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Abstract

Background—Detection of either viral or bacterial pathogens is associated with wheezing in

children, however the influence of both bacteria and virus on illness symptoms has not been

described.

Objective—We evaluated bacterial detection during peak RV season in children with and

without asthma to determine if an association exists between bacterial infection and the severity of

RV illnesses.

Methods—308 children (166 with asthma, 142 without asthma) ages 4–12 years provided five

consecutive weekly nasal samples during September, and scored cold and asthma symptoms daily.

Viral diagnostics and quantitative PCR for Streptococcus pneumoniae, Haemophilus influenzae

and Moraxella catarrhalis were performed on all nasal samples.

Results—Detection rates were 53%, 17% and 11% for H. influenzae, S. pneumoniae and M.

catarrhalis, respectively, with detection of RV increasing the risk of detecting bacteria within the

same sample (OR 2.0, 95% CI 1.4–2.7, p<0.0001) or the following week (OR 1.6 (1.1–2.4),

p=0.02). In the absence of RV, S. pneumoniae was associated with increased cold symptoms

(mean 2.7 (95% CI 2.0–3.5) vs. 1.8 (1.5–2.2), p=0.006) and moderate asthma exacerbations (18%

(12%–27%) vs. 9.2% (6.7%–12%), p=0.006). In the presence of RV, S. pneumoniae was
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associated with increased moderate asthma exacerbations (22% (16%–29%) vs. 15% (11%–20%),

p=0.01). Furthermore, M. catarrhalis detected alongside RV increased the likelihood of

experiencing cold and/or asthma symptoms compared to isolated detection of RV (OR 2.0 (1.0–

4.1), p=0.04). Regardless of RV status, H. influenzae was not associated with respiratory

symptoms.

Conclusion—RV infection enhances detection of specific bacterial pathogens in children with

and without asthma. Furthermore, these findings suggest that M. catarrhalis and S. pneumoniae

contribute to the severity of respiratory illnesses, including exacerbations of asthma.
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INTRODUCTION

There is mounting evidence that asthma is associated with changes in the airway

microbiome. For example, detection of Streptococcus pneumoniae, Haemophilus influenzae

and Moraxella catarrhalis within the upper airway in early infancy is associated with an

increased risk of developing recurrent wheezing and then asthma. (1, 2) In addition, culture-

independent methods of bacteria detection demonstrate that Proteobacteria, a phylum of

bacteria containing a majority of gram-negative bacteria, appeared more frequently in both

nasal and bronchial samples in stable asthma, and are linked to increased bronchial

hyperresponsiveness. (3–5) However, prospective studies have not utilized molecular

methods of detection to analyze these bacteria between children with and without asthma.

Recently, we reported that 90% of children with asthma are infected with rhinoviruses (RV)

during the month of September, and the severity of clinical illness varies from no symptoms

to severe wheezing illnesses. (6) These findings strongly suggest that there are cofactors

which affect the relationship between RV infection and illness, and suggest that airway

bacteria might contribute in this regard. Furthermore, a recent study found an increase in

invasive pneumococcal disease during peak RV activity. (7) We therefore hypothesized that

detection of specific bacterial pathogens would be increased in children with asthma

compared to children without asthma; and that co-detection of these bacteria with RV would

be associated with increased respiratory symptoms compared to RV detection alone. To test

these hypotheses, we prospectively obtained weekly specimens of nasal secretions from

children with and without asthma during the fall of 2007–2009, and then compared detection

of viruses and select bacteria to cold and asthma symptoms and moderate exacerbations of

asthma.

METHODS

Study subjects and design

Children included in this analysis were enrolled in a larger study to determine genetic

correlates with more severe RV illnesses (“RhinoGen”). Of the 383 children participating in

RhinoGen, 308 children ages 4–12 years submitted samples during a peak RV season.

Starting the first Saturday of September of 2007, 2008 or 2009, nasal samples were collected
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weekly for a total of five consecutive weeks. Children, with the help of their parents, were

instructed to record URI and asthma symptoms, morning peak expiratory flow (PEF) and

albuterol use on daily diary cards from one week prior to first nasal sample submission

through one week following the final (fifth) sample submission. See online supplement for

additional details about recruitment and inclusion criteria. This study was approved by the

University of Wisconsin Human Subjects Committee and written informed consent was

obtained from the parents.

Procedures and Definitions

At the first study visit, subjects were taught to collect samples of their own nasal mucus

using a nose-blowing technique as previously described. (6, 8) These samples were analyzed

for common respiratory viruses by Respiratory Multicode Assay, EraGen Biosciences,

Madison, Wisconsin. (9)

Nasal samples were also analyzed for Streptococcus pneumoniae, Haemophilus influenzae

and Moraxella catarrhalis by quantitative real-time PCR. DNA was extracted using the

BiOstic Bacteremia DNA Isolation Kit (Mo Bio laboratories, Carlsbad, California). The

quantitative Spn9802 PCR for the detection of S. pneumoniae (10) was combined with the

P6 PCR for the detection of H. influenzae (11) and the copB PCR for the detection of M.

catarrhalis (12) as previously described. All primers and probes were obtained from

Applied Biosystems and the real-time PCR assay was performed in a 7300 Applied

Biosystems instrument. We confirmed double and triple positive results obtained by

Multicode assay by repeating qPCR with single target assays. Standard curves consisted of

bacterial DNA extracted from known quantities of clinical isolates of each bacteria obtained

from the University of Wisconsin Hospital Clinical Microbiology Laboratory, and PCR

results are expressed as colony-forming-unit equivalents (CFUe).

Children scored cold and asthma symptom severity based on a 4-point scoring system (see

Table 1 in the online data supplement). (6, 8) Moderate asthma exacerbations were defined

as at least moderate asthma symptoms (score ≥ 2) and either a decrease in PEF of at least

20% or increased use of albuterol ≥ 2 days, in accordance with NHLBI and ATS definitions.

(13, 14) Current asthma was diagnosed at study completion based on previously reported

criteria. (15) Skin prick testing and total and allergen-specific IgE levels in plasma were

performed upon enrollment (Unicap 100; Phadia, Uppsala, Sweden).

Children who collected at least 4 of 5 weekly nasal specimens and were missing less than

20% of diary card data were included in the analysis. A week was defined as the 7-day

period surrounding (± 3 days) the day of nasal specimen collection. Each week was

designated as virus and/or bacteria positive or negative based on viral and/or bacteria

detection. Cold and asthma symptom burdens for each week were calculated by summing

the daily symptom scores across the week. An illness was defined as a period of two or more

consecutive days of cold or asthma symptoms that did not contain any periods of

consecutive asymptomatic days. All nasal samples obtained between 3 days prior to the first

day of the illness and 3 days following the last day of the illness were considered to be

associated with that illness. Cold and asthma symptom burdens for each illness were

calculated by summing the daily symptom scores across the illness.
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Statistical analysis

Atopic status (positive by either specific IgE or skin prick test), race, and gender were

compared by asthma status using the chi-square test for association. Age and FeNO were

compared by asthma status using the Wilcoxon rank-sum test. FEV1, FVC, and FEV1/FVC

were compared by asthma status using linear models that also included covariates for age,

gender, race, and height. Viral infection and bacteria detection rates were compared by

asthma status using logistic regression models, both univariate and adjusting for gender,

race, and sensitization. Generalized linear mixed effect models with a random effect for

subject to account for repeated measures within subjects were used to compare weekly

symptom burdens and occurrences of moderate asthma exacerbations by virus and bacteria

detection, and to assess whether infection with a given virus or bacteria increased or

decreased susceptibility to another bacteria or virus during the same week or one week later.

To assess the association between virus and/or bacteria detection and the occurrence of an

illness, a matched pairs case-control design was used where each illness (case) was matched

with an asymptomatic period (control) of the same length in another subject. Conditional

logistic regression was then used to estimate odds ratios of illness occurrence with respect to

virus and/or bacteria detection. A two-sided p-value < 0.05 was regarded as statistically

significant.

RESULTS

Subject characteristics

Of the 383 children enrolled in RhinoGen, 54 had insufficient quantity of nasal samples to

allow analysis for both viruses and bacteria, while an additional 19 subjects did not submit

at least four (80%) of the five scheduled nasal samples, and 2 additional subjects failed to

complete at least 40 days (80%) of symptom diaries. Therefore a total of 308 subjects (80%)

were included in the final analysis (see Figure 1 in online supplement).

Of the 308 subjects enrolled, 166 (54%) had current asthma. In comparing the groups there

was no significant difference in age or baseline lung function; however, the asthma group

had a higher rate of allergic sensitization, higher baseline FeNO values and contained more

males and fewer Caucasians (Table 1).

Identification of Pathogenic Bacteria

The 308 subjects who completed the study submitted 1,394 nasal samples. 173 samples

positive for other viruses were excluded from analysis, resulting in 867 (71%) samples

positive for bacteria and 481 (39%) samples positive for RV. Of the bacteria detected, H.

influenzae was detected most frequently (53% of samples), followed by S. pneumoniae

(17%) and M. catarrhalis (11%). Detection rates were similar between children regardless

of asthma (Table 2) and allergic sensitization status (data not shown).

Examination of immunization records revealed that 95% of subjects were vaccinated with

the full series of Haemophilus influenzae type B (HIB) vaccine, while 61% of subjects were

vaccinated with the pneumococcal (PCV-7) vaccine. There were no differences in bacterial
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detection rates or symptom reporting based on pneumococcal vaccine status (data not

shown).

Bacterial Detection Associated with Viral Infection

We next analyzed whether viral detection increased the likelihood for bacterial detection, or

vice versa. RV detection increased the risk for detection of a bacterial pathogen in the same

specimen (OR 2.0, 95% CI 1.4–2.7, p<0.0001) and for detection of bacteria the following

week (OR 1.6 (1.1–2.4), p=0.02; Table 3). In contrast, detection of bacteria did not increase

the chance of viral detection the following week (OR 0.9 (0.6–1.3), p=0.42). Similarly,

when examining each bacteria individually, RV was more likely to precede S. pneumoniae

detection (OR 3.4 (2.0–5.5), p<0.0001), and M. catarrhalis detection (OR 3.7 (1.5–9.0),

p=0.004). RV infection was also associated with an increased likelihood of concurrent

detection of S. pneumoniae (OR 3.0 (2.1–4.3), p<0.0001), with a similar trend for M.

catarrhalis (OR 1.5 (1.0–2.3), p=0.08). RV infection was also associated with greater

quantities of S. pneumoniae and H. influenzae, with a similar trend observed for M.

catarrhalis (Table 4).

Time-Based Analysis of Bacteria Effects on Illness Severity

We used two approaches to determine whether detection of bacteria was related to illness

severity. First, we conducted a time-based analysis to determine whether detection of RV,

bacteria, or both in a given week was related to the severity of cold symptoms during that

same week. Compared to weeks with no pathogen detected (mean 1.8 (1.5–2.2)), cold

symptom burden was significantly greater with either S. pneumoniae detection (mean 2.7

(2.0–3.5), p=0.006) or RV infection (mean 3.3 (2.8–3.9), p<0.0001, Figure 2B). In addition,

concurrent detection of S. pneumoniae and RV was associated with increased cold

symptoms (mean 3.8 (3.0–4.7), p<0.0001) even when compared to detection of S.

pneumoniae alone (p=0.02). Neither M catarrhalis nor H. influenzae were associated with

increased cold symptoms (Figures 1A & C).

Next we compared pathogen detection to asthma symptoms. Compared to weeks with no

pathogens (mean 1.6 (1.3–2.1)), asthma symptoms were increased when RV was detected

together with either S. pneumoniae (mean 2.9 (2.1–4.0), p=0.0001) or M. catarrhalis (mean

2.7 (1.8–4.0), p=0.01), with a trend for increased symptoms with both RV and S.

pneumoniae compared to RV alone (p=0.08, Figure 1E). H. influenzae detection was not

associated with increased asthma symptoms (Figures 1F).

We next compared detection of bacteria, either individually or in combination with a viral

illness, to the prevalence of moderate asthma exacerbations. Compared to when no pathogen

was detected (mean 9.2% (6.7%–12%)), exacerbations were more frequent with detection of

either RV (mean 15% (11%–20%), p=0.0005) or S. pneumoniae (mean 18% (12%–27%),

p=0.006, Figure 1H). Weeks where RV and S. pneumoniae were detected together had the

highest frequencies of exacerbations (mean 22% (16%–29%), p<0.0001), and this

combination was more likely to be associated with asthma exacerbation when compared to

RV infection alone (p=0.01). The presence of M. catarrhalis or H. influenzae did not

increase the risk of asthma exacerbation (Figures 1G & I).
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Finally, the associations between pathogens and study outcomes (cold symptoms, asthma

symptoms, asthma exacerbations) did not differ by atopic status (interaction p values all

>0.2).

Illness-Based Analysis of Bacteria Effects on Illness Severity

We also performed an illness-based analysis to determine if RV and/or bacteria detection

influenced the probability of symptomatic illness, including moderate asthma exacerbations.

For this analysis, illnesses were clinically defined by at least two consecutive days of

respiratory symptoms (median 6 days, range 2–42 days), and then pathogens detected during

the illness were analyzed. Thus, an illness could be associated with no pathogens, RV,

bacteria, or both (including sequential detection of more than one pathogen). Over the five

weeks, 291 illnesses occurred; 11% of illnesses were associated with RV alone, 30%

associated with bacteria detection, 49% associated with detection of both RV and bacteria,

and 10% of illnesses were not associated with either pathogen. Each illness was then

matched with an asymptomatic period of the same length, and probability of pathogen

detection was compared. When detected as single pathogens, RV alone increased the risk of

illness (OR 1.5 (1.0–2.3), p=0.03), but this was not the case for any of the bacteria (Figure

3).

We next examined combinations of RV and specific bacteria and their relationships to

illness (Figure 2A–C). Among all study subjects, illnesses were significantly associated with

detection of RV together with either M. catarrhalis (OR 3.1 (1.6–6.4), p=0.001) or S.

pneumoniae (OR 2.2 (1.3–3.7), p=0.004). Furthermore, detection of the combination of RV

and M. catarrhalis (OR 2.0 (1.0–4.1), p=0.04) increased the likelihood of illness compared

to solitary detection of RV. In contrast, the presence of H. influenzae in combination with

RV was not associated with increased risk of illness.

Finally, we tested whether the combination of RV and bacteria was associated with

increased illnesses with moderate asthma exacerbations. Exacerbations that were associated

with RV together with M. catarrhalis (OR 7.1 (1.3–39), p=0.02), S. pneumoniae (OR 4.2

(1.4–13), p=0.01) or H. influenzae (OR 4.2 (1.1–16), p=0.04) had the greatest risk of

exacerbations (Figure 2D–F).

DISCUSSION

In this study we tested two hypotheses to determine the role of bacterial pathogens in RV-

induced respiratory symptoms and exacerbations of asthma. First, we predicted that

detection of bacterial pathogens would be increased in children with asthma compared to

their non-asthmatic counterparts; however, this was not the case. We also hypothesized that

common bacterial pathogens contribute to RV illness severity, and thus these bacteria would

be more prevalent during RV illnesses than during asymptomatic RV infections. By

prospectively monitoring viruses and bacteria at weekly intervals, we found several

significant relationships between RV infections and detection of common bacterial

pathogens. RV infection was associated with a greater probability of detecting bacteria

within concurrent and subsequent nasal samples, and also an increase in the quantity of these

bacteria. We then used two analytic strategies (time-based and illness-based) to compare
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pathogen detection to respiratory symptoms, and the results provide evidence that specific

bacteria and RV and are both associated with respiratory and asthma symptoms. In the time-

based analysis, S. pneumoniae was associated with moderate asthma exacerbations when

detected either alone or together with RV; while our illness-based analysis demonstrates that

illnesses associated with RV and S. pneumoniae, M. catarrhalis or H. influenza are

associated with an increased risk of moderate exacerbations compared to illnesses without

pathogen detection. These findings suggest that during RV infection, these specific bacterial

pathogens are cofactors that contribute to the severity of respiratory symptoms, including

RV-induced exacerbations of asthma.

Regardless of the analytic approach, the detection of H. influenzae alone was generally not

associated with greater symptoms. A previous study of 33 subjects using culture-based

methods reported an association between H. influenzae in BAL samples and persistent

wheezing in preschool children. (16) The differences in study results may be due to the

differences in ages of the study populations, or it could be that H. influenza can contribute to

respiratory symptoms in young children but this process is not related to RV infection.

Another possibility is only some H. influenza strains cause symptoms, and that our PCR-

based methods could have detected a broader range of non-culturable strains of H.

influenzae that are not associated with disease.

To our knowledge, this study was the first to prospectively follow both viral and bacterial

infections in school age children with and without asthma. Bacterial pathogens were

detected at higher rates than in previous studies, possibly due to our use of molecular

techniques rather than culture based methods. (1, 2) Alternatively, since season can affect

the detection of S. pneumoniae (17, 18) and M. catarrhalis, (19) the high rates of detection

in our study may be related to sampling in the fall.

Bacteria were most likely to be detected when RV was present or in the week following RV

infection. This relationship is in accordance with viral infections preceding bacterial

infections in the middle ears, (20) sinuses, (21) and lungs. (22) Viral infections promote

bacterial infections through several mechanisms, including induction of receptors used by

bacteria to invade cells, (23) and disruption of epithelial barrier function. (24, 25) It is likely

that RV utilizes some or all of these mechanisms to promote susceptibility to bacterial

invasion. (26) In addition, microbial components can activate Toll-like receptors (TLRs),

prompting epithelial cells and leukocytes to release inflammatory cytokines and mediators.

Therefore, it is possible that children infected with both RV and bacteria experience greater

airway inflammation that in turn contributes to symptoms and asthma exacerbations.

This study has a number of unique advantages, and some limitations that should be

considered in interpreting these data. The prospective study design allowed us to monitor

children for rates of RV infection, bacterial detection and associated cold and asthma

symptoms. For detection of RV and bacteria, we utilized sensitive PCR-based diagnostics.

(9) Also, we used a simple sample collection and scoring system to encourage adherence.

The scoring system has proven to be informative in previous studies, (6, 8) but has not been

validated. Other common cold instruments are available (e.g. Jackson score, WURSS-21),

but none have been formally validated in children. Asthma is a disease of the lower airways,
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and our conclusions are based on samples obtained from the upper airway due to the age of

the subjects and the need for serial sampling. Nevertheless, previous studies have shown

correlations between upper and lower airway microbiology (27) and virology. (28) The nasal

blow technique that was used could have underestimated rates of bacterial detection during

periods of health; however in preliminary studies, nasal blow samples and mid-turbinate

swabs yielded similar rates of bacterial detection (data not shown). Finally, these studies

were conducted in suburban children during the month of September (2007, 2008 or 2009),

and additional studies are needed to confirm our findings in other populations and at other

times of the year.

Our findings suggest the possibility that prevention or treatment of S. pneumonia and M.

catarrhalis could reduce the frequency and severity of respiratory illnesses, and importantly,

exacerbations of asthma. Antibiotic treatment is available for these pathogens, but the

benefits of this approach must be weighed against potential risks, such as antimicrobial

resistance, killing of beneficial microbes, side effects, and cost. Uncomplicated colds are

relatively minor and self-limited illnesses, and even if bacteria contribute to symptoms,

antibiotic treatment is not warranted. Exacerbations entail greater morbidity, however, our

data suggest that eight courses of antibiotics during colds would be required to prevent one

asthma exacerbation. It is possible a subset of asthmatics would benefit from antibiotics, and

further studies are needed to investigate this possibility. Other methods to prevent S.

pneumonia and M. catarrhalis infections, such as vaccination and probiotics, are in use or

development and could have efficacy for colds and exacerbations of asthma. In summary,

our findings demonstrate that during the peak fall season RV infection increases the

likelihood of detecting bacteria within the upper airway, and when detected along with S.

pneumoniae or M. catarrhalis, children are at increased risk of experiencing illness

symptoms and moderate asthma exacerbations. This association may help to explain why

RV infections are associated with such a broad range of clinical illness. The implications of

these findings are that solitary RV infections produce mild or asymptomatic infections,

while RV infections that are complicated by secondary infection with (or expansion of)

these airway bacteria cause more severe illnesses. If these findings are confirmed,

understanding the mechanisms of RV/bacterial interactions could lead to new therapeutic

approaches to respiratory illnesses and asthma.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Clinical Implications

In children, co-detection of Rhinovirus with S. pneumoniae or M. catarrhalis leads to an

increased risk of experiencing illness symptoms and moderate asthma exacerbations.
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Figure 1.
Weekly pathogen detection compared to concurrent weekly respiratory symptoms. Weekly

specimens of nasal secretions were analyzed for RV and bacteria, and pathogen detection

was compared to weekly measures of respiratory symptoms, incuding (A–C) cold

symptoms; (D–F) asthma symptoms; and (G–I) moderate asthma exacerbations. x: p<0.05

vs. no pathogen, +: p<0.05 vs. bacteria only, #: p<0.05 vs. RV only
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Figure 2.
Probability of experiencing illness symptoms according to patterns of pathogen detection

(A–C). Each illness was matched with an asymptomatic period of the same length, and the

probability of pathogen detection was compared. Within the asthma group, the probability of

experiencing an asthma exacerbation with pathogen detection was also compared (D–F).

*:p<0.05
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Table 1

Study subjects

Asthma
N=166

No asthma
N=142

P-value

Age (yrs) 8.3 ± 2.1 8.6 ± 1.6 0.27

Gender 67% M 56% M 0.03

Race 81% C 92% C 0.007

Atopic Status 73% 53% 0.0003

FeNO 23 ± 22 13 ± 13 <0.0001

FEV1 1.71 ± 0.44 1.76 ± 0.45 0.31

FVC 2.12 ± 0.59 2.14 ± 0.59 0.99

FEV1/FVC 0.81 ± 0.07 0.83 ± 0.07 0.07
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Table 2

Detection of Bacteria and Virus in Relation to Asthma Status.

N=1,221 No Asthma (N=576) Asthma (N=645) p-value

No bacteria 167 (29%) 187 (29%) 0.99

M. catarrhalis 56 (10%) 68 (11%) 0.64

S. pneumoniae 90 (16%) 108 (17%) 0.60

H. influenzae 308 (53%) 350 (54%) 0.78

RV 230 (40%) 251 (39%) 0.72

RV=Rhinovirus
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