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Abstract 

Energy captured by and flowing through a forest ecosystem can be indexed by its total Net Primary 

Productivity (NPP).  This forest NPP can also be a reflection of its sensitivity to, and its ability to 

adapt to, any climate change while also being harvested by humans.  However detecting and 

identifying the vulnerability of forest and human ecosystems to climate change requires information 

on whether these coupled social and ecological systems are able to maintain functionality while 

responding to environmental variability. 

To better understand what parameters might be representative of environmental variability, we 

compiled a metadata analysis of 96 tropical forest sites.  We found that three soil textural classes 

(i.e., sand, sandy loam and clay) had significant but different relationships between NPP and 

precipitation levels.  Therefore, assessing the vulnerability of forests and forest dependent 

communities to drought was carried out using data from those sites that had one of those three soil 

textural classes.  For example, forests growing on soil textures of sand and clay had NPP levels 

decreasing as precipitation levels increased, in contrast to those forest sites that had sandy loam 

soils where NPP levels increased.  Also, forests growing on sandy loam soil textures appeared 

better adapted to grow at lower precipitation levels compared to the sand and clay textured soils.  In 

fact in our tropical database the lowest precipitation level found for the sandy loam soils was 821 

mm yr
-1

 compared to sand at 1739 mm yr
-1

 and clay at 1771 mm yr
-1

.  Soil texture also determined

the level of NPP reached by a forest, i.e., forest growing on sandy loam and clay reached low-

medium NPP levels while higher NPP levels (i.e., medium, high) were found on sand-textured soils.  

Intermediate precipitation levels (>1800 to 3000 mm yr
-1

) were needed to grow forests at the

medium and high NPP levels.  Low thresholds of NPP were identified at both low (~750 mm) and 

high precipitation (>3,500 mm) levels. 

By combining data on the ratios of precipitation to the amount of biomass produced in a year with 

how much less precipitation input occurs during a drought year, it is possible to estimate whether 

productivity levels are sufficient to support forest growth and forest dependent communities 

following a drought.  In this study, the ratios of annual precipitation inputs required to produce 1 

Mg ha
-1

 yr
-1

 biomass by soil texture class varied across the three soil textural classes.  By using a

conservative estimate of 20% of productivity collected or harvested by people and 30% 

precipitation reduction level as triggering a drought, it was possible to estimate a potential loss of 

annual productivity due to a drought.  In this study, the total NPP unavailable due to drought and 

harvest by forest dependent communities per year was 10.2 Mg ha
-1

 yr
-1 

for the sandy textured soils

(64% of NPP still available), 8.4 Mg ha
-1

 yr
-1 

for the sandy loam textured soils (60% available) and

12.7 Mg ha
-1

 yr
-1

 for the clay textured soils (29% available).  Forests growing on clay textured soils

would be most vulnerable to drought triggered reductions in productivity so NPP levels would be 

inadequate to maintain ecosystem functions and would potentially cause a forest-to-savanna shift.  

Further, these forests would not be able to provide sufficient NPP to satisfy the requirements of 

forest dependent communities.  By predicting the productivity responses of different tropical forest 

ecosystems to changes in precipitation patterns coupled with edaphic data, it could be possible to 

spatially identify where tropical forests are most vulnerable to climate change impacts and where 

mitigation efforts should be concentrated. 

Key words (up to 5): Net Primary Productivity, soil texture, sustainable resource consumption, 

edaphic, climate change 
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1.0 Introduction 

Many studies have focused on measuring the vulnerability of coupled human and natural systems to 

climate change (e.g., IPCC 2012) by integrating information from the social and natural sciences 

(e.g., Chuvieco et al. 2014; Downing et al. 2014; Mumby et al. 2014).  Despite the multitude of 

research, it has been challenging to equate social and ecological resilience with vulnerability to 

climate change.  To fully understand these interconnected systems different approaches and 

methodologies are needed to address our diverging research objectives (Liu et al. 2007).  A lack of 

knowledge of an ecosystem’s pre-novel context (Seastedt et al. 2008) or the interconnectivities of 

complex social drivers of change (Scullion et al. 2014) means that resilience represents the ability 

of a system to recover after a disturbance.  However does it indicate whether ecological and social 

systems have recovered within their historical range of conditions?  Additional knowledge may be 

needed to identify system parameters that maintain functionality within the “safe operating space” 

where a stress or disturbance does not trigger the system to cross a threshold of recovery beyond the 

historical range of variation (Scheffer et al. 2015).  In fact identifying the safe operating space for 

both the social as well as the ecological systems would probably be even more challenging with the 

multitude and complexity of connections that exist between them.  To help decrease some of those 

challenges of quantifying the sensitive parameters that reflect movement within and between 

regimes (Scheffer and Carpenter 2003), we try to quantify the parameters remotely rather than 

locally and also at different spatial and temporal scales to minimize unexplained unique results 

(Vogt et al. 2002; Gmur et al. 2013; Scullion et al. 2014).  Further, one cannot focus on a single part 

of the coupled socio-ecological system (Maxwell 2014; Silva 2014) and expect to understand the 

mechanistic links between them.  Even when research has effectively linked the complexity of 

socio-economic interactions with resources, they have been less able to validate what variables 

should be managed to reduce the impacts on both people and the environment (e.g., Downing et al. 

2014; Görg et al. 2014; but see Scullion et al. 2014). 

One metric for detecting mechanistic links between the social and ecological systems is to use an 

indicator such as total Net Primary Production (NPP).  NPP reflects the pools and fluxes of 

materials and energy flowing through the social and ecological systems (Vitousek et al. 1986; 

Rojstaczer et al. 2001; Haberl et al. 2007).  It is analogous to measuring ‘virtual water’ which tracks 

total water consumption by integrating water stored in the materials and track the energy consumed 

by products across different time and spatial scales and organizational units managing water (Liu et 

al. 2015).  When harvesting forest products are required for survival, those dependent people 

become vulnerable when a drought affects their forest productivity.  Therefore, NPP can potentially 

reflect whether a forest is competitively fit and whether a species may be more adaptable to a 

changing environment and stresses (Vogt et al. 1996).  NPP could also be used to index plant 

adaptation and response to a changing environment or physiological adaptation of species to 

drought, soils, insects and pests (Waring 1991; Lambers and Poorter 1992; Davies et al. 2005; 

Bartlett et al. 2012; Smith 2015).  Thus by determining how much biomass a specific landscape 

produces each year and obtaining information on the amount of ecosystem services (e.g., habitats, 

water, nutrient cycles, forest products, biodiversity) collected by a group of people, it becomes 

possible to estimate whether a landscape is capable of sustainably supporting both activities. 

Using NPP data to integrate the social and natural science requires an ability to detect the scale at 

which these productivity changes occur.  For some forests, significant correlations between 

precipitation and NPP across soil textural-class levels exist suggesting these variable combinations 

could be used to identify locations where NPP and ecosystem services may be at critical risk to 

droughts (Slik et al. 2014; Wooster et al. 2012; Xu et al. 2011).  Further, there is considerable 

research reporting the importance of soil texture in defining the nutrient and water holding capacity 

of soils - both key factors controlling plant growth rates (Waring and Franklin 1979; Gentry and 
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Terborgh 1990; DeWalt and Chave 2004; Sotta et al. 2007).  Soil texture therefore not only 

influences soil moisture retention capacity and soil available nutrient supplies but they impact how 

a plant adapts to its growing environment and whether NPP levels will decrease during a drought. 

 

By identifying how a forest maintains functionality for NPP as it is related to its soil texture, it is 

possible to estimate what levels of NPP are needed to safeguard sustainable harvests of ecosystem 

services against drought.  To demonstrate one possible approach, we used a database populated with 

metadata from 96 different tropical forest sites to determine if any soil textural class had significant 

correlates between NPP and precipitation levels.  Of 12 soil textural classes, forests growing on 

three textural classes (i.e., sand, sandy loam and clay) had productivity levels changing in response 

to precipitation levels.  Since these three textural classes are found in over half of the tropical forest 

sites (Sanchez et al. 1982), relationships between NPP and precipitation (e.g., NPP per precipitation 

amounts) were examined to search for any potential trends and/or thresholds.  A by-product of this 

exercise generated an estimate of the potential drought impact on productivity as well on the 

amount of productivity capacity available for harvest by humans.  By identifying NPP thresholds, 

an evidence-based decision-making framework for spatially disparate natural resources could be 

provided for tropical forests that are potentially vulnerable to drought. 

 

 

 

2.0 Methods 

 

2.1 Database creation and description. 

 

This study was based on a compilation of NPP, edaphic and climatic information for 96 published 

plot-level data entries that had been characterized as natural tropical forests.  The geographic 

distribution of the selected field sites are presented in Figure 1.  The database was populated by 

information collected in natural tropical forests reported as mature or closed canopy stands.  For 

each site, data were separately recorded by forest region, forest age, climatic variables, elevation 

and elevation groupings, soil type (i.e., taxonomic soil orders) and soil textural classes according to 

the USDA soil taxonomy system (Table 1). 
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Figure 1. Geographic distribution of pan-tropical forest studies’ field sites used in our database. 

 

Table 1. Variables and groupings used in our database to create tree-like regression models using 

data reported by the cited authors of research reports from 96 pan-tropical forest field-sites. 

 

Variable Key Groups 

Global forest region 1 = America; 2 = Asia; 3 = Africa 

Stand age classes, yrs 1 = Age reported in a paper;  

2 = Mature or closed canopy forest 

Elevation groups, m asl 

(e.g., Hertel et al. 2009) 

1 = Lowland zone = <400 m;  

2 = Pre-montane zone = 400-1200 m,  

3 = Montane = >1200 m 

Precipitation, mm yr
-1

 Forest groups by rainfall (Chave et al. 2005): 

1 = Wet - evapotranspiration exceeds rainfall during <1 month; 

usually high-rainfall lowland forests (rainfall >3,500 mm yr
-1

 

and no seasonality;  

2 = Moist - evapotranspiration exceeds rainfall during more 

than a month but <5 months; forests with marked dry season 

(1-4 months), sometimes semi-deciduous canopy and 1,500-

3500 mm yr
-1

 rainfall for lowland forests;   

3 = Dry - pronounced dry season, plants suffer serious water 

stresses <1,500 mm yr
-1

, and >5 months dry season) 

 

Additional subgroups by rainfall:   

1 = H wet, >4500 mm yr
-1

;  

2 = L wet, >3500-4500 mm yr
-1

;  

3 = H moist, >3000-3500 mm yr
-1

;  

4 = M moist, >2000-3000 mm yr
-1

;  

5 = L moist, 1500-2000 mm yr
-1

;  

6 = moist-dry, 1000-<1500 mm yr
-1

;  

7 = dry-dry, <1000 mm yr
-1
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Air temperatures, °C 1 = Mean annual air temperature; 

2 = Minimum air temperature;  

3 = Maximum air temperature 

Soil texture classes - 

standard soil texture 

class matrices based on 

proportion of sand, silt, 

clay (Soil Survey Staff 

2010) 

1= sand; 2= loamy sand; 3= sandy loam; 4= fine sandy loam; 

5= very fine sandy loam; 6= loam; 7= silt loam; 8= silt;  

9= sandy clay loam; 10= silty clay loam; 11= clay loam;  

12= sandy clay; 13= silty clay; 14= clay 

[S2 Percent sand, silt and clay in each soil texture class] 

Soil types; Soil orders 

in the US Soil 

Taxonomy system (Soil 

Survey Staff 2010) 

1= Mollisols; 2= Alfisols; 3= Andisols; 4= Histosols;  

5= Inceptisols; 6= Ultisols; 7= Entisols; 8= Spodosols; 

9= Oxisols; 10= Aridisols;  

11= Vertisols 

Net Primary 

Productivity, 

Mg ha
-1

 yr
-1

1 = Aboveground NPP (NPPa); 2 = Belowground NPP (NPPb); 

3 = Total NPP (NPPt) 

We appreciate that many tropical areas may have at least three distinct climatic seasons because of 

monsoons, but the analyses in this study were limited to the mean annual data since that is what is 

most commonly reported in published papers.  To further tease apart the impact of climatic 

seasonality on productivity, data were aggregated by precipitation groups and subgroups (see Chave 

et al. 2005).  The precipitation groups consisted of: Dry (<1500 mm yr
-1

 of precipitation), Moist

(1500-3500 mm yr
-1

) and Wet (>3500 mm yr
-1

).  Precipitation grouping or categorization is a

common approach used to search for patterns in tropical data since the variance in precipitation 

rates, in contrast to temperature, is high in this climatic zone (Holdridge 1947).  This precipitation 

grouping is particularly useful because the coarse-scale climatic constraints indirectly integrate 

differences in soil development rates and their varying nutrient delivery capacities (Brown and 

Lugo 1982; Sanchez et al. 2003; Chave et al. 2005). 

The database in this study, including the soil-type data, originated from Vogt et al. (1986) which 

was then expanded upon using other published global databases on total forest productivity and site 

characteristics (e.g., Vogt et al. 1995, 1996; Phillips et al. 1998; Clark et al. 2001; Malhi et al. 

2011).  If Vogt et al. (1986) did not provide complete site information, then the missing data were 

searched for using the University of Washington Library’s Search Tools (Articles and Research 

Databases, Academic Search Complete - EBSCO, Web of Science) as well as Google Scholar and 

JSTOR to complete the database used in this study.  Data on site characteristics were frequently 

found in non-refereed publications, reports or theses and dissertations. 

If a publication did not report both direct field estimates of above- (NPPa) and below-ground (NPPb) 

net primary productivity data for a research site, that site was not included in the database.  The 

belowground root productivity in this database is a combination of coarse (generally >2mm 

diameter) as well as fine root (generally <2mm diameter) data.  Most estimates of coarse root 

biomass and productivity are a ratio developed from allometric relationships developed for a 

particular species (e.g., Kenzo et al. 2009).  However fine root NPP data were obtained from direct 

measures of fine root growth using a diversity of field sampling methods (e.g., root cores, in-growth 

cores, mini-rhizotrons, etc).  We also used site characteristic and NPPt data provided by Clark et al. 

(2001) for the 39 sites they summarized in their paper.  But we did not use the ORNL dataset 

(Olson et al., 2001) since the core of those data are from the empirically determined NPPb data of 

Clark et al. (2001) which we had already used.  When source authors reported NPPt as Mg C ha
-1
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yr
-1

, the value was doubled in the database to estimate dry biomass productivity (i.e., mass of C was 

assumed to be 50% of the dry biomass). 

 

2.2 Regression-tree prediction model 

 

When collating data from research plots scattered across different regions of the world, the 

productivity relationships to site-scale edaphic and climatic conditions may not be immediately 

apparent using standard multivariate regression models.  Therefore, this study used a multivariate 

statistical method that utilizes a binary division of sample populations to create tree-like regression 

models (Therneau et al. 2011) to determine the correlations and thresholds of total productivity.  

Since binary regression trees are a non-parametric technique, they do not suffer from linear 

regression requirements for normalized distributions and the initial distribution of the data can be 

used without the constraints of traditional transformation of any non-normal data (Lemon 2003). 

 

The binary regression-tree statistical method was used as the conceptual framework to identify 

significant splits within the compiled dataset.  The binary regression-tree statistical tree method 

revealed relationships between multiple variables within the data that might have been ignored 

using other analytic techniques.  This approach was chosen to easily convey results of the statistical 

model and quickly identify significant splits in a complex dataset.  Continuing development and 

wide use of this statistical method - not just within the environmental sciences but within health 

sciences, social sciences, statistics, computer science and other fields - speaks to its general 

acceptance as an exploratory regression method. 

 

To build a regression tree, the sample population was split into two distinct groups based on an 

identified significant division of the data by choosing one of the predictive factors.  This process 

was then applied again, treating each new group as its own distinct entity and finding the next set of 

variables which best divides the input population into another two new groups for each initial 

grouping.  The process was carried out continually or recursively until a minimum size was reached 

or a subgroup could no longer be significantly subdivided (Therneau et al. 2011).  It can be said that 

each successive split adds a new level which isolates each node making it resistant to multi-

collinearity among the predictor variables (Loh 2006). 

 

The model’s relative error was used to assess and ensure that a regression was not over-fitted to the 

data.  Regression trees with a relative error close to zero produce a good prediction while a relative 

error around or greater than one produces a poorer prediction (Cukjati et al. 2001).  The number of 

nodes or splits to be used within the regression tree is determined by choosing a complexity 

parameter which minimizes the cross-validation prediction error.  The complexity parameter may 

increase as additional splits are introduced to the fitted tree.  This value is expressed within the 

RPART library (Therneau and Atkinson 2011) using the printcp command which will print a table 

showing the distinct complexity parameter, the number of splits and the associated cross-validation 

error (Everitt and Torsten 2010).  Each regression tree was cross-validated 10,000 times and pruned 

to ensure the replication in trees fit for all response variables.  Classification and regression trees are 

non-parametric with no assumptions made about the underlying distribution of the predictor 

variables (Lewis 2000; Tittonell et al. 2008). 

 

For the database, the multivariate statistical method identified significant NPP thresholds and a 

range of productivities within three NPP groupings: Low NPP group had NPP that ranged from 4 to 

18 Mg ha
-1

 yr
-1

; Medium NPP grouping NPP ranged from 19 to 26 Mg ha
-1

 yr
-1

 and the High NPP 

grouping had NPP ranging from 27 to 43.4 Mg ha
-1

 yr
-1

.  Data shown in Figure 1 includes 

information for the entire database.  The remaining statistical analyses by soil texture classes 

selected only sites where mean annual air temperatures were higher than 25ºC.  The multivariate 
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statistical approach showed that the selected sites had significant relationships between precipitation 

and productivity that was not found for forests growing below a mean annual air temperature of 

25ºC.  When the initial multivariate statistical method identified significant relationships between 

precipitation and NPP by a soil texture class, these data were further explored statistically by soil 

texture class using the least significant difference (LSD) post-hoc test using SAS (version 9.2, SAS 

Institute, Inc., Cary, NC). 

 

 

3.0 Results 

 

NPP levels in relationship to precipitation groups are shown in Figure 2.  This figure shows how 

several soil texture groups may contribute to similar productivities found in an NPP grouping.  It is 

also apparent that specific soil textures do not determine whether NPP would be in the low, medium 

or high NPP grouping.  It also shows that NPP data exist for a diversity of soil texture classes and 

also that the NPP levels are highly variable in tropical forests. 

 

 

 
Figure 2.  Associations between net primary productivity (above and belowground), average annual 

precipitation, and soil texture reported from tropical forest sites around the world.  The annual 

precipitation level shown at ‘A’ is the level assumed in which tropical forest regimes may transition 
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to the savanna regimes if the precipitation falls below this line.  Using multivariate regression 

analysis, splits were determined for NPP groupings: Low = 4 to 18 Mg ha
-1

 yr
-1

; Medium = 19 to 26 

Mg ha
-1

 yr
-1

 and High = 27 to 43.4 Mg ha
-1

 yr
-1

. 

 

 

When regression analyses of data within aggregated NPP groupings (High, Medium, Low) 

compared annual precipitation levels to NPP, precipitation levels did not explain any of the variance 

in NPP for forests growing in the High and Medium NPP groupings.  In the Low NPP grouping, 

only 33% of the variance in NPP was explained by annual precipitation levels.  Since none of these 

comparisons were statistically significant, these data are not discussed here. 

 

The NPP grouping analysis did provide information on the amount of precipitation needed to 

produce 1 Mg ha
-1

 yr
-1

 of biomass each year.  For example, in the High NPP grouping, 79 mm of 

annual precipitation is needed to grow 1 Mg ha
-1

 yr
-1

 of biomass.  In the Medium NPP grouping, the 

ratio of precipitation to NPP was 125 mm of annual precipitation to grow 1 Mg ha
-1

 yr
-1

 of biomass.  

Whereas the Low NPP grouping showed that 177 mm of annual precipitation is needed to grow 1 

Mg ha
-1

 yr
-1

 of biomass. 

 

For sites with mean annual air temperatures above 25ºC, three out of the 12 soil texture classes had 

significant relationships between forest NPP and precipitation (Table 2).  Forests growing on sand, 

sandy loam and clay textured soils had 61%, 81% and 86% of the variation in NPP explained by 

precipitation levels, respectively (Table 2).  Further, sites with sandy loam and clay textured soils 

reached NPP levels found in each of the three NPP groupings while those growing on sand textured 

soils reached NPP levels found in the Medium and High NPP groupings.  When using the average 

of all the plots by soil texture class, the amount of annual precipitation needed to produce 1 Mg ha
-1

 

yr
-1

 biomass was 65 mm yr
-1

 for the sandy loam textured soils, 105 for sand textured soils and 229 

for the clay textured soils.  However, developing a ratio of precipitation to productivity levels using 

an average of all plots resulted in differed ratios and trends for how much precipitation was needed 

to produce 1 Mg of biomass per year compared to developing regression equations by each soil 

texture class.  The regression equation resulted in the sand textured soils needing almost twice as 

much rainfall to produce the 1 Mg ha
-1

 yr
-1

 compared to the sandy loam and clay textured soils 

(Table 2). 

 

Table 2.  Data summary of NPP, precipitation levels, amount of precipitation (mm yr
-1

) needed to 

produce 1 Mg ha
-1

 yr
-1

 of NPP by soil texture for forests growing at mean annual air temperatures 

>25°C. 

 

Soil 

texture 

class 

NPP 

  
[range] 

Precipitation 

  
[range] 

Precipitation levels needed 

to produce 1 Mg of 

biomass per year 

(mm yr
-1

) 

[range] 

Sand 

28.5 

[22.8-34.8] 

2792 

[1739-3500] 

105 

[58-154] 

Sandy 

loam 

20.9 

[11.5-43.4] 

1421 

[821-2730] 

65 

[43-100] 

Clay 

17.8 

[7.5-28.8] 

2736 

[1771-3521] 

229 

[66-469] 

 

 

The data for both the sand and sandy loam textured soils, but not the clay textured soils, are 

clustered due to a lack of site data across a broader range of precipitation levels.  Despite this 
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clustering, these plots are useful to develop insights on what might be the lower and upper limits of 

NPP by soil texture class and to explore how productivity levels change along a precipitation 

gradient.  For both the sand and clay textured soils, an inverse relationship existed between 

precipitation input levels and NPP (Figures 3a-c).  These patterns for the sand and clay textured 

soils contrasted with the positive correlation that resulted for the sandy loam textured soils.  For 

both the sand and clay textured soils, the higher NPP occurred at precipitation levels around 1500 

mm rainfall per year in contrast to the sandy loam soils were forests with high NPP needed between 

2500 and 3000 mm yr
-1

 of rainfall.  Further these correlations resulted in sand textured soils needing 

~180 mm precipitation for each 1 Mg ha
-1

 yr
-1

 of biomass produced, ~100 mm precipitation for each 

1 Mg ha
-1

 yr
-1

 of biomass when forests grew on sandy loam textured soils and ~90 mm precipitation 

for each 1 Mg ha
-1

 yr
-1

 of biomass on the clay textured soils. 

 

 

 
 

Figure 3.  Net primary productivity of tropical forests related to their average annual precipitation 

levels and their soil textures.  The linear regression lines represent forests growing on (a) sand [Adj 

R
2
 = 0.61, P <0.05 (clustered), n=6]; (b) sandy loam [Adj R

2
 = 0.81, P <0.05 (clustered), n=9]; and 

(c) clay [Adj R
2
 = 0.86, P <0.05, n=8] textured soils at mean annual air temperatures >25°C.  The 

curvilinear regression line (d) represents data for forests growing at mean annual air temperatures 

>25°C on sand, sandy loam and clay textured soils [Adj R
2
 = 0.53, P <0.05, n = 23; Y = -9.56 + 

0.037X - 0.00001X
2
]. 

 

 

3.1 Sand textured soils. 
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The regression analysis correlating productivity and precipitation resulted by soil texture class did 

not produce similar upper and lower productivity limits in the database.  For example, sand textured 

soils had the lower limit of NPP at 20 Mg ha
-1

 yr
-1

 of biomass since a lower productivity level 

would occur at precipitation levels higher than 4500 mm yr
-1

 (Figure 3a).  The NPP levels at 4500 

mm yr
-1

 were used to set the lower threshold of NPP since this is where a significant threshold of 

lower productivity has been detected (Vogt et al. unpublished data).  The upper limit of NPP for 

forests growing in the sand textured group was set at 750 mm even though the regression line 

crossed the Y axis at a higher NPP level.  The 750 mm yr
-1

 was used to set the lower productivity 

limit since this is considered to be where a forest becomes vulnerable to shifting into a savanna 

since forests are unable to maintain a positive carbon balance to compete against grasses (Hirota et 

al. 2011).  This approach identified an NPP upper limit of 40 Mg ha
-1

 yr
-1

.  The study database 

reported the highest NPP level of 34.8 Mg ha
-1

 yr
-1

 which is lower than the upper limit identified 

using. 

 

 

3.2 Sandy loam textured soils. 

The sandy loam textured soils, which reached the highest NPP compared to the other two soil 

textures, the regression line crossed the Y axis at 5.7 Mg ha
-1

 yr
-1

 of biomass production (Figure 

3b).  Since the precipitation levels would have been zero, the 750 mm yr
-1

 lower threshold where 

forests are vulnerable to being converted to grassland was used to set the lower limit of NPP on the 

sandy loam textured soils.  Using this approach, the lower limit of NPP was 13 Mg ha
-1

 yr
-1

.  Since 

the database reported the lowest forest NPP levels around 11.5 Mg ha
-1

 yr
-1

, this appears to be a 

realistic estimate of this lower NPP level. 

 

3.3 Clay textured soils. 

Similarly, the upper limits of NPP for forests growing on clay textured soils were determined to be 

at 38 Mg ha
-1

 yr
-1

 of biomass using the same criteria as used for forests growing on the sand 

textured soils (Figure 3c).  Even though the regression line crossed the X axis at a precipitation 

level of 4500 mm yr
-1

, this was not a realistic metric to determine the lower limit of NPP for the 

clay textured soils.  Since precipitation levels higher than 4500 mm yr-1 have already been 

identified as a threshold of significant reductions in NPP (Vogt et al. unpublished data) and NPP 

levels based on the regression equation would have been less than 5 Mg ha
-1

 yr
-1

, the lower limit of 

NPP was selected at 7.5 Mg ha
-1

 yr
-1

 since this is the lowest value reported in the study database. 

 

3.4 Sand, sandy-loam and clay textured soils. 

Plotting all the data from the sand, sandy loam and clay textured soils together suggests that the 

NPP and precipitation data fit a curvilinear relationship (Figure 3d).  It shows low NPP levels will 

be found at low and high precipitation levels while medium and high NPP levels will be found at 

intermediate precipitation levels (>1800 to 3000 mm yr
-1

). 

 

 

 

4.0 Discussion 
 

4.1 Tropical forests and drought frequency 

 

Lugo and Waide (1993) and Lugo et al. (2012) suggested that tropical wet forests are continually 

recovering from a previous disturbance because they occur as such a high frequency.  Newbery and 

Lingenfelder (2004) wrote that the occurrence of occasional low intensity droughts is an important 

part of the climate regimes of moist tropical forests in Borneo where a guild of drought resistant 

trees grow.  Droughts are a common occurrence in the tropics as shown in Table 3 where 
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representative examples of reported droughts are summarized for five locations in the tropics.  This 

data highlights the high frequency of droughts occurring in tropical forests globally.  Indonesia 

experienced 14 droughts during a 129 year period, Peru at least seven droughts over a 86 period, 

Brazil at least 14 over 113 years, Puerto Rico nine over a 36 year period, and Kenya and Tanzania 

10 droughts during a 34 year period (Table 3).  The frequency of droughts is probably higher than 

what are shown in Table 3 since these only include the documented cases of drought. 

 

 

Table 3.  Drought occurrences in five different areas of tropical forests. 

 
Country Precipitation Reductions Reported Dates of Droughts  Reference 

Brazil Mean annual rainfall deficit 

was 30-40% during drought 

(Williams et al. 2005) 

1900, 1915, 1925, 1926, 

1958, 1963, 1964, 1979, 

1980, 1981, 1983-1990, 

1991-1999, 2005, 2010 

Williams et al. 2005, Barbosa et 

al. 2006, Marengo et al. 2008, 

Phillips et al. 2009, Marengo et 

al. 2011, Xu et al. 2011 

East Africa 

(Kenya & 

Tanzania) 

A decrease in total rainfall 

to 384 mm in March, April, 

May (from 407 mm 

average), and to 318 (from 

521 mm average) in 

September to December 

period (Hastenrath et al. 

2007) 

1972, 1986, 1993, 1996, 

1999, 2000, 2003, 2004, 

2005, 2006 

Hastenrath et al. 2007, Gereta et 

al. 2009, Tanaka et al. 2000, 

Ogutu et al. 2007, Kijazi and 

Reason 2009 

Indonesia Monthly mean rainfall 

reduction of up to 110 mm 

for six consecutive months 

(Gutman et al. 2000) 

1982, 1983, 1987, 1988, 

1991, 1992, 1994, 1995, 

1997, 1998, 2002, 2003, 

2006 

Salafsky 1994; Levine 1999; 

Gutman et al. 2000; Siegert et al. 

2001; Slik 2004; Erasmi et al. 

2009; Wooster et al. 2012  

Peru A 170 mm instead of 280 

mm of rainfall was recorded 

between July and 

September 2010 (Espinoza 

et al. 2012) 

1925, 1982, 1983, 1991, 

1997, 2010, 2011 

Caviedes 1984, Kane 2000, 

Espinoza et al. 2012 

Puerto 

Rico 

Annual rainfall was 20% 

below normal (Larsen 2000) 
1966, 1967, 1968, 1990, 
1991, 1994, 1996, 1997, 
2002 

Beard et al. 2005; Adams et al. 

2009; Larsen 2000 

 

 

There are many well-documented ecological impacts of droughts in the tropics, e.g., decreased NPP 

levels, higher mortality rates, increase loss of forest cover, and shifts in tree species dominance 

(Becker et al. 1998; Clark et al. 2003; Beard et al. 2005; Allen et al. 2010; Hirota et al. 2011; Li et 

al. 2011).  Drought induced increases in forest mortality rates are highly variable with reports 

ranged from 3% to a third of the trees dying (Swaine et al. 1987; Condit et al. 1995; Becker et al. 

1998; Potts 2003).  Mortality rates also vary based on management practices before the occurrence 

of the drought; Slik (2004) reported that the 1997/1998 drought in Indonesia led to additional tree 

mortality of 11.2, 18.1, and 22.7% in undisturbed, old logged and recently logged forest.  The high 

variance in the mortality rates in tropical forests during droughts (Barbosa et al. 2006; Phillips et al. 

2009; Xu et al. 2011; NASA 2013) is useful information since it suggests the need to identify other 

factors to explain the variances reported as well as whether drought imposes different thresholds 

depending on site conditions.  It is difficult to determine whether these mortality rates are within the 

boundaries of the safe operating space (Scheffer et al. 2015) and whether ecosystems are likely to 

recover after a drought or not. 
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What is evident from the summary of precipitation deficits for tropical forests (Table 3) is the high 

variability in how much precipitation levels need to change to trigger higher mortality rates.  For 

example, Newberry and Lingenfelder (2004) reported how 200 year-old trees growing in Borneo 

would experience 15 high intensity (rainfall deficit ≥200 mm - successive months with <100mm 

mo
-1

 of precipitation) and 30 low intensity droughts (rainfall deficit ranging between 110 and <200 

mm during the drought months).  Since the precipitation deficit recorded for each site or region is 

affected by site edaphic and climatic conditions, drought impacts can be refined by identifying the 

edaphic scale where changes in NPP are most likely to occur during a drought.  The database in this 

study showed that three soil texture classes (sand, sandy loam, clay) had statistically significant but 

different relationships between forest NPP and precipitation levels, these results will be examined 

next. 

 

 

4.2 Productivity levels, soil texture and droughts in the tropical forests 

 

The regression tree-like model showed forests growing on clay, sand, and sandy loam textured soils 

have significant correlations between precipitation levels and NPP levels.  Therefore, the 

relationships between NPP and precipitation levels were further explored within each of the three 

soil texture classes especially since they represent more than half (59%) of the soil textures found in 

the humid tropics.  Sanchez et al. (1982) reported that generally 45% of the humid tropical soils are 

clayey, 23% loamy, 16% loamy over clayey, 13% sandy, 1% sandy over loamy and 2% organic.  

The results of the remaining nine soil texture classes, with no significant relationships between 

precipitation levels and NPP, suggest that ~41% of the terrestrial areas are less vulnerable to 

drought.  Many publications have linked factors other than soil texture and soil drought tolerance in 

controlling forest species dominance, mortality rates and productivity (e.g., nutrient delivery 

capacity, soil chemistry, aluminum concentrations, rooting depth; e.g., Sanchez et al. 1982, Jha and 

Singh 1990; Vogt et al. 1995; Palmiotto et al. 2004; Nepstad et al. 2007; Paoli et al. 2008; Quesada 

et al. 2012; Jiménez et al. 2014; Baldos et al. 2015).  It would be worth expanding the database used 

in this study and to specifically search for other multiple variable(s) combinations to explain NPP 

levels. 

 

For the three soil texture classes where precipitation levels were linearly correlated with NPP, it was 

possible to explore how productivity levels would change across a range of precipitation levels 

without having to conduct an experimental manipulation.  In this study, 61%, 81 and 86% of the 

variance in NPP levels were explained by changes in precipitation levels when data were grouped 

by sand, sandy loam and clay textured soils, respectively.  Both the sand and clay textured soils had 

inverse relationships between NPP and precipitation where productivity levels decreased as 

precipitation levels increased.  If these forests received <1700 mm yr
-1

 of rainfall, they are 

potentially vulnerable to a loss of productivity that may persist beyond the drought event.  It would 

be informative to determine whether the low NPP following the 2005 and 2010 drought in the 

Brazilian Amazon (Marengo 2005, 2011; Xu et al. 2011; NASA 2013) occurred on forests with 

sand or clay textured soils. 

 

In contrast to the results produced for the sand and clay textured soils, the sandy loam textured soils 

had significant positive linear relationships between precipitation and NPP.  For the data included in 

the study database, forests growing in the sandy loam textured soils had a wider range of NPP levels 

across a large variation in precipitation levels compared to those growing in sand or clay.  Also, 

forests growing in sandy loam soils grew at lower precipitation levels (821 mm yr
-1

) compared to 

the sand (1739 mm yr
-1

) and clay textured (1771 mm yr
-1

) soils.  Forests growing on sandy loam 

textured soils should be less vulnerable to drought since they are able to maintain their productivity 

levels at the precipitation levels used to demarcate where the forest-savanna shifts are likely to 
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occur.  Whether forests growing on sandy loam textured soils would have a lower precipitation 

level that would trigger a forest-savanna biome shift is worth further research.  If this scenario is 

maintained, it would suggest that the forests growing on sandy loam textured soils would have a 

wider safe operating space for productivity before a threshold is reached compared to the sand and 

clay textured soils. 

 

When combining data from the three soil texture classes, a curvilinear fit was found for NPP and 

precipitation (see Figure 3) which suggests that low NPP levels will be found at both the low and 

high precipitation levels.  This database identified the lowest productivity limit for sites receiving 

too little (the sandy loam textured soils) or too much precipitation (the sand and clay textured soils).  

Further, the study database suggested the lowest NPP limit for sand textured soils was higher (~ 20 

Mg ha
-1

 yr
-1

) compared to what was possible when forests grew on sandy loam textured soils (11.5 

Mg ha
-1

 yr
-1

) and clay textured soils (7.5 Mg ha
-1

 yr
-1

).  So productivity thresholds are produced 

under drought conditions but also in those areas receiving higher rainfall inputs.  Two thresholds of 

lower NPP by soil texture needs further research to verify their occurrence in unmanaged forests.  

The clustering of data points also suggests that more NPP data need to be collected from a wider 

range of precipitation levels for each soil texture class to further support these initial analyses.  In 

this study, the three soil textures (i.e., sand, sandy loam and clay) had different relationships 

between productivity level and precipitation.  This database needs to be further expanded to include 

a greater variance in NPP and precipitation combinations.  For example, forests growing on sand 

textured soils only reported growth rates in the medium and high NPP groupings so there is a lack 

of data for the low NPP grouping.  Therefore, it is not clear whether sand textured soils do not 

support the growth of forests at these lower NPP levels or this result is an artifact of no data being 

collected from these sites. 

 

 

 

4.3 Tropical forest NPP and biome shifts due to droughts 

 

Even if forests are able to maintain their productivity capacity at low precipitation levels, other 

factors beyond NPP will determine whether forests will persist, change to another forest type, or be 

replaced by savannas.  Staver et al. (2011) suggested that between 1000 to 2500 mm of annual 

rainfall, fire disturbances can convert a forests to a savanna system.  Also, fire is a positive feedback 

loop for fire-adapted grasses.  However Hirota et al. (2011) suggested that there is a lower 

precipitation threshold for the conversion of forests into savannas than what was reported by Staver 

et al. (2011).  Hirota et al. (2011) identified precipitation thresholds for savannas between 750 and 

2000 mm yr
-1

.  They reported that forest cover dominated when precipitation was greater than 2500 

mm annually but no trees were found when precipitation was lower than 750 mm annually.  If 

climate change results in decreases in precipitation inputs in this dry precipitation range, the 

increased frequency of fires will result in forests being replaced by grasslands since fire frequency 

is higher at these precipitation levels (Siegert et al. 2001; Staver et al. 2011; Hirota et al. 2011).  

Staver et al. (2011) did not find any correlations between the existences of forests versus savannas 

based on edaphic factors but suggested the available data might not have been at the scale needed 

for such an analysis.  This study suggested that in sites where significant correlations resulted 

between precipitation levels and NPP that soil texture would have a strong influence on NPP 

thresholds and this information could be used to identify where forest conversion to savannas is 

likely. 

 

The vulnerability of forests growing on clay textured soils is counter intuitive since abundant 

research suggests clay textured soils are better growth environments for forests compared to sand 

textured soils during non-drought periods.  Castilho et al. (2006) studying aboveground biomass of 
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tropical forests in central Amazon reported that soil characteristics (such as nutrients and texture) 

explained the biomass levels they measured.  In the Castilho et al. (2006) study, the percentage of 

clay found in the soil was significantly related to a larger aboveground biomass.  Similarly, 

Laurance et al. (1999) showed that on the highly weathered and nutrient poor soils found in much of 

the Amazon region, high aboveground biomass was linked to higher clay contents and low biomass 

was linked to sand, Zn levels and aluminum saturation; the clay soils were linked to higher levels of 

total N, organic C, most cations and lower aluminum saturation and less sand.  Sotta et al. (2007) 

suggested greater resilience to drought occurred on clay Oxisols compared to sandy Oxisols.  The 

Laurance et al. (1999) study reported that a third of the variation in aboveground biomass was 

explained by soil fertility factors for forests growing on clay soil, i.e., clay soils were linked to 

higher levels of total N, organic C, most cations and lower aluminum saturation.  While the Paoli et 

al. (2008) study identified extractable P and percent sand explaining 31% of the aboveground 

biomass variance of mature Bornean forests.  Their study showed that the abundance of emergent 

trees that had diameters at breast height greater than 120 cm was positively correlated to soil P and 

soil exchangeable bases.  Paoli et al. (2008) also suggested that a combination of soil factors 

(texture, P and exchangeable base cations levels) were important drivers of the amount of 

aboveground biomass and the predominance of emergent trees in Borneo’s forests.  These results 

were reported for forests not growing under low precipitation levels where the benefits of the clay 

textured soils are less relevant. 

 

One could speculate that the forests most at risk to reduced precipitation inputs are those currently 

growing in areas receiving between 1500 and 2000 mm of precipitation and on silty clay and clay 

textured soils (Figure 2; see Palmiotto et al. 2004; Quesada et al. 2011).  These forests have been 

able to maintain high NPP (> 28 Mg ha
-1

 yr
-1

) at these lower precipitation inputs but their 

production is vulnerable to drought.  Other forests located in this same precipitation range grow on 

sand, loamy sand soil textures which have a low plant available water storage capacity in soils.  

These forests already have low NPP (< 10 Mg ha
-1

 yr
-1

) and would face ‘carbon starvation’ and 

potentially transition to what Hirota et al. (2011) called ‘treeless state’.  This needs further research. 

 

Whether NPP thresholds are crossed during a drought cannot be verified using the study database 

since it is not clear that the lower NPP levels are temporary or long-term reductions in site 

productivity.  The fact that productivity threshold shifts may persist for five years after a drought 

event does suggest that forest productivity thresholds have been crossed.  This is further supported 

by our research in Indonesia where forests shifted from growing at a high NPP level to medium 

growth rates.  Even though the amount of forest NPP unavailable in 2006 had recovered to 82% of 

the 2001 NPP value by 2010 (NPP = 23.2 Mg ha
-1

 yr
-1

), NPP levels remained at levels found in the 

Medium NPP grouping (Gmur unpublished data).  This analysis suggests a productivity threshold 

may have been crossed since NPP did not recover to pre-drought levels.  Further long-term 

monitoring of these sites is needed to verify whether this trend would be maintained.  If NPP levels 

remain lower for several years after a drought, it suggests a longer term reductions in the available 

NPP that can be harvested from a forest. 

 

 

4.4 Heuristic analysis of tropical forest NPP and vulnerability of coupled socio-ecological 

systems to droughts 

 

Over the past 10 years, large-scale periodic regional droughts and a general drying trend has 

reduced global terrestrial NPP (Zhao and Running 2010).  Under a changing climate, severe 

regional droughts have become more frequent, a trend expected to continue for the foreseeable 

future.  Therefore assessments of the vulnerability of coupled socio-ecological systems to climate 

change need to explore drought impacts.  Assessing the vulnerability of coupled socio-ecological 
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systems requires knowledge of two different types of information: (1) During a drought, how much 

NPP is not produced and therefore how much is not available for humans to harvest; and (2) how 

much productivity capacity is collected by humans?  This study addressed the first question using 

meta-analysis and a multivariate statistical approach.  Data do not exist, however, to answer the 

second question due to a lack of data on how much productivity capacity is harvested by people 

from forests where the field plots are located.  The second question can be indirectly explored 

heuristically by estimating how much productivity is no longer available for harvest by local 

communities due to droughts and where data were aggregated by each of the three soil textures 

classes that account for 59% of the soils in the humid tropics (Sanchez 1982).  It allows us to 

explore the impact of droughts on productivity level for the most common soil textures found in the 

tropics. 

 

The results of this paper supports the use of precipitation and productivity relationships to estimate 

how much NPP levels are reduced by different levels of drought as well as how much precipitation 

is needed to grow 1 Mg ha
-1

 yr
-1

 of biomass.  This comparison uses changes in NPP due to drought 

to explore whether sufficient biomass will remain to meet the needs of a growing and healthy forest 

ecosystem and for humans to collect forest-based survival resources, such as food, fiber, fuel, etc.  

Since we do not have data for how much productivity capacity is collected by people from the 96 

site database, a conservative 20% estimate of forest productivity was used for all sites.  Global 

estimates of how much productivity is harvested by humans varies from 14.2% to 39% of the total 

terrestrial NPP (Vitousek et al. 1986; Rojstaczer et al. 2001; Haberl et al. 2007).  Human 

appropriation of forest productivity will be much higher than the 20% used in this analysis but it 

provides a conservative baseline to make comparisons to demonstrate the influence of soil texture 

on NPP levels. 

 

For this assessment, a 30% precipitation deficit was assumed to be a realistic level of precipitation 

reduction for our calculations since reported precipitation deficits range from 20 to 50% during a 

drought year (Table 3).  When Nepstad et al. (2007) implemented their precipitation exclusion study 

in the Amazon, they reduced precipitation levels by 60% or excluded 620 to 890 mm of throughfall 

each year.  The 30% calculated precipitation deficit (426-821 mm yr
-1

) for this study (Table 4) is 

very similar to the levels used by Nepstad et al. (2007).  Since precipitation-exclusion studies test 

the worst case scenario, e.g., drought durations that are not commonly found during non-

experimental conditions, these results explore reductions in NPP due to extreme drought events.  

Nepstad et al. (2007) set up their precipitation exclusion experiment in a forest that typically 

receives ~2000 mm yr
-1

 of precipitation but where the forests are deep rooted and acquire water 

from depths of 11 m (Nepstad et al. 2007).  In the Nepstad et al. study, forests were resilient during 

the first two years of the experiment but began to have significantly higher mortality rates starting 

in the third year, i.e., 38% increased mortality rate of trees, especially large trees. 

 

Also, the reduction in the amount of NPP produced due to a drought estimated by this study, i.e., 

4.3 – 9.1 Mg ha
-1

 yr
-1

 of unavailable NPP (Table 4), are comparable to values reported by other 

studies (e.g., Tan et al. 2010).  In fact for a seasonal dry tropical forest in China, Tan et al. (2010) 

reported a 38% reduction in NPP (i.e., 4.5 Mg biomass carbon ha
-1

 yr
-1

 lost) due to a drought.  

Fisher et al. (2007) reported a similar reduction in gross primary production when they 

experimentally tested the response of an Amazonian rain forest to induced drought stress using a 

throughfall exclusion experiment.  This experiment showed that two years of continuous rainfall 

exclusion (50% reduction in throughfall reaching the soil) resulted in a modeled prediction of an 

average decrease of 13-14% in GPP and 40-45% decrease in GPP during the dry period of the year.  

In Indonesia, six months of drought resulted in 660 mm of less rain during 2006 and NPP levels 

decreased by 8.4 Mg ha
-1

 yr
-1

, a 30% reduction in NPP levels from 2001 to 2006 (Gmur 

unpublished data). 
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 483 

Table 4.  Estimates of how much net primary productivity (NPP) of tropical forests growing on different soil textures could be lost due to droughts 484 

and subsistence harvesting by the local population.  This heuristic exercise assumed 20% appropriation or extraction of NPP by forest dependent 485 

people from forests growing on sand [n = 6], sandy loam [n = 9] and clay [n = 8] textured soils.  486 

 487 

Soil 

Texture 

Class 

Prec non-

drought 

years 
a
 

(mm yr
-1

) 

Prec 

deficit 
b 

(mm yr
-1

) 

Prec 

levels for 

1 Mg 

biomass 
c 

(mm yr
-1

) 

Avg NPP 
d
 

(Mg ha
-1

 yr
-1

) 

NPP lost with 

30% prec 

deficit 
e
 

(Mg ha
-1

 yr
-1

) 

NPP harvest 

by people 
f
 

(Mg ha
-1

 yr
-1

) 

Total NPP 

unavailable 

due to 

drought + 

harvest by 

people 
g
 

(Mg ha
-1

 yr
-1

) 

Available 

NPP 
h
  

(%) 

sand 2729 819 180 28.5 4.5 5.7 10.2 64 

sandy 

loam 1421 426 100 20.9 4.3 4.2 8.4 60 

clay 2736 821 90 17.8 9.1 3.6 12.7 29 
a
 Average annual precipitation occurring in these tropical forests found on different soil textures during none drought years.   488 

Prec = precipitation. 489 
b
 Precipitation deficit is how much less annual precipitation input occurs if a drought decreases the average annual precipitation by 30%. 490 

c 
Precipitation amounts needed to produce on average 1 Mg ha

-1
 yr

-1
 of tropical forest biomass by the three soil texture classes. 491 

d 
Average net primary productivity (in Mg ha

-1
 yr

-1
) found on each soil texture class when no droughts or subsistence harvesting have 492 

occurred. 493 
e 

The amount of NPP not produced with a 30% precipitation deficit. 494 
f 

The amount of NPP harvested by subsistence harvesters which was assumed to be 20% for this exercise. 495 
g 

Total amount of NPP not available for a growing forest due to drought and harvest. 496 
h 

Percent of NPP available after subtracting unavailable NPP due to the drought and human harvesting.
 

497 
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 498 

Compared to clay textured soils, forests growing on sand and sandy loam textured soils (which 499 

account for about 14% of the humid tropical region, Sanchez et al. 1982), and experiencing a 30% 500 

precipitation deficit, would be able to maintain annual forest growth rates at levels sufficient to 501 

maintain ecosystem functions while producing harvestable NPP by local communities.  A 30% 502 

precipitation deficit would result in 4.5 and 4.3 Mg ha
-1

 yr
-1

 of NPP, respectively, becoming 503 

unavailable to support ecosystem functions or to be harvested by local communities (Table 4).  504 

Despite this loss of productivity, the calculations suggest that almost 60-64% of the site NPP would 505 

still be available for maintaining ecosystems functions of forests growing on sand and sandy loam 506 

textured soils. 507 

 508 

In contrast, forests growing on clay textured soils (which accounts for 45% of the total terrestrial 509 

area of humid tropics; Sanchez et al. 1982) were at risk to lose NPP if precipitation increased 510 

(perhaps the clays become waterlogged) (see Figure 3).  For the clay textured soils, no data points 511 

were available for forests growing below 2000 mm yr
-1

 in our database to determine how 512 

productivity levels would respond to lower precipitation levels.  Of course if annual precipitation is 513 

normally lower than about 2000 mm yr
-1

, then one should expect NPP to also decrease on clay soils 514 

if a drought were to occur (see the curvilinear curve in Figure 3).  For the data assumptions used in 515 

this study, imposing a 30% precipitation deficit for forests growing on clay textured soils resulted in 516 

NPP levels decreasing to 9.1 Mg ha
-1

 yr
-1

 from a pre-drought NPP of 17.8 Mg ha
-1

 yr
-1

.  If forests 517 

growing on clay textured sites were located in areas of forest-savanna transitions, this level of 518 

reduction in productivity levels should increase the risk of loss of forests and the ability of local 519 

communities to harvest forest NPP. 520 

 521 

The results of this study suggest that forests with low NPP levels are frequently located in transition 522 

areas (e.g., transitioning from a tropical forest regime to a savanna regime) and are therefore 523 

especially vulnerable to changes in precipitation levels (see Figure 2).  Model predictions by 524 

Anadón et al. (2014) suggested that droughts in transition areas would cause a shift from forests to 525 

savannas resulting in a significant decrease in forested areas.  This study suggests that their model 526 

prediction would be especially relevant for forests growing on sandy loam soils or sand and clay 527 

textured soils that have normal annual precipitation rates of less than 2000 mm yr
-1

.  Forests 528 

growing in the clay textured soils, that have low NPP levels (e.g., in the Low NPP grouping before 529 

the occurrence of a drought), would certainly be at risk of transitioning to a savanna. 530 

 531 

If people harvest from these transition zone forests during droughts, it may decrease the ability of 532 

the forest to maintain its functions during and following a drought or even future disturbances.  It is 533 

likely that a drought would trigger a regime or biome shift with the forests being converted to 534 

savannas.  People dependent upon these forests for harvesting its productivity capacity would find it 535 

more difficult to survive following a drought.  Forests growing on clay textured soils appear to be 536 

especially vulnerable to drought since only 29% of the NPP would be available to continue to 537 

maintain ecosystem functions if local communities continue to harvest forest materials (Table 4).  538 

These study results need to be further explored to determine whether forests growing on clay 539 

textured soils are at a higher risk to climate change.  Since people living in savannas are still 540 

dependent on acquiring fuelwood from trees to provide from 60-90% of their cooking and heating 541 

needs (WRI 1998), knowledge of the relationships between soil texture classes and forest 542 

productivity levels may be useful to determine the risk of forest loss due to prolonged droughts.  543 

Savannas provide different ecosystem services compared to forests and would be unable to provide 544 

the water and soil benefits commonly delivered by forest ecosystems. 545 

 546 

 547 

 548 
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 549 

5.0 Conclusion 550 
 551 

Research on understanding the outcomes of common pool resources has contributed significantly to 552 

linking processes occurring in socio-economic-ecological systems, e.g., cultural, historical, 553 

political, demographic and/or social, and ecological resources held in common by a group of people 554 

(Laerhoven and Ostrom 2007; Agrawal 2014).  This body of research has used quantitative and 555 

qualitative approaches to demonstrate the links between social and ecological systems, e.g., fishery, 556 

forestry, irrigation, water management and animal husbandry by focusing on institutions and the 557 

economics of these resources.  Despite an abundant literature base, Agrawal (2014) suggests that 558 

there is a need to expand on what has already been done by using tools designed to causally explain 559 

the complex and multiple outcomes found in coupled social and ecological systems.  Using the 560 

definition published by Mumby et al. (2014), this study supports the use of variations in 561 

productivity capacity linked to edaphic factors to detect social and ecological system vulnerability 562 

to droughts in tropical forests.  Since productivity capacity determines how much biomass can be 563 

collected by humans to survive, it will indicate whether sufficient productivity is available.  Further, 564 

since drought decreases NPP levels, less productivity capacity becomes available for humans to 565 

collect as well as for forests to maintain a positive carbon balance to recover following a 566 

disturbance.  Therefore, the assessment conducted for this study suggests that productivity capacity 567 

connects both parts of the coupled socio-ecological system and can be used explore where 568 

thresholds will be reached in both systems. 569 

 570 

This study further suggests that NPP can be used to explore the vulnerability of both the social and 571 

ecological system to drought.  By focusing on changes in productivity levels (NPP), it is possible to 572 

explore the vulnerability of tropical forests for crossing a threshold of productivity and whether it 573 

will result in less productivity for human harvest.  Productivity thresholds occur when droughts 574 

cause an irreversible shift in productivity: such as, (i) from the medium NPP grouping to rates 575 

typically found in the low NPP grouping, or, (ii) from the low NPP level to savannas as result of 576 

negative carbon balance.  The frequency of droughts in the tropics attests to its importance as a 577 

driver of landscape change in vegetation dominance that results in humans being able to appropriate 578 

fewer ecosystem services from the land. 579 

 580 

Our approach of using NPP, given certain soil textures and precipitation, to assess its potential 581 

response to a disturbance, such as a drought, would mechanistically link both the social and 582 

ecological system since productivity is used as the common metric that links the vulnerability of 583 

each system.  It also provides a process to determine where forests and people may be less 584 

vulnerable to drought as well as where drought dramatically increases the vulnerability of the 585 

coupled socio-ecological system.  There are many examples of human-induced changes in 586 

landscapes or management activities that affect how ecological systems respond to climate change.  587 

For example, research has documented how indigenous peoples in Australia altered the climate 588 

vulnerability of their environment using cultural and management practices based on their locally 589 

developed knowledge (Leonard et al. 2013).  These examples have causally linked the coupled 590 

socio-ecological systems. 591 

 592 

Despite the fact that plants or trees are highly adapted to the site growing conditions, thresholds are 593 

often crossed as demonstrated by the high mortality rates of trees following a drought in tropical 594 

forests.  The use of NPP as a tool or framework for detecting changes at the site level, where social 595 

and ecological system functions intersect, demarcate areas more vulnerable to drought.  Using a 596 

robust database, this study suggests that the vulnerability of forests to the loss of NPP can be 597 

detected for over half of the global tropical forests.  Other tropical forest sites would require further 598 

research to identify alternative site factors influencing NPP levels due to drought. 599 

600 
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