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A sequential classification rule based on multiple
guantitative tests in the absence of a gold
standard

Jingyang Zhang'*, Ying Zhang?3, Kathryn Chaloner#° and Jack T. Stapletor?

In many medical applications, combining information from multiple biomarkers could yield a better diagnosis than
any single one on its own. When there is a lack of a gold standard, an algorithm of classifying subjects into the caseo,

and non-case status is necessary for combining multiple markers. The aim of this paper is to develop a method to;:

construct a composite test from multiple applicable tests and derive an optimal classification rule under the absenceS

. . . -
of a gold standard. Rather than combining the tests, we treat the tests as a sequence. This sequential composite tegt
is based on a mixture of two multivariate normal latent models for the distribution of the test results in case and -
non-case groups and the optimal classification rule is derived returning the greatest sensitivity at a given specificity. &

=
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This method is applied to a real data example and simulation studies have been carried out to assess the statistica®

=

properties and predictive accuracy of the proposed composite test. This method is also attainable to implement*
nonparametrically. Copyright (©) 2015 John Wiley & Sons, Ltd.

3 ® Jo 2ouasqe 9y} UT $1593 danjeIUEND S[dnnwr uo paseq o[nr

B <Y ‘TouoreyD “ X ‘ueyy [ Sueyy :se wiIoj payrpa reuy ur paysiqnd sponre oy jo jdurosnuewr s 1oyine 3y} S SIy T,

Keywords: diagnostic test; EM algorithm; mixture model; multivariate normal

1. Introduction
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This work is motivated by some methodological research in HIV/AIDS studies. Some studies have observed thigt
infection of a human RNA virus, GB virus C (GBV-C), can prolong the survival for HIV patiei8][ GBV-C is not
currently known to definitely cause any disease although a recent observational study suggested a potential link
GBV-C and non-Hodgkins lymphoma&][ Approximately 14%-43% of the individuals with HIV infecin have the GBV-
C viraemia [L0, 11]. Some studies also found an association between GBV-C apebirad response to HIV therap¥].
The mechanism is still under investigatidr?f14]. GBV-C viraemia is shown to be cleared in a great portion digues
from several months to several yeai$,[16], and antibodies that are directed against the viral eneetpycoprotein 2
(E2) develop 17]. Hence the E2 antibodies are a marker of past GBV-C infedtl®n19]. An association between the
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E2 antibodies and the prolonged survival from HIV in sulgesithout GBV-C viraemia has also been obsenad To
detect the presence of E2 antibodies in human serum sarmpkspmmonly used method is through the Enzyme Linked
Immunosorbent Assay (ELISA); however, there is no comnagerid validated test available for the E2 antibodies. In the
motivating example from Dr. Jack Stapleton’s lab at the @rsity of lowa, a total of 100 independent blood specimens
obtained from HIV infected subjects were tested by two EL4SAhich are not perfect and return a quantitative resutt wit
respect to the concentration of the E2 antibodies. The pyimgeal of the paper is to establish and evaluate a composite
diagnostic test based on the two ELISAs in the absence ofikentibody status and any other reference test.

In diagnostic testing, a gold standard is defined as a rafertgst or a benchmark that is assumed 100% accurate in
discriminating case from non-case. When a gold standardaidable, the accuracy of a single diagnostic test has been
well studied. The accuracy of a binary test is evaluated byrile positive fraction (TPF, or sensitivity) and falseipos
fraction (FPF, or 1-specificity). For a continuous-scald,tdifferent binary tests can be induced by selecting wffe
threshold values. At each threshold, a pair of TPF and FPBtamed, and the curve that connects all pairs of TPF and
FPF over all possible thresholds, which is the receiveraipeg characteristic (ROC) curve, is a commonly used tool to
evaluate a continuous marker. These are detailed in 2hal.[20] and PepeZ1].

When there are multiple imperfect tests available, conmigitihem into one composite test may yield a better diagnostic
test than any single test. For continuous tests, a simpke isa® repeat testing on a single test. Toliyal.[22] and
Murtaugh R3] consider the scenario of repeated applications of the samgnuous test. At each test application, the
threshold remains the same. For a set of different testmyusacomposite tests exist for a given overall specificitye T
most straightforward way is to form a linear combinationpfoseX ~ N (u,, ) represents the test results in the case
population andt” ~ N (u,,%,) represents the test results in the non-case populationlifides composite rule is then
based o/ = a” X andV =a”Y. Su and Liu p4] justifies that the linear discriminant function is the opé4l linear
combination that produces the maximum AUC in this case,the.coefficient for the best linear combination is

ap o (3 + Eyrl(ﬂy = Ha)-

The linear combination is easy to implement and straightfod to interpret, however, the optimality is only guaraute
when the results are normal and homoscedastic.

Rather combining the multiple tests in parallel, we coukbateat them as a sequence. Thomp&ah onsiders the
combination of a sequence of tests. The sequence of testsecthre repeated applications of the same test on the same
subject, or different tests simultaneously. The develamtroéthe sequential rule does not limit to the linear combora
of multiple tests, and the application of the sequentia an a new population does not require the practice of all st
each subject. Two main concepts are usually used to defireethential ruled6,27]. The first one is “believe negative”
(BN), where individuals who have negative diagnosis from particular test will not receive subsequent tests. Theroth
one is “believe positive” (BP), where individuals who hawespive diagnosis from any particular test will not recesd
sequential tests. In this work, we will focus on the seq@tmtile defined by the BP approach. Thomps®H provides
the evaluation of accuracy of a sequence of tests. For twibnzayus testsy; and X, based on the BP rule, an individual
is defined as positive ik, > ¢, or Xo > ¢z p,, Whereg, ,, is thep;th percentile of the distribution ak; in non-case
population fori = 1,2. The ROC curve of the sequence test as a function of an ovalsdl positive fractiors can be
expressed ad) [25].

1 —
ROCx,vx,(s|p1) =1—=Faup (le ( , S)) Fip(cip,), 1)
1
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where F, 1p and F, ;5 are the conditional distribution functions fof, given X; < ¢, in the case and non-case
populations. The accuracy of the test sequence could bssassby the MaxROC curve expressed as

MaxROC(s) = max ROCx,vx,(s | p1),
p1

so that the sensitivity for any given specificity will be aa$t as high as that for either of the individual tests, appie
its own with the same threshold. The choice of threshold iplémentation, however, is not addressed in this paper.

Both the aforementioned combinations are based on the kwlgelof a gold standard, or the true case status. In
practice, such information is not always available, beeaumay be difficult or even impossible to determine the true
case status, and even the available reference test agdiitst mew tests are compared is subject to error. Krae@@&r [
argues the opinion that the true case status is almost nevertained. For ordinal or continuous-scale tests, thetbaty
and specificity are computed based on a certain classificatie with a specific threshold value, hence are dependent
on the choice of the classification rule. When the true casesis unknown and there is no gold standard or even an
imperfect binary reference test, like the E2 antibodiea @ample, a decision rule established from multiple inguzrf
test needs to be studied]]. The statistical issues in diagnostic testing without &dgdandard are addressed by Hui
and Walter P9 mainly focusing on binary tests and summarized by Hui andwZ30] with many available methods
for quantitative tests. Using the finite mixture model fontiouous data , one could acquire the pointwise estimates of
the sensitivity and specificity for a continuous-scale ta&r all possible threshold values by the maximum likelihoo
method B1]. The estimated ROC curve composed by all estimated setistiand specificities, however, may not retain
the monotonicity, as in Figures. 2, 3, 4, 5 &fl]. Henkelman et al.32] propose an estimation of the ROC curve of an
ordinal-scale test via a mixture of multivariate normaktgtmodel and Choi et al3p] provide a parametric Bayesian
method for a continuous-scale test under the same distitaltassumption. Both methods guarantee that the estimate
ROC curve is monotone. The ROC curve can also be estimatguhremetrically instead of assuming the multivariate
normal distributions as proposed by Hall and Zh®4] jn which the monotonicity of the estimated ROC curve is asdu
without any parametric assumptions on the distributiorthetest results.

The methods above primarily focus on the evaluation of diajo tests when there is no definitive diagnosis or a gold
standard, rather on the formulation of a decision rule bylmioing several available continuous markers. In fact, unde
some assumptions, those methods could be extended to devdexision rule from multiple continuous-scale tests. For
example, Su-Liu’s linear discriminant method is still appble with the parameters in the normal distributionsneated
through the maximum likelihood method using the EM algant[85]. Our aim in this paper is to derive an optimal
composite test in a sequential way. The optimal sequentialposite test is described in Sectidnand applied to the
motivating ELISA data in Sectiofi. The statistical properties are explored through simafasitudies in Sectiod. We
conclude this paper by discussion in Section

2. Optimal sequential composite test without a gold standat

For simplicity in illustration, suppose that there are twanqtitative diagnostic tests on each subject and for eathae
greater value of the result indicates a larger chance of &xs®teX; as the random variable representing the result from
test: for ¢« = 1,2 and D as the random variable indicating the case presence,withl meaning case present afid= 0
meaning case absent. MoreovEr,and F; are the joint distribution functions & = (X, X») for the case and non-case
populations, respectively, anfd and f, are the corresponding probability density functions.
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2.1. Model setup

Suppose Test 1 is superior to Test 2 judged by a greater vBAl&®. The decision rule driven by the sequential composite
test is determined by a pair of cut-off valugs,, Cs) such that:

1. if X3 > (4, then this subject is classified as positive for the studyeedse,
2. if Xy > Oy, then classified as positive;
3. otherwise, classified as negative.

It is theoretically equivalent to the “believe the positiyBP) rule defined in MarshallZ6] and Politser 7] given the
threshold valueg’; andCs.
Given the cut-off(Cy, C5), the sensitivity and specificity for evaluating this comipegest can be expressed as follows:

Sensitivity= Pr (Positive classificatiogase

=Pr(X; >Ci|D=1)+Pr(X; <Cy, Xo>Cs|D=1)

=1-F(C1,Cy). (2)
Specificity= Pr (Negative classificatignontrol)

=Pr(X; <O, X5 <Cy|D =0)

= Fy(Ch, Ca). 3)

Equations ?) and @) are actually equivalent td) assuming that neithex norp, is pre-fixed.

We are searching for the optimal sequential compositendbiel sense that it achieves the maximum sensitivity among
all the sequential composite tests whose specificity is fateg). Based onZ) and @), this task can be converted to a
constrained non-linear optimization problem:

i Fi(Cq,Cy). 4
FU(CI},lgzl):Po 1( b 2) ()

An efficient algorithm for finding the optimdlt’ , C5) in (4) is essential in the development of this sequential method.

2.2. Estimation and statistical inferences

2.2.1. MLE of multivariate normal modeSuppose we have a sample of results from two quantitatigndstic tests
Xi,X,, -+, X, that are assumed to be independent and identically digtdbcopies ofX with distribution F'. The
implementation of all the foregoing methods requires eatiiom of 7, and F, from observed data in the first place. Here
we follow the set-up of Su and Liu's metha2y] for the distribution of the tests resulls, i.e.X|D =1 ~ F; = N(u1, V1)
andX|D = 0 ~ Fy = N(po, Vo). A mixture distribution ofF; and Fy is adopted to model the observed data, that is

Fo(-) =mF1, () + (1 = m)Fo0,(-), (5)

where 7 is an unknown parameter indicating the mixture proportiongquivalently, the case prevalence, ahe-
(m,01,00) = (m, (u1, V1), (1o, Vo)) denotes the model parameters. The log-likelihood of theemvesl data can be
expressed as:

10) = 1x(8) = > log fo(Xi, Xax)
k=1 k=1

= log[rf16, (X1, Xok) + (1 = ) fo,00 (X1, Xor)]-
k=1
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Figure 1. lllustration of the search for the optimé{”';, C2) at a given specificityo. The solid line represents the contour curve giverFyC'1, C2) = po, and the dashed
lines represent the contour curves givenfBy(C, C2) = ¢ at various values of.

We note that if the gold standard does exist so that the exaotbarshipsD = (Dq, ..., D,,) are known, the log
likelihood for the augmented da{&@X,, D), - - , (X, D»,)} is given by

1o(0) = Z Dy log 7 f1,6, (X1k, Xor) + (1 — Di) log(1 — 7) fo,6, (X1k, Xor) (6)
=1

and

7 f1,0, (X1k, Xok)

Pr(D, =1|(Xy,--- ,X,,); = .
r(Ds (X, Xn);6) mf1,0, (Xig, Xow) + (1 — ) fo,00 (X1, Xok)

Hence the MLE of the model parametésis easily computed using the EM algorithB5] due to its numerical stability
and algorithmic convenience for this problem. The detdithe EM algorithm are provided in Appendix.

2.2.2. Computation of the optimal sequential composite thsler the normality assumption, the feasible setgf Cs)
defined by a given specificity (C1, C2) = po constitutes a convex contour cungs]. When the diagnostic markers are
more variant for the case subjects, it is expected that théooo given byF; (Cy,Cy) =t is also convex but with less
curvature and moves towards the origin 61, C>) domain ag decreases. The optimization probleffji¢an be illustrated
geometrically in Figurd.

As seen in Figurel, the constrained optimal valuecorresponds to the value given by the contour that touches th
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contour of Fy (C1, C2) = po. The threshold vectofC,, Cy) for the decision rule is simply the tangent point of the two
contour lines and can be uniquely determined. Therefoesptiginal optimization problendj is converted to solving the
system of bivariate nonlinear equatio} for the tangent point of the contour lines Bf and Fy.

Fo.0,(C1,C2) = po
G(Cv 0) = 8F1791 8F‘O,Go
801 802

dFy.0, (7)

0F1 g, B
ac, (C1,Cs) = 0.

0C,

(C1,Ca) (C1,C2) — (C1,C2)
The first equation represents the constraint given by thd pecificity and the second equation reflects that the two
contour lines have the same gradient at the tangent poietNEwton-Raphson method with the step-halving line search
procedure is utilized to solve the system.
Let C,, = (C1,, Csn) denote the solution of7j with the MLE of#8, 6,, = (61,,, 6, ), then the sensitivity is estimated by

seic =1-F, 5 (Cin,Can).

2.2.3. Asymptotic propertieSupposé, is the true vector of the model parameters under the mixtubezariate normal
distribution. Assuming that the regularity conditions FLE hold, it is known that ass — oo, 6,, —p 6o, and

N (én - 00) Sa N(0,Z7Y),

whereZ is the Fisher information matrix given byFE [8‘9—;11(0)’ 00} [37].

For the optimal sequential composite testigt= (C1o, Ca9) denote the solution of the systeid) (inderd = 6, then
the true sensitivity isenc = 1 — F} g,,(C10, Ca0). The estimated sensitivitgn is consistent and asymptotically normal
under the mild conditiond) given in Theoren®.1. The proof of the theorem is also deferred to Apperilix

Theorem 2.1 If F,, and F; are continuously differentiable with respect@-= (C4, C2) and 8 and satisfy the following
inequality(8) at Cy and 8y,

9C10C, 90, | 9Ch 9052 90,2 0C, 905 0C1aCs | 9Ch
_[PROR OF 0°R R 0F 0OR 9°R] 0k
9C20C, ' 9C, 0C10C,  0C19C, C,  0Cs HC, 2

[ PR OF,  OF O°Fy 0*F 0F, O0F1 0°F }QFO
(8)

0C5

then as sample size — oo, \/n (senc — senc) converges to a normal distribution with mearand variance given by
(B.1).

Remark 2.1 Condition(8) can be justified algebraically for bivariate normal randorriables when/; and Fy have a
different covariance matrix. In fact, the left side is théetminant of the Jacobian matrix ¢f).

Remark 2.2 Although the asymptotic normality holds for the estimatoder fairly mild conditions, the asymptotic
variance of the sensitivities is hard to estimate direcklyerefore for the inference, the standard error is estirdatsing
the nonparametric bootstrap methog]. Specifically, 200 samples with the same size are drawn frenoriginal data
with replacement. Each sample yields an estimated seifsdivthe given specificity from the estimated optimal satjak
composite test, and the standard error is then estimatetidgtandard deviation of the 200 estimated sensitivities.
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3. An analysis of the ELISA data

The optimal sequential composite test based on the two E& [SApplied to classify the 100 independent blood samples
for the presence of E2 antibody in the motivating data exanffibure2 presents a scatter plot of the results from the two
ELISAs. We fit the data by a mixture of two bivariate normakdisitions: N (1, V1) andN (110, Vo), and obtain the MLE

of the parameters ag = (1.01,0.84)7, o = (0.16,0.24)7, and

o= ( 054 0.22 ) e ( 0.004 0.001 ) |
0.22 0.40 0.001 0.017

Assuming the mixture of two bivariate normal models is traethis data example, the model-based estimated ROC
curves are depicted in FiguBsfor the two individual ELISAS. It is apparent in the figure tii@st 1 is preferred to Test
2 as it has a higher sensitivity at any prefixed specificitynfitbeir ROC curves, and hence Test 1 is utilized as the initial
test for the proposed sequential composite test.

The optimal linear composite test for comparison is appliedere by extending the Su-Liu’s methdal] under the
assumption of normality. The technical details of the estezhoptimal linear composite test are referred to Zh&%y [
At the specificity of 90%, theth sample is diagnosed as positiveXif; > 0.24 using test 1 aloneX,; > 0.41 using test
2 alone,1.2X;; + 0.8X5; > 0.57 under the optimal linear composite test axig > 0.27 or X5; > 0.43 under the optimal
sequential composite test, wheXe; and X,; are the results from test 1 and test 2 on #thesample. If the future data set
is the same as the data used to derive the classification tb&eslassifications based on both composite decision rules
are represented in Figuge The diagnoses from the two composite test do not disagemtech except that the linear
composite test tends to attribute more samples into the EBoaly negative group. We also plot the ROC curves for
the two composite tests shown in Figl:eCombining the two tests into a composite test does improgaliscriminant
capability compared to any individual test. This improverns possible because we allow the cut-off value for each of
the tests when used as a composite is different from theféutdoie when used individually. The improvement from the
linear composite test is not as substantial as the sequeatigosite test. It appears that the sequential test isrigsupe
to the linear composite test at all values of specificity fos tase. Moreover, the optimal sequential composite tagt o
needs 53% of the blood samples for the second test at avevag&@00 bootstrap samples. This implies that under the
optimal sequential composite test, the probability thaaemt needs to be tested by T2 is only about 50%. Hence it has
a profound significance in practice when the tests are exgeaspresent some strong side effects.

4. Simulation studies

4.1. Simulations on the model-based estimate of sengiforithe proposed optimal sequential composite test

In this section, we conduct simulation studies to assesstttestical properties of the model-based sensitivitythar
proposed optimal sequential composite test. We generatalimgnostic markers for the case group from a bivariate
normal distributionV (u,, V1) of

3.97 0.69
= (3.77,1.51)T andV; = ,
= 51 ! (0.69 1.42)

and the markers for the non-case group from a bivariate natis@ibution N (p, Vo) of

0.68 0.03
=(2,0.81)" andV;, = .
Ho = (2,0.81) 0 ( 0.03 0.18 )
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Figure 2. Results from the two tests in 100 blood samples along witlofiienal linear composite test and the optimal sequentiapmsite test at specificity: 0.90.
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Figure 3. ROC curves for Test 2, Test 1, the optimal linear and seqalergmposite tests (from bottom to top).

The values of the parameters in the model are selected tocneianimotivating ELISA data example. A sample of 100
simulated data is shown in FigudeWith the parameter values given above, the sensitivitispecificities 80% and 90%
are 71% and 64%, respectively, for Test 1, and 61% and 55%efetr 2l Test 1 is superior to Test 2.
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Figure 4. Scatter plot of a simulated data set of 100 subjects from tliune model of two bivariate normal distributions with egsrevalence as 0.5.

Three total sample sizes (100, 200 and 400) and two diffexas¢ prevalence values (0.25 and 0.5) are examined,
respectively. At each combination of sample size and caseafance, sample data are generated from the underlying
mixture of two bivariate normal models. The exact sengitiof the optimal sequential composite test at a given syétyifi
is computed by solving the nonlinear systemwith the bivariate normal distribution functiortg and £, and similarly,
the exact sensitivity of the optimal linear composite testalculated using the true parameters in the bivariate alorm
distributions as depicted by Su and Li24]. The model-based sensitivities are estimated withand F;, replaced by
their MLE, F}, and£}. The standard error of the estimated sensitivity is obthiria the nonparametric bootstrap method
aforementioned and its 95% Wald confidence interval is coosgd using the bootstrap standard error. Subsequérly, t
bias, root mean square error (RMSE) and coverage probabilihe 95% Wald confidence interval (CP) are calculated.
In addition, the empirical sensitivity (Esen) and sped¥i¢Espe) are assessed since the true case status is known in
simulations. We repeat the Monte-Carlo simulation for 1@i6tes for each combination of the sample size and case
prevalence, and the results are summarized in Table

Indicated by Tablel, the composite tests perform generally better than an iohai test and the optimal sequential
composite test is superior to the optimal linear composiein view of the sensitivities for a given specificity. Undlee
correct normal mixture model, as the sample size increfisedias of the model-based sensitivity tends to be nedgigib
and the coverage probability tends to arrive at the nomiaklesr95%, asserting the asymptotic properties declared by
Theorem2.1 Our simulation study indicates for a study with small saarge of 100 as in the ELISA study in Section
3, the estimated sensitivity of the derived optimal seqamibmposite test is fairly accurate with a negligible bias a
illustrated by Tablel. The corresponding classification results are also r&iablillustrated by Tabl&, because both the
empirical sensitivity and specificity closely agree to thagsigned values. However making the model-based inferenc
about the sensitivity needs a caution as the coverage ptitpabsystematically lower than its target value (95%)id
also inferred by the RMSE that the estimated sensitivity maynore precise with a higher case prevalence.
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Table 1. Summary of the simulation study at the given specificitieseldaon 1000 Monte-Carlo samples in Sectioh
with different total sample siz& and different case prevalences

7= 0.25
Test 1 alone
Specificity=80%, Sensitivity=0.705 Specificity=90%, S&aity=0.640
N Bias RMSE ESen ESpe CP Bias RMSE ESen ESpe CP

100 0.038 0.145 0.701 0.797 0.836 0.044 0.138 0.634 0.898 520.8
200 0.030 0.113 0.710 0.799 0.874 0.032 0.099 0.641 0.900 000.9
400 0.010 0.077 0.705 0.799 0.945 0.011 0.070 0.640 0.899 480.9
Optimal Linear Composite Test

Specificity=80%, Sensitivity=0.738 Specificity=90%, Siénisy=0.682
N Bias RMSE ESen ESpe CP Bias RMSE ESen ESpe CP
100 0.058 0.149 0.742 0.793 0.741 0.064 0.141 0.685 0.892 710.7
200 0.039 0.113 0.743 0.797 0.844 0.042 0.100 0.686 0.897 670.8
400 0.014 0.074 0.739 0.798 0.942 0.014 0.066 0.684 0.898 460.9

Optimal Sequential Composite Test

Specificity=80%, Sensitivity=0.802 Specificity=90%, Sé&aty=0.750
N Bias RMSE ESen ESpe CP Bias RMSE ESen ESpe CP
100 0.037 0.119 0.794 0.794 0.777 0.044 0.116 0.741 0.895 220.8
200 0.026 0.092 0.800 0.798 0.856 0.029 0.084 0.747 0.899 720.8
400 0.009 0.063 0.800 0.798 0.941 0.010 0.059 0.749 0.899 470.9

= 0.5
Test 1 alone
Specificity=80%, Sensitivity=0.705 Specificity=90%, Séanisy=0.640
N Bias RMSE ESen ESpe CP Bias RMSE ESen ESpe CP

100 0.031 0.120 0.698 0.800 0.882 0.034 0.111 0.630 0.896 030.9
200 0.018 0.084 0.708 0.799 0.929 0.019 0.072 0.642 0.899 390.9
400 0.006 0.065 0.704 0.800 0.957 0.007 0.060 0.637 0.900 610.9
Optimal Linear Composite Test
Specificity=80%, Sensitivity=0.738 Specificity=90%, S&aity=0.682
N Bias RMSE ESen ESpe CP Bias RMSE ESen ESpe CP
100 0.044 0.122 0.732 0.792 0.818 0.048 0.111 0.674 0.891 390.8
200 0.023 0.081 0.741 0.795 0.917 0.024 0.067 0.684 0.896 320.9
400 0.009 0.061 0.737 0.799 0.959 0.010 0.054 0.681 0.898 600.9
Optimal Sequential Composite Test
Specificity=80%, Sensitivity=0.802 Specificity=90%, Sénsy=0.750
N Bias RMSE ESen ESpe CP Bias RMSE ESen ESpe CP
100 0.029 0.098 0.788 0.795 0.848 0.034 0.091 0.730 0.893 940.8
200 0.016 0.066 0.800 0.796 0.927 0.018 0.056 0.747 0.896 510.9
400 0.007 0.053 0.800 0.799 0.947 0.007 0.048 0.747 0.898 610.9
RMSE: Root mean square error.  ESen/ESpe: Empirical satgipecificity.  CP: 95% confidence interval coverage piulity.

4.2. Simulations on the classification accuracy of the psggissequential composite test

In our motivating example, the true GBV-C status is unknatveeries of simulations are carried out to study the accuracy
and robustness of the prediction on a new dataset by the gedpmmposite classification rule. The simulation study is
designed in the following steps:

1. Simulate a training dataset by the two settings, respyti

(&) The two markers follow the same mixture of two bivariabemnal distributions as in Sectighl
(b) The two markers follow a mixture of two Gaussian copuldth wtudent: marignals (4 degrees of freedom;
parameters are scaled to retain the values of means andagsian the bivariate normal distributions above).

The case prevalence is 0.5 in both settings.
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2. For each simulated training set:

o Fit the data by the bivariate normal mixture modsl (

e Use the MLE to derive the classification rules for one singéelar, the optimal linear composite test and the
optimal sequential composite test under two specificifiesand 0.9.

e Simulate one testing dataset with the same sample size arghthe simulating distribution as the training
data, for each of the three values of the case prevalencg,@®and 0.75.

e Apply the classification rules to each testing set and catetihe true positive fraction (TPF) and true negative
fraction (TNF).

3. Repeat steps above for 1000 times, for each of the threpleames (100, 200 and 400).

Table? listed the TPFs and TNFs of the three classification rulesaesl over the 1000 experiments. The test based on
one single marker alone has a poor discriminating poweh Boinposite tests improve the accuracy substantially mser
of a higher TPF under the pre-specified specificities in thiaiing set. The optimal sequential composite test outpmso
the other two tests with the highest TPF and the accordant&@fi when the multivariate normal assumption is violated
(Setting b). Note that when normal assumption holds (Sget)nthe empirical sensitivities of both composite testhan
testing set approach to the exact value as the sample sigaigoe

Under both settings, different case prevalences in the m¢svab not affect the classification accuracy, but the optima
sequential test would be more efficient when applied to aWédtaa greater case prevalence since more subjects can be
identified as case by one test at the first step of the test.

5. Discussion

In this paper, we develop a classification method from anrredtere perspective based on multiple quantitative tests
without a gold standard. The constitution of the optimalussdial composite test is statistically equivalent to the
implementation of a sequence of tests discussed by Thonj@sprillustrated by the real data application and simulation
studies, for the data of the pattern shown in Figu2esnd 4, the optimal sequential composite test demonstrates a
considerable improvement in the discriminating power leetwvcase and non-case in view of the area under the ROC
curve (AUC). Moreover, it has an additional advantage ofegigg fewer tests. This is especially desired when the tests
are costly or not applicable to all study subjects under soimee@mstances. The optimality of the composite test in this
article is purely based on the classification accuracy witltmnsidering risk or cost associated with the tests. Some
modifications of the optimizing system for the decision rideneeded if the risk or cost ought to be considered for
determining an optimal decision rule in some applications.

The sequential composite test in this work uses the “betiee@ositive” rule based on the biological mechanism in our
motivating example. It can be constructed by the “believgatige” rule accordingly in other applications. Also théas
been some works in the framework of group sequential desigvdluate diagnostic tests with a gold standdi@41].
Further topics could be to generalize this method to thegdesi clinical trials.

The sequential classification method is illustrated witb tests throughout the paper but it can be similarly desidored
the situation with more than two tests. It is, however, a rathtically challenging problem because finding the optimal
cut-off values may not be equivalently converted to the fewbof solving a nonlinear system as it does for the two-test
case. The grid search is a straightforward option but it @avdoy numerically inefficient, especially for high dimemsal
data. There is still a space for improving the numerical algm in order to accommodate an arbitrary number of tests.

The proposed method has a fundamental assumption of mdteanormal distribution for the test results in both
case and non-case groups. This assumption is likely viblat@pplications. In our second simulation study, when the
distributional assumption is violated, the predicatiosdzhon the mis-specified model is quite accurate. When tlacadat

Statist. Med2015 001-16 Copyright® 2015 John Wiley & Sons, Ltd. www.sim.orcfilY
Prepared usingimauth.cls



Statistics

iIn Medicine

J. ZHANGET AL.

Table 2. Summary of TPFs and TNFs in the simulation study in Secti@nThe case prevalenee= 0.5 in the training
set and three different values in the testing set, 0.25a0%,0.75. Two specificities (Spe), 0.8 and 0.9, are used teeder
the classification rules in the training set.

Setting a
TPFs
m=0.25 m=0.5 w=0.75
Spe N 1 marker Linear Sequential 1 marker Linear Sequential marker Linear Sequential
0.8 100 0.188 0.729 0.793 0.188 0.727 0.794 0.188 0.727 0.794
200 0.197 0.735 0.802 0.196 0.736 0.802 0.196 0.736 0.802
400 0.196 0.738 0.802 0.197 0.737 0.802 0.198 0.737 0.802
0.9 100 0.097 0.674 0.741 0.099 0.672 0.740 0.099 0.671 0.741
200 0.100 0.677 0.749 0.101 0.679 0.750 0.100 0.679 0.750
400 0.100 0.681 0.750 0.100 0.681 0.751 0.100 0.681 0.751
TNFs
m = 0.25 T =0.5 T =0.75
Spe N 1marker Linear Sequential 1 marker Linear Sequential marker Linear Sequential
0.8 100 1.000 0.780 0.778 1.000 0.780 0.776 1.000 0.777 0.776
200 1.000 0.788 0.787 1.000 0.787 0.786 1.000 0.786 0.785
400 1.000 0.795 0.794 1.000 0.795 0.794 1.000 0.796 0.795
0.9 100 1.000 0.879 0.876 1.000 0.879 0.875 1.000 0.877 0.873
200 1.000 0.888 0.886 1.000 0.888 0.887 1.000 0.887 0.886
400 1.000 0.895 0.894 1.000 0.895 0.894 1.000 0.896 0.894
Fraction of subjects classified by one test only in the ofdtseguential composite test (%)
m=0.25 T =0.5 w=0.75
Spe N 1 marker Linear Sequential 1 marker Linear Sequential marker Linear Sequential
0.8 100 28.7 41.2 53.8
200 27.7 40.6 53.8
400 27.1 40.3 53.5
0.9 100 21.5 34.3 47.2
200 20.6 33.7 47.0
400 20.2 335 47.0
Setting b
TPFs
m=0.25 m=0.5 w=0.75
Spe N 1 marker Linear Sequential 1 marker Linear Sequential marker Linear Sequential
0.8 100 0.164 0.752 0.822 0.164 0.752 0.823 0.164 0.751 0.823
200 0.163 0.756 0.827 0.163 0.757 0.827 0.163 0.758 0.828
400 0.159 0.771 0.838 0.161 0.770 0.838 0.161 0.771 0.839
0.9 100 0.085 0.697 0.770 0.085 0.696 0.770 0.085 0.695 0.770
200 0.081 0.701 0.774 0.082 0.701 0.775 0.081 0.702 0.775
400 0.077 0.718 0.788 0.077 0.717 0.788 0.077 0.717 0.788
TNFs
m = 0.25 T =0.5 T =0.75
Spe N 1marker Linear Sequential 1 marker Linear Sequential marker Linear Sequential
0.8 100 0.998 0.814 0.793 0.998 0.814 0.793 0.997 0.813 0.792
200 0.997 0.821 0.801 0.998 0.821 0.801 0.998 0.821 0.801
400 0.998 0.830 0.808 0.998 0.831 0.808 0.998 0.831 0.809
0.9 100 0.999 0.888 0.863 0.999 0.887 0.864 0.999 0.885 0.862
200 0.999 0.895 0.874 0.999 0.895 0.874 0.999 0.894 0.873
400 0.999 0.904 0.881 0.999 0.904 0.881 0.999 0.904 0.881
Fraction of subjects classified by one test only in the ofdtseguential composite test (%)
m=0.25 T =0.5 w=0.75
Spe N 1 marker Linear Sequential 1 marker Linear Sequential marker Linear Sequential
0.8 100 27.7 41.6 55.6
200 26.8 41.1 55.7
400 26.4 41.3 56.2
0.9 100 22.2 35.8 49.5
200 21.4 35.4 49.6
400 21.2 35.6 50.2
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not normal, we could also estimate the mixing probabilistiibutions nonparametrically using the method develdped
Hall and Zhou B4]. But Hall-Zhous's estimation method is very complicatedriplement and is restrictive. The tensor
spline-based sieve maximum likelihood estimatidg] [of the multivariate distribution function is a compromisethe
Hall-Zhou’s nonparametric estimation of mixture disttibm. Although the optimal sequential composite tests ¢#din s
be computed with the tensor spline-based sieve estimatiprinciple, the numerical implementation of the test is muc
more demanding and challenging than the multivariate nbnmoael. Moreover, the spline-based model would add more
complexity to studying the statistical properties of thett&tudy and implementation of the spline-based modehfer t
optimal sequential composite test in this context are adigr@einder our investigation.
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Appendices

A.

Details of the EM algorithm in Section 2

The EM algorithm treats the exact case membershipas missing. Therefore, the complete data consist of
{(X1,D4),---,(Xn, Dy)}, and the complete-data log-likelihood is given BY. (
Let ) denote the estimate éfafter theith iteration of the EM algorithm.
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e E step: The E step computes the conditional expectatiof, (f) given the observed da{&X,, ..., X,,) and the
current estimates f, (),

E( ()]0 ) Z{ k= 1109 log 7 f1 (X1, Xok|61)+

k=1
Pr(Dy, = 0[09) log(1 — ) fo( X1, X2k|90)} .

If we write

7 = Pr(Dy, = 1]6D),
fll (Xik, Xop) = fl(X1k,X2k|9§i))7
foi)(Xm,sz) = fO(Xlk;X2k|aéi))v

it is easy to show that

70 -)f(i)(Xm,sz)
7O £ (X, Xog) + (1 — 70) £ (X 1k, Xon)
and
E (za(e)w(i)) = # P log 7 f1 (X ke, Xanl01) + (1 — 717) log(1 — ) fo(X1x, Xaxl6o)- (A.2)

k=1

e M step: The M step updates the estimaté?) for ¢ by maximizingE (1,(0)[6”) in (A.2) with respect ta. We
can show tha#“*1) has the following explicit expression:

o) % Xn:ﬁ;(:), (A.3)
pit = m) Zw X, (A.4)
R Z 70Xk — uf ) (X — )T (A5)
o S Xn: (170X, (A.6)

n(l — x(+1)

o

Bl

—_

i 1 ~ (i i i
VE)( ) _ m (1 - 7'1'](c ))(Xk - M(() +1))(Xk - /‘E)+1))T’ (A7)

E
Il
_

whereX;, = (X1, Xox)7.

B. Proof of Theorem2.1

Since F; and F;, are the cumulative distribution function of bivariate nafndistributions, the functioG(C, ) is
continuously differentiable with respect @ and6. Condition @) is equivalent to the statement that the Jacobian matrix
VecG(Cy, 0y) is invertible by deriving the determinant ®cG(Cy, ) and setting it not equal to zero. Hence, according
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to the implicit function theoren¥[3], there exists an open sE€tcontainingf,, an open se¥’ containingC,, and a unique
continuous differentiable functiopn: U — V such thatC = ¢(6) andG(¢(0),0) = 0forall @ € U.

Based on the MLE properties, it is known titiat —p 6o andy/n(0,, — 6y) —4 N(0,Z71). So for anye > 0 ands > 0,
there exists anV, such thatn > N, Pr(|,, — 6| > &) < e. This implies that for any. > N, 6,, € U in probability,
and hence the proposed method for finding the cubff= (C,.1,C,..2) through solving forG(C,,,8,,) = 0 results in
C.,. = ¢(6,,) in probability.

Further note thatr (C, 0) = F1(g(0),0) is a continuously differentiable function @, and consequently, by the
continuous mapping theorem and the delta method, we have

Vit (s80 — senc) = v/ (F1(Cn, 8) — F1(Co, 60))
= vn (Fl(Cn, 0,) — F1(Co,8,) + F1(Co,0,) — Fy(Co, 00))
= Vit (VF1(Co.8,)(Cy — Co) + VoFi(Co.00) (0, — 00)) +0,(1)
—vn (chl(co, 0,)V09(80) (0, — 00) + Vo F,(Co,80)(0y — 00)) +o,(1)
= (chl(co, 0,,)Veg(60) + VoI (Co, 00)) (6, — 60)

—4 N(0,BT7'BT),

where
B =VcFi(Co,00)Veg(6o) + Ve F1(Co, o). (B.1)
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