
Partial Volume Correction in Quantitative Amyloid Imaging

Yi Sua, Tyler M. Blazeya, Abraham Z. Snydera,b, Marcus E. Raichlea, Daniel S. Marcusa, 
Beau M. Ancesa,b, Randall J. Batemanb, Nigel J. Cairnsc, Patricia Aldeaa, Lisa Casha, Jon J. 
Christensena, Karl Friedrichsena, Russ C. Hornbecka, Angela M. Farrara, Christopher J. 
Owena, Richard Mayeuxd, Adam M. Brickmand, William Klunke, Julie C. Pricef, Paul M. 
Thompsong, Bernardino Ghettih, Andrew J. Saykini, Reisa A. Sperlingj, Keith A. Johnsonk, 
Peter R. Schofieldl,m, Virginia Bucklesb, John C. Morrisb, Tammie. LS. Benzingera, and the 
Dominantly Inherited Alzheimer Network
aDepartment of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, 
USA

bDepartment of Neurology, Washington University School of Medicine, Saint Louis, MO, 63110, 
USA

cDepartment of Pathology and Immunology, Washington University School of Medicine, Saint 
Louis, MO, 63110, USA

dDepartment of Neurology, Columbia University Medical Center, New York, NY 10032, USA

eDepartment of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, 
USA

fDepartment of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, 
USA

gImaging Genetics Center, Institute for Neuroimaging and Informatics, and Departments of 
Neurology, Psychiatry, Engineering, Radiology, Pediatrics, and Ophthalmology, University of 
Southern California, Los Angeles, CA 90032, USA

hDepartment of Pathology and Laboratory Medicine, Indiana University School of Medicine, 
Indianapolis, IN 46202, USA

iCenter for Neuroimaging, Department of Radiology and Imaging Science, Indiana University 
School of Medicine, Indianapolis, IN 46202, USA

jDepartment of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 
02114, USA

kDepartment of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, 
MA 02114, USA

© 2014 Elsevier Inc. All rights reserved.

Correspondence: Yi Su, PhD, Campus Box 8131, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 
510. S. Kingshighway Blvd., Saint Louis, MO, 63110 USA, Tel: 314-362-6575, Fax: 314-362-6110, suy@mir.wustl.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Neuroimage. Author manuscript; available in PMC 2016 February 15.

Published in final edited form as:
Neuroimage. 2015 February 15; 107: 55–64. doi:10.1016/j.neuroimage.2014.11.058.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



lNeuroscience Research Australia, Sydney, NSW 2031, Australia

mSchool of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia

Abstract

Amyloid imaging is a valuable tool for research and diagnosis in dementing disorders. As positron 

emission tomography (PET) scanners have limited spatial resolution, measured signals are 

distorted by partial volume effects. Various techniques have been proposed for correcting partial 

volume effects, but there is no consensus as to whether these techniques are necessary in amyloid 

imaging, and, if so, how they should be implemented. We evaluated a two-component partial 

volume correction technique and a regional spread function technique using both simulated and 

human Pittsburgh compound B (PiB) PET imaging data. Both correction techniques compensated 

for partial volume effects and yielded improved detection of subtle changes in PiB retention. 

However, the regional spread function technique was more accurate in application to simulated 

data. Because PiB retention estimates depend on the correction technique, standardization is 

necessary to compare results across groups. Partial volume correction has sometimes been avoided 

because it increases the sensitivity to inaccuracy in image registration and segmentation. However, 

our results indicate that appropriate PVC may enhance our ability to detect changes in amyloid 

deposition.
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1. Introduction

Alzheimer’s disease (AD) is the most common form of dementia (Holtzman et al., 2011). 

The prevalence of AD is expected to increase dramatically worldwide over the next 50 years 

(Brookmeyer et al., 2007). It is well established that the pathological hallmarks of AD are 

amyloid plaques and neurofibrillary tangles (Holtzman et al., 2011). However, the 

underlying disease mechanisms remain under study. There currently are no proven disease-

modifying treatments (Aisen, 2009; Aisen et al., 2011; Doody et al., 2013; Huang and 

Mucke, 2012). Evidence suggests that pathological changes begin 10 to 20 years before the 

onset of clinical symptoms (Bateman et al., 2012; Morris and Price, 2001), which implies 

that successful treatment of AD may require early intervention. Hence, validated surrogate 

biomarkers for AD are needed for the design of therapeutic trials in asymptomatic 

individuals (Aisen, 2009; Aisen et al., 2011).

Positron emission tomography (PET) imaging of beta-amyloid (Aβ) plaques with tracers 

such as [11C]PiB (N-methyl-[11C]2-(4-methylaminophenyl)-6-hydroxybenzothiazole) 

(Klunk et al., 2004), [18F]florbetapir (Wong et al., 2010), [18F]florbetaben (Rowe et al., 

2008) and [18F]flutemetamol (Vandenberghe et al., 2010), enables in vivo measurement of 

fibrillar Aβ deposition, which provides an early indicator of AD pathology. Accurate 

quantification of Aβ burden is essential to better understand disease mechanisms, to develop 

early diagnostic techniques, and to identify suitable surrogate indicators for treatment 

monitoring.
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Partial volume effect (PVE) in positron emission tomography (PET) is a consequence of the 

poor spatial resolution of PET scanners, which typically is 5 to 6 mm full-width-half-max 

(FWHM). Because of PVE, the intensity of a particular voxel reflects the tracer 

concentration not only of the tissue within that voxel but also the surrounding area. In 

addition, PVE depends on the physical size and the shape of a region-of-interest (ROI) and 

its relative contrast with surrounding regions (Soret et al., 2007). When PET is used to 

measure amyloid burden, the impact of PVE becomes more complicated. Previous studies 

indicate that amyloid plaques primarily develop in the cortical and subcortical gray matter 

while the signal observed in white matter mainly comes from non-specific binding (Klunk et 

al., 2004). Non-specific PiB binding in white matter would not be a problem if the spatial 

resolution of PET permitted imaging gray matter without partial volume contributions from 

white matter. However, the resolution of PET is only ~5–6 mm. Hence, partial volume 

effect cannot be avoided. Without appropriate partial volume correction (PVC), 

quantification based on the raw PET images yields only a qualitative representation of the 

amyloid burden, not a quantitative one. Only when we apply appropriate PVC can we obtain 

quantitative measurement of amyloid burden. For a simple demonstration please refer to the 

supplementary material.

Currently, the approach to addressing PVE differs from one group to another and there is no 

consensus regarding whether correction for PVE is necessary and, if so, what type of 

correction should be used. We believe that this uncertainty is attributable to the limited 

understanding of the impact of PVE on quantitative amyloid imaging. In a recent 

longitudinal study (Villemagne et al., 2011), PVC increased the estimated regional standard 

uptake value ratios (SUVRs), but similar trends were obtained with and without PVC. The 

authors elected to not report PVC results to avoid potential inaccuracies resulting from 

segmentation errors (Villemagne et al., 2011). Other groups (Aizenstein et al., 2008; 

Lopresti et al., 2005; Lowe et al., 2009) use two-component PVC (Meltzer et al., 1996), 

which defines two types of tissue, i.e., brain and non-brain, and corrects for the 

underestimation of signal due to PVE caused by non-brain tissue. In a comparative study of 

two- vs. three-component (gray matter, white matter, and non-brain) PVC, it was concluded 

that the two-component method is better because it is less sensitive to registration and 

segmentation errors, although the three-component method is capable of more accurate 

absolute quantification (Meltzer et al., 1999). In contrast, a more recent paper (Thomas et 

al., 2011) advocates a region-based voxel-wise correction method to improve quantitative 

accuracy.

The goal of this study is to evaluate the impact of PVE on quantitative amyloid imaging in 

both cross sectional and longitudinal studies using simulated and human research data. In 

addition, we specifically examine the impact of individual variability in cortical thickness 

and brain atrophy upon quantification. We also investigate the test-retest reliability of PVC 

attributable to variability in registration and segmentation.
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2. Methods

2.1. Participants

Three cohorts were involved in this study (Table I). The first cohort included 16 participants 

recruited from the Knight Alzheimer Disease Research Center (ADRC). One of the 16 

participants had a CDR score of 0.5 (very mild dementia) while the CDR ratings for the rest 

were 0 (cognitively normal). This cohort was studied using a MRI test-retest (MRTRT) 

design to examine the sensitivity of PVC to uncertainty related to MRI images used as 

anatomical reference. Each participant in the MRTRT cohort underwent two separate MR 

scans on different days, using different MR sequences, and on different MR scanners, as 

described below in the imaging protocol. Another MRTRT experiment with anatomical MR 

acquired twice during the same imaging session was described in supplementary 2. The 

second cohort comprised 74 participants recruited at multiple sites as part of the 

international Dominantly Inherited Alzheimer Network (DIAN) initiative (Morris et al., 

2012). The DIAN cohort included only individuals known to carry an autosomal dominant 

mutation leading to early onset AD. The DIAN cohort was analyzed to investigate the 

impact of PVC on cross sectional studies. The estimated year-to-onset (EYO) was calculated 

for each individual in this cohort as the difference of the age of mutation carrier at the time 

of study and the parental age at onset (Bateman et al., 2012). EYO was used as the reference 

indicator of disease stage. The third cohort (LONG) included 42 participants from Knight 

ADRC, studied to investigate the impact of PVC on longitudinal studies. Six participants 

had a baseline CDR score of 0.5 while the rest had a CDR score of 0. Each LONG 

participant had a baseline visit and a follow-up visit at a mean interval of 2.2 years. The 

LONG cohort included only individuals with a baseline mean cortical binding potential 

(MCBP) greater than 0.06, as measured by PiB PET imaging (Mintun et al., 2006), to 

enhance the probability of observing an increase in amyloid deposition at the second visit 

(Sojkova et al., 2011). All three cohorts were independent and there was no overlap among 

the cohorts.

2.1.1 Ethics Statement—All assessment and imaging procedures were approved by 

Washington University’s (WashU) Human Research Protection Office. Written informed 

consent was obtained from all individuals or their care givers. Local institutional review 

boards also approved the collection of scans for archiving and future study at each non-

WashU study site.

2.2. Imaging

In all cohorts, PET imaging for quantitative estimation of amyloid deposition was performed 

using [11C]PiB, prepared according to the published protocol (Mathis et al., 2003). In the 

MRTRT cohort, dynamic PET imaging was conducted for one hour with a Biograph 40 

PET/CT scanner (Siemens Medical Solutions, Erlangen, Germany) in three-dimensional 

mode after intravenous administration of approximately 12mCi of PiB. The images were 

reconstructed on a 128 × 128 × 109 matrix (2.32 × 2.32 × 2.03 mm voxels) using filtered 

back-projection. Typical dynamic scans had 12 × 10-second frames, 3 × 60-second frames, 

and 11 × 5-minute frames. Anatomic MRI were acquired with an unaccelerated T1-weighted 

magnetization-prepared rapid gradient echo (MPRAGE) sequence (1 mm isotropic voxels) 

Su et al. Page 4

Neuroimage. Author manuscript; available in PMC 2016 February 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



using a Siemens Trio 3T scanner (Siemens Medical Solutions, Erlangen, Germany). In order 

to assess the sensitivity of PET quantification to variability in MRI acquisition, MRI 

processing (i.e. segmentation), and PET to MRI registration, a separate sagittal MPRAGE 

scan within 2 weeks from the PET/CT session was obtained on a Siemens Biograph mMR 

scanner (Siemens Medical Solutions, Erlangen, Germany) using an accelerated 3D 

Generalized Autocalibrating Partially Parallel Acquisition (GRAPPA) sequence with 1.1 × 

1.1 × 1.2 mm voxels.

In the DIAN cohort, structural MRI was performed using the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) protocol (Jack et al., 2010; Jack et al., 2008). A 3T scanner 

(Philips 3.0 T Achieva scanner (Philip Healthcare, Best, Netherlands) and a Siemens Trio 

3T scanner was used at all participating sites; the scanners were required to pass initial and 

regular follow-up quality control assessments to insure acquisition uniformity. The MRI 

protocol included an accelerated 3D GRAPPA sequence for MPRAGE acquisition same as 

the sequence used in the MRTRT study on the Biograph mMR. These images were screened 

for artifacts and protocol compliance by the ADNI MR Imaging Core before further 

analysis. For PET imaging, each site underwent an initial evaluation to insure compliance 

with the common PiB PET ADNI protocol. The PET scanners included in this study were 

EXACT 962 HR+ scanner (Siemens Medical Solutions, Erlangen, Germany) or a Biograph 

40 PET/CT scanner. Dynamic PiB PET acquisition consisted of either a 70-minute scan 

starting at injection or a 30-minute scan beginning 40 minutes post-injection. Only full 

dynamic scans (70-minute) were included in this study. Reconstruction was performed using 

filtered back-projection (128 × 128 × 63 matrix, 2.12 × 2.12 × 2.43 mm voxels on the HR+ 

scanner; 128 × 128 × 109 matrix, 2.32 × 2.32 × 2.03 mm voxels on the Biograph 40 

scanner).

The LONG cohort imaging protocol was similar to that of the MRTRT cohort. MPRAGE 

scans were acquired with a Siemens Trio 3T scanner. PiB PET was acquired on an EXACT 

962 HR+ scanner or a Biograph 40 PET/CT scanner. Each LONG participant contributed 

MRI and PET data acquired during initial and follow-up visits.

2.3. Image Analysis

FreeSurfer v5.1 (Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, 

USA) (https://surfer.nmr.mgh.harvard.edu/fswiki) was used to automatically segment the 

brain into various regions (as defined in the wmparc.mgz file, please refer to FreeSurfer wiki 

for the output files from FreeSurfer analysis of the brain). Visual inspection of the 

automated segmentation results was performed for quality assurance purposes in all datasets. 

Corrections were made when necessary according to the FreeSurfer manual. Reconstructed 

PET images were smoothed to achieve a common spatial resolution of 8mm to minimize 

scanner differences (Joshi et al., 2009). Inter-frame motion correction for the dynamic PET 

images was performed using standard image registration techniques (Hajnal et al., 1995) 

implemented with in-house software (Eisenstein et al., 2012). PET-MR registration was 

performed using a vector-gradient algorithm (VGM) (Rowland et al., 2005) in a symmetric 

fashion (i.e. average transformation for PET->MR and inverse of MR->PET was used as the 

final transformation matrix). Regional time-activity curves for each ROI were extracted by 
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resampling the PET data to patient MR space. Regional binding potentials (BPND) were 

estimated using Logan graphical analysis (Logan et al., 1990) with the cerebellar cortex 

serving as the reference (Logan et al., 1996). BPND calculation was based on the first 60 

minutes of data. Although the brainstem has been used as the reference region in prior 

analyses of the DIAN cohort (Bateman et al., 2012), the cerebellar cortex was used here to 

obtain consistency across all three cohorts. Mean cortical binding potentials (MCBP) 

(Mintun et al., 2006) were calculated based on a selected set of cortical regions (Su et al., 

2013). The washout rate constant (k2) of the reference region (cerebellum) was set to 0.16/

minute (Mintun et al., 2006). The impact of PVC technique was assessed using BPND 

measures evaluated in three regions of interest. To assess the impact of different PVC 

techniques, (i) MCBP (Mintun et al., 2006) was examined to assess global effects; (ii) 

precuneus was chosen as representative cortical region with known high predisposition to 

amyloid deposition (Mintun et al., 2006); and (iii) putamen was chosen as an example of a 

subcortical region that can have elevated PiB uptake in AD (Su et al., 2013).

2.4. Partial Volume Correction

Two PVC methods were compared in this study. The first method is the two-component 

(PVC2C) approach (Meltzer et al., 1996), which is most widely represented in amyloid 

imaging literature (Aizenstein et al., 2008; Lopresti et al., 2005; Lowe et al., 2009; Rosario 

et al., 2011). In our implementation, a brain tissue mask is generated based on FreeSurfer 

segmentation, a CSF dilution factor is calculated for each region, and the raw time activity 

curve for each region is corrected by this dilution factor before BPND is calculated. The 

second method is based on computation of the regional spread function (RSF) (Rousset et 

al., 2008; Rousset et al., 1998), which has also been extensively applied in PET imaging 

analysis (Kim et al., 2013; Kuhn et al., 2014; Le Pogam et al., 2011). Our implementation of 

RSF PVC also included additional ROIs outside the brain (hence, not defined by FreeSurfer) 

to account for tracer uptake in non-brain tissue. The combined ROI set was used as the basis 

for RSF PVC, in which a matrix of regional transfer coefficients (Rousset et al., 1998) was 

calculated using the ROI map and an 8-mm FWHM Gaussian smoothing kernel. Corrected 

ROI values were calculated by solving a linear system relating regional transfer coefficients 

to observed regional values (Eq. 1):

(1)

where, O is a column vector corresponds to the observed regional mean intensity for n ROIs, 

and T is a column vector representing the true intensity values in regions 1 to n. Each 

element (wij) in the matrix W on the right hand side of Eq. 1 is a regional transfer coefficient 

that determines the signal spillover from region i to region j. In other words, PVC2C 

performs the correction by scaling the regional measurement by a pre-computed correction 

factor which only depends on the scanner point spread function and relative location of the 

voxel/ROI to the boundary. These correction factors ignore gray-white contrast and 

therefore remain constant throughout a dynamic scan. On the other hand, after RSF PVC 

correction, the corrected/uncorrected ratio takes into account the local contrast which 

changes over time. Because of this difference the PVC2C only changes the magnitude of a 
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TAC while the RSF-based PVC restore both the shape and magnitude of a TAC, two 

attributes that ultimately determine the estimated binding parameters at each voxel or region.

2.5. Simulation study

Simulation was conducted to evaluate the impact of brain atrophy and partial volume effects 

on amyloid imaging quantification. The procedure for generating simulated PiB PET 

imaging data was similar to that previously described (Su and Shoghi, 2008) and is 

summarized in Figure 1. MR images of six participants with different cortical thicknesses 

(2.3–2.8mm), as measured using FreeSurfer, were chosen from our Knight ADRC cohort 

(see Fig 2A and 2B as an example). To generate simulated dynamic PET data, each region 

was assigned a time-activity curve (TAC) similar to Fig 2C. These TACs were obtained 

from actual patient data with 5 different level of amyloid load as measured by PiB PET 

imaging. After assignment of regional TACs, an example frame was shown in Fig. 2D. An 

8mm FWHM Gaussian kernel was used to smooth the simulated data (Fig. 2E). Noise was 

added to the PET data in sinogram space (Su and Shoghi, 2008). Poisson distributed noise 

was added and the magnitude of the noise is controlled by the counts, which was calibrated 

to the typical counting statistics of our patient imaging data. The sinogram were then 

reconstructed using filtered back-projection (FBP) technique. FBP based reconstruction was 

also performed on the noiseless version of the sinogram data and the difference between the 

reconstructed images created with and without sinogram noise was calculated as the noise 

image. The noise image is added back to the original simulated noiseless imaging data (Fig. 

2E) to generate the final simulated PiB PET data (Fig. 2F). This procedure is to ensure the 

simulated PET image indeed has 8mm resolution while also has realistic imaging noise. A 

total of 30 simulated dynamic PET datasets were created for different combinations of MR 

and PET. To simulate longitudinal studies, a follow up MRI scan more than a year apart of 

the same participant from three of the six subjects was also used to create additional 

simulations to evaluate the impact of atrophy.

2.6. MR Test-Retest Variability

One concern in applying MRI-based PVC techniques in quantitative PET is that variability 

related to MRI acquisition and processing may propagate to the final correction and increase 

noise (Frouin et al., 2002; Zaidi et al., 2006). To examine this issue, a MR test-retest study 

was performed in the MRTRT cohort, in which each participant underwent two separate 

MPRAGE scanning using different scanners, MR sequences, and on different days. 

Quantification with and without PVC was performed using these two MPRAGE images 

with the same PET scan. Each image was independently segmented by FreeSurfer and co-

registered with the PiB PET. A mean test-retest variability measurement was calculated for 

each region with and without PVC according to Eq. 2:

(2)

where N is the total number of participants (16); i indexes participant; BPNDi1 was 

calculated based on MPRAGE acquired on the Trio scanner; and BPNDi2 was calculated 

based on MPRAGE acquired on the mMR scanner. In addition, a volumetric variability 
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measurement was also calculated for each region based on the repeated MPRAGE and 

FreeSurfer outputs following Eq. 3:

(3)

where VOLi1 and VOLi2 are the volumes in each FreeSurfer region obtained from Trio and 

mMR scans respectively, indexed by participant (i).

3. Results

3.1. Simulation Study

The simulation study demonstrated that, without PVC, lower cortical thicknesses led to a 

greater underestimation of the binding potential for both global (MCBP) and local 

measurements (Fig. 2). This outcome is expected on the basis of PVE principles. The 

estimated binding potential without PVC positively correlated with cortical thickness. The 

slope of the linear relationship, as calculated by linear regression of BPND vs. thickness, 

increased with increasing amyloid load. For each millimeter loss in cortical thickness, the 

estimated MCBP was reduced by 0.11 to 0.24, depending on the underlying amyloid load. 

The estimated precuneus binding potential was reduced by 0.21 to 0.43 for each mm loss in 

precuneus thickness. Both PVC techniques corrected the estimated binding potentials so that 

BPND remained constant across different cortical thicknesses. However, the PVC2C method 

differentially underestimated the “true” binding potential depending on amyloid burden. 

This underestimation was minimal at low amyloid load and large at high amyloid load. The 

impact of PVE was greater in high Aβ regions such as the precuneus as compared to global 

measures.

Similar partial volume effect was observed in the simulated longitudinal data (Fig. 3). PiB 

binding was modeled as constant over both time points. In general, without PVC, the 

estimated binding potentials decreased with decreasing cortical thickness and this effect was 

more pronounced at higher amyloid loads. Underestimation of MCBP ranged from 0.14 per 

millimeter decrease in cortical thickness at low amyloid load to 0.36 per millimeter decrease 

in cortical thickness at high amyloid load. The slope of decrease for the precuneus BPND 

ranged from 0.27 per millimeter decrease in cortical thickness to 0.61 per millimeter 

decrease in cortical thickness. Therefore, it is possible to observe false decreases in BPND if 

PVC is not performed when atrophy occurs during longitudinal studies. Both PVC 

techniques reduced the impact of PVE but the RSF technique was more stable.

3.2. MR Test-Retest Variability

The MRTRT dataset showed low variability in estimated BPND (Table II). For MCBP, the 

average RBP% was 1.57±1.01% without PVC, 1.41±2.13% using PVC2C and 2.09±1.78% 

using RSF PVC. In comparison, the variability for FreeSurfer ROI volumes was greater than 

~2% or more for all regions.
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3.3. Cross-sectional Patient Study

Partial volume correction generally resulted in higher estimated binding potentials in cortical 

regions (Fig. 4). In left precuneus, the estimated PiB binding was approximately 2.2 times 

higher on average using the RSF method than without PVC and ~1.2 times higher on 

average using PVC2C. In the putamen, PVC2C resulted in lower PiB binding estimation 

(0.45 times the uncorrected version for left putamen); and RSF resulted in slightly higher 

PiB binding estimation (1.1 times the uncorrected values for left putamen).

Figure 5 shows the relation between PiB binding potentials estimated with PVC (two 

methods) vs. without PVC. These relations are remarkably linear (r = 0.99) across 

participants with varying levels of Aβ accumulation. However, the slope and intercept of 

these linear relationships based on particular brain regions are strongly regionally specific.

3.4. Longitudinal Study

The results of the longitudinal study are summarized in Table III. On average, the left 

precuneus lost volume at a rate of 0.04 cc/year (0.42%/year); and the left putamen lost 

volume at a rate of 0.05 cc/year (0.93%/year). Without PVC, BPND increased at a rate of 

0.021/year (1.57%/year) in left precuneus and increased at 0.012/year (0.87%/year) in left 

putamen. With RSF PVC, BPND increased at a rate of 0.077/year (4.23%/year) in the left 

precuneus and increased 0.033/year (2.26%/year) in the left putamen. The PVC2C results 

fell in between the uncorrected and the RSF PVC measurements. The significance of 

longitudinal difference in BPND appears to be enhanced with RSF PVC, as manifested by 

more significant p-values in a two-tailed paired t-test. The p-value changed only moderately 

when PVC2C was applied. Without PVC, decreased MCBP was observed in 9 participants 

and decreased precuneus BPND was observed in 11. When RSF PVC was performed, 4 of 

the 9 decreases in MCBP reversed, and 7 of the 11 decreases in precuneus BPND reversed. 

This indicates the observed decrease in BPND without PVC maybe an artifact of brain 

atrophy.

4. Discussion

We compared two partial volume correction techniques in the context of quantitative PET 

amyloid imaging using both simulated and participant data. Both PVC methods reduced bias 

caused by partial volume effects. RSF PVC yielded more accurate binding potential 

estimations based on the simulation study. The simulation (forward model) accounted for 

time activity curves in gray matter, white matter, and non-brain regions. Thus, the forward 

model can be viewed as an expansion of three-component approach (Meltzer et al., 1999) 

except that each ROI was independently assigned its own TAC. That RSF PVC performed 

best with the simulations is expected because it effectively inverts the forward model except 

for the addition of noise. The RSF technique assumes within region homogeneity in tracer 

uptake, while in reality the variability may not follow anatomical driven ROI definition. 

Other PVC technique such as the region-based (RBV) correction (Thomas et al., 2011) or 

the Gaussian mixture deconvolution (GMD) (Bousse et al., 2012) are voxel-wise methods. 

Such methods potentially preserve greater detail at the voxel level but should give similar 
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results at regional level. Further investigation is needed to understand the robustness and 

accuracy of these techniques.

It should be pointed out that while we adopted the resolution normalization technique (Joshi 

et al., 2009) to achieve approximately 8mm in spatial resolution across different scanners, 

the scanner resolution is inherently spatially varying, and our normalization filtering cannot 

fully account for this which may lead to subtle differences between scanners. This can 

potentially be improved by measuring the individual scanner point spread function using 

physical phantoms and performing PVC based on that. It should also be pointed out that our 

imaging analysis procedure assumes the different MR scanners have the same spatial 

resolution, while in fact there are small between scanner differences in scanner resolution, 

these factors may further complicate the PET quantification.

The objective of PVC is to reduce bias in point estimates of gray matter Aβ burden. The cost 

of PVC is that it can amplify noise in PET quantification attributable to PET to MR 

registration and segmentation of anatomical MR data (Meltzer et al., 1999). We examined 

this issue using an MPRAGE test-retest design and confirmed the general principle. The 

observed change in binding potential (BPND) estimates attributable to the variability in 

MPRAGE registration and segmentation was less than 3% with and without PVC. In 

comparison, full test-retest BPND variability has been reported to be approximately 5% 

(Lopresti et al., 2005). It has been demonstrated that differences in imaging sequence, 

scanner, and magnet strength can cause discrepancy in brain segmentation (Han et al., 2006; 

Jovicich et al., 2009). It is important to keep this in mind in study design to minimize 

possible complications. As demonstrated in another MR test-retest study using repeated 

MPRAGE scans acquired within the same imaging session using the same MR sequence the 

MR test-retest variability is substantially smaller at less than 1% (Supplementary 2), which 

gives us an idea of how much improvements we can possibly achieve by limiting the 

variability in MR acquisition.

The impact of PVC to the estimated BPND is highly regional specific as demonstrated by the 

relationship between BPND and EYO (Fig. 4) and corrected vs. uncorrected BPND (Fig. 5). 

This can be explained by examining the regional TACs with and without PVC, as shown in 

lower panel of Fig. 4. A substantially greater intensity value for the precuneus cortex and a 

slightly lower intensity value for the cerebellar cortex (the reference) resulted in a large 

increase in estimated BPND using RSF PVC. On the other hand, PVC2C resulted in higher 

ROI values for both precuneus and cerebellar cortex, hence, only a slightly increased BPND. 

For a subcortical region such as the putamen, neither PVC technique significantly changed 

PET image intensity values; altered BPND values were mainly attributable to differences in 

the reference region TAC with and without PVC. Increased cerebellar cortex intensity with 

PVC2C resulted in lower BPND of putamen; slightly lower cerebellar cortex intensity with 

RSF PVC resulted in slightly higher BPND. These regionally specific constants reflect the 

interaction between limited PET resolution and varying levels of non-specific vs. specific 

tracer binding as well as ROI shape. Thus, quantitative PiB imaging strongly depends on use 

of PVC and type of PVC.
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The high levels of linear correlation between BPND with and without PVC in the cross 

sectional study (Fig. 5) may seem counter-intuitive. In theory, as the disease progresses, 

more severe atrophy should result in a larger impact of PVE, as demonstrated in Fig. 4, 

therefore a non-linear relationship would be expected. This may because our participants are 

either asymptomatic or early symptomatic AD patients and the amount of atrophy is 

relatively small. In addition, people with high BPND do not necessarily have more atrophy 

because of the high variability of amyloid deposition at a given cortical thickness level. PVC 

is expected to be more critical for measuring amyloid deposition in brain with more severe 

atrophy.

Based on our longitudinal study, the annual rate of amyloid accumulation (signal) was 3.4 

times greater when RSF PVC is applied and 1.59 times greater with PVC2C in comparison 

to the values without PVC (Table III), while the standard deviation in the rate of amyloid 

accumulation (noise) was only 1.82 and 1.24 times greater with RSF PVC and PVC2C 

respectively. In addition, the observed difference in amyloid load between the baseline and 

follow-up study in the LONG cohort was more significant (smaller p values) when PVC was 

applied, especially with the RSF PVC technique. Therefore, we believe PVC will improve 

our ability to detect amyloid load change in longitudinal studies.

Finally, comparisons of amyloid load across different regions within the same subject would 

be difficult without PVC, because of the differential impact of partial volume effects on 

regions of different size and shape as shown by the regionally different slopes in Fig. 5. Our 

study demonstrates that, if the goal of amyloid imaging is to obtain a single numerical 

measurement of amyloid load, for example to provide diagnostic information, then PVC 

only provide minor additional information because of the highly linear relationship between 

the uncorrected and corrected binding potentials. However, if the goal of amyloid imaging is 

to better understand the disease mechanism, to assess the regional differences in the amyloid 

plaque pathology, then PVC is an important step.

5. Conclusion

The impact of partial volume correction (PVC) on quantitative amyloid imaging was 

investigated using both simulated and participant data. PVC compensates for partial volume 

effects, which, if uncorrected, lead to underestimation of amyloid load. A theoretical cost of 

PVC is that it increases the noise of amyloid load measurement due to uncertainties in image 

registration and segmentation. However, our data demonstrate that PVC improved the 

sensitivity of detecting subtle changes in amyloid binding, especially when using the RSF 

technique. We therefore recommend PVC be performed in all amyloid imaging studies, 

although standardization of the PVC technique is needed to compare studies across different 

groups.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Two PVC techniques were examined for quantification of PiB imaging data.

• Performance was compared using simulated, MR test-retest, cross-sectional and 

longitudinal data.

• Both PVC techniques were able to compensate for partial volume effects.

• Regional Spread Function technique was able to generate more accurate results.

• PVC improves the capability in detecting subtle changes in PiB retention.
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Figure 1. 
Demonstration of the simulation procedure. A) Example MR data. B) FreeSurfer 

segmentation of the MR data. A time-activity curve (TAC) was assigned to each ROI. C) 

Example regional TAC D) Example frame of simulated data after assigning a TAC to each 

region. E) PET frame smoothed to PET resolution. F) Final simulated dynamic PET frame 

including noise.
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Figure 2. 
Estimated binding potentials with and without partial volume correction for simulations 

created with different cortical thickness and amyloid load.
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Figure 3. 
Impact of partial volume effects to binding potential estimation due to longitudinal changes 

in cortical thickness based on the simulation study.
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Figure 4. 
Trajectories of PiB binding estimated with cross sectional first-degree LOESS curves with 

and without PVC (top row). And regional time-activity curve with and without PVC for an 

example subject (bottom row).
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Figure 5. 
Regional binding potentials with and without PVC. Although for individual regions, the 

PVC corrected BPND were highly correlated with the uncorrected version, the slope of the 

linear relationship varies from one region to another. On average, the estimaged BPND 

increased 41±33%, 8±14%, and 31±22% for left precuneus, left putamen and MCBP 

respectively when RSF PVC is applied; the estimated BPND increased 7±8% for left 

precuneus, decreased 17±2% for left putamen, and increased 12±5% for MCBP when 

PVC2C is applied. The percent change is calculated as (BPPVC−BPraw)/(1+BPraw)×100%.
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Table I

Demographics for this study

Cohort MRTRT DIAN LONG

N 16 74 42

Age (SD) years 63.0(9.0) 39.1(11.3) 70.7(5.5)

EYO (SD) years - −8.1(11.1) -

Education (SD) years 15.5(2.4) 14.4(2.5) 15.6(2.3)

Male (%) 8(50.0) 36(48.6) 16(38.1)

CDR>0 (%) 1(6.3) 21(28.4) 6(14.3)

APOE4+ (%) 3(19.7) 30(40.5) 22(52.4)

PET interval (SD) years - - 2.2(0.85)

MRTRT (MR test-retest); DIAN (Dominantly Inherited Alzheimer’s Network); LONG (longitudinal cohort from Knight ADRC); CDR: Clinical 
Demential Rating; APOE4+: carrier of at least one copy of E4 version of apolipoprotein gene; EYO; estimaged year to onset.
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Table III

Longitudinal study results (mean±SD where applicable).

left precuneus left putamen MC CALL

Baseline Vol (cc) 8.5±1.2 5.0±0.7 143.4±15.0 411.8±42.5

ΔVol/year (cc/year) −0.04±0.15 −0.05±0.15 −0.83±1.91 −2.08±5.35

ΔVol%/year (%/year) −0.42±1.82 −0.93±3.17 −0.58±1.31 −0.49±1.30

p-value 7.9E-02 3.6E-02 6.0E-03 1.1E-02

Baseline BPND 0.42±0.28 0.46±0.20 0.32±0.26 0.26±0.21

ΔBPND/year (/year) 0.021±0.04 0.012±0.07 0.016±0.03 0.009±0.03

ΔBP%/year (/year) 1.57±2.29 0.87±3.70 1.28±1.88 0.78±1.73

p-value 6.5E-05 6.1E-02 8.0E-05 2.7E-03

Baseline BPND (PVC2C) 0.50±0.32 0.19±0.16 0.50±0.32 0.42±0.25

ΔBPND/year (PVC2C) (/year) 0.028±0.05 0.010±0.05 0.025±0.4 0.015±0.03

ΔBP%/year (PVC2C) (/year) 1.88±2.38 0.83±3.57 1.71±1.99 1.12±1.66

p-value 1.7E-05 9.5E-02 1.0E-05 1.4E-04

Baseline BPND (RSF) 0.85±0.66 0.39±0.28 0.64±0.55 0.52±0.43

ΔBPND/year (RSF) (/year) 0.077±0.08 0.033±0.11 0.054±0.06 0.036±0.05

ΔBP%/year (RSF) (/year) 4.23±3.75 2.26±6.03 3.41±2.90 2.46±2.46

p-value 1.3E-07 5.6E-03 5.9E-08 1.3E-06

MC: contains regions that went into the calculation of MCBP using a FreeSurfer based approach (Su et al., 2013) including ctx-lateralorbitofrontal, 
ctx-medialorbitofrontal, ctx-precuneus, ctx-rostralmiddlefrontal, ctx-superiorfrontal, ctx-superiortemporal, and ctx-middletemporal; CALL: all 
cortical gray matter region; p-value refers to two-tailed paired student t-test result between the follow up visit and the baseline visit; ΔBP% was 
calculated according to Eq. 1 and ΔVOL% was calculated according to Eq. 2.
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