation and stability, including Beta Integrin 1 (Yoshida et al., 2002), Amyloid Precursor Protein (Tyan et al., 2012; Atkin et al., 2014), and NMDARs themselves (Kwon and Sabatini, 2011). With this heightened expression, colocalization of GluN immunoreactivity with that of synaptic markers appeared to be extensive.

Because the question of GluN1’s surface and synaptic localization is central to understanding the consequences of Fbxo2’s absence, we elected to examine protein distribution and colocalization more carefully in cultured hippocampal neurons. Cultured neurons provide an effective means with which to assess biochemically the handling of proteins in living neurons and to visualize protein localization with greater resolution than in vivo immunofluorescence. We cultured hippocampal neurons from postnatal day 3 wild-type and knock-out pups and examined the colocalization of GluN1 with synaptic markers by confocal immunofluorescence microscopy. GluN1 levels were increased throughout Fbxo2 knock-out neurons, most notably at numerous, large GluN1-positive puncta in dendrites (Fig. 4a, arrows). These puncta colocalize with the synaptic marker Vglut1 (Fig. 4a), suggesting that the increased NMDAR levels are indeed present at synapses. GluN2A levels are also increased in cultured neurons and GluN2B levels appear decreased by immunofluorescence (Fig. 4b).

The changes in GluN subunit levels in cultured neurons were quantified by Western blot. At DIV 14, Fbxo2 knock-out neurons showed similar increases in GluN1 and GluN2A levels as intact brain, but a decrease in GluN2B levels (Fig. 5a). As previously reported, Fbxo2 is expressed as early as DIV 3 in this system compared with in vivo (Glenn et al., 2008; Atkin et al., 2014).

Fbxo2 has been reported to clear proteins through ERAD (Nelson et al., 2006) and has not been recognized to regulate the surface levels of substrate proteins. However, Kato et al. (2005) demonstrated that, when a dominant-negative form of Fbxo2

Figure 7. The loss of Fbxo2 does not alter hippocampal synaptic transmission. a. fEPSPs were measured in acute slices of hippocampi from wild-type and Fbxo2 knock-out mice at the indicated stimulus intensities both in the presence and absence of CNQX (empty and filled circles, respectively) and quantified. Neither AMPA- nor NMDA-mediated currents differed between genotype. b. Fiber volley amplitude was similarly unchanged. c. No difference was observed when fEPSPs were plotted against fiber volley amplitude. Statistical analyses were made using repeated-measures ANOVA. Recordings were made from 19 slices harvested from 5 wild-type (WT) mice and 17 slices harvested from 5 knock-out (KO) mice. Six-month-old KO and WT mice were used for studies.
was transiently expressed in cultured hippocampal neurons, NMDA-evoked currents recorded from those neurons were resistant to activity-dependent reduction, suggesting that NMDARs no longer being degraded by Fbxo2 are retained on the cell surface. To address this point directly, we investigated whether the increased GluN1 levels in Fbxo2 knock-out neurons corresponded to subunits expressed on the cell surface or to subunits retained in the cell. Exogenously applied chymotrypsin cleaves the extracellular domain of transmembrane proteins present on the surface of neurons. Using this technique and Western blot analysis, we measured GluN1 levels in untreated cultures versus GluN1 levels remaining after chymotrypsin cleavage, with the chymotrypsin-resistant fraction representing GluN1 sequestered within neurons. After chymotrypsin treatment, a lower-molecular-weight, GluN1-immunoreactive band of ~50 kDa was observed, which presumably represents the intracellular portion of the receptor left after cell surface cleavage. Of the nearly 150% increase in GluN1 in Fbxo2 knock-out neurons, only ~10% was chymotrypsin resistant, significantly less than in wild-type control neurons (Fig. 5b). These results suggest that nearly all of the increased GluN1 subunits in the absence of Fbxo2 reach the cell surface.

We next inquired whether the absence of Fbxo2 led to changes in the removal of GluN1 from the cell surface. In an earlier study, Kato et al. (2005) drove the activity-dependent downregulation of synaptic NMDARs evoked by treatment with bicuculline for 48 h. Exposure to bicuculline for 48 h has been shown to cause the internalization of NMDARs. In a cell-surface-based ELISA assay, we measured NMDAR internalization in bicuculline-treated versus untreated neuronal cultures. Whereas approximately half of the surface receptors in wild-type neurons were cleared from the cell surface after 48 h of bicuculline treatment, nearly all of the surface receptors in Fbxo2 knock-out neurons remained on the surface, as indicated by equal surface immunoreactivity between treated and untreated neuronal cultures. Whereas approximately half of the surface receptors in wild-type neurons were cleared from the cell surface after 48 h of bicuculline treatment, nearly all of the surface receptors in Fbxo2 knock-out neurons remained on the surface, as indicated by equal surface immunoreactivity between treated and untreated neuronal cultures. Fbxo2 knock-out neurons (Fig. 5c). These results are consistent with the findings of Kato et al. (2005) and suggest a persistence of NMDARs at the cell surface after loss of Fbxo2.

We next sought to determine whether this increased surface localization of GluN1 also occurred in the adult hippocampus. Chymotrypsin cleavage and cell-surface-based ELISA are not compatible with ex vivo hippocampi, so instead we used surface biotinylation of acute hippocampal slices to measure surface proteins, as described previously (Thomas-Crusells et al., 2003; Atkin et al., 2014). We focused on the hippocampus because of its functional importance and because it is a discrete subcortical region that can be readily and reproducibly
isolated by dissection. After surface biotinylation and immunoprecipitation, Fbxo2 knock-out hippocampus showed significantly increased surface GluN1 and GluN2A, ~2-fold that observed in wild-type control hippocampus (Fig. 6). In contrast, levels of the Transferrin Receptor, a loading control protein with cell surface expression but not an Fbxo2 substrate, were not altered in Fbxo2 knock-out mice. Although this approach only captures a snapshot of NMDAR subunit distribution at one time point, the findings are consistent with our in vitro data and suggest a dysregulation of NMDAR handling in the absence of Fbxo2.

As another measure to estimate the extent to which increased NMDAR subunits in Fbxo2 null mice reflect synaptic changes, we performed synaptosomal enrichment from hippocampal lysates of adult (9- to 15-month-old) mice. Results for GluN1, shown in Figure 6b, suggest that the increased NMDAR subunits observed in the absence of Fbxo2 may predominantly reside at regions other than the synapse. Results presented later (see Fig. 10) describe increased axo-dendritic shaft synapses (as opposed to spinous synapses) in Fbxo2-null mice, but whether such nontraditional synapses would segregate in our synaptosomal prepara-
tions is unknown.

These observed differences raise intriguing questions about the function of NMDARs in Fbxo2 knock-out mice. The increased cell surface NMDAR subunits and increased synaptic marker proteins in Fbxo2 knock-out mice led us to predict that NMDA-mediated currents in acute hippocampal slices would also be increased in knock-out mice. However, field potential recordings from region CA1 of hippocampus in 3- to 6-month-old Fbxo2 knock-out mice did not reveal any difference in basal transmission (Fig. 7a, filled circles) or in NMDA-mediated current recorded in the presence of the AMPAR blocker CNQX (Fig. 7a, open circles). Moreover, no difference was observed in the size of presynaptic fiber volleys evoked for each genotype (Fig. 7b) and plotting the presynaptic fiber volley data against the fEPSPs revealed no difference between genotypes (Fig. 7c). The frequency, amplitude, and decay of spontaneous mEPSCs did not differ between genotype (Fig. 8a–d). LTP evoked by 100 Hz stimulation was also equal in amplitude and persistence out to 60 min for mice with and without Fbxo2 (Fig. 8e).

The unexpected absence of neurophysiological differences in Fbxo2 knock-out mice despite the evidence of increased NMDAR subunits suggests that the increased NMDARs in Fbxo2 knock-out mice are not functional and do not participate in synaptic transmission; the synaptosomal studies shown in Figure 6b are consistent with this view. The lack of a concomitant increase in GluR1 levels (Fig. 3c) suggests one potential mechanism by which additional synapses in Fbxo2 knock-out mice are kept silent: the absence of sufficient AMPARs to depolarize the postsynaptic cell. However, all recordings were performed in low or zero Mg2+, a nonphysiologic condition that circumvents the voltage-dependent blockage of NMDARs. Even in the absence of Mg2+ blockage, numerous other potential mechanisms exist for the modulation and silencing of NMDAR activity, including regulation by various kinases (Ali and Salter, 2001; Gardoni et al., 2001; Lin et al., 2006; Skeberdis et al., 2006).

Given the absence of neurophysiological consequences resulting from increased GluN1 and GluN2A in Fbxo2 knock-out brains, we recognized that it was important to assess the morphological impact of increased NMDAR subunits, as well as increased presynaptic and postsynaptic marker proteins, on the structures essential for synaptic transmission. To do so, we subjected thick sections of region CA1 to labeling with DiI and imaging by confocal microscopy. Dendrites were then reconstructed in 3D and spines were measured and counted in a semiautomated manner...
(example images are shown in Fig. 9a,b).
Using this method, we observed no difference in the density of dendritic spines (Fig. 9c) but a significant reduction in spine length, with spines in Fbxo2 knock-out hippocampus reaching only 78% of the length seen in wild-type neurons (Fig. 9c).

Much smaller but statistically significant differences were observed in the diameter of the head and neck of spines: on average, knock-out spine heads were 10% larger and the necks 13% thinner (Fig. 9c).

Overall, however, there were minimal differences in spine size and shape and no difference in density. Therefore, the extensive changes in NMDAR protein content evident in Fbxo2 knock-out mice do not appear to impair mechanisms regulating spine morphology and spine density.

With no apparent change in spine density or neurophysiological parameters in Fbxo2 knock-out mice, the presence of increased synaptic markers seems paradoxical. In an effort to explain this discrepancy, we examined the ultrastructure of pyramidal cells in region CA1 by TEM. The higher resolution of TEM revealed a marked increase in axo-dendritic shaft synapses (Fig. 10a–f) in Fbxo2 knock-out hippocampus. These synapses typically demonstrated both an asymmetric, electron-dense postsynaptic density and juxtaposition to a presynaptic terminal with apparent vesicles (Fig. 10b,df, insets enlarged); symmetrical synapses were also observed, but less frequently (data not shown). Although shaft synapses were rarely seen in wild-type dendrites, consistent with published reports (Megías et al., 2001; Bourne and Harris, 2011), they decorated Fbxo2 knock-out neurons at a much higher density, approaching that of spiny synapses (~50–75%; Fig. 10g). Shaft synapses were found both adjacent to dendritic spines (Fig. 10a,b) and at a distance from them (Fig. 10c–f). A subset of these structures displayed a discontinuous, or perforated, postsynaptic density (Fig. 10d,e), but each of these was still counted as a single synapse for the purposes of quantification. Together, these results suggest that the increased levels of synaptic markers in Fbxo2 knock-out neurons correspond to additional axo-dendritic shaft synapses.

Discussion

In the present study, we have identified a role for Fbxo2 in regulating the levels of specific NMDAR subunits in vivo. In mice lacking Fbxo2, we found increased levels and enhanced surface localization of GluN1 and GluN2A subunits. These changes were accompanied by elevated amounts of synaptic marker proteins but no change in dendritic spine density. These additional synapses did not appear to affect synaptic transmission and were shown by TEM to be localized along dendritic shafts.

Many forms of neuronal plasticity require the degradation of existing synaptic proteins (Ehlers, 2003; Dong et al., 2008) while also placing demands on local protein synthesis (Huber et al., 2000; Huang and Kandel, 2007). Protein quality control pathways ensure that these demands are met with the appropriate complement of properly synthesized and correctly assembled proteins. As a brain-enriched ubiquitin ligase substrate adaptor protein linked to ERAD (Nelson et al., 2006), Fbxo2 is an intriguing component of the quality control pathways responding to the unique proteostatic needs of neurons, especially given its localization both at synapses and throughout the cytoplasm (Kato et al., 2005). Proteins synthesized near synapses are processed in specialized ER (Cai-Wang et al., 2012) and there is limited evidence for the presence of the Golgi apparatus at these local sites (Hanus and Ehlers, 2008). Therefore, GluN subunits likely are not the only synaptic proteins still bearing high-mannose glycans and thus recognizable by Fbxo2. For example, Fbxo2 is decreased in Alzheimer’s disease (AD) patient brains (Gong et al., 2010) and has been linked to the regulation of the glycoprotein Amyloid Precursor Protein, a central protein in AD (Atkin et al., 2014). We now link Fbxo2 to a second factor implicated in AD, the dysregulation of NMDARs. Further studies are needed to fully address the contribution of Fbxo2 to AD.
The increase in cell surface GluN1 and GluN2A in \(Fbxo2^{-/-} \) mice likely reflects more than a straightforward elevation of substrate protein levels and may result from one of two scenarios. First, Fbxo2 could affect the endocytosis of receptors through ubiquitin-dependent signaling on subunits and, indeed, such a mechanism has been described for EGF receptors (Fallon et al., 2006; Huang et al., 2013). Alternatively, Fbxo2 may play a key role in determining receptor fate downstream of endocytosis (Fig. 11). Receptors on the surface are regularly endocytosed and either recycled back to the surface or targeted for degradation (Petralia et al., 2009). A role for Fbxo2 in this triage pathway is supported by the presence of high-mannose glycans on membrane-associated GluN subunits, suggesting their continued capacity to interact with Fbxo2. The fact that Fbxo2, an intracellular protein, binds high-mannose glycans that reside on the extracellular face of surface glycoproteins argues against a direct role for Fbxo2 in regulating endocytosis itself. Therefore, we suggest that internalization must precede Fbxo2-directed ubiquitination of GluN subunits, much like the activity-dependent ubiquitination of GluA2 follows endocytosis of the receptor (Lussier et al., 2011). Once internalized, the formerly extracellular glycans would reside within endosomes, but a mechanism analogous to the ERAD translocation apparatus could facilitate substrate presentation to Fbxo2. The observation that Sec61B, a core component of the ER translocation machinery, resides on endosomes supports this scenario (Guermonprez et al., 2003; Houde et al., 2003). Similarly, delivery of substrates to dendritic ER, followed by presentation to the cytosol, remains a possibility. The kinetics of NMDAR endocytosis and exocytosis would remain the same in this scenario, but Fbxo2 knock-out neurons would fail to degrade NMDARs and thus recycle them to an increasing surface pool. Evoking NMDAR internalization with bicineulline, as used here and elsewhere, requires a 48 h treatment, making it difficult to interpret whether NMDAR endocytosis is impaired. More rapid internalization protocols with alternative pharmacologic treatments were attempted but did not elicit robust, consistent internalization of NMDARs in wild-type controls. Further studies using subunits with pH-sensitive fluorescent tags could reveal whether receptor recycling changes when Fbxo2 is absent.

Beyond Fbxo2’s role in GluN subunit degradation, it is likely that many other mechanisms contribute to the regulation of NMDAR levels and activity at the synapse. The contribution of those subunits to synaptic transmission and downstream NMDAR-mediated signaling is probably determined by numerous complex mechanisms governing homeostatic plasticity in which Fbxo2 may play little, if any, direct role. Because Fbxo2 is expressed at the highest levels during development of the nervous system and is reduced in the adult animal, alternative non-Fbxo2-mediated mechanisms probably become more important over time. That we observed no change in spine density and minimal changes in head diameter suggests that, without Fbxo2, the mechanisms responsible for regulating spinous synapse morphology continue to function (Nikonenko et al., 2002; Ullanir et al., 2007; Fortin et al., 2010).

Our findings raise an intriguing question: where, if not at spinous synapses, do the additional NMDARs in \(Fbxo2^{-/-} \) mice reside? The plasma membrane is populated with pools of receptors that are believed to function as a reserve stock for rapid changes at synapses (Meier et al., 2001; Lai and Jan, 2006; Newpher and Ehlers, 2008; Petrini et al., 2009). Upwards of 65% of synaptic NMDARs are mobile and participate in exchange with extrasynaptic pools (Tovar and Westbrook, 2002). It is unclear, however, what regulates the size of these reserve pools. GluN2A-containing receptors are preferentially targeted to synapses, but are also found in reserve pools and can be trafficked laterally into synapses as needed (Tovar and Westbrook, 2002). Because we saw no major morphological changes at spinous synapses and observed no alteration in synaptic transmission, it stands to reason that the enhanced levels and surface localization of GluN1 and N2A in \(Fbxo2^{-/-} \) mice represent an increase in reserve pools.

Figure 11. Proposed model for altered handling of NMDARs and aberrant formation of axo-dendritic shaft synapses in the absence of Fbxo2. Based on coexpression experiments with uncoupled receptor subunits and analysis of brain lysates, we propose that Fbxo2 plays a role in limiting the steady-state levels of newly synthesized GluN1 and GluN2A in the ER (1). As steady-state levels increase, subunits complex together with scaffolding and trans-synaptic proteins and leave the ER to be trafficked to synapses (2). Homeostatic mechanisms limit the number of NMDARs at a given synapse, shunting unused receptor complexes to and from reserve pools at nonsynaptic sites in the peripheral membrane (3). As NMDARs are endocytosed in response to activity or as part of their normal lifespan, the option to degrade these receptors is lost in the absence of Fbxo2, causing most or all receptors to recycle back to the surface and keeping the reserve pool large (4). Given a sufficient density of receptor complexes—with associated scaffolds and trans-synaptic proteins—these pools recruit presynaptic branching to create axo-dendritic shaft synapses (5).
On its own, an enlarged reserve pool would not account for the significant increase that we observed in synaptic markers. Previous studies overexpressing GluN subunits reported increased NMDA-mediated synaptic currents (Tang et al., 1999; Foster et al., 2010), but did not assess whether they were accompanied by additional synaptic markers. The NMDAR interacts with PSD-95, which has been suggested to serve as a scaffold for trans-synaptic proteins, and the Fbxo2 substrates Beta Integrin 1 and the Amyloid Precursor Protein have been implicated in determining synapse number (Bassand et al., 1999; Gardoni et al., 2003). Additional, as-yet-identified Fbxo2 substrates may also mediate this phenomenon. Perhaps if the reserve pool in the peripheral membrane reached sufficient density and complexity, it could recruit presynaptic branching and an opposed axonal terminal, thereby creating a shaft synapse. We propose that failure to clear NMDAR subunits both through ERAD and activity-dependent endocytosis results in aberrant clustering in the peripheral membrane (Fig. 11).

Determining the precise proteins responsible for the observed shaft synapses will require additional studies because the mechanisms regulating the formation and removal of excitatory shaft synapses are not well characterized. Excitatory shaft synapses are relatively uncommon under normal physiologic conditions (Bourne and Harris, 2011), but can be rapidly induced after LTP in the hippocampus (Chang and Greenough, 1984; Bourne and Harris, 2011). Shaft synapse numbers can also increase after experiential modifications of awake, behaving animals (Jones et al., 1997; Helmeke et al., 2001; Nikolakopoulou et al., 2006). The formation of shaft connections is not necessarily an intermediate step toward spine extension from the shaft, as suggested previously (Ethell and Pasquale, 2005; Bourne and Harris, 2011). Spine outgrowth precedes synaptic connectivity (Knott et al., 2006) and studies of overexpressed EphB3 reveal an increase in shaft synapses with no effect on spineogenesis (Aoto et al., 2007).

The mechanisms by which shaft synapses are removed are also unclear, with reports of both rapid removal (Nikolakopoulou et al., 2006; Bourne and Harris, 2011) and persistence for hours (Chang and Greenough, 1984) after tetanic stimulation. Activity blockade can cause the selective elimination of shaft, but not spiny, synapses; in contrast, epileptiform activity induces a reduction in spiny, but not shaft, synapses (Zha et al., 2005). “Removal” itself may be a misnomer because rapidly produced shaft synapses may actually be redistributed to strengthen and enlarge selected spiny synapses (Bourne and Harris, 2011). As a caveat, extensive remodeling of synaptic connections has been reported after preparation of acute slices (Kirov et al., 1999). To bridge our morphological and electrophysiological findings, further studies are required to address how Fbxo2 influences the maintenance of shaft synapses and how, in its absence, they remain electrophysiologically inert.

Shaft synapse formation after overexpression of the postsynaptic protein EphB3 is marked by increased excitatory transmission in cultured neurons (Aoto et al., 2007). Conceivably, increasing shaft synapses in vivo on the scale observed here would lead to epileptogenic activity that could be fatal. Therefore, their silencing may be an essential, compensatory response. It is possible that their localization makes shaft synapses more potent (Segev and Rall, 1988) and causes the loss of input selectivity, which could evoke a compensatory decrease in the length of dendritic spines (Arellano et al., 2007, but see Bloodgood et al., 2009), as we observed (Fig. 9c). Additional studies exploring shaft synapses are needed to address their potential contribution to learning and memory.

References
Bourne JN, Harris KM (2011) Coordination of size and number of excitatory and inhibitory synapses results in a balanced structural plasticity along mature hippocampal CA1 dendrites during LTP. Hippocampus 21:354–373. CrossRef Medline
Gladding CM, Speros MD, Xu J, Zhang LY, Milnerwood AJ, Lombroso PJ,

