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Abstract

Increasing evidence suggests that inflammation is one pathophysio-logical mechanism in 

Alzheimer's disease (AD). Recent studies have identifiedan association between the poly (ADP-

ribose) polymerase 1 (PARP1) gene and AD. This gene encodes a protein that is involved in many 

biological functions, including DNA repair and chromatin remodeling, and is a mediator of 

inflammation. Therefore, we performed a targeted genetic association analysis to investigate the 

relationship between the PARP1 polymorphisms and brain micro-glial activity as indexed by 

[11C]PBR28 positron emission tomography (PET). Participants were 26 non-Hispanic Caucasians 

in the Indiana Memory and Aging Study (IMAS). PET data were intensity-normalized by injected 

dose/total body weight. Average PBR standardized uptake values (SUV) from 6 bilateral regions 

of interest (thalamus, frontal, parietal, temporal, and cingulate cortices, and whole brain gray 

matter) were used as endophenotypes. Single nucleotide polymorphisms (SNPs) with 20% minor 

allele frequency that were within +/− 20 kb of the PARP1 gene were included in the analyses. 
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Gene-level association analyses were performed using a dominant genetic model with translocator 

protein (18-kDa) (TSPO) genotype, age at PET scan, and gender as covariates. Analyses were 

performed with and without APOE ε4 status as a covariate. Associations with PBR SUVs from 

thalamus and cingulate were significant at corrected p<0.014 and <0.065, respectively. Subsequent 

multi-marker analysis with cingulate PBR SUV showed that individuals with the “C” allele at 

rs6677172 and “A” allele at rs61835377 had higher PBR SUV than individuals without these 

alleles (corrected P<0.03), and individuals with the “G” allele at rs6677172 and “G” allele at 

rs61835377 displayed the opposite trend (corrected P<0.065). A previous study with the same 

cohort showed an inverse relationship between PBR SUV and brain atrophy at a follow-up visit, 

suggesting possible protective effect of microglial activity against cortical atrophy. Interestingly, 

all 6 AD and 2 of 3 LMCI participants in the current analysis had one or more copies of the “GG” 

allele combination, associated with lower cingulate PBR SUV, suggesting that this gene variant 

warrants further investigation.

1 Introduction

Alzheimer's disease (AD) is the most common form of dementia and a progressive, 

degenerative disorder resulting in loss of memory at first, and eventually affecting all 

cognition and behavior. Increasing evidence suggests that failed or dysregulated immune 

response is one candidate mechanism contributing to the pathogenesis of AD [1-4]. Recent 

large-scale genome-wide association studies (GWAS) have identified several candidate 

genetic variants in CLU, CR1, ABCA7, BIN1, PICALM, CD33, CD2AP, EPHA1 and 

MS4A6A/MS4A6E in addition to the most robust candidate gene, APOE [5-8]. Several of 

these genes are known to be involved in immune system functioning [2, 3].

The poly (ADP-ribose) polymerase 1 (PARP1) gene plays roles in many biological functions 

including chromatin remodeling, DNA repair, telomere maintenance and others and is 

known to be a mediator of inflammation via regulation of NF-κB and other transcription 

factors [9]. Several studies have investigated the PARP1 gene in relation to AD [9-12] 

reporting risk and protective haplotypes [10], enhanced activity of PARP1 in AD brain [12], 

and association with rate of hippocampal atrophy [11].

The peripheral benzodiazepine receptor (PBR; official name – translocator protein (18kDa), 

TSPO) is expressed at low levels in relatively inactive microglia. Microglia play an early 

critical role in activation of the immune response in the central nervous system [13]. 

Because activated microglia express higher levels of PBR than inactive microglia, PBR has 

been considered a useful marker to detect neuroinflammation. Positron emission 

tomography (PET) imaging of the N-acetyl-N-(2-methoxybenzyl)-2-phenoxy-5-

pyridinamine ([11C]PBR28) radioligand has shown high specific signal for microglial 

activity in vivo [14]. The goal of this study was to investigate the relationship between 

PARP1 gene variation and microglial activity indexed by [11C]PBR28 PET.
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2 Materials and Methods

2.1 Participants

In order to reduce the potential bias of population stratification, analyses were restricted to 

26 non-Hispanic Caucasian participants from the Indiana Memory and Aging Study (IMAS) 

cohort. IMAS is an ongoing longitudinal study, including euthymic older adults with 

subjective cognitive decline (SCD) including memory concerns (e.g., self-perceived decline) 

in the context of cognitive test performance that is within the normal range, patients with 

early and late amnestic mild cognitive impairment (EMCI and LMCI) or mild AD, and age-

matched cognitively normal controls (NC) without significant cognitive complaints or 

concerns. Details regarding participant selection criteria and characterization have been 

described previously [15, 16]. This study was approved by the institutional review board and 

written informed consent was obtained from all participants. The 26 participants in the study 

included 7 NC, 6 CC, 4 EMCI, 3 LMCI, and 6 AD. Table 1 shows the sample 

characteristics. APOE ε2/ε3/ε4 genotype, genome-wide genotyping data, and [11C]PBR28 

PET scans were available for all participants. It has been shown that the rs6971 variant in 

the TSPO gene affects in vivo binding affinity of the [11C]PBR28 ligand [17, 18]. Samples 

with mixed or high affinity at the TSPO were included in the study; one non-binder was 

excluded.

2.2 Data and quality control procedure

Genetic data—Genotyping was performed on genomic DNA from blood using the 

Illumina HumanOmniExpress BeadChip (Illumina, Inc., San Diego, CA), which contains 

over 700,000 SNP (single nucleotide polymorphism) markers, according to the 

manufacturer's protocols (Infinium HD Assay; Super Protocol Guide; Rev. A, May 2008). 

APOE ε2/ε3/ε4 genotyping was separately performed. All genotype data, including two 

APOE SNPs (rs429358 and rs7412), underwent standard quality control (QC) assessment 

using PLINK v1.07 [19] as described previously [20]. SNPs were imputed using the 1000 

Genomes reference panel (http://www.1000genomes.org/) following the Enhancing 

Neuroimaging Genetics through Meta-Analysis 2 (ENIGMA 2) imputation protocol (http://

enigma.loni.ucla.edu/wp-content/uploads/2012/07/ENIGMA2_1KGP_v3.pdf [27 July 

2012]). Some imputed SNPs were removed based on the following criteria: r2 < 0.5 between 

imputed and the nearest genotyped SNPs. After all QC steps, 96 SNPs with 20% minor 

allele frequency that were within +/− 20 kb of the PARP1 gene were included in the 

analyses.

Imaging data—Dynamic PET scans, acquired on a Siemens HR+, were initiated with 

injection of ~555 MBq of [11C]PBR28. Data were acquired for 90 min (10x30s, 9x60s, 

2x180s, 8x300s, 3x600s). PET data were processed as described previously [18]. In brief, 

PET data were motion-corrected and normalized to MNI space. Static images were created 

from data between 40-90 min, and were normalized by injected dose/total body weight to 

produce standardized uptake value (SUV) images. Regions of interest (ROIs) were 

generated from each subject's anatomic MRI, which was concurrently acquired on a Siemens 

Tim Trio using an MPRAGE sequence and post processed using Freesurfer v4.0.1 (http://

surfer.nmr.mgh.harvard.edu/). Average [11C]PBR28 SUV values were extracted from 6 
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bilateral ROIs (thalamus, frontal, parietal, temporal, and cingulate cortices, and whole brain 

gray matter including cingulate and sensory motor areas) and used as endophenotypes.

2.3 Statistical analyses

In order to investigate the overall influence of PARP1 variants on microglial activity 

indexed by average [11C]PBR28 SUV values in 6 bilateral ROIs, a set-based analysis 

method in PLINK was adopted. In brief, this method evaluates the association of individual 

SNPs in a given set with a given phenotype and selects a set of independent (based on r2 

threshold) and significant (based on p threshold) SNPs to represent the overall effect of the 

set. Then, the significance of the overall set effect is assessed using permutation to correct 

for multiple SNPs within a set while taking into account the linkage disequilibrium (LD) 

structure among SNPs. In this study, the analysis was performed using the following 

settings: (1) r2 threshold: 0.3, (2) p threshold: 0.05, (3) maximum number of independent 

and significant SNPs: 99999 in order to use all independent and significant SNPs, and (4) 

number of permutation: 50,000. Due to the limited number of samples, only a dominant 

genetic model was assessed. Age at PET scan, gender and TSPO binding affinity based on 

rs6971 genotype were added to the model as covariates. Analysis was performed with and 

without APOE ε4 status as a covariate.

When more than one independent and significant SNP were identified from significant 

associations, a subsequent multi-marker analysis was performed using a haplo-type analysis 

method in PLINK with the same set of covariates in the model. The association p-value was 

corrected for multiple testing (the number of SNP combinations) using 50,000 permutations. 

Although the PLINK set-based approach provides the significance of the PARP1 gene and 

the list of independent and significant SNPs in PARP1, it does not show the joint influence 

of multiple SNPs on average [11C]PBR28 SUV values. This multi-marker method allowed 

us to further study the combinatorial effect of multiple SNPs on average [11C]PBR28 SUV 

values.

3 Results

PARP1 variation was associated with average PBR SUV from thalamus at p<0.014 after 

adjusting for APOE ε4 status. This association was driven by rs874583, located in the 

intergenic area downstream of the gene. Samples with one or more minor allele (“C”) of 

rs874583 showed higher SUV in thalamus (Fig.1). Another association with average PBR 

SUV in cingulate showed marginal significance at p<0.065 after APOE ε4 adjustment and 

was driven by two SNPs (rs6677172 and rs61835377). Both SNPs are intergenic and 

downstream of the gene. Minor alleles of these two SNPs (rs6677172: “G”, rs61835377: 

“A”) showed an inverse relationship with average PBR SUV in cingulate.

Two SNPs (rs6677172 and rs61835377) ere jointly associated with average PBR SUV in 

cingulate. Therefore, a subsequent multi-marker analysis was performed to investigate 

influence of the allele combination of the SNPs on the same phenotype. The analysis 

identified three different combinations of alleles (“CA”,”CG”, and “GG”), of which two 

were significantly associated with average PBR SUV in cingulate at uncorrected p<0.05. 

One (“CA”) was significant after correction for multiple testing at corrected p<0.05. Table 2 
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summarizes the multi-marker analysis results. “CA” allele combination was positively 

correlated with the PBR SUV and “GG” allele combination was negatively correlated with 

the phenotype. Average PBR SUVs in cingulate are displayed in Fig.2 for samples with and 

without “CA” allele combination (Fig.2 (a)) and with and without “GG” allele combination 

(Fig.2 (b)). Interestingly, all 6 AD and 2 out of 3 LMCI participants in the current analysis 

had one or two copies of the “GG” allele combination, associated with lower average 

cingulate PBR SUV.

4 Conclusions

This preliminary study investigated the relationship between variation in PARP1 and 

microglial activity indexed by [11C]PBR PET and identified significant associations of the 

gene with average PBR SUVs in thalamus and cingulate. The subsequent multi-marker 

analysis also identified two allele combinations from the gene-based analysis associated 

with average PBR SUV in cingulate. These identified associations confirmed the role of 

PARP1 in immune activation. Microglia can perform different functions [1, 13] and the 

specific role in the current sample of older adults at risk for AD is not known and may 

include both adaptive and adverse aspects. However, one interesting observation in the 

current study is that 8 out of 9 participants with AD or LMCI had one or two copies of the 

“GG” allele combination, which was associated with lower average PBR SUV in cingulate 

compared to non-“GG” carriers. A previous study with the same cohort showed an inverse 

relationship between PBR SUV and brain atrophy at a follow-up visit, suggesting a possible 

protective effect of microglial activity against cortical atrophy [21], which warrants further 

investigation. A major limitation of this preliminary study is the modest sample size which 

attenuates power and the findings require replication in larger, independent samples as a 

future direction. The relationship between PARP1 and microglial activity also warrants 

experimental molecular validation. Despite the limited sample size, this preliminary study 

identified interesting significant in vivo associations in an important pathway related to AD 

pathobiology. This approach combining neuroimaging and genetics data appears promising 

and can be applied to many related fields of research.
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Fig. 1. 
Average [11C]PBR SUV in thalamus in PARP1 variant, rs874583 (minor allele: C). SUV 

was adjusted for age at PET scan, gender, TSPO binding affinity, and APOE ε4 status. The 

horizontal bars represent the mean PBR SUV for each genotype group.
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Fig. 2. 
Scatter plots of average PBR SUV in cingulate for (a) “CA” allele group and (b) “GG” allele 

group. Average PBR SUV was adjusted for age at PET scan, gender, TSPO binding affinity, 

and APOE ε4 status. The horizontal bars represent the mean PBR SUV for each allele group.

Kim et al. Page 9

Multimodal Brain Image Anal (2013). Author manuscript; available in PMC 2014 November 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Kim et al. Page 10

Table 1

Sample Characteristics

Characteristics All NC SCD EMCI LMCI AD

Number of Samples 26 7 6 4 3 6

Age at PET scan (years; mean±SD) 71.3±7.49 68.4±2.64 70.3±9.81 74.5±6.95 72.7±5.69 72.7±10.48

Education (years; mean±SD) 16.4±2.78 16.3±1.70 17.3±1.21 15.5±4.12 15.3±3.06 16.5±4.18

Gender (M/F) 9/17 1/6 2/4 2/2 2/1 2/4

APOE (ε4−/ε4+) 15/11 3/4 4/2 3/1 2/1 3/3

TSPO binding affinity (Mixed/High) 9/17 2/5 1/5 3/1 2/1 1/5
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Table 2

Multi-marker analysis results. Allele, F, BETA, P, and Corrected P represent allele combination, frequency of 

allele combination, regression coefficient, uncorrected p, and corrected p for the number of allele combination, 

respectively.

PHENOTYPE Allele F BETA P Corrected P

Average PBR SUV Cingulate CA 0.212 0.204 0.0105 0.02962

GG 0.385 −0.164 0.0241 0.06426
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