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ABSTRACT 

Valerie Fako Miller 

 

MOLECULAR MECHANISM OF ORLISTAT HYDROLYSIS BY THE 

THIOESTERASE OF HUMAN FATTY ACID SYNTHASE FOR TARGETED DRUG 

DISCOVERY 

 

Fatty acid synthase (FASN) is over-expressed in many cancers, and novel 

inhibitors that target FASN may find use in the treatment of cancers. It has been shown 

that orlistat, an FDA approved drug for weight loss, inhibits the thioesterase (TE) of 

FASN, but can be hydrolyzed by TE. To understand the mechanisms of TE action and for 

designing better FASN inhibitors, I examined the mechanism of orlistat hydrolysis by TE 

using molecular dynamics simulations. I found that the hexyl tail of orlistat undergoes a 

conformational transition, destabilizing a hydrogen bond that forms between orlistat and 

the active site histidine. A water molecule can then hydrogen bond with histidine and 

become activated to hydrolyze orlistat. These findings suggest that rational design of 

inhibitors that block hexyl tail transition may lead to a more potent TE inhibitor. To 

search for novel inhibitors of TE, I performed virtual DOCK screening of FDA approved 

drugs followed by a fluorogenic assay using recombinant TE protein and found that 

proton pump inhibitors (PPIs) can competitively inhibit TE. PPIs, which are used for the 

treatment of gastroesophageal reflux and peptic ulcers, work to decrease gastric acid 

production by binding irreversibly with gastric hydrogen potassium ATPase in the 

stomach. Recently, PPIs have been reported to reduce drug resistance in cancer cells 
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when used in combination with chemotherapeutics, although the mechanism of resistance 

reduction is unknown. Further investigation showed that PPIs are able to decrease FASN 

activity and cancer cell proliferation in a dose-dependent manner. These findings provide 

new evidence that FDA approved PPIs may synergistically suppress cancer cells by 

inhibiting TE of FASN and suggests that the use of PPIs in combinational therapies for 

the treatment of many types of cancer, including pancreatic cancer, warrants further 

investigation. 

 

Jian-Ting Zhang, Ph.D., Chair        
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Chapter 1: Introduction 

 

A. Fatty Acid Synthesis Pathway in Humans 

Lipogenesis is the process by which fatty acids are synthesized from a surplus of 

acetyl-CoA and are subsequently stored as triglycerides or used in the creation of other 

cellular lipids [1,2]. Glucose, created from the breakdown of excess carbohydrates in the 

diet, is converted to pyruvate via the glycolysis pathway. Pyruvate is transported into the 

mitochondria and is converted to acetyl-CoA by pyruvate dehydrogenase. Acetyl-CoA 

typically enters the citric acid cycle, which yields energy in the form of adenosine 

triphosphate (ATP), as well as the reducing agent nicotinamide adenine dinucleotide 

(NADH). However, when excess acetyl-CoA is synthesized, it is instead converted to 

citrate by citrate synthase and shuttled back into the cellular cytoplasm via the citrate 

shuttle. Once in the cytoplasm, citrate is re-converted to acetyl-CoA by citrate lyase, 

where it can then be incorporated into fatty acids [3-5] (Fig. 1).  
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FIGURE 1 

 

Figure 1. Overview of the fatty acid synthesis pathway in humans. FASN and fatty acid 

synthesis is controlled transcriptionally and enzymatically, both of which are initiated by 

high levels of glucose. The transcription of the SREBP-1c gene is controlled by insulin, 

which is increased in the presence of glucose. SREBP-1c is a transcription factor that 

regulates the transcription of the FASN gene. Excess glucose also leads to an excess of 

acetyl-CoA that does not enter the citric acid cycle, and is instead shuttled out of the 

mitochondria as citrate, which is then converted back to acetyl-CoA. Citrate allosterically 

activates acetyl-CoA carboxylase, which controls the rate-limiting step of fatty acid 

synthesis: the conversion of acetyl-CoA to malonyl-CoA. All enzymes and pathways are 

indicated in red. 
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In humans, long-chain fatty acids, mainly 16-carbon palmitate, are synthesized by 

the 270 kDa homodimeric enzyme fatty acid synthase (FASN). FASN is a seven-domain 

enzyme and is the sole protein in the human genome capable of synthesizing fatty acids 

de novo [6-8]. Crystal structure analysis of the FASN protein revealed that FASN adopts 

a ‘X-shape’ structure, with each side of the dimer containing a full set of active sites that 

coordinate FASN activity [9,10]. The gene encoding the FASN protein is found on 

chromosome 17q25 [11], and transcription of the FASN gene is controlled directly by the 

sterol regulatory element-binding protein-1c (SREBP-1c) transcription factor. The 

presence of the hormone insulin, stimulated by increased levels of glucose in the blood 

stream, enhances the transcription of SREBP-1c gene [12,13], whereas glucagon, 

stimulated by low levels of glucose, suppresses SREBP-1c transcription [14,15]. SREBP-

1c is post-transcriptionally regulated by two proteins, SCAP and INSIG. Following 

synthesis, SREBP-1c forms a complex with SCAP in the endoplasmic reticulum (ER) 

[16,17]. When sterol levels are in excess, the SCAP/SREBP-1c complex binds to INSIG, 

which prevents the SCAP/SREBP-1c complex from leaving the ER [18,19]. However, 

when sterol levels are decreased, the SCAP/SREBP-1c complex is released from INSIG 

and is transported via vesicle to the golgi apparatus for proteolytic processing by site-1 

protease (S1P) and site-2 protease (S2P) [20,21]. SREBP-1c is then free to travel to the 

nucleus to transcribe the FASN gene [22-24] (Fig. 1).  

FASN activity is tightly regulated by acetyl-CoA carboxylase (ACC), which acts 

as the gate keeper and rate-limiting enzyme of fatty acid biosynthesis [25]. ACC uses 

ATP to convert two-carbon acetyl-CoA to three-carbon malonyl-CoA by transferring a 

CO2 group from bicarbonate to acetyl-CoA using biotin as a carrier [6,26]. ACC, and thus 
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fatty acid synthesis, is tightly controlled both allosterically and by covalent modification. 

ACC is down-regulated allosterically by palmitoyl-CoA and up-regulated allosterically 

by citrate. ACC is also controlled via covalent modification with phosphorylation. AMP-

activated protein kinase (AMPK), which acts as a cellular energy sensor, phosphorylates 

and inactivates ACC when AMP levels in the cell are high, and thus cellular energy 

levels are low. AMPK de-phosphorylates and activates ACC when AMP levels are low, 

indicating that cellular energy levels are high and excess acetyl-CoA can be converted to 

fatty acids [27,28] (Fig. 1).  

Fatty acids are synthesized with acetyl-CoA, malonyl-CoA, ATP and NADPH via 

the following net reaction: 

 Acetyl-CoA + 7 malonyl-CoA + 7 ATP + 14 (NADPH + H+)  

Palmitate + 8 CoA + 7 (ADP + Pi) + 14 NADH+ + 6 H2O 

In the first step of fatty acid synthesis, the acetyl group from acetyl-CoA is transferred to 

the flexible acyl carrier protein domain (ACP), which then transfers the molecule to the 

β-ketoacyl synthase (KS) domain. The malonyl group from malonyl-CoA is transferred 

to the ACP, and then the acetyl group from acetyl-ACP is transferred to malonyl-ACP by 

the malonyl/acetyl transferase (MAT) domain, yielding a 3-keto acyl ACP. This 3-keto 

acyl group is converted to a saturated carbon chain in a series of three reactions. First, the 

keto group is reduced to an alcohol group by the β-ketoacyl reductase (KR) domain of 

FASN. Then, dehydration of the alcohol group by the β-hydroxylacyl dehydratase (DH) 

domain yields a double bond in the carbon chain. Finally, the enoyl reductase (ER) 

domain reduces the double bond to a single bond. Both reduction reactions require the 

cofactor NADPH. This newly formed chain is moved to the KS domain, a new molecule 
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of malonyl-CoA is transferred to the ACP and the cycle continues until the carbon chain 

reaches the desired length [6-8] (Fig. 2). The thioesterase (TE) domain of FASN, a serine 

hydrolase with an Asp-His-Ser catalytic triad, hydrolyzes the thioester bond between the 

fatty acid and ACP. The sulfur atom of ACP accepts a hydrogen atom from the His 

residue in the TE active site, which is then released as the fatty acid is covalently bound 

to the Ser residue in the TE active site, forming an acyl-enzyme intermediate. A water 

molecule is activated by forming a hydrogen bond with the catalytic nitrogen atom of the 

His residue and nucleophilically attacks the carbonyl carbon of the acyl-enzyme 

intermediate, causing the release of the fatty acid from the Ser residue [29].  

In bacteria and plants, fatty acid synthesis is performed by a series of dissociated 

monofunctional proteins that correspond to each domain of the FASN polypeptide found 

in humans [30]. In fungi, fatty acids are synthesized by a heterododecamer with the 

domains situated across the two polypeptides [31]. Although there are clear variations in 

structural organization of the domains, the chemical reactions of fatty acid biosynthesis 

are conserved for all organisms [30]. With the exception of thioesterase, the domains of 

FASN are truly unique, in that similar domains have only been found in the polyketide 

synthases of bacteria [32]. Synthesized palmitate can be used to covalently modify the 

cysteine residues of various proteins in a process called palmitoylation. A protein with 

very similar function to FASN thioesterase, palmitoyl protein thioesterase, removes 

palmitate from palmitoylated proteins by cleaving the thioester bond between the 

palmitate molecule and the cysteine residue of the protein, similar to the way TE cleaves 

the bond between palmitate and ACP [33].  
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FIGURE 2 

 

Figure 2: Chemical reactions of fatty acid synthesis. Fatty acid synthesis begins when 

acetyl-CoA is transferred to the ACP domain and then the KS domain of FASN, and 

malonyl-CoA, created from acetyl-CoA by ACC, is transferred to the ACP domain. A 

coordinated series of reactions by the domains of FASN create a growing fatty acid chain 

from the condensation of acetyl-CoA and malonyl-CoA, followed by several reduction 

reactions. The cycle continues until the fatty acid chain reaches a certain length, when the 

TE domain catalyzes the release of the fatty acid chain from the ACP.   
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Following the synthesis and release of the saturated fatty acid chains by FASN, 

these fatty acids have the potential to be used in a number of different ways. Most 

commonly, these fatty acids are linked to a glycerol backbone and converted to 

triglycerides for energy storage by liver cells and adipose cells [34]. As discussed above, 

palmitate can be covalently attached to proteins. The hydrophobicity of proteins can be 

increased by palmitoylation, which may in turn enhance their membrane association. 

Palmitoylation can also modulate protein-protein interactions, and affects subcellular 

trafficking [35]. Additionally, products of fatty acid synthesis could be elongated or 

desaturated in the mitochondria or ER, which are then incorporated into many other types 

of cellular lipids, such as phospholipids or cholesterol esters [36,37]. However, in 

humans who intake adequate fatty acids in their diets, FASN expression and activity is 

typically suppressed in most tissues throughout the body, with the exception of liver cells 

[38], adipose cells [39], lactating mammary tissue [40] and cycling endometrium [41]. 

Thus, the de novo synthesis of fatty acids by FASN is a minor anabolic pathway, as most 

tissues will preferentially use exogenous dietary fats instead of synthesizing fatty acids de 

novo [42].  

 

B. Fatty Acid Synthase Over-Expression in Cancer 

 High levels of aerobic glycolysis, in which cells produce energy by lactic acid 

fermentation in the cytosol, instead of oxidation of pyruvate in the mitochondria, has 

been noted as one of the hallmarks of cancer cells [43,44]. The increased glucose 

production in transformed cells has subsequently been linked to an increase in the activity 

of lipogenic enzymes in these cells [45], and contrasting with normal tissue, cancer cells 
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have been found to derive esterified fatty acids almost exclusively from de novo fatty 

acid synthesis [46], despite adequate nutritional supply [47]. Although the relationship 

between increased glycolysis and de novo fatty acid synthesis has been well documented 

since the 1950s, a definitive link between FASN enzyme activity and cancer progression 

was not noted until 1994 when Kuhajda et al. determined that a marker for poor 

prognosis in breast cancer patients, oncogenic-antigen 519 (OA-519), was actually FASN 

[48]. Since this discovery, marked differences between fatty acid synthesis in normal and 

cancer cells have been noted. Unlike normal cells from healthy tissues types, in which 

endogenous fatty acids are typically used for energy storage in the form of triglycerides, 

the majority of fatty acids synthesized by cancer cells are esterified to phospholipids and 

incorporated into new membranes as these cells rapidly proliferate [48,49]. Also, cancer 

cells can lose control of the fatty acid synthesis pathway by nutritional or hormonal 

signals and can also adopt new control by growth factors (GFs) and growth factor 

receptors (GFRs) such as epidermal growth factor (EGF) and the EGF receptor (EGFR) 

[50]. GFs and GFRs increase FASN gene transcription through the activation of the 

phosphatidylinositol-3 kinase (PI3K)-Akt signaling pathway [51] and the mitogen-

activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK1/2) pathway 

[52]. Blockade of the PI3K/Akt or MAPK/ERK1/2 pathways with specific inhibitors of 

PI3K or MEK1 resulted in a reduced expression of both FASN and SREBP1 [52], but did 

not cause a complete abrogation of the synthesis of fatty acids. A possible explanation is 

that blockade of PI3K/Akt or MAP/ERK1/2 did not affect the activation or expression 

acetyl-CoA carboxylase, which ultimately controls the fatty acid synthesis pathway [6]. It 

is also possible that mutations downstream of the PI3K/Akt or MAPK/ERK1/2 pathways 
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could also be contributing to FASN over-expression. In prostate and ovarian cancers, loss 

of the tumor suppressor phosphatase and tensin homologue (PTEN) caused the activation 

of the PI3K/Akt pathway, which correlated to FASN over-expression [53,54]. In breast 

cancer cells, the HER2/Neu pathway, likely working through the PI3K/Akt pathway, has 

also been implicated in the up-regulation of FASN [55-57]. Steroid hormones not 

associated with nutritional response, such as progestins, androgens and E2, have also been 

shown to regulate FASN expression [58-61]. The activation of FASN gene transcription 

by growth factor and steroid hormone pathways is driven by the aberrant stimulation of 

SREBP-1c expression and activation [62-65]. Copy number gain of the FASN gene has 

also been implicated as a cause of FASN protein over-expression in cancerous lesions 

[66,67]. There are a number of known single nucleotide polymorphisms (SNPs) of the 

FASN gene, and several studies have associated some SNPs with an increase in body 

mass index and obesity [68,69]. However, only two studies have looked into a correlation 

between any FASN SNPs and an increase in cancer risk. The first study failed to find a 

correlation between FASN SNPs and an increase in breast cancer risk [70]. However, 

another study determined that several FASN SNPs were associated with an over-

expression of FASN, as well as an increase in risk for development and progression of 

prostate cancer [71], but it is unknown how these FASN SNPs play a role in FASN over-

expression. Following translation, the FASN enzyme is not known to be allosterically 

regulated or covalently modified in normal cells, but there has been one report of direct 

FASN phosphorylation by Her2 in breast cancer, which may modify or modulate FASN 

activity [72]. Additionally, ubiquitin-specific protease USP2a, which rescues proteins 
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from degradation by removing ubiquitin tags, stabilizes FASN in prostate cancer cells 

[73,74].  

Stresses in the cellular microenvironment may also lead to the up-regulation of 

FASN. Under conditions of hypoxia, induction of hypoxia inducible factor 1 (HIF1) 

actives Akt, which significantly up-regulates SREBP-1c, leading to increased FASN 

expression [75]. Also, acidic extracellular pH was found to up-regulate transcription of 

the FASN gene in an epigenetic manner, leading to over-expression of FASN protein 

[76].  

 Since the discovery that FASN expression and de novo lipogenesis are 

deregulated in cancer cells, FASN over-expression has been noted in a wide variety of 

cancer cell types including endometrial carcinoma [77,78], melanoma [79], esophageal 

cancer [80-82], mesothelioma [83], gastrointestinal stromal tumors [84], Paget’s disease 

of the vulva [85], oral squamous carcinomas [86], head and neck squamous cell 

carcinoma [87], non-Hodgkin lymphoma [88], oral melanoma [89], meningioma [90], 

liposarcoma [91], multiple myeloma [92], and glioma [93]. In addition to being present in 

the aforementioned cancer types, FASN over-expression has also been found to 

definitively correlate with aggressiveness, cancer stage and worsened prognosis in 

patients with cancer of the prostate [94,95], breast [96,97], ovary [98,99], tongue 

[100,101], soft tissue [102], endometrium [103,104], lung [105], pancreas [106], renal 

cell [107], larynx [108], head and neck [109], bladder [110], and esophagus [111], as well 

as melanoma [112] retinoblastoma [113,114], nephroblastoma [115], osteosarcoma [116], 

meningioma [117,118], and glioma [119]. The over-expression of FASN throughout the 

process of tumorigenesis has been monitored using the transgenic adenocarcinoma of 
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mouse prostate (TRAMP) model, which demonstrated that with increasing age and tumor 

progression, as well as in metastatic lesions, FASN activity also increased [120]. 

Examination of prostate carcinomas from patient samples also revealed that there is a 

strong association between tumor initiation and progression and FASN expression, with 

the highest level of expression found in bone metastases [66]. FASN is currently being 

investigated as a possible prognostic or diagnostic tumor marker, as its expression has 

been found in the serum of patients with breast cancer [121], pancreatic cancer [122] and 

colorectal cancer [123].  

 There is indication that the up-regulation of fatty acid synthesis may be an early 

event in tumorigenesis, as FASN over-expression has been found in benign, pre-

cancerous and early cancerous lesions of several tissue types. Breast tissue [124,125]; 

colorectal tissue [126]; early stages of squamous cell lung carcinoma [127]; prostate 

tissue [128-130]; precancerous foci of the stomach [131]; pre-cancerous intraductal 

papillary mucinous neoplasms [122]; ulcerative colitis in the colon [132]; benign and 

atypical granular cell tumors [133]; hyperkeritotic oral epithelium [134]; esophageal 

mucosa of patients with esophagitis, Barrett’s esophagus and esophageal adenocarcinoma 

[82,135,136]; and benign tumors of the salivary gland [137] all have been shown to have 

increased FASN expression. Due to an abundance of evidence that FASN up-regulation 

often occurs in the pre-cancerous lesions of many tissue types and is correlated to tumor 

aggressiveness and worsened prognosis in patients whose tumors over-express FASN, the 

theory that FASN may act as a “metabolic oncogene” has been proposed [76,138]. In one 

such study supporting this theory, FASN was ectopically over-expressed in immortalized 

human breast epithelial cells, which activated the HER1/HER2 tyrosine kinase receptors 
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and induced a cancer-like phenotype in these epithelial cells [139]. In 2009, Migita et al. 

demonstrated that FASN can act as a metabolic oncogene in prostate cancer by over-

expressing FASN in immortalized human prostate epithelial cells, androgen receptor-

overexpressing epithelial cells, and human prostate adenocarcinoma, which increased 

cellular proliferation in these cell types. When injected into immunodeficient mice, 

epithelial cells with over-expressed FASN that also over-expressed the androgen receptor 

formed invasive tumors. Additionally, prostate intraepithelial neoplasms formed when 

FASN was transgenically expressed in mice, and FASN over-expression protected 

epithelial cells from apoptosis when treated with chemotherapeutic drugs [140]. One 

mechanism by which FASN may be contributing to the development of cancerous 

phenotypes is through the WNT/β-catenin signaling pathway. FASN over-expression in 

immortalized prostate epithelial cells led to increased levels of Wnt-1 palmitoylation, 

which in turn stabilized cytoplasmic β-catenin, leading to the activation of the WNT/β-

catenin signaling pathway, which has been implicated in prostate carcinogenesis [141]. 

 Arachidonic acid, a polyunsaturated fatty acid, is the rate-limiting precursor of a 

number of biologically active pro-inflammatory metabolites including 

hydroxyeicosatetraenoic acids (HETEs) and leukotrienes produced by lipoxygenase, and 

prostanoids such as prostaglandins and thromboxanes produced by cyclooxygenase. 

Altered metabolism of arachidonic acid to produce these metabolites has been implicated 

in promoting cancer progression and metastasis by modifying the tumor 

microenvironment (reviewed in [142]). Arachidonic acid also activates androgen steroid 

hormone synthesis, which contributes to prostate cancer progression [143]. As 

arachidonic acid is produced directly via hydrolysis from the sn-2 position of membrane 
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phospholipids by the enzyme phospholipase A2 [144], and it has been demonstrated that 

lipids produced by FASN in cancer cells are mainly incorporated into membrane 

phospholipids such as phosphatidylcholine and phosphatidylserine [145], it is possible 

that there is a connection between FASN and arachidonic acid production in cancer cells. 

Indeed, one study has connected the fatty acid synthesis pathway to the production of 

arachidonic acid. Reduction of FASN by RNAi in prostate cancer cells suppressed the 

expression of the PLA2G4A and HSD17B12 genes, which encode the enzymes 

phospholipase A2 and 17-β-hydroxy-steroid dehydrogenase, respectively [146]. 17-β-

hydroxysteroid dehydrogenase, which is involved in the synthesis of steroid hormones, 

has also been correlated to the production of very long chain fatty acids, including 

arachidonic acid [147]. This report demonstrates that altered lipid production by FASN 

may be an upstream event that contributes to aberrant arachidonic acid metabolism in 

cancer cells.  

 

C. Drug Resistance in Cancer  

Not only is FASN associated with increasing aggressiveness and worsened 

prognosis, FASN over-expression has also been implicated in resistance of tumor tissues 

to chemotherapeutic treatment. FASN was found to be over-expressed in a doxorubicin-

selected multi-drug resistant breast cancer cell line [148], suggesting that FASN may be 

involved in the development of drug resistance following chemotherapeutic treatment. 

Ectopic over-expression of FASN also led to increased drug resistance in breast cancer 

cells [148]. FASN up-regulation has also been associated with resistance to gemcitabine 
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and radiation treatment in pancreatic cancer cells [149], as well as resistance to radiation 

treatment in nasopharyngeal carcinoma [150].  

There are several proposed mechanisms by which FASN over-expression confers 

drug resistance in cancer cells. Regulation of drug-induced apoptosis may be one such 

mechanism, as a recent study demonstrated that FASN over-expression in breast cancer 

cells inhibited apoptosis and caspase-8 activation upon treatment with doxorubicin, by 

inhibiting the production of TNFα and ceramide [151]. FASN over-expression may also 

mediate the DNA damage response following treatment with DNA damaging 

chemotherapeutics by causing the up-regulation of a key DNA damage response enzyme, 

Poly (ADP-ribose) polymerase-1 (PARP-1), leading to increased DNA repair following 

drug treatment [152]. Also, a study examining the cellular membrane of doxorubicin-

resistant breast cancer cells found that the resistant cells had an altered cellular membrane 

composition, which was more condensed and less fluid than the membrane of sensitive 

cells [153]. Although FASN expression was not specifically examined, it is possible that 

FASN over-expression-mediated drug resistance may be due to changes in lipid 

composition, which could affect drug uptake [152].   

 

D. Pancreatic Cancer 

According to the American Cancer Society, there are two main types of cancerous 

lesions of the pancreas: cancer of the exocrine pancreas and cancer of the endocrine 

pancreas. Endocrine pancreatic cells, known as islets or islets of Langerhans, are 

responsible for producing the nutritional hormones insulin and glucagon. Exocrine 

pancreatic cells produce the enzymes that are released into the intestines to aid digestion. 
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These glands and ductal cells make up 95 % of the pancreas. A vast majority of 

pancreatic cancers occur in the exocrine pancreas, and 95 % of cancers of the exocrine 

pancreas are ductal adenocarcinomas. The general term ‘pancreatic cancer’ refers 

specifically to these types of cancers. On the other hand, cancers of the endocrine 

pancreas are known as pancreatic neuroendocrine tumors, and constitute a completely 

different tumor type. The American Cancer Society estimates that approximately 46,420 

people (23,530 men and 22,890 women) will be diagnosed with pancreatic cancer, and 

39,590 people (20,170 men and 19,140 women) will die of pancreatic cancer in the 

United States in 2014. Of patients diagnosed with pancreatic cancer, the 5-year survival 

rate for the least aggressive tumor stage was only 14 %, and dropping to as low as 1 % 

for the most aggressive tumor stage [154]. Pancreatic carcinomas are the fourth leading 

cause of cancer related deaths [155] and majority of patients who are diagnosed with 

pancreatic cancer die within 4 to 6 months of diagnosis [156]. Despite continued research 

and advancing technology and medical developments over the last decade, pancreatic 

cancer incidence and mortality rates have not improved [157]. The especially poor 

prognosis of pancreatic cancer is a direct result of difficulty in diagnosing the disease at 

an early stage, due to the inaccessible location of the pancreas and the lack of specific 

symptoms. By the time a diagnosis is made, metastasis has typically already occurred and 

chemotherapy, radiotherapy and surgery have been found to increase survival rate and 

quality of life in only ~10 % of patients diagnosed with pancreatic cancer [158].  

There are several types of precancerous lesions that have been described in 

pancreatic cancer, including pancreatic intraepithelial neoplasia (PanIN), intraductal 

papillary mucinous neoplasm (IPMN), and mucinous cystic neoplasm (MCN) [159], and 
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a number of genetic mutation events that likely lead to the initiation and maintenance of 

pancreatic cancer have been described [160]. One of the earliest genetic mutations arising 

in pancreatic cancer is a mutation in the KRAS2 oncogene. The protein encoded by 

KRAS2, which becomes constitutively active by the mutation, mediates a number of pro-

survival protein functions including cellular proliferation, cytoskeleton remodeling and 

migration [161,162]. This mutation, which is present in approximately 90-95 % of 

pancreatic cancer cases [161], has also been found to be present 36 %, 44 % and 87 % of 

progressive PanIN lesions (PanIN-1A, PanIN-1B and PanIN-2/3 precancerous lesions, 

respectively) suggesting that this mutation may initiate the formation of pancreatic cancer 

[159]. In addition to the activation of the KRAS oncogenic pathway, there are three main 

tumor suppressor genes that are inactivated in pancreatic cancer. The most common, 

which is inactivated in approximately 90 % of pancreatic cancers, is the p16/CDKN2A 

gene. This gene encodes proteins of the cyclin-dependent kinase inhibitor (CDKi) family, 

which prevent progression through the cell cycle [163]. The tumor suppressor gene TP53 

is inactivated in approximately 70 % of pancreatic cancers [164]. The p53 tumor 

suppressor protein regulates the cell cycle, maintains cellular arrest and induces apoptosis 

in cells with DNA damage, and loss of the protein leads to the survival and proliferation 

of cells, even with DNA damage present [165]. In approximately 55 % of pancreatic 

cancers, the DPC4/SMAD4 (DPC4 standing for deleted in pancreatic carcinoma 4) tumor 

suppressor gene is inactivated [166]. The protein encoded by this gene, smad4, activates 

the transforming growth factor-β (TGF-β) signaling pathway, which regulates target 

genes that have growth-inhibitory effects [167]. Thus, the loss of smad4 confers a growth 

advantage in pancreatic tumor cells with this mutation. 
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 In addition to the genetic mutations listed above, a global genomic analysis study 

of pancreas tumors revealed that, on average, pancreatic cancers contain 63 genetic 

alterations, most of which are point mutations. This study also defined 12 major cellular 

signaling pathways that are genetically altered in 67-100 % of pancreatic tumors. Altered 

genes represented pathways involved in cancer such as those that regulate apoptosis; 

DNA damage control; G1/S phase cell cycle transition; hedgehog signaling; cell 

adhesion; integrin signaling; KRAS signaling; c-Jun N-terminal kinase signaling; 

invasion regulation; small GTPase signaling; TGF-β signaling; and Wnt/Notch signaling. 

Although common pathways were altered in each pancreatic tumor examined, the 

specific components of each pathway containing the alterations varied greatly. The study 

concluded that, due to the tremendous amount of heterogeneity in these tumors, targeting 

individual components in these pathways is not likely to be a useful strategy for 

therapeutic development for the treatment of pancreatic cancer. Instead, the focus should 

lie in targeting mediators and processes that are downstream of these pathways. The 

authors of the study suggested that discovering agents that cause metabolic disturbances 

may be one such strategy [168]. As FASN lies downstream of the PI3K/Akt and 

MAPK/ERK1/2 pathways in cancerous tissues, it is reasonable to predict that targeting 

FASN may be a useful strategy for the treatment of pancreatic cancer.       

 

E. FASN and Pancreatic Cancer 

Very few treatment options exist for patients with advanced pancreatic cancer and 

very little progress has been made in elucidating new treatment modalities for this 

disease. The only curative treatment for pancreatic cancer is surgical resection, however, 
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fewer than 20 % of patients are candidates for surgery [169]. In 1997, the nucleoside 

analog gemcitabine was established as the first-line chemotherapeutic treatment option 

for pancreatic cancer. This landmark study demonstrated very modest increase in median 

survival with gemcitabine treatment compared to the chemotherapeutic drug fluorouracil 

(5-FU), increasing to 5.65 months from 4.41 months [170]. Gemcitabine 

(difluorodeoxycitadine) is a prodrug that is phosphorylated to difluorodeoxycitadine 

triphosphate upon cellular uptake [171]. This triphosphate gemcitabine metabolite then 

competes with the nucleoside deoxycitadine triphosphate for incorporation into DNA, 

causing termination of DNA elongation and apoptosis [172]. Gemcitabine also reduces 

the available stores of deoxynuceloside triphosphates, likely by inhibiting ribonucleotide 

reductase [173]. In 2011, a study evaluating the efficacy of FOLFIRINOX (oxaliplatin, 

irinotecan, fluorouracil and leucovorin) for use in pancreatic cancer treatment 

demonstrated an even further increase in median survival (11.1 months vs. 6.8 months 

with gemcitabine alone). However, FOLFIRINOX treatment was more toxic to patients, 

and more adverse effects were noted in patients in this treatment group [174]. The 

combination of gemcitabine with a number of other chemotherapeutic drugs has been 

investigated, with very little success. No significant increase in survival was seen when 

gemcitabine was used in combination with other standard chemotherapeutics such as the 

platinum DNA cross-linkers cisplatin and oxaliplatin; the topoisomerase inhibitor 

irinotecan; or the folate antimetabolite pemetrexed (reviewed in [175]). The combination 

of gemcitabine with several targeted cancer therapies such as the EGF inhibitor 

cetuximab; the farnesyltransferase inhibitor tapifarnib; the leukotriene B4 receptor 

agonist Lys93111; the matrix metalloprotease inhibitor marimastat; the VEGF inhibitor 
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bevacizumab; or the antiangiogenic agent cliengitide has also been met with no success 

(reviewed in [175]). To date, two drug combinations with gemcitabine have demonstrated 

a statistically significant increase in survival compared to gemcitabine alone, however the 

increases in survival were very modest. The combination of gemcitabine with the EGF 

inhibitor erlotinib versus gemcitabine alone increased survival from 5.9 months to 6.2 

months [176]. Another study demonstrated that the combination of gemcitabine with the 

5-FU prodrug capecitabine could increase survival from 6.2 to 7.1 months compared to 

gemcitabine alone [177]. Despite ongoing research, very few advances have been made 

with currently available therapy options. Therefore, the discovery of new therapies to 

prevent the development of this cancer, or to prolong the life of these patients following 

diagnosis, is critically needed.  

Indeed, as with many other types of cancer, FASN expression has been implicated 

in pancreatic cancer. In one study, FASN was over-expressed in over 85 % of primary 

pancreatic adenocarcinoma samples and over 90 % of pre-cancerous IPMN lesions 

resected from patients, yet FASN expression was not detected in the normal ductal 

epithelium of these patients. Serum FASN expression levels were also found to be 

significantly higher in patients with pancreatic ductal adenocarcinoma, IPMN lesions and 

chronic pancreatitis than in healthy controls, indicating that FASN serum levels in 

patients may also be a useful marker for the early detection of pancreatic cancer or other 

neoplasms. The results of this study demonstrated that not only is FASN over-expression 

likely an early event in pancreatic tumorigenesis, as indicated by the high percentage of 

pre-cancerous lesions that over-express FASN, but also that targeting FASN may be a 

highly specific way to treat pancreatic cancers, as FASN is not expressed in normal 
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pancreatic tissue but is nearly ubiquitously over-expressed in tumor tissue. [122]. Over-

expression of FASN in the tumors of patients with pancreatic cancer has also been 

correlated with higher tumor stage, recurrence and lower overall survival, which was 

determined by monitoring the expression of FASN in the tumors of 30 patients with 

pancreatic adenocarcinoma over a 5-year period [178]. One way in which FASN over-

expression may result in a poorer outcome by conferring resistance to chemotherapeutic 

treatment. Inhibiting FASN decreased the resistance of pancreatic cancer cells to both 

gemcitabine and radiation treatment, whereas ectopically over-expressing FASN 

increased the resistance of pancreatic cancer cells to both gemcitabine and radiation 

treatment, indicating that FASN activity and over-expression may be one of the reasons 

for the poor performance of gemcitabine as a single agent chemotherapeutic [149]. 

Although further investigation is needed to elucidate the mechanism by which FASN 

expression causes treatment resistance, it is clear that targeting FASN may be a useful 

treatment strategy when used in conjunction with chemotherapeutic or radiation 

treatment, for an improvement in clinical outcome that remains to be seen in pancreatic 

cancer treatment.  

 

F. Effects of FASN Inhibition on Cancer Cell Survival 

 FASN expression and activity are critical for tumor progression and survival, thus 

the fatty acid synthesis pathway appears to be an attractive target for cancer therapy. 

Although the inhibition of pathways such as the PI3K/Akt and MAPK/ERK1/2 pathways 

that lie upstream of FASN have been shown to reduce expression of SREBP-1 and 

FASN, and thus reduce fatty acid synthesis, this strategy for inhibiting the fatty acid 
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synthesis pathway is less than ideal, due to the presence of active acetyl-CoA 

carboxylase. Instead, blocking FASN directly with pharmacological inhibitors would 

likely lead to an enhanced effect in tumor cells. The effect of FASN inhibition in tumor 

cells has been demonstrated using RNAi knockdown in prostate cancer cells, which 

caused attenuation of tumor cell proliferation and induction of apoptosis, with no 

noticeable effect on non-malignant cells [179]. Microarray analysis following FASN 

knockdown with siRNA revealed that FASN inhibition is accompanied by an increase in 

the pro-apoptotic factors BNIP3, TRAIL, DAPK2 and ceramide [180]. Genome-wide 

analysis with gene expression profiling demonstrated that FASN knockdown with siRNA 

down-regulated pathways regulating lipid metabolism, glycolysis, the TCA cycle and 

oxidative phosphorylation while up-regulating genes implicated in cell cycle arrest and 

apoptosis [181]. Another study demonstrated that FASN knockdown in colorectal cancer 

cells reduced metastasis by attenuating the expression of CD44, a protein associated with 

increased metastasis, and other proteins known to affect adhesion, migration and invasion 

[182]. Additionally, it was demonstrated that treatment with first generation FASN 

inhibitors does not result in any hepatocellular injury or fat necrosis in test animals [183], 

indicating that targeting FASN with small molecule inhibitors may be a highly specific 

way to selectively affect malignant cells without harming normal tissues. As such, the 

quest to find pharmacological inhibitors of the various domains of FASN has been 

underway, and the inhibitors described below have proven to be very useful tools for 

elucidating the mechanisms by which FASN inhibition is cytotoxic to malignant cells.  

 One of the first small-molecule inhibitors of FASN described was cerulenin, a 

compound isolated from Cephalosporium caerulens, which contains an epoxide moiety 
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that can react covalently with the active cysteine of the β-ketoacyl synthase (KS) domain 

of FASN, thereby preventing the transfer of a molecule of acetyl-CoA from the ACP, 

which is necessary to begin the fatty acid synthesis cycle  [184]. Cerulenin decreases the 

proliferation of malignant cells, the effect of which was abrogated by supplementing 

treated cells with supraphysiologic levels of palmitate [48,185], indicating not only that 

FASN inhibition is a valid strategy for targeting cancer cells, but also that end product 

starvation and subsequent disturbance of membrane function, may have deleterious 

effects in tumor cells. Cerulenin induced programmed cell death in breast cancer cells 

[186] and prostate cancer cells [187]; slowed tumor progression of ovarian xenografts in 

vivo [188]; and suppressed metastasis to the liver in a colon cancer mouse model [189]. 

Cerulenin was also shown to induce apoptosis through the inhibition of DNA replication 

and S-phase progression [190]. C75, a synthetic analog that is more chemically stable 

than cerulenin, inhibits FASN in cancer cells without adverse effects on bone marrow, 

the gastrointestinal tract, skin, or lymphoid tissues [191]. C75 treatment led to the 

ubiquinitation and degradation of various proteins in the oncogenic PI3K pathway, 

including Akt and mTOR in ovarian cancer cells [192]. Cerulenin and C75 were used to 

demonstrate that fatty acid inhibition may be more effective in cells with mutant p53, 

inducing a cytotoxic effect in these cells, while inducing a cytostatic growth arrest in 

cells with wild-type p53 [193,194]. These compounds were also used to demonstrate the 

utility of blocking FASN activity as a method of chemoprevention in mammary cancers 

by suppressing the HER2/neu pathway and blocking malignant transformation [56,195]. 

Interestingly, blocking the fatty acid synthesis pathway by inhibiting the conversion of 

acetyl-CoA to malonyl-CoA did not have an adverse effect on cancer cells, and even 
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rescued the effects of treatment with cerulenin or C75, indicating that the buildup of 

malonyl-CoA, not end product starvation, was the cause of cellular distress in tumor cells 

[196]. These results demonstrate that blockade of FASN may exert its effects through 

multiple pathways. However, despite successful use as a tool for elucidating the 

mechanisms by which FASN inhibition is selectively harmful to cancerous cells, 

cerulenin and C75 are unlikely to be used clinically as they cause severe side-effects in 

test animals. This included weight loss induced by stimulating fatty acid oxidation, and 

anorexia due to inhibition of neuropeptide Y production in the hypothalamus [183,197]. 

To overcome the potency and side effect limitations of cerulenin and C75, a synthetic 

cerulenin analog, C93, was developed [198], and was shown to successfully inhibit the 

growth of lung cancer xenografts, without stimulating fatty acid oxidation and subsequent 

weight loss and anorexia in test animals [199]. This study indicated that the FASN 

pathway can be blocked without necessarily inducing fatty acid oxidation. C93 treatment 

was associated with reduced Akt activity in lung tumor tissues [200], and activated 

AMPK in ovarian cancer cells [201].  

 Epigallocatechin-3-gallate (EGCG), an extract from green tea, was found to 

inhibit the ketoacyl reductase (KR) domain of FASN, possibly by blocking the NADPH 

binding site on the domain, thus preventing the reduction of the keto group to an alcohol 

on the growing fatty acid chain, thus halting the FASN cycle  [202]. EGCG has 

selectively induced apoptosis in prostate cancer cells [203], however, EGCG is not a 

specific inhibitor of FASN, as it is known to inhibit other pathways that offer a 

chemotherapeutic effect [204]. FASN is also inhibited by a variety of other polyphenolic 

compounds including amentoflavone [205] and flavonoid compounds including luteolin, 
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quercetin, kaempferol, apigenin and taxifolin [206-208]. EGCG inhibits FASN without 

stimulating fatty acid oxidation or weight loss in test animals [209,210]. A class of novel 

synthesized polyphenols that inhibited the growth of breast cancer xenografts, without 

concurrent induction of fatty acid oxidation or weight loss as a side effect, has also been 

described [211]. 

 In 2004, orlistat, an FDA approved drug for weight loss that works by inhibiting 

pancreatic lipases and thereby prevents the uptake of dietary fats in the gastrointestinal 

tract, was discovered to also act as an inhibitor of the TE domain of FASN during an 

activity-based screen that had intended to identify serine hydrolases in prostate cancer 

and search for inhibitors to those serine hydrolases simultaneously. As expected, orlistat 

inhibited the proliferation and induced apoptosis in prostate cancer cells both in vitro and 

in vivo [212]. Crystal structure analysis of orlistat within the active site of FASN TE 

revealed that Orlistat, a β-lactone compound, covalently modifies the active site serine of 

TE, and halts the fatty acid synthesis cycle by prohibiting the release of fatty acid from 

the ACP. However, crystal structure analysis also showed a hydrolyzed form of orlistat in 

the TE active site, indicating that FASN can easily catalyze and inactivate orlistat [213]. 

Orlistat has been found to induce apoptosis via caspase-9 and -3 induction and reduce cell 

proliferation and metastasis in a mouse melanoma model [214,215]; and increase tumor 

cell death and survival rates in mice with gastric tumors [216]. Fatty acid synthesis 

blockade by orlistat inhibits angiogenesis and proliferation of endothelial cells [217]; 

affects the cell cycle by down-regulating Skp2, arresting cells in G1/S phase [218]; 

induces ER stress and apoptosis in cancer cells [219]; and promotes caspase-8 mediated 

apoptosis and down-regulation of the mTOR pathway via the stress response gene DDIT4 
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[220]. Orlistat is unlikely to find use as a systemic cancer treatment due to the side-effect 

of weight loss, as well as low solubility, poor oral bioavailabiliy, systemic availability 

and stability [221,222]. A number of orlistat analogs have been synthesized [223-226], 

but none have proven to be a successful alternative thus far. 

 A number of other FASN inhibitors have been reported. Triclosan, a common 

antibiotic that works by inhibiting the enoyl reductase enzymes of type II fatty acid 

synthases in bacteria, also inhibits the enoyl reductase (ER) domain of human FASN and 

is cytotoxic to human breast cancer cells. It has been suggested that triclosan increases 

the affinity of the ER domain for NADP+, forming a stable complex, thus preventing the 

interaction of NADPH with the domain, which is necessary for final reduction step of 

fatty acid synthesis [227]. Natural products have also been shown to effectively inhibit 

FASN activity including conjugated linoleic acid [228] and various plant extracts [229-

235]. Other novel classes of FASN inhibitors have also been described [236-239], but 

thus far, no further research involving these novel inhibitors has been reported. 

 In addition to being a useful target for the treatment of cancer in its own right, 

FASN inhibition has also shown to be useful in combination therapy. FASN inhibition 

sensitized resistant breast cancer cells to trastuzumab, an antibody that targets Her-2/neu, 

possibly by affecting the composition of lipid rafts produced by FASN activity, perhaps 

affecting crosstalk between EGRF and HER2/neu, which has been implicated in 

trastuzumab resistance [240]. A synergistic chemosensitization of HER2/neu over-

expressing breast cancer cells to docetaxel [241], vinorelbine [242], paclitaxel [243], 5-

fluorouracil [244]  was demonstrated upon FASN inhibition, possibly by suppressing the 

HER2/neu oncogene [57]. FASN blockade has also been shown to sensitize resistant 
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breast cancer cells to treatment with DNA-damaging agents mitoxantrone and 

doxorubicin [148] and resistant pancreatic cancer cells to gemcitabine and irradiation 

[149]. Clearly, an abundance of research has demonstrated that FASN is a potential target 

for cancer therapy, and inhibitors of FASN could be very useful when added to a 

combination chemotherapeutic regimen.  

 

G. Proton Pump Inhibitors and Use in Cancer Treatment 

Recently, there has been great interest in investigating the potential utility of an 

FDA approved class of drugs known as proton pump inhibitors (PPIs) for use in 

combination chemotherapy, which began in 2004 when a study demonstrated that PPIs 

could reduce the resistance of cancer cells to cytotoxic drugs [245]. PPIs are the standard 

treatment for a variety of acid-related diseases that plague the digestive system, including 

peptic ulcer, gastro-esophageal reflux, Barrett’s esophagus and Zollinger-Ellison 

syndrome, as well as the treatment of upper gastrointestinal bleeding and Helicobacter 

pylori infection [246-248]. PPIs are substituted benzimidazole compounds [249] that 

exert their effects by accumulating in the gastric parietal cells. PPIs are weakly basic 

prodrugs that are membrane permeable, and upon entering the acidic environment of the 

parietal cells, they become protonated and then undergo a series of acid-base reactions, 

ultimately revealing a cationic sulfur ion that irreversibly binds with cysteine residues of 

gastric hydrogen-potassium ATPase proton pumps. By inhibiting proton pumps, PPIs 

directly inhibit the exchange of a proton for a potassium ion, thus inhibiting the secretion 

of acid into the gastric lumen [250-252]. Current FDA approved proton pump inhibitors 

include omeprazole [253], pantoprazole [254], lansoprazole [255], rabeprazole [256]  and 
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esomeprazole, the (S)-enantiomer of omeprazole [257]. As a class, PPIs are extremely 

safe and well tolerated drugs, and adverse side effects with long term PPI treatment are 

rare [258].  

The first study that examined the use of PPIs in combination chemotherapy 

demonstrated that upon pretreatment with omeprazole, esomeprazole or pantoprazole, 

various solid tumor types including melanoma cells, colon adenocarcinomas, breast 

cancer cells and ovarian carcinomas were sensitized to treatment with the 

chemotherapeutic agents cisplatin, 5-FU and vinblastine in vitro with up to a 2 log 

reduction in IC50. Tumor cells pretreated with PPIs were found to have an increased 

extracellular and lysosomal pH, indicating PPIs may prevent the acidification of the 

tumor microenvironment by inhibiting the function of vacuolar vATPase [245]. Tumor 

cells have been found to exhibit increased vATPase activity, which help to generate the 

pH gradient in tumor microenvironments and maintain pH homeostasis within tumor 

cells, which is often altered due to increased cellular metabolism (reviewed in [259,260]). 

As a result, chemotherapeutics that are weakly basic may have a reduced effect caused by 

decreased uptake, as the extracellular pH of solid tumors is more acidic than in normal 

tissues [261,262]. It has been noted that with concurrent PPI treatment, cytotoxic drugs 

are more greatly retained in the cellular cytoplasm, possibly explaining their observed 

increased effect. Oral pretreatment with omeprazole also slowed tumor growth in test 

animals treated with cisplatin, when compared to cisplatin treatment alone [245].  

PPIs alone can also effectively induce apoptosis. Omeprazole treatment induced 

caspase-dependent cell death in Jurkat immortalized T lymphocyte cells [263]. Treatment 

of B-cell tumors with omeprazole or esomeprazole induced apoptosis through a caspase-
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independent mechanism. Each PPI caused an increase in the production of reactive 

oxygen species, leading to alteration of lysosomal pH and lysosomal membrane 

permeabilization, followed by membrane depolarization, cytochrome c release and 

subsequent induction of apoptosis upon activation of caspases [264]. Pantoprazole 

treatment selectively induced apoptosis in gastric cancer cells both in vitro and in vivo, 

without affecting normal gastric mucosal cells [265], and caused tumor growth 

retardation in murine T cell lymphoma [266]. Treatment of melanoma cells with 

esomeprazole caused accumulation of reactive oxygen species and induced apoptosis via 

a caspase-dependent pathway [267]. 

PPIs have also been proposed to decrease the resistance of certain cancers in ways 

other than affecting the pH of the tumor microenvironment. For example, omeprazole, 

lansoprazole and pantoprazole are substrates of the ATP-dependent efflux transporter P-

glycoprotein, and directly inhibit its activity [268]. As P-glycoprotein can expel 

chemotherapeutic agents from cells, and has thus been implicated in the development of 

the multi-drug resistance phenotype in tumor tissue [269], inhibition of P-glycoprotein by 

PPI treatment may lead to the observed increase in efficacy of chemotherapeutic agents 

[259]. In one study, omeprazole was found to inhibit proliferation and modulate 

autophagy in pancreatic cancer cells through affecting the regulatory function of 

vATPase, without inhibiting the function of the pump itself, causing modulation of 

lysosomal transport and autophagy, leading to cell death [270]. Several studies have 

examined the effect of pantoprazole treatment on gastric cancer cell growth. Pantoprazole 

treatment was shown to decrease the expression of HIF-1-α, a protein implicated in tumor 

progression and aggressiveness, in human gastric carcinoma cells [271]. A decrease in 
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vATPase expression and components of the wnt/β-catenin signaling pathway, leading to a 

disruption in gastric cancer cell growth and increase in apoptosis, has also been 

demonstrated upon pantoprazole treatment [272]. Pretreatment with pantoprazole also 

enhanced the effect of Adriamycin treatment on gastric cancer cells both in vitro and in 

vivo, and reduced the resistance of an Adriamycin resistant cell line to chemotherapeutic 

treatment. In addition to the down-regulation of vATPase protein levels, it was noted that 

upon pantoprazole treatment, the expression levels of several proteins that have been 

implicated in tumor proliferation, including mTOR, HIF-1-α, p-glycoprotein and multi 

drug resistant protein 1, were also down-regulated [273]. Pantoprazole pretreatment also 

selectively suppressed the secretion of IL-6, a pro-inflammatory cytokine, in gastric 

cancer cells, without affecting epithelial cells. A reduction in IL-6 subsequently 

decreased the activation of STAT3 and its downstream targets, which have also been 

implicated in tumor cell proliferation and survival [274].    

As such, several clinical trials have been performed to evaluate the use of PPIs in 

combination with chemotherapeutic drugs for cancer treatment. A phase I/II clinical trial 

demonstrated that treatment with high dose lansoprazole concurrently with traditional 

chemotherapy reversed chemoresistance of tumors in dogs and cats with cancer. The high 

dose PPI treatment was well tolerated, and improved the quality of life in the animals 

[275]. Additionally, an ongoing phase II clinical trial is investigating the use of 

pantoprazole in combination with doxorubicin in advanced cancer patients with solid 

tumors [276]. All of these results demonstrate the ability of PPIs to inhibit tumor cell 

growth in many types of cancer, and clearly more studies are needed to determine the 

utility of PPIs as potential agents for use in chemotherapeutic regimens, as well as the 
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mechanism by which PPIs might be inhibiting cancer cell growth. In the study that 

examined the effect of omeprazole treatment on pancreatic cancer cells, it was noted that 

PPI treatment altered the composition of cellular lipid metabolites, indicating that the 

fatty acid synthesis pathway may be an important mechanism by which PPIs are acting in 

cancer cells, but the possibility of fatty acid synthesis disruption was not discussed [270]. 

 

F. Hypothesis and Specific Aims 

As discussed in detail above, orlistat, an FDA approved drug for weight loss that 

works by inhibiting the esterase activity of pancreatic lipases in the gut, also acts as a 

reversible inhibitor of the thioesterase activity of FASN. In 2007, the crystal structure of 

the human FASN thioesterase domain with orlistat in the active site was elucidated by 

Pemble et al [213]. The catalytic triad of FASN thioesterase, Ser2308-His2481-Asp2338, with 

Ser2308 forming a covalent bond with the C1 carbon of the β-lactone cyclic ester moiety 

of orlistat, was identified. Pemble et al. observed that orlistat was present within the 

active site of thioesterase in two forms: the covalently bound intermediate, and a 

hydrolyzed, inactivated form in which the bond between Ser2308 and orlistat had been 

cleaved, thus freeing orlistat and demonstrating that orlistat is not a stable inhibitor of the 

thioesterase domain. It was also noted that a hexyl tail moiety of orlistat had shifted 

position when comparing the position of covalent-orlistat to hydrolyzed orlistat within 

the crystal structure, indicating that this hexyl tail may be involved in orlistat hydrolysis. 

The goal of the thesis work described herein was to examine the mechanism of hydrolysis 

of orlistat by the thioesterase domain of FASN, and then use the findings to aid in the 

discovery of FASN inhibitors that can target thioesterase activity with greater stability. 
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The central hypothesis is that the flexibility of the hexyl moiety of orlistat promotes its 

hydrolysis and limits its ability to target the thioesterase domain of FASN. Novel 

inhibitors of FASN TE, perhaps proton pump inhibitors, will have greater endurance in 

blocking the fatty acid synthesis pathway for therapeutic treatment. To this end, the 

following specific aims were accomplished: 

Specific Aim I: To determine the molecular process that occurs after orlistat has 

formed a covalent bond to the FASN TE domain using molecular dynamics 

simulations 

Using the co-crystal structure of orlistat with the thioesterase domain of FASN, the 

orlistat residue bound to the Ser2308 residue in the thioesterase domain of FASN, an 

irregular residue, was manually parameterized for simulation. The AMBER9 suite of 

programs was used to examine this covalent-orlistat within the thioesterase domain in a 

solvated environment via molecular dynamics simulations, allowing for the examination 

of how the hexyl tail of orlistat may play a role in its hydrolysis. 

Specific Aim II: To identify potential inhibitors of FASN thioesterase 

Several libraries of compounds were virtually screened specifically for shape and 

chemical complementarity to the active site of the TE domain of FASN using the 

DOCK6.0 suite of programs. The inhibition potential of top-scoring compounds was 

examined using a fluorogenic activity assay with a recombinant thioesterase domain of 

FASN. 

Specific Aim III: To evaluate the therapeutic potential of selected compounds 

The therapeutic potential of compounds that inhibited FASN thioesterase activity in a 

dose-dependent manner was evaluated using several pancreatic cancer cell lines by 
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examining the ability of compound candidates to inhibit cellular proliferation, colony 

formation, and lipid synthesis. Apoptosis induction with the lead compound candidate 

and rescue with palmitate supplementation was also evaluated.   
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Chapter 2: Materials and Methods 

 

Specific Aim I: Orlistat Parameterization and Molecular Dynamics 

A. Orlistat Parameterization   

 The crystal structure of covalent-orlistat within FASN TE, elucidated by Pemble 

et al. [213], was downloaded from the RCSB Protein Data Bank (www.rcsb.org). The 

crystal structure (PDB ID: 2PX6) contained the initial coordinates of covalent-orlistat 

within TE in PDB file format, which contains structural information derived from x-ray 

diffraction studies. Covalent-orlistat was then manually parameterized following the 

procedure for determining the atomic charges for the AMBER parm94/parm99 parameter 

sets described by Cornell et al [277], with guidance from the AMBER online tutorial 

(http://ambermd.org/tutorials/advanced/tutorial1/) for preparing irregular residues. Using 

the Chimera visualization and structure building program (University of California, San 

Francisco) [278], the irregular covalent-orlistat Ser2308 residue and the two adjacent 

tyrosine residues flanking covalent-orlistat (Tyr2307 and Tyr2309) were removed from the 

rest of the enzyme by virtually deleting the remainder of the protein. The remaining small 

peptide was capped by removing the side chains from the tyrosine residues and retaining 

only the protein backbone, and then virtually adding hydrogen atoms to create an N-

terminal blocking cap that consists of a –(CO-CH3) group and a C-terminal blocking cap 

that consists of a –(NH-CH3) group (Fig. 1). The newly capped residue was saved as a 

PDB file using UCSF Chimera. 
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FIGURE 1: 

 

Figure 1: Schematic illustration of the covalent-orlistat parameterization. The side chains 

of the tyrosine residues (red, top) flanking the covalent orlistat-Ser2308 residues are 

removed. The tyrosine residues are then replaced by an N-terminal cap –(CO-CH3) and a 

C-terminal cap –(NH-CH3), leaving only the peptide backbone atoms (red, bottom).  
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The quantum mechanics (QM) package Gaussian03 (Gaussian Inc.) was used to 

optimize the geometry of the capped covalent-orlistat complex using the B3LYP/6-31G* 

level of quantum mechanical theory. All calculations were performed using the Big Red 

supercomputer (Indiana University). The Gaussian input file (.gau) was generated 

directly from the PDB file prepared in the previous step using the WebQC molecular 

formats converter (http://www.webqc.org/molecularformatsconverter.php). The 

optimization was performed in Cartesian coordinates and the opt=modredundant keyword 

was specified in the input file in order to freeze dihedral angles between all heavy atoms. 

Dihedral angles were frozen by indicating the number of each heavy atom in the dihedral, 

in accordance with the atom number assigned to each atom of covalent-orlistat in the 

PDB file. Dihedral angles were frozen to ensure that the geometry of the ligand, and thus 

the charge development, of orlistat reflects the charge distribution of the conformation 

seen in the crystal structure. An example of a Gaussian optimization input file (.gau) can 

be found in Appendix A. In order for a structure to be properly optimized, it must achieve 

convergence, in which the threshold value of four criteria must fall below a certain value. 

These criteria are: maximum force on atoms in the system; root mean square (RMS) force 

on atoms in the system; maximum displacement and RMS displacement. Maximum 

displacement describes the maximum structural change of one atom coordinate and RMS 

displacement describes the average coordinate change of all atoms in the system in the 

previous two optimization cycles. Default convergence values were chosen for the 

optimization, which are 0.000450 atomic units (AU) for maximum force; 0.000300 AU 

for RMS force; 0.001800 AU for maximum displacement and 0.001200 AU for RMS 

displacement. The generated checkpoint file (.chk) from the completed optimization was 
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converted to a formcheck file (.fchk) using the formchk utility of Gaussian, which can be 

recognized and visualized by Chimera. The optimized capped covalent-orlistat was then 

re-saved in PDB format. 

The electrostatic potential (ESP) of the optimized ligand was calculated with 

Gaussian03 using the HF/6-31G* level of quantum mechanical theory. The input file 

used for the ESP calculation can be found in Appendix A. The .chk file from the 

optimization was copied and then used in the input file for the ESP calculation. The ESP 

data generated by Gaussian was then converted into restrained electrostatic potential 

(RESP) input format with the resp functionality within AMBER, using the script esp.sh, 

which can be found in Appendix A. The number of ESP Fit Centers needed to run the 

esp.sh script was gathered from the Gaussian output file from the ESP calculation. As 

Gaussian does not print any ESP Fit Center numbers past 9,999, the number of ESP Fit 

Centers was calculated by taking the difference in the line numbers in the output file.  

Next, the atomic charges of the ligand were calculated in two steps. First, the 

charges of the caps, which sum to zero, were defined as by Cornell et al. [277] and the 

charges for the remainder of the atoms were calculated by RESP. In the second step, to 

ensure that rotationally-degenerate atoms had equivalent charges, the charges for all 

atoms were fixed except for hydrogen atoms in methyl (-CH3) and methylene (-CH2) 

groups and the charges were recalculated. Further explanation of RESP charge fitting, 

along with input files used, can be found in Appendix A. 

The caps flanking the irregular covalent-orlistat residue were then virtually 

removed using UCSF Chimera and a library file for the residue containing topology, 

charge and atom type information for each atom in the residue was created using the 
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xleap program within AMBER. Xleap also recognized any missing information for the 

residue, and analogy to parm99 parameters was used to define all missing values for 

covalent-orlistat, which were placed in a .frcmod file. Using UCSF Chimera, the orlistat-

Ser2308 residue was reattached to the enzyme by aligning the newly optimized molecule 

with the original orlistat molecule in the FASN TE crystal structure [213].  

 

B. MM and QM Dihedral Angle Scans 

A 3-mer peptide was created using Chimera as follows: First, optimized covalent-

orlistat and the two adjacent tyrosine residues flanking covalent-orlistat were separated 

from the rest of the TE protein and the tyrosine residues were converted to N- and C-

terminal glycine residues (Fig. 2). Next, the torsion angles of the 3-mer peptide backbone 

were adjusted into an extended conformation to avoid electrostatic interaction between 

the amino group of the N-terminal glycine residue and the carboxyl group of the C-

terminal glycine residue. Finally, thirty-six rotamers of the ω dihedral angle, each 

differing by 10 degrees, were created and saved as individual files. 
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FIGURE 2: 

 

Figure 2: Schematic illustration the 3-mer peptide containing covalent-orlistat. Orlistat is 

flanked by N-terminal and C-terminal glycine residues (red). 
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To perform the dihedral angle energy scan using QM methods, the PDB file of the 

3-mer peptide was converted to Gaussian Z-matrix input format using the Babel file 

converter on the Quarry supercomputer (Indiana University). An example input file can 

be found in Appendix A. The single point ab initio energy of each rotamer was calculated 

using Gaussian03 with the HF/6-31G* level of quantum mechanical theory and full 

convergence was requested using the scf=tight keyword. The single-point energy 

calculated for each rotamer was then complied into a single file and visualized using the 

xmgrace plotting tool. To perform the dihedral energy scan using MM methods, the 

potential energy surface of the 3-mer peptide was calculated using the sander module of 

AMBER9. Using a non-periodic vacuum model, each rotamer was individually 

minimized using 500 steps of steepest descent minimization. During the minimization, all 

atoms were weakly restrained by 25 kcal/mol/A2 in Cartesian space using harmonic 

potential to ensure that the conformation of each rotamer was not dramatically changed 

during the minimization. An example input file can be found in Appendix A. Following 

the minimization, the exact ω dihedral angle for each minimized rotamer was determined 

using Chimera, and the angles and energies for each rotamer calculated during the 

minimization was compiled into a single file and visualized using the xmgrace plotting 

tool. As the energy units from the QM and MM scans do not match, each curve was 

scaled and then overlaid to compare the results from the two energy scans. 

 

C. Molecular Modeling and MD Simulations 

 Unresolved residues from the crystal structure (loop I residues 2326-2328, loop II 

residues 2344-2360 and loop III residues 2450-2460) were built using the online software 
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ModLoop (http://modbase.compbio.ucsf.edu/modloop/) (UCSF) [279]. The LeAP 

module of AMBER9 created the necessary topology and coordinate files for the MD 

simulation by assigning FF03 parameters and hydrogen atoms to the protein and adding 

TIP3 water molecules to solvate the structure in a box with a distance of 8 Å between the 

wall and the closest atom in the system. Appropriate sodium counter ions to neutralize 

the system were also added by LeAP. The tleap script used to prepare the system can be 

found in Appendix A. Particle Mesh Ewald was used to calculate the long-range 

electrostatic interactions and the non-bonded cutoff was set to 8.0 Å.   

Using the Big Red supercomputer, the solvated FASN TE covalent-orlistat system 

was then equilibrated by a five-step protocol prior to beginning the MD simulation. First, 

with all protein and ligand atoms in the system being restrained by 500 kcal/mol/Å2 in 

Cartesian space using harmonic potential, the solvated system was minimized by 500 

steps of steepest descent minimization followed by 500 steps of conjugate gradient 

minimization to minimize the energy of the water molecules and counter ions. Next, the 

atomic restraints were removed and the energy of the whole system was minimized by 

10000 steps of steepest descent minimization followed by 15000 steps of conjugate 

gradient minimization. Third, over a duration of 50 ps with a restraint of 10 kcal/mol/Å2, 

the system was heated from 0 to 300 K. This gradual heat step was controlled by 

Langevin dynamics with a collision frequency of 2 ps-1. Then, with a weak restraint of 10 

kcal/mol/Å2 to the protein, the system was equilibrated by constant pressure dynamics 

simulation with isotropic position scaling for 0.05 ns at 300 K. The reference pressure 

was set as 1 bar, with a pressure relaxation time of 1.0 ps.  Finally, the system was further 

equilibrated for 60 ps at 300 K using constant volume periodic boundaries, which was 
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controlled by Langevin dynamics with a collision frequency of 2 ps-1 and a pressure 

relaxation time of 2 ps. Each step of the simulation applied the SHAKE procedure, which 

weakly constrained bonds involving hydrogen atoms. To perform the MD simulation, a 

total of 35 ns (3500 frames) were simulated using the same conditions as the final 

equilibration step. Input files for all steps of the MD simulation can be found in Appendix 

A. To ensure that the results and observations obtained were reproducible, two replicate 

simulations were performed using the same initial structure and the same conditions as 

outlined above.  

Several additional MD simulations were also performed using the same procedure 

as described above. A truncated version of covalent-orlistat, in which the hexyl tail was 

virtually truncated to a methyl group using Chimera, was optimized, parameterized and 

simulated. Additionally, the 3-mer peptide containing orlistat was solvated and a total of 

100 ns of production MD were simulated. Addionally, a crystal lattice containing two 

chains of FASN TE, chain A and chain B, was simulated for 35 ns using the same 

procedure described above, but this time with a 5 ns equilibration period.     

 

D. MD Simulation Trajectory Analysis  

 The resulting trajectories from the MD simulations were processed using the ptraj 

module of AMBER9. A .mdcrd file describing the entire simulation trajectory was 

created by ptraj by uploading the .mdcrd files created in each production step and 

centering the trajectory in the box of water molecules using the center and image familiar 

commands. To ensure that the resulting trajectories were properly equilibrated, the 

temperature and total energy, along with potential and kinetic energy, were monitored 
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throughout the simulation by extracting these values from the MD simulation output files. 

Structural stability was examined using ptraj to calculate the root mean square deviation 

(RMSD) of the protein and root mean square fluctuation (RMSF) of the protein and 

covalent-orlistat ligand. All ptraj input files can be found in Appendix A.  

A potential conformational transition was studied by analyzing several pieces of 

information. The RMSD of covalent-orlistat, the ω dihedral angle of the hexyl tail, and 

the distance of the center of mass between the hexyl tail and its two binding pockets were 

calculated by ptraj. The time in which the conformational transition in each simulation 

took place was determined by examining the RMSD of covalent-orlistat. The 

conformational transition was determined to begin when the RMSD of covalent-orlistat 

began to change dramatically, indicating that a deviation from the initial starting structure 

was taking place. The conformational transition was determined to end when the RMSD 

stabilized. The time of the simulation during which the conformational transition was 

taking place was not included in calculations. Using ptraj, the distance of the hexyl tail 

was monitored, to ensure that a transition between the two binding pockets took place, as 

well as the ω dihedral angle, to ensure that a change in angle took place.  

To calculate the number of water molecules entering the active site of FASN TE 

during the simulations, the MD visualization program VMD (University of Illinois at 

Urbana-Champaign) was used to search for the oxygen atoms of water molecules in each 

frame of the trajectory that met specific criteria. In order for a water molecule to be 

considered to be within the TE active site, its oxygen atom must be found within 3.5 Å of 

the catalytic nitrogen of His2481 and within 4.0 Å of the carbonyl carbon of covalent-

orlistat that would be nucleophically attacked by a catalytic water molecule. To 
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determine the percentage of time in which a water molecule occupied the active site 

during each part of the conformational transition, the number of frames in which a water 

molecule met the criteria was divided by the total number of frames in which the hexyl 

tail adopted each respective conformation.   

Hydrogen bonds between polar atoms (N, O, S, F) in the system were examined 

using VMD with the criteria of a donor-acceptor distance of 3.5 Å and an angle cutoff of 

20 degrees. The donor-acceptor distance for strong hydrogen bonding required for 

catalysis between water molecules and His2481 was set to 3.0 Å. 

To determine the percentage of time in which activated water molecules, which 

could potentially catalyze the bond between Ser2308 and orlistat, were found in the active 

site in each conformation, the number of frames were determined in which water 

molecules were found to strongly hydrogen bond (< 3.0 Å) of the catalytic nitrogen of 

His2481, appeared within 4.0 Å of the carbonyl carbon of covalent-orlistat, and had an 

optimal orientation angle of 105° ± 5° with the carbonyl carbon and carbonyl oxygen of 

orlistat. This number of frames was divided by the total number of frames in which the 

hexyl tail adopted each respective conformation. 

 

E. Free Energy Calculations 

To examine the free energy of the covalent-orlistat ligand in each hexyl tail 

conformation, the MM_PBSA module of AMBER was used to extract a total of 50 

snapshots over the course of each conformation in each simulation, and then the total free 

energy was calculated. See Appendix A for input files used for the free energy 

calculations. The following equation describes how the MM_PBSA module calculates 



 

44 
 

the total free energy: PBtot = PBsol + gas, where PBsol = PBsur + PBcal and gas = ELE + 

VDW + INT. PBsur is described as the hydrophobic contributions to solvation free energy 

for PB calculations, and PBcal is described at the reaction field energy calculated by PB. 

ELE is the non-bonded electrostatic energy + 1,4-electrostatic energy, VDW is the non-

bonded van der Waals energy +1,4-van der Waals energy, and INT is the bond, angle and 

dihedral energies. Additionally, a total of 50 snapshots were extracted over the course of 

each conformation from each 100-ns trajectory with the 3-mer peptide containing orlistat. 

The free energy of the 3-mer peptide in each hexyl tail conformation was then calculated 

again with MM_PBSA to examine the free energy in each conformation without 

influence from the protein.   
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Specific Aim II: In-Silico and High-Throughput Ligand Screening 

A. In Situ Receptor Model Preparation  

To virtually screen the TE domain of FASN for potential ligand inhibitors, the 

crystal structure of FASN TE containing a polyunsaturated fatty acyl adduct, which has a 

higher resolution than the crystal structure of FASN TE with orlistat, was retrieved from 

the RCSB Protein Data Bank (ID: 3TJM) [280]. This crystal structure lacks residues 

2342-2355 due to poor electron density, which was modeled using ModLoop [279]. The 

UCSF DOCK6.0 suite of programs, including sphere and grid generation, was used to 

complete the in-silico ligand screening with rigid ligand docking [281,282]. To prepare TE 

receptor for in-silico screening, the DOCK6.0 tutorial 

(http://dock.compbio.ucsf.edu/DOCK_6/tutorials/index.htm) was used in conjunction with 

the UCSF Chimera visualization program. First, the PDB file of FASN TE with the fatty 

acyl adduct was loaded into Chimera, and the fatty acyl ligand was deleted from the 

protein. Next, the Dock Prep tool within Chimera completed the receptor preparation by 

deleting solvent, adding hydrogen atoms and charges to the protein, and saving the 

receptor as a .mol2 file. All hydrogen atoms were stripped from the protein and saved as 

a PDB file for molecular surface generation. The molecular surface of the receptor was 

created by opening the receptor PDB containing no hydrogen atoms prepared as 

described above. Then the Chimera tool Surface was used to create the molecular surface 

for the FASN TE receptor, and Write DMS was used to create and save this newly 

created molecular surface.  

Spheres to describe the shape of each potential binding pocket of the enzyme 

were created using the sphgen_cpp program available from the DOCK website 
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(http://dock.compbio.ucsf.edu/Contributed_Code/sphgen_cpp.htm). Spheres were created 

using the values as described in the DOCK tutorial, which is shown in Appendix C. The 

generated sphere clusters were examined in Chimera and all spheres that did not describe 

the active site of the protein were deleted manually with Chimera.  

Next, the scoring grids to evaluate the orientation of each ligand candidate in the 

active site of FASN TE were created by first generating a box around the active site of 

the protein using the DOCK command showbox. The grid program within DOCK was 

used to calculate the scoring grids. Values described in the tutorial were used for box 

generation and for the grid input file, which are shown in Appendix C. 

      

B. DOCK Ligand Screening 

To perform the in-silico ligand screening, a library of FDA approved drugs, 

containing approximately 2,000 unique compounds, was downloaded from the ZINC 

database [283-285]. The in-silico ligand screening was then completed in two steps. In 

the first step, grid scores were generated for compounds in the library using the 

DOCK6.0 program with rigid ligand scoring on Big Red Supercomputer. The top 200 

scoring compounds were output into a file renamed lig.mol2. Input files for the grid score 

screening can be found in Appendix C. Next, the second round of DOCK scoring, in 

which AMBER scores were generated for the top 200 scoring compounds from the grid 

screen, was completed by first using the prepare_amber.pl program extension available 

within DOCK6.0. This program prepared the receptor file by adding hydrogen atoms to 

the system, determining AMBER force field atoms types, calculating atomic charges, and 

generating the topology and coordinate files necessary for AMBER MD simulations. The 
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program also determined the charges and generated topology and coordinate files for 

each ligand. Finally, the second round of DOCK was performed for each ligand at a 

temperature of 300 K with 100 steps of steepest descent minimization followed by 3000 

MD steps (3 ns), allowing each ligand to be flexible, but keeping the receptor stationary. 

The AMBER score (EBinding) of each ligand was calculated as the Ecomplex - (Ereceptor + 

Eligand). Input files for AMBER scoring can be found in Appendix C. 

Each of the 200 ligands that were subjected to AMBER scoring was clustered into 

groups based on chemical structure using the Library MCS (Chem Axon). All 

compounds were examined visually within the active site of FASN TE using the View 

Dock module of Chimera. Any ligands with a positive AMBER score were discarded, as 

were any ligands that appeared outside the FASN TE active site. Of the 200 ligands 

scored, 34 of the top scoring ligands were chosen for further examination, by ensuring 

that different clusters of compounds were represented and choosing compounds that may 

interact favorably in the active site of FASN TE.   

 

C. Cloning and Subcloning the FASN TE Plasmid  

To test the ability of compound candidates selected from the in-silico screen to 

inhibit FASN TE activity, a recombinant form of TE protein was cloned, expressed and 

purified as described previously [212,213]. First, new PCR primers were designed in 

order to amplify the FASN TE portion of the FASN gene and were synthesized by 

Invitrogen. The forward primer sequence used was (5’ to 3’): GGGGATCCACGCCCAA 

GGAGGATGGTCTGGCCCAGCAG and the reverse primer sequence used was (5’ to 

3’): GGCTCGAGTTAGCCCTCCCGCACGCTCACGCGTGGCT. The primers were 
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dissolved in nuclease free H2O to a concentration of 0.5 µg/µL. A 50 ng/µL primer stock 

for PCR was created by diluting the primers 10X. A total of 350 µL of PCR reaction 

mixture (enough for 3 100 µL PCR reactions) was prepared in the following order: 7 µL 

of template cDNA, 14 µL each of the diluted forward and reverse primer stocks, 35 µL of 

10X pfu buffer, 7 µL of 10 mM deoxynucleotide (dNTP) mix, 10.5 µL of DMSO and 

262.5 µL of ddH2O. The samples were boiled for 10 minutes and divided into 3 reactions 

of 100 µL each. 1 µL of pfu polymerase was added to each reaction tube. The template 

cDNA, 10X pfu buffer, dNTP mix and pfu polymerase were obtained from Stratagene 

(Agilent). PCR was performed using a Bio-Rad thermocycler with the following 

protocol: 72 °C for 2 minutes; 35 cycles of 94 °C for 1 minute, 53 °C for 45 seconds, 72 

°C for 1.5 minutes; 72 °C for 7 minutes; hold at 4 °C. To ensure that the desired PCR 

product (approximately 1 kb) was amplified, 9 µL of the PCR product, along with 1 µL 

of 10X agarose gel loading buffer, was loaded onto a 1.5 % agarose gel, prepared with 

TBE buffer (90 mM Tris-Cl, 90 mM boric acid, 2 mM EDTA) and 3 µL ethidium 

bromide. 4 µL of 1kb plus DNA marker (Invitrogen) was also loaded onto the gel. The 

gel was run at a constant 100 V and visualized using the FluorChem HD2 imaging 

system (Protein Simple).  

The DNA product was precipitated using an ethanol precipication. 1/10 the 

volume of 3M sodium acetate was added to the DNA product, followed by 3 volumes of 

100 % ethanol. The mixture was incubated at -70 °C for 1 hour, centrifuged at room 

temperature at 12,000g for 15 minutes and the supernatant was removed. 200 µL of 70 % 

ethanol was added to the pellet, which was then centrifuged at 12,000g at room 

temperature for 5 minutes. The supernatant was removed and the addition of 70 % 
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ethanol followed by centrifugation and supernatant removal was repeated twice more. 

The DNA pellet was incubated for 1 hour in the culture hood and then resuspended in 

57.2 µL of nuclease free H2O. As DNA amplification with pfu polymerase creates blunt 

end PCR products, and ligation into the pGEM-T Easy vector requires “sticky” A-tailed 

DNA ends, the GoTaq polymerase kit (Promega) was used to add A-tails onto the FASN 

TE DNA. 16 µL of GoTaq Flexi buffer, 4.8 µL of 25 mM MgCl2 solution, 1.6 µL of 10 

mM PCR nucleotide mix and 0.4 µL of the GoTaq DNA Polymerase were added the 57.2 

µL of DNA from PCR to create an 80 µL reaction mixture. The mixture was incubated at 

70 °C for 30 minutes, and then separated on a 1.5 % agarose gel to purify the product. 2 

µL of the product mixture was loaded into a separate lane to visualize the product with 

longwave UV, so as not to expose the majority of the product to UV radiation. After 

visualizing and determining the location of the product, the product band containing the 

rest of the DNA was cut away from the agarose gel and purified using the Qiagen Gel 

Extraction kit according to the instructions provided in the kit. The purified DNA was 

eluted using nuclease free H2O and the concentration of DNA was measured using the 

Bio-Rad SmartSpec 3000 spectrometer by placing 2 µL of the DNA sample and 98 µL of 

ddH2O into the black cuvette provided with the instrument. 

 To ligate the FASN TE PCR product into the pGEM-T Easy vector (Promega), a 

10 µL reaction was created according to the kit instructions by mixing 5 µL of 2X Rapid 

Ligation Buffer with 1 µL of the vector, 0.5 µL of the PCR product (50 ng), 1 µL of T4 

DNA ligase and 2.5 µL of nuclease free H2O. The reaction was mixed by pipetting and 

incubated overnight at 4 °C. The ligation product was transformed into DH5α E. coli 

cells by adding all 10 µL of the ligation reaction mixture to a vial of the bacterial cells, 
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which were previously thawed on ice, and mixing by stirring with a pipet tip. The vial 

was incubated on ice for 30 seconds, followed by 45 seconds in a 42 °C water bath 

without any mixing or shaking. After 2 minutes of incubation on ice, 500 µL of pre-

warmed (37 °C) LB bacterial growth media was added to the vial and then placed 

incubated at 37 °C for 1 hour. The vial was then placed on ice and the culture was spread 

onto LB agar plates with ampicillin, which had been equilibrated to room temperature. 

First, 50 µL of the bacterial solution was spread onto the first agar plate with a sterile 

spreader created in a flame from a 2 mL plastic volumetric pipette. Then, 100 µL of the 

bacterial solution was spread onto the second plate. The remaining 350 µL solution was 

spun down, 300 µL of the supernatant was removed, and the cells were re-suspended in 

the remaining 50 µL of LB, which was then spread onto the third agar plate. The plates 

were incubated upside down at 37 °C overnight, followed by refrigerating at 4 °C. Using 

sterile technique with a burner, 5 mL of LB media, along with 5 µL of ampicillin (50 

µg/mL final concentration) were transferred into each of 12 sterile culture tubes. Next, 12 

colonies were chosen, and 1 colony was added to each tube, and the bacteria were 

allowed to grow overnight by incubating at 37 °C with shaking. The DNA plasmids from 

each culture were collected by the QIAprep Spin Miniprep Kit (Qiagen), following the 

instructions provided by the kit, and the DNA concentration of each sample was 

measured as described previously. 

 To release the FASN TE gene from the pGEM-T Easy vector to ensure that 

proper ligation took place, a restriction digest with EcoRI was performed, as the pGEM-T 

Easy vector has EcoRI restriction sites on both sides of the FASN TE gene insert. A 

master mix, with enough of the mixture for 13 reactions, was created by mixing 159.9 µL 
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of nuclease free H2O with 26 µL of EcoRI buffer (New England Biolabs, NEB) and 2.6 

µL of bovine serum albumin (BSA) (100 µg/µL final concentration, NEB). For each 

plasmid sample, 14.5 µL of the reaction mixture was placed into a PCR tube, along with 

5 µL of purified plasma DNA and 0.5 µL of EcoRI (NEB). Each tube was centrifuged 

briefly and then incubated at 37 °C for 1 hour. To ensure that successful digestion, and 

thus proper ligation, occurred, each sample was resolved on a 1.5 % agarose gel as 

described previously and two of the plasmid samples were submitted for DNA 

sequencing (DNA Sequencing Core Facility, Department of Biochemistry & Molecular 

Biology, Indiana University School of Medicine).  

 After the FASN TE sequence was determined to be correct by considering both 

the forward and reverse sequencing, and reconciling any mistakes by examining 

nucleotide peaks with Chromas DNA sequencing software, one of the samples was 

chosen for insertion into the pET-28a vector (Novagen). The vector was linearized and 

the FASN TE insert was prepared by restriction digestion with Xho I and BamHI 

restriction enzymes (NEB). To digest the FASN TE insert, a 50 µL reaction mixture was 

prepared by mixing 11.9 µL of nuclease free H2O, 5 µL of NEB Buffer #4, 0.5 µL BSA, 

30 µL of the FASN TE plasmid DNA, 1.3 µL of Xho I and 1.3 µL of BamHI. A 

restriction digest of the pET-28a plasmid was prepared by mixing 1.2 µL of nuclease free 

H2O with 3 µL of NEB Buffer #4, 0.3 µL of BSA, 23.5 µL of the plasmid, 1 µL of Xho I 

and 1 µL BamH I. Each digestion was spun down briefly and incubated at 37 °C for 4 

hours. The digestion products were stored at -20 °C. Digestion was confirmed later by 

resolving with a 1.5 % agarose gel. The bands corresponding to the FASN TE insert and 
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the pET-28a vectors were excised from the gel and purified using the Qiagen Gel 

Extraction kit according to the provided instructions.  

 The linearized vector and the FASN TE product were ligated together using a 3:1 

molar ratio of insert to vector. A 10 µL ligation reaction was prepared in the following 

order: 5 µL of 2X Ligation Premix (Novagen), 1.58 µL of the FASN TE insert (60 ng), 

2.48 µL of the pET-28a vector (100 ng), 1 µL T4 DNA Ligase (Novagen). The mixture 

was gently mixed with a pipette tip, incubated at room temperature for 3 hours and then 

the entire reaction mixture was transformed into DH5α competent cells and 12 plasmid 

samples were isolated as described above. To ensure that the FASN TE insert was 

properly ligated into the pET-28a vector, a restriction digest with Xho 1 and BamH 1 was 

again performed with 6.8 µL of nuclease free H2O, 0.2 µL BSA, 2 µL NEB Buffer #4, 

0.5 µL Xho I, 0.5 µL BamH I, 10 µL of the desired plasmid sample, which was then 

incubated at 37 °C for 4 hours. Each of the 12 isolated plasmids was digested in this 

manner. Proper insertion of the FASN TE gene was confirmed by running a 1.5 % 

agarose gel as described previously and two samples were sent for DNA sequencing. 

After confirming the correct sequence, 50 µg of the pET-28a plasmid containing FASN 

TE from one of the samples was transformed into BL21 DE3 LRA E. coli cells, using 

kanamycin as the selection antibiotic, as described above. The bacterial sample was 

stored in LB with 10 % glycerol at -80 °C. Note: all excess DNA samples and plasmid 

products throughout the process described above were stored at -20 °C. 
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D. Expression and Purification of Recombinant FASN TE 

The TE domain was overexpressed in BL21 DE3 LRA E. coli by first inoculating 

a total of 40 mL of LB growth media, created prior to beginning the experiment by 

dissolving 25 g of LB broth powder (Fisher) per 1000 mL of ddH2O and autoclaving, 

with 40 µL of E. coli containing the FASN TE plasmid, along with the antibiotic 

kanamycin, which was added to each culture at a final concentration of 50 µg/mL. Sterile 

technique using a burner was employed. The culture was grown overnight at 37 °C with 

shaking. 20 mL of the culture was then transferred to each of 1 L of LB, along with 

kanamycin (final concentration 50 µg/mL) and the culture was grown at 37 °C with 

shaking for approximately 4 hours until the OD600 reached ~0.8-1. FASN TE expression 

was then induced by adding isopropyl β-D-1-thiogalactopyranoside (IPTG) to a final 

concentration of 0.5 mM, and the culture was grown at 25 °C with shaking for another 4 

hours. The E. coli cells were collected by centrifugation (5000 rpm, 15 minutes), the LB 

was removed and the cell pellet was frozen at -70 °C. 

To isolate and purify the expressed FASN TE protein, the bacterial cells were 

thawed for 15 minutes on ice and then re-suspended with 2 mL of lysis buffer per gram 

weight of cell pellet. Lysis buffer contained 50 mM NaH2PO4, 300 mM NaCl, 10 % 

glycerol, 0.1 % NP-40, 0.5 mM PMSF and 10 mM imidazole, pH = 8.0. Lysozyme 

(Sigma) was added to the lysis buffer/cell pellet mixture to a final concentration of 1 

mg/mL, and the mixture was incubated on ice for 30 minutes. The cells were then 

subjected to 5 rounds of sonication, with 15 seconds of ablation with the sonication probe 

at 80 % amplification each round. The cell lysate was then centrifuged at 12,000g for 30 

minutes at 4 °C to pellet any cellular debris, and the supernatant was saved. Note: 
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following sonication and pelleting of cellular debris, a small sample from each 

subsequent step of the purification listed below was saved and then examined using 

sodium dodecyl sulfate polyacrylamide gel elecrophoresis (SDS-PAGE). As expression 

of the FASN TE protein with the pET-28a vector adds an N-terminal histidine tag to the 

protein, the protein product can be purified using nickel-nitrilotriacetic acid. First, 1 mL 

of nickel-nitrilotriacetic acid (Ni-NTA) agarose slurry (Qiagen) for every 4 mL of cleared 

lysate was equilibrated with lysis buffer by centrifuging the slurry at 1000g for 1 minute 

and removing the slurry solution. Then, 1 mL of lysis buffer was then added to the 

remaining Ni-NTA agarose, mixed, and centrifuged as before. The supernatant lysis 

buffer was removed from the Ni-NTA agarose and the cellular supernatant was added 

and mixed by gentle rotation at 4 °C for 1 hour to allow the His-tagged FASN TE protein 

to attach to the Ni-NTA agarose. The solution was centrifuged for 1 minute at 1000g, the 

supernatant was removed and 2 mL of wash buffer per 4 mL of lysate was added to the 

agarose beads. Wash buffer contained 50 mM NaH2PO4, 300 mM NaCl, 10 % glycerol, 

0.1 % NP-40, 0.5 mM PMSF and 20 mM imidazole, pH = 8.0. The solution was rotated 

for 3 minutes at 4 oC, centrifuged and supernatant removed as above. The wash procedure 

was repeated four more times. 0.5 mL of elution buffer per 4 mL of lysate was then 

added to the slurry, and the solution was mixed by rotation for 5 minutes at 4 °C. Elution 

buffer contained 50 mM NaH2PO4, 300 mM NaCl, 10 % glycerol, 0.1 % NP-40, 0.5 mM 

PMSF and 250 mM imidazole, pH = 8.0. The solution was centrifuged as above, but the 

supernatant was saved in 1.5 mL centrifuge tubes. The elution procedure was repeated 

four more times, with the supernatant from each round saved in separate 1.5 mL 
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centrifuge tubes. The supernatant tubes were then centrifuged again and separated from 

any remaining Ni-NTA agarose.  

The concentration of protein in each sample saved from the purification and each 

elution fraction was measured by Bradford Assay. To perform the assay, Bio-Rad Protein 

Assay Dye Reagent Concentrate (Bio-Rad) was diluted 1:5 with ddH2O. A set of 

standards to create a standard curve was created by adding 1 mL of the diluted dye 

reagent to each of five small test tubes. To prepare the standards, one tube acted as a 

blank, and 1, 2, 4 or 8 µL of a standard protein solution was added to each of the four 

tubes to create standards corresponding to protein concentrations of 1.40 mg/mL, 2.80 

mg/mL, 5.60 mg/mL and 11.20 mg/mL protein. To measure the concentration of each 

elution sample, 1 µL of the solution was added to 1 mL of the diluted dye reagent, and 

the concentration of each sample was measured in triplicate. The standard curve was 

created and the protein concentrations were measured using a Bio-Rad SmartSpec 3000 

spectrometer. SDS-PAGE was then performed by adding 5 µg total of protein from each 

sample along with SDS loading dye. Samples were boiled for 10 minutes, or incubated 

for 1 hour at room temperature, in order to denature the proteins, and then loaded onto a 

12 % tris-glycine SDS-polyacrylamide gel with a 5 % stacking gel. PageRuler Pre-

Stained Protein Ladder (Thermo) was also loaded onto the gel as a molecular weight 

marker. SDS-PAGE was performed in 1X SDS running buffer at 25 mA per gel and once 

the loading buffer reached the end of the gel, the gel was placed into coomassie blue 

staining solution, which consisted of 500 mg Brilliant Blue (0.1 %), 250 mL methanol 

(50 %), 50 mL glacial acetic acid (10 %) and 200 mL ddH2O. The gel was stained in 

coomassie for 1 hour at room temperature with shaking, and then destained in destaining 
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solution (77:18:5 ddH2O, methanol, acetic acid) overnight at room temperature with 

shaking. Completed gels were scanned using a computer scanner. The presence of 

purified FASN TE protein was confirmed by performing a Western Blot as described in 

methods section III E, and probing using a primary FASN antibody (Santa Cruz 

Biotechnology) raised against C-terminal residues 2205-2504, corresponding to FASN 

TE (1:1000 dilution), followed by probing with a horseradish peroxidase (HRP) 

conjugated anti-mouse IgG secondary antibody (1:3000 dilution). 

After confirming the purify and presence of FASN in the elution fractions, the 

fractions were pooled and then dialyzed using a Slide-A-Lyzer dialysis cassette (Thermo) 

with a 3,500 Da molecular weight cutoff. If necessary, the protein was concentrated using 

Amicon ultra centrifugal filters (Millipore) with a 3,000 Da molecular weight cutoff, and 

then dialyzed overnight with spinning at 4 °C against 600 mL of buffer A (100 mM Tris-

HCl, 50 mM NaCl, 0.05% Brij35 at pH 7.5). The dialysis solution was changed and 

dialyzed for 4 hours, followed by changing the dialysis solution and dialyzing for another 

4 hours. The dialyzed protein solution was removed from the cassette and the protein 

concentration was once again measured using a Bradford assay as described above, and 

the protein was stored at -80 °C in buffer A with 10 % glycerol added as a cryoprotectant. 

Note: FASN TE cannot undergo multiple freeze-thaw cycles, and can therefore only be 

used once after thawing, thus it must be aliquoted.    

 

E. FASN TE Kinetic Studies and Candidate Ligand Screening 

The 34 candidate ligands from the DOCK in-silico screen were examined for their 

ability to inhibit FASN TE activity using a 4-methylumbelliferyl heptanoate (4-MUH) 



 

57 
 

fluorogenic assay first described by Jacks and Kircher [286] and described previously 

[224,236]. Before screening the candidate ligands, the kinetic parameters for the purified 

FASN TE protein were determined by first preparing a standard curve of the fluorescence 

produced at 355/460 nm for the 4-methylumbelliferone (4-MU) fluorescent product, to 

quantify the amount of fluorescence units (FU) yielded per µg of 4-MU. The kinetic 

assay was performed in opaque black, flat-bottom 96-well plates (Corning) containing 45 

µL of 500 nM purified TE solubilized in buffer A (100 mM Tris-HCl, 50 mM NaCl, 

0.05% Brij35 at pH 7.5). The kinetics of the protein were determined in the presence of 

DMSO, as would occur with the addition of a compound candidate, by first adding 5 µL 

of DMSO to each well, incubating at 37 °C for 30 minutes. 5 µL of varying 

concentrations of 4-MUH (1.2, 0.6, 0.3, 0.15, 0.075, 0.0375 mM starting concentrations, 

before addition to the wells) were added to each well in triplicate and incubated at 37 °C 

for 1 hour and the fluorescence was measured. To determine the Km, which is equivalent 

to the concentration required to achieve 50 % of the maximal velocity (vmax), the data 

were fit using WinNonlin v2.0 software (Pharsight) with a 1 enzyme model with no 

weighing of the data. 

The compound candidate screen was performed in opaque black, flat-bottom 96-

well plates (Corning) containing 45 µL of 500 nM purified TE solubilized in buffer A 

and each compound candidate dissolved in DMSO was examined in triplicate, one 

reaction per well, by adding 5 µL of the compound to each well, with a final compound 

concentration of 100 μM. The plate was incubated at 37 °C for 30 min. 5 µL of 4-MUH 

(Sigma) dissolved in DMSO was then added to the reaction at a final concentration of 
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300 µM and incubated at 37 °C for 1 hr. In addition to the reaction wells, the following 

control wells were also prepared: 

1) Buffer A alone (no protein) + DMSO: used for blank 

2) FASN TE Protein + inhibitor vehicle ONLY (no test inhibitor) + 4-MUH: used to 

measure the full activity of the protein 

3) Buffer A alone (no FASN TE)  + inhibitor vehicle ONLY (no test inhibitor) + 4-

MUH: used to measure the auto-hydrolysis of 4-MUH, which was subtracted 

from the full activity of the protein 

4) FASN TE Protein + inhibitor +4-MUH: used to measure the inhibition of FASN 

TE activity by each compound 

5) Buffer A alone (no protein) + inhibitor + 4-MUH: used to determine if the 

inhibitor was adding to the fluorescent background, which was subtracted from 

the fluorescence value calculated from the protein + inhibitor + 4-MUH 

The fluorescence due to liberated 4-MU was measured using a fluorescence plate reader 

with excitation/emission wavelengths of 355/460 nm. The Ki value for each inhibitor 

candidate was calculated using the online IC50 to Ki converter 

(http://botdb.abcc.ncifcrf.gov/toxin/kiCalES.jsp) [287] based on the Cheng and Prusoff 

equation [288].  
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Specific Aim III: Lead Candidate Evaluation 

A. Human Cell Culture  

PANC-1 cells (ATCC) were maintained in complete Dulbecco’s modified eagle 

medium (DMEM) (Corning cellgro) supplemented with 10 % fetal bovine serum (Life 

Technologies) and 1 % penicillin-streptomycin (Corning cellgro). PANC-1/V4 and 

PANC-1/F7 cell lines [149] were maintained similarly to PANC-1 cells, but with the 

addition of G418 (Sigma) to the media at a final concentration of 200 µg/mL. BxPC-3 

cells (ATCC) were maintained in RPMI 1640 (Corning cellgro) supplemented with 10 % 

fetal bovine serum and 1 % penicillin-streptomycin. All cell lines were maintained at 37 

°C in 5 % CO2 in 75 cm2 vented tissue culture flasks. 

Cells were ready for plating for experiments or for sub-culturing once they 

reached approximately 80 % confluency. Using sterile technique in a laminar flow hood, 

cells were passaged by removing media from the flask via vacuum aspiration, washing 

the cells with 2 mL of trypsin and removing via vacuum aspiration, and then incubating 

the cells in 2 mL of trypsin for approximately 20 minutes in the tissue culture incubator. 

Once cells had detached from the flask, 8 mL of new media was added to the flask, the 

walls of the flask washed by pipetting up and down with media, and then all media was 

removed from the flask and placed in a 50 mL centrifuge tube. Cells were pipetted up and 

down in the tube in order to break up any clumps of cells and to create a single cell 

solution, and then 1 mL of the cell suspension was then placed back into the tissue 

culture flask (1:10 splitting ratio), along with approximately 14 mL of new media. Cells 

were passaged twice weekly. To plate cells for subsequent experiments, cells were first 

counted by mixing 50 µL of the cell suspension with 50 µL of trypan blue solution 



 

60 
 

(Sigma), and then adding 10 µL of the mixture to each side of a hemocytometer. Cells in 

the four outer corners of each side of the hemocytometer were counted under 

magnification, ignoring any dead cells (stained blue with the trypan blue solution). Cell 

density was determined by the following formula: 

(𝐵𝑜𝑥 1+2+3+4+ 5+6+7+8)
4

= 𝐶𝑒𝑙𝑙 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 × 104 𝑐𝑒𝑙𝑙𝑠/𝑚𝐿  

 

B. MTT Assays to Measure Cellular Proliferation  

PANC-1 or BxPC-3 cells were seeded in 96-well tissue culture plates (2,000 

cells/well, 100 µL/well) and cultured for 24 h at 37 °C and 5 % CO2. Cells were treated 

in triplicate with proton pump inhibitors (PPIs) in DMSO or DMSO control (0.5 %) at 

various concentrations by removing the media from each well, and replacing with 200 µL 

of media containing the desired PPI at the desired concentration, prepared by serial 

dilution. Cells were then incubated for 72 h at 37 oC; followed by performing an assay in 

which MTT dye is added to the culture media and is reduced from a soluble yellow 

tetrazole dye to an insoluble purple formazan by cellular reductases in living cells [289]. 

MTT stock solution was created by dissolving 5 mg/mL of thiazoyl blue tetrazolium 

bromide powder (Sigma) into 1X PBS solution (137 mM NaCl, 2.7 mM KCl, 10 mM 

Na2HPO4 · 2H2O, 2.0 mM KH2PO4, pH = 7.4) and sterile filtering. MTT solution (20 µL) 

was added to each well and incubated for 4 hours in the tissue culture incubator. The 

plate was then spun down (1500 rpm, 10 minutes), and all media and MTT solution was 

removed from the plate via vacuum aspiration. Finally, 100 µL of DMSO was added to 

each well to solubilize the purple MTT dye and the absorbance at 570 nm was read on a 

plate reader. 
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C. Colony Formation Assays 

Human pancreatic cancer cells were seeded in 6-well tissue culture plates (100 

cells/well, 2 mL growth media for PANC-1, PANC-1/V4 and PANC-1/F7; 200 cells/well 

for BxPC-3 cells) and cultured for 24 h at 37 °C as described previously. Cells were 

treated in triplicate by adding 10 µL of PPIs in DMSO (various concentrations) or DMSO 

control directly to the treatment wells. The cells were cultured for 10 days, and colonies 

were visualized by removing the media, washing each well with 1 mL of PBS, staining 

with 750 µL of coomassie blue for 20 minutes at room temperature, re-washing with 1 

mL of PBS and then allowing the plates to air dry. Colonies were counted manually. 

 

D. Radioactive FASN Lipid Synthesis Assay  

The basal FASN synthesis rate in each cell line, or the inhibition of fatty acid 

synthesis in the presence of PPIs, was measured by examining the incorporation of [14C]-

acetate into fatty acids in whole cells. Cells were seeded in 12-well tissue culture plates 

(100,000 cells/well, 500 µL media) and cultured for 24 h at 37 °C. If lipid synthesis 

inhibition by PPIs were examined, cells were treated in triplicate with inhibitors (31.25-

1000 μM) for 4 hours at 37 °C. To account for any differences in cell proliferation rate or 

for cell death caused by the PPIs, trypsin was added to wells of cells prepared specifically 

for cell counting prior to measuring radioactivity, and cells were counted to normalize 

radioactive counts to the number of cells. 1 μCi/mL of [14C]-acetate (Perkin Elmer) was 

added to each well and incubated for 2 hours at 37 °C. The cells were harvested and 

lipids extracted using the Folch extraction procedure [290]. The cell media was aspirated 

from each well and 900 µL of 2:1 chloroform/methanol (CHCl3:MeOH) was added to 
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each well to lyse the cells. The lysate was transferred to 2 mL centrifuge tubes, along 

with 700 µL of 4 mM MgCl2. Each tube was vortexed and centrifuged for 30 seconds at 

12,000g to separate the organic and aqueous layers. The top aqueous layer was removed 

by aspiration. 700 µL of 2:1 CHCl3:MeOH and 600 µL of MgCl2 was added to each tube, 

which were vortexed, centrifuged and the aqueous layer removed. The process was 

repeated once more with the addition of 600 µL of 2:1 CHCl3:MeOH and 500 µL of 

MgCl2. The samples were dried overnight in a fume hood, resuspended in 200 µL of 

CHCl3, added to 10 mL of scintillation fluid, and radioactivity, given as disintegrations 

per minute (DPM), was measured using a scintillation counter. All counts were 

normalized to 105 cells.  

 

E. Measuring FASN Protein Expression via Western Blot 

 To measure the amount of FASN protein expression, 0.6-0.8 x 106 of cells were 

seeded in 10 cm tissue culture dishes with 3 mL of appropriate growth media and allowed 

to grow to approximately 80 % confluency. The media was aspirated and cells were 

washed with 1 mL ice cold PBS and collected in PBS by scraping. The cells were spun 

down for 10 seconds at 12,000g, PBS was removed, and cells were washed again with 1 

mL PBS. PBS was removed and the cell pellets were resuspended in TNN lysis buffer 

(50 mM Tris-HCl, 150 mM NaCl, 0.5 % NP-40, 5 mM EDTA, 50 mM NaF, 1 mM 

Na3VO3, with 1 mM PMSF and 1 mM DTT, added immediately before use, pH = 7.4), 

the amount of buffer ranging from 20-100 µL, depending on the size of the cell pellet. 

Cells were vortexed, and incubated on ice for 15 minutes, followed by a second round of 

vortexing and incubation. Cells were then lysed with 5 rounds of sonication, with 7 
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seconds of ablation at 40 % of amplification each round. Cellular debris was pelleted by 

centrifuging at 12,000g for 15 minutes at 4 °C and protein concentration was measured 

by Bradford Assay as described in detail in section II D. Samples consisting of 20 µg of 

total protein were prepared with the addition 5X SDS loading dye, and the proteins were 

denatured by boiling for 10 minutes. The samples were resolved using SDS-PAGE with 

an 8 % Tris-glycine SDS-polyacrylamide gel with 5 % stacking gel, along with 

PageRuler Plus protein ladder (Fermentas) as a molecular weight marker. To prepare for 

Western Blot transfer, the resolved gel and two pieces of filter paper were soaked in 

Western Blot transfer buffer (48 mM Tris Base, 39 mM glycine, 5 mM SDS, 20 % 

MeOH), and a PVDF membrane was soaked in 100 % methanol. The transfer was 

performed wet overnight at 4 °C using the Mini Trans-Blot Cell system (Bio-Rad). The 

membrane was then blocked with 5 % non-fat dry milk (NFDM) (1X PBS with 0.1 % 

Tween-20) for 2 hours at room temperature. The blocking solution was discarded and 

replaced with primary FASN antibody (Santa Cruz) diluted 1:1000 and β-actin antibody 

diluted 1:3000 in 5 % NFDM. The membrane was incubated for 2 hours at room 

temperature and then washed three times for 10 minutes each with PBS with 0.1 % 

Tween-20. The membrane was incubated for 30 minutes at room temperature with HRP-

conjugated anti-mouse IgG (1:3000 dilution) and again washed three times for 10 

minutes each with PBS with 0.1 % Tween-20. The membrane was incubated with ECL 

Western Blotting Detection Reagents (Amersham) for 1 minute at room temperature and 

visualized with chemiluminescent detection using the FluorChem HD2 imaging system 

(Protein Simple). 
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F. Probing the FASN TE Active Site 

The ability of lansoprazole (Sigma) to specifically inhibit the TE active site of 

full-length FASN was examined using a serine hydrolase probe as described previously 

[212]. PANC-1 cells were seeded (approximately 0.6-0.8 x 106 cells total) in 10 cm tissue 

culture dishes and allowed to grow to 80 % confluency. The media was aspirated and 

cells were washed with 1 mL ice cold PBS and collected by scraping. The cells were 

spun down for 10 seconds at 12,000g, PBS was removed, and cells were washed again 

with 1 mL PBS. PBS was removed and the cells were resuspended in 50 mM Tris-Cl (pH 

= 8.0). Cells were then lysed with five rounds of sonication, using 15 seconds of ablation 

at 40 % amplification. The soluble and insoluble protein fractions were separated by 

centrifugation at 12,000g for 15 minutes at 4 °C, and the protein concentration was 

measured by Bradford assay as described previously. Samples of cell lysate (40 µL, 1 

µg/µL) were treated with varying concentrations of lansoprazole (1 µL in DMSO, 12.5-

200 µM final concentration) or DMSO control for 30 minutes at room temperature, 

followed by treatment with the ActivX Desthiobiotin-fluorophosphonate (FP) serine 

hydrolase probe (Thermo) (1 µL in DMSO, 5 µM final concentration) for 30 minutes at 

room temperature. Reactions were stopped by addition of 10 µL 5X SDS-PAGE loading 

buffer and boiling for 10 minutes, and resolved using SDS-PAGE with an 8 % tris-

glycine SDS-polyacrylamide gel with PageRuler Plus protein ladder (Fermentas) as a 

molecular weight marker. The protein was transferred to a PVDF membrane overnight at 

4 °C at 35 mV and was blocked for 1 hour at room temperature using 1 % BSA (Sigma) 

in PBS with 0.05 % Tween-20. The membrane was washed twice for 5 minutes each with 

PBS with 0.05 % Tween-20 then incubated with streptavidin-peroxidase polymer, 
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ultrasensitive (Sigma) diluted 1:1000 in PBS with 0.05 % Tween-20 for 1 hour at room 

temperature. The membrane was washed 6 times at room temperature with PBS with 0.05 

% Tween-20 for 5 minutes each and then incubated with SuperSignal West Dura 

Extended Duration Substrate (Thermo) for 1 minute at room temperature. The blot was 

visualized with chemiluminescent detection using the FluorChem HD2 imaging system 

(Protein Simple). The membrane was stripped by incubating in a mild stripping buffer 

(200 mM glycine, 3.5 mM SDS, 1 % Tween-20, pH = 2.2) for 10 minutes at room 

temperature. The stripping buffer was discarded, and fresh buffer was added and 

incubated at room temperature for an additional 10 minutes. The membrane was washed 

twice with PBS for 10 minutes at room temperature and then washed twice with TBST 

(50 mM Tris, 150 mM NaCl, 0.05 % Tween-20, pH = 7.6) for 5 minutes at room 

temperature. The membrane was then re-blocked using 5 % non-fat milk in PBS, probed 

for FASN expression (BD Biosciences) (1:1000 dilution) and β-actin (1:3000 dilution) 

and visualizing using HRP-conjugated anti-mouse IgG (1:3000 dilution) with 

chemiluminescent detection as described in section III E above.   

 

G. Determination of Inhibition Mechanism of FASN TE by Lansoprazole 

 To determine the type of enzymatic inhibition that lansoprazole imparts on FASN 

TE, recombinant FASN TE was incubated with several lansoprazole concentrations (50, 

25, 6.25 µM) in the presence of a range of 4-MUH concentrations (160, 80, 40, 20, 10 

µM), as described in section II E. The fluorescence due to liberated 4-MU was measured 

and a Lineweaver-Burk plot was created by plotting 1/v vs. 1/[S] for each lansoprazole 

concentration [291]. 
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H. PARP-1 Cleavage Apoptosis Assay 

Apoptosis induction by lansoprazole was confirmed by measuring the amount of 

cleaved poly(ADP-ribose) polymerase-1 (PARP-1) in cells following lansoprazole 

treatment via Western Blot. 6-well tissue culture plates were seeded with BxPC-3 cells 

(212,000 cells/well, 2 mL growth media) and cultured for 24 hours as described 

previously. Cells were then treated by adding 10 µL of lansoprazole (12, 25, 50 µM) or 

DMSO control directly to the well and incubating for 8 hours in the tissue incubator. Cell 

lysate was isolated and 30 µg of total protein from each sample was resolved using a 10 

% SDS-PAGE gel, transferred to a PVDF membrane, blocked with 5 % non-fat milk, and 

probed with an antibody specific for the cleaved form of PARP (Cell Signaling) (1:1000 

dilution), following the Western Blot protocol as described in section III E above. The 

blot was visualized using HRP-conjugated anti-mouse IgG (1:3000 dilution) followed by 

chemiluminescent detection with SuperSignal West Dura Extended Duration Substrate 

(Thermo).  

 

I. Cell Death Detection Apoptosis Assay 

BxPC-3 cells were seeded in 12-well plates (18,000 cells/well, 1 mL media) and 

cultured for 24 hours as described previously, followed by treatment in triplicate with 5 

µL of lansoprazole (12, 25, 50 µM) or DMSO control added directly to each well. The 

plates were incubated in the tissue culture incubator for 72 hours, and apoptosis was 

measured with the Cell Death Detection ELISA assay kit (Roche), which was performed 

according to the instructions provided. Following the 72 hour treatment, cells from wells 

specifically prepared for cell counting were counted by adding 500 µL of trypsin to each 
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well (250 µL was added to the 50 µM treatment well) and then determining the number 

of cells in each well as described previously. Following cell counting, the media was 

removed and cells were lysed directly in the treatment wells by adding lysis buffer from 

the kit into each well to yield a final cell concentration of 104 cells/200 µL of lysis buffer 

and incubating for 30 minutes at room temperature. The lysate was centrifuged at 200g 

for 10 minutes and 20 µL from each sample was transferred into the microplate provided 

by the kit. 80 µL of the immunoreagent prepared from the kit were added to each test 

well, and the plate was covered with foil and incubated with shaking for 2 hours at room 

temperature. The solution was removed with vacuum aspiration and each well was 

washed three times with 220 µL of incubation buffer from the kit and removed from the 

wells with aspiration. ABTS solution from the kit, which is highly light sensitive, was 

prepared in a dark area, such as in the tissue culture hood with no lights, in an opaque 15 

mL centrifuge tube. ABTS solution (100 µL) was placed into each well and incubated at 

room temperature with shaking for 20 minutes. Finally, 100 µL of ABTS stop solution 

from the kit was pipetted into each well and the absorbance was measured at 405 nm, 

with a reference wavelength of 490 nm. 

 

J. Extracellular and Intracellular pH Measurement  

Extracellular pH was measured by plating BxPC-3 cells in 6-well plates (55,000 

cells/well) and then incubating the cells in the presence of 100 µM lansoprazole or 

DMSO control in 2 mL of growth media for 72 hours. The cellular media was collected, 

spun down and measured with a pH probe (Fisher Scientific). Intracellular pH was 

measured by plating BxPC-3 cells in 96-well plates (2,000 cells/well) and then incubating 
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the cells in the presence of lansoprazole (100-6.25 µM) or DMSO control for 72 hours. 

Four sets of cells were plated, each in triplicate. Media was removed, washed with 100 

µL of live imaging cell solution (Life Technologies) and then all cells were incubated 

with 50 µL of pHrodo red intracellular pH dye (Molecular Probes) according to 

manufactures’ instructions. Cells were again washed once with live imaging cell solution, 

and then 100 µL of fresh imaging solution was added to each well and fluorescence was 

measured with excitation and emission wavelengths of 560/590 nm. Intracellular pH was 

then quantified using the intracellular pH calibration kit (Molecular Probes) according to 

manufactures’ instructions. Cells were again washed once with imaging solution and then 

each of the four sets of cells was incubated for 5 minutes at 37 °C with one of the four 

intracellular pH calibration buffers. Fluorescence was again measured and a standard 

curve plotting fluorescence units vs. known pH values was created for each lansoprazole 

concentration, and the intracellular pH of each well at each lansoprazole concentration 

was calculated using the standard curve to convert fluorescence units to intracellular pH.     

 

K. Rescue with Palmitate Supplementation 

 BxPC-3 cells were plated and a standard assay treatment protocol was used as 

described in detail in section III B for MTT assays; section III C for colony formation 

assays; or section III I for apoptosis induction. For MTT assays, a stock solution of media 

with 3.75 µM of palmitic acid (Sigma) in DMSO (0.1 %) was prepared and after 

replacing the growth media, BxPC-3 cells were then treated with varying concentrations 

of lansoprazole (100-3.125 µM) or DMSO control in the presence or absence of palmitate 

for 72 hours, and then cellular proliferation was measured as described previously. 
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Palmitic acid, dissolved in DMSO (0.125 %) was then immediately added directly to the 

media to a final concentration of 3.75 µM. For apoptosis assays, a stock solution of 

media with 3.75 µM of palmitic acid in DMSO (0.1 %) was prepared and after replacing 

the growth media, BxPC-3 cells were then treated with 25 µM lansoprazole or DMSO 

control in the presence or absence of palmitate for 72 hours, and then apoptosis induction 

was measured by the cell death detection assay as described previously.   

 

L. IC50 and Statistical Calculations 

All IC50 values and statistical calculations were performed using Prism5 

(GraphPad). IC50 values were calculated using the log(inhibitor) vs. normalized response 

regression equation. All statistics were calculated using a two-tailed Student’s t-test. 
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Chapter 3: Aim I: Mechanism of Orlistat Hydrolysis by the Thioesterase of Human 

Fatty Acid Synthase  

 

A. Background and Rationale 

Orlistat (Fig. 1A), an FDA approved drug for obesity treatment that inhibits 

pancreatic lipases in the gastrointestinal tract, has been shown to inhibit TE of FASN 

[212]. Computational docking analysis shows that orlistat binds to the ligand binding site 

in TE [292], and the co-crystal structure of the TE of human FASN with orlistat (ID: 

2PX6) shows that orlistat is indeed present in the active site of TE [213]. However, in the 

co-crystal structure, orlistat exists in the active site of TE both as a hydrolyzed product 

and as a covalently-bound intermediate (covalent-orlistat), in which the C1 carbon of the 

β-lactone cyclic ester moiety of orlistat forms a covalent bond with the active site Ser2308  

(Fig. 1A).  Interestingly, these two states are found in one single co-crystal structure as an 

asymmetric dimer of the TE-orlistat complex. In addition, the hexyl tail of orlistat 

appears to adopt two different conformations in covalent-orlistat and hydrolyzed product, 

and it was thought that the hexyl tail of covalent-orlistat may pack against His2481. As 

discussed in Chapter 1, at the end of the fatty acid synthesis cycle, a water molecule is 

activated by forming a hydrogen bond with the catalytic nitrogen atom of the His2481 

residue and nucleophilically attacks the carbonyl carbon of the acyl-enzyme intermediate, 

releasing the fatty acid from Ser2308 and regenerating the Ser2308 and His2481 residues 

[29,293]. Thus, the presence of hexyl tail of covalent-orlistat may prevent access and 

activation of a water molecule needed for hydrolysis of the covalent bond between 
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orlistat and Ser2308 [213]. However, it is unknown if the hexyl tail of covalent-orlistat can 

shift from one conformation to another, and if and how the shift contributes to catalysis. 

The potential role of the hexyl tail in orlistat hydrolysis was examined using 

molecular dynamics (MD) simulations. MD simulations allow for the functional study of 

complex biomolecules, such as proteins, carbohydrates or nucleic acids, by using 

molecular mechanic force fields to virtually predict the motions of each component 

residue within the system. These force fields work to calculate the behavior of atoms in 

the system as a function of time by solving Newton’s equations of motion for each atom 

[294]. MD simulations are especially useful for studying the properties of a biological 

system that would be very difficult to examine with experiments on the actual system 

[295]. In this case, the Assisted Model Building with Energy Refinement (AMBER) MD 

package was used to perform the MD simulations, which contains all the programs for 

the simulation, including the LeAP program for input file preparation; the sander 

program for performing the MD simulation; and the ptraj program for analyzing the 

simulated trajectory [296]. AMBER also contains classical molecular mechanic force 

fields and parameter sets that are used to describe various components of biological 

system such as amino acid residues, ions, and solvent molecules [297]. Although the 

system with FASN TE and orlistat is unusual, as orlistat has covalently modified one of 

the residues in the system, creating a non-natural residue, MD simulations of macro-

molecules with covalently bound adducts originating from x-ray crystal structure data 

have been successfully completed in previous studies [298,299]. 

All calculations for this study were performed using the Big Red supercomputer 

at Indiana University. At the time of its commission in 2006, Big Red was one of the 50 
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fastest supercomputers in the world and was one of the most powerful supercomputers 

owned by a university prior to its retirement in late 2013 [300]. Supercomputers are a 

powerful tool for highly complex computational calculations, such as those required for 

MD simulation, as they allow for mass parallel computing, in which a number of 

calculations are performed simultaneously by multiple processors, thus greatly shortening 

the amount of time needed to complete a set of calculations [301]. At its peak, Big Red 

was theoretically capable of nearly 40 teraFLOPS (FLoating-point Operations Per 

Second), or 40-trillion calculations per second. In contrast, the successor for Big Red, Big 

Red II, is theoretically capable of 1 petaFLOPS, or 1-quadrillion calculations per second 

[300].     

In this study, three independent 35-nanosecond (ns) simulations showed that the 

hexyl tail of covalent-orlistat can shift from one conformation to another during the 

simulations. However, the shift of the hexyl tail does not increase the accessibility of 

water molecules to the active site. Instead, this shift destabilizes a hydrogen bond 

between the catalytic nitrogen atom of His2481 and the hydroxyl moiety of covalent-

orlistat, allowing a water molecule to be activated via hydrogen bonding with His2481 in a 

proper orientation for catalysis, thus demonstrating the importance of hexyl tail in orlistat 

hydrolysis by TE. This study satisfies Specific Aim I because a potential molecular 

process involving the hexyl tail of orlistat, and the way in which the conformational 

change of the tail promotes orlistat hydrolysis, was elucidated by the MD simulations. 

The results provide new information on the way in which the flexibility of the orlistat 

hexyl tail limits its ability to inhibit FASN TE, and may be useful for the design of new 

irreversible inhibitors of FASN TE.   
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B. Results  

B1. Covalent-Orlistat Molecular Mechanic Parameter Verification by Quantum 

Mechanics 

Fig. 1A shows the structures of free, covalent-, and hydrolyzed orlistat. The two 

conformations adopted by the hexyl tails in covalent- and hydrolyzed orlistat in TE in the 

crystal structure were assigned as conformations I and II (Fig. 1B), respectively, which 

are defined by the ω angle of the hexyl tail (Fig. 1A and B). The hexyl tail in these two 

conformations interacts with two different groups of amino acid residues. The hexyl tail 

of covalent-orlistat with an ω angle of 337.97° is accommodated in pocket I, or “short-

chain pocket,” defined by residues Gly2339, Thr2342, Tyr2343 and Tyr2462 of TE in 

conformation I, while the hexyl tail of hydrolyzed orlistat with an ω angle of 139.54° 

interacts with pocket II, or “shift pocket,” defined by residues Tyr2309, Tyr2342 and Ala2430 

in conformation II as previously described [213]. 

Within the active site of FASN TE, orlistat exerts its effects by covalently binding 

with Ser2308 of the catalytic triad. However, this covalent bond creates an irregular 

residue that cannot be recognized by the AMBER suite of programs (University of 

California, San Francisco), which are used to parameterize and derive charges for ligands 

and proteins for molecular mechanics (MM) calculations and molecular dynamics (MD) 

simulations. As such, this irregular covalently bound serine-orlistat residue (hereafter 

referred to as ‘covalent-orlistat’) must be manually parameterized for the MD simulation. 

The Ser2308 residue covalently-bound to orlistat was parameterized using the well-

established procedure from the AMBER manual (see Chapter 2) [302]. Derived 

parameters for covalent-orlistat can be found in Appendix B. Then, it was determined if 
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the developed AMBER parameters could reproduce the ab initio energy profile for the ω 

dihedral angle of the hexyl tail that defines conformation I and II in the crystal structure 

by performing QM and MM dihedral angle scans of a 3-mer peptide containing covalent-

orlistat attached to Ser2308. As shown in Fig. 2A, the MM method using the AMBER 

parameters yielded an energy profile that is very similar to the curve generated by the ab 

initio method, with both profiles showing two minima and two maxima each. The two 

maxima appeared at 8.2° and 248.2° in the ab initio curve and at 5.3° and 246.8° in the 

MM curve, indicating a good agreement. The two minima appeared at 158.2° and 308.2° 

in the ab initio curve and at 158.4° and 306.4° in the MM curve, which not only agree 

with each other very well, but are similar to the ω angles (139.54° and 337.97°) of the 

hexyl tail of covalent- and hydrolyzed orlistat in the crystal structure, respectively. 

Interestingly, the QM energy barrier separating the two hexyl tail conformations is 29.6 

kcal/mol to shift from conformation I to II, and 28.35 kcal/mol to shift from conformation 

II to I, which is considerably high. Thus, covalent-orlistat was likely parameterized 

properly for MD simulations and the hexyl tail of covalent-orlistat may adopt both 

conformations as observed in the crystal structure without hydrolysis. 
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FIGURE 1: 

 

 

Figure 1. Catalytic mechanism of orlistat hydrolysis by FASN TE. (A) The active site 

Ser2308 of TE nucleophically attacks the C1 carbon of the β-lactone moiety of orlistat to 

form a covalent bond between Ser2308 and orlistat. Orlistat is then hydrolyzed and 
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inactivated by TE. The ω dihedral angle of the hexyl tail that defines conformations I and 

II is depicted in red. (B) Alignment of average structures of covalent-orlistat in 

conformations I (cyan) and II (magenta) from the first simulation and the hydrolyzed 

orlistat from the crystal structure (orange). Each conformation is defined by a distinct ω 

dihedral angle. The Ser2308 portion of covalent-orlistat is shown in green, and the 

hydrolyzed group in hydrolyzed orlistat is shown in light green.  

 

B2. Two Distinct Conformations of the Hexyl Tail in Covalent-Orlistat 

To show that the hexyl tail of covalent-orlistat can adopt both ω angle 

conformations observed in the crystal structure without influence from TE, and that these 

conformations are energetically-equivalent but independent conformations, a 100-ns MD 

simulation of the 3-mer peptide containing covalent-orlistat was performed. As shown in 

Fig. 2B, the ω dihedral angle begins at 303.79 ± 8.90° and changes to 178.53 ± 14.59° at 

12.55 ns. It then flips back to 305.61 ± 9.68° at 52.09 ns. At 56.39 ns, the ω dihedral 

angle adopts an average angle of 174.48 ± 15.44° for the remainder of the simulation 

(Fig. 2B). The conformations of the hexyl tail of covalent-orlistat with these two major ω 

dihedral angles are similar to conformations I and II as observed in the co-crystal 

structure and, thus, covalent-orlistat without the TE protein may adopt the same two 

conformations prior to hydrolysis (Fig. 2B). The calculated total free energies of the 3-

mer peptide in both conformations are nearly identical, with energies of -329.61 ± 7.55 

kcal/mol in conformation I and -330.52 ± 7.81 kcal/mol in conformation II. In an 

independent duplicate simulation, a similar conformational transition and free energies 

were observed (data not shown). Thus, without influence from the surrounding amino 
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acid residues, the hexyl tail of covalent-orlistat can adopt two distinct but energetically 

equivalent and interchangeable conformations that are similar to the two different 

conformations seen in the co-crystal structure.  
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FIGURE 2 

 

Figure 2. Potential energy of the 3-mer peptide containing covalent-orlistat and ω angle 

scan. (A) The energy curves calculated by QM and MM methods were scaled and 

overlaid. Conformations I and II of the hexyl tail are shown at two distinct energy 

minima. (B) ω dihedral angle scan of the 3-mer peptide containing covalent-orlistat.  

 

B3. Compatibility of Covalent-Orlistat MM Parameters with AMBER Force Field 

To further determine whether the developed AMBER parameters of covalent-

orlistat are compatible with the AMBER force field, MM minimizations of the model 

system of TE in complex with covalent-orlistat in an explicit water environment were 
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examined. The developed parameters successfully minimized the initial structure with a 

convergence criterion of 1.0 kcal mol-1Å-1. The equilibration period of 60 ps was 

confirmed to be adequate by examining the RSMD of the whole protein during the 

equilibration period, which was stable and remained less than 1.5 Å. To confirm that the 

AMBER parameters of covalent-orlistat are suitable for MD simulation studies, various 

parameters were monitored during the 35-ns MD simulations. Both the temperature and 

energy remained constant with little deviation during equilibration and production MD 

runs of all three simulations (Table 1). The RMSD of the main chain atoms (RMSDTE) is 

less than 2.0 Å during the entire simulation process (Fig. 3A), which is consistently 

observed in all three simulations (Table 1). These findings indicate that the overall 

protein structure is not disrupted or distorted throughout the simulations. More 

importantly, the simulated B-factors of the protein (B-factorTE) and covalent-orlistat (B-

factororlistat) are comparable to the experimentally determined values [213] (Fig. 3B, Table 

2). Thus, the parameterization is appropriate and compatible with the current AMBER 

force field. 
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TABLE 1. Summary of simulated trajectories and average RMSD, temperature, and 

energy. 

 First Simulation Second Simulation Third Simulation 
RMSDTE (Å) 1.32 ± 0.22 1.29 ± 0.13 1.83 ± 0.33 
T (Kelvin) 300.03 ± 1.51 300.24 ± 1.60 299.98 ± 1.60 
E (kcal/mol) -79207.9 ± 188.0 -79167.7 ± 205.2 -79271.5 ± 191.5 
PE (kcal/mol) -99984.4 ± 154.6 -99958.7 ± 162.8 -100044 ± 156.7 
EK (kcal/mol) 20776.5 ± 104.6 20791.0 ± 110.6 20773.5 ± 111.0 
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B4. Conformational Transition of the Hexyl Tail in the FASN TE Domain 

The above studies showed that, in the absence of the TE protein, the hexyl tail of 

covalent-orlistat in the 3-mer peptide is able to adopt two different conformations, 

defined by the ω dihedral angle, that are independent and can freely transit between the 

two conformations. To determine if a conformational transition of the hexyl tail of 

covalent-orlistat can occur within the binding pocket of the TE domain, and whether this 

transition has any effect on orlistat hydrolysis, the conformation of the hexyl tail was 

examined during three independent 35-ns simulations of the TE-covalent-orlistat 

complex.  

To define the conformational transition of the hexyl tail within the TE protein and 

to determine if any observable change could potentially recapitulate the difference in 

hexyl tail conformation between covalent- and hydrolyzed orlistat as observed in the 

crystal structure, three criteria were considered: the RMSD of covalent-orlistat; the ω 

dihedral angle; and the distance of the hexyl tail to each pocket I and II in TE. First, the 

RMSD value of covalent-orlistat was monitored throughout each simulation. The hexyl 

tail remained in one conformation, as noted by a stable RMSD, during the initial 3,400 ps 

of the simulation until transitioning to a second conformation, which was completed at 

18,250 ps when the RMSD of covalent-orlistat regained stability (Fig. 3A). Similar 

conformational transitions but at different times were also observed in two other 

independent simulations with the time-spans of each conformation shown in Table 1. The 

RMSD of orlistat (RMSDOrlistat) in both stable states was calculated to be 0.6-1.94 Å 

before and 2.19-2.56 Å after the conformational transition (Table 2), indicating that the 
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hexyl tail adopts a conformation that is similar to the initial structure before the 

transition, but adopts a very different conformation after the transition.  

Next, it was determined if the two conformations observed in these simulations 

are equivalent to and possibly represent conformations I and II observed in the crystal 

structure, by examining the ω dihedral angles throughout each simulation. There is a 

clear change in the ω angle between the two stable states of covalent-orlistat (Fig. 3C). In 

the three simulations, the average ω angles range from 304.89° to 309.73° in stable state I 

and 172.68° to 176.32° in stable state II (Table 2). Strikingly, the average ω angles in 

stable state I and II is respectively similar to the ω angles in conformation I (308.2°) and 

II (158.2°) determined by the ab initio method (see Fig. 2A). Furthermore, the average ω 

angles are also similar to the ω angles of the two conformations in the crystal structure 

(Table 2). These observations demonstrate that the two stable states of the ω angle of 

covalent-orlistat seen in the simulations could indeed correspond to conformations I and 

II, as determined by ab initio method and observed in the crystal structure. It is 

noteworthy that there is a brief reversion of the ω angle from conformation II back to I, 

which then again transitions to conformation II (at ~ 11,440-11,870 ps) (Fig. 3C), which 

is consistent with the ω dihedral angle transition noted with the 3-mer peptide. 

Next, the total free energy of covalent-orlistat within TE in conformations I and II 

was calculated, which are nearly equivalent, ranging from -131.60 ± 7.03 to -130.29 ± 

6.21 kcal/mol in conformation I and -139.05 ± 6.26 to -135.25 ± 7.19  kcal/mol in 

conformation II, indicating that conformation II is unlikely a simple relaxation of 

conformation I. Together, these data show that the hexyl tail of covalent-orlistat in TE 

has shifted from conformation I to II during the simulations, which may resemble the 
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conformational transition during catalysis as suggested by the crystal structure, and 

suggests that the transition of the hexyl tail from conformation I to II likely occurs before 

the hydrolytic reaction, which may further indicate that the hexyl tail plays a role in 

dominating the hydrolytic catalysis reaction. 

 Finally, consistent with the crystal structure, the hexyl tail of covalent-orlistat in 

conformation I mainly interacts with pocket I, while the hexyl tail in conformation II 

mainly interacts with pocket II of TE. This is evident, as shown by the distance of the 

hexyl tail to the center of mass of each pocket in each simulation (Fig. 3D). As 

summarized in Table 3 for all three simulations, the average distance of the hexyl tail in 

conformation I is closer to pocket I, while the distance of the hexyl tail in conformation II 

is closer to pocket II, indicating that the hexyl tail has shifted from one pocket to the 

other.  
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FIGURE 3 

 

Figure 3. RMSD, B-Factor, ω dihedral angle, and distance of the hexyl tail of covalent-

orlistat in the first simulation. (A) RMSD of TE and covalent-orlistat during the first 

simulation. Times when the conformational transition begins and completes are indicated. 

(B) Comparison of the B-factor values of each residue between the simulation (black) 

and the crystal structure (gray) of TE. (C) ω dihedral angle of the hexyl tail of covalent-

orlistat in the orlistat-TE complex. (D) Distance of the hexyl tail of covalent-orlistat to 

the center of mass of pocket I and II in TE. 
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TABLE 2: Time span of conformation I and II, B factor, ω angles, hexyl tail RMSD and 

free energy for all three simulations. 

 Conf. First Second Third Crystal 
Struct. 

Time Span 
(ps)a 

I 0-3,400 0-600 0-4000 N/A 
II 18,250-35,000 4,000-35,000 11,400-35,000 N/A 

B-factorTE  43.8 ± 31.0 25.2 ± 19.4 38.64 ± 33.05 36.6 
B-factorOrlistat  77.1 69.2 83.4 60.2 
RMSDOrlistat (Å) I 1.94 ± 0.42 0.61 ± 0.15 1.48 ± 0.33 N/A 

II 2.56 ± 0.14 2.19 ± 0.11 2.39 ± 0.31 N/A 
ω Angles (°) I 305.06 ± 11.14 309.73 ± 7.13 304.89 ± 8.90 337.97b 

II 175.75 ± 9.91 175.63 ± 10.11 176.32 ± 8.93 139.54b 

ΔGCovalent-Orlistat 
(kcal/mol) 

I -130.29 ± 6.21 -131.05 ± 6.92 -131.60 ± 7.03 N/A 
II -136.75 ± 5.47 -139.05 ± 6.86 -135.25 ± 7.19 N/A 

 
aThe time span in which the hexyl tail adopted each conformation in each simulation was 

determined by examining the RMSD of orlistat in conjunction with the ω angle transition 

and the distance of the hexyl tail to pocket I and pocket II of the TE protein. The time 

during which the transition was taking place was not included in our calculations. 

bThe slight difference in the simulated ω angle from the crystal structure may come from 

crystal packing. 

 

TABLE 3: Average distance of the hexyl tail to pocket I and pocket II within FASN TE.  

 First Simulation          Second Simulation  Third Simulation 
Conf. Pocket I Pocket II Pocket I Pocket II Pocket I Pocket II 
I (Å) 5.78 ± 0.91 8.79 ± 0.45 4.63 ± 0.52 8.68 ± 0.44 4.76 ± 0.27 8.87 ± 0.36 
II (Å) 8.21 ± 0.61 7.45 ± 0.60 7.15 ± 0.30 7.45 ± 0.34 7.74 ± 0.40 7.35 ± 0.32 
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B5. Interactions of the Hexyl Tail with the Short-Chain and Shift Pockets  

As discussed above, there are two pockets of residues that accommodate the hexyl 

tail of covalent-orlistat (conformation I) and hydrolyzed orlistat (conformation II): the 

short-chain pocket, consisting of residues Thr2342, Tyr2343 and Tyr2462 and the shift pocket  

consisting of residues Tyr2309, Tyr 2343 and Ala2430. To examine if the hexyl tail of 

covalent-orlistat interacts with each set of residues during our simulations, and whether 

or not the pocket residues match their respective conformations seen in the crystal 

structure, the average structure of the protein with covalent-orlistat in conformation I and 

II from a representative simulation was aligned with the crystal structures of covalent-

orlistat and hydrolyzed orlistat, respectively. As shown in Figure 4A, the crystal structure 

residues of covalent-orlistat defining the short-chain pocket were aligned with the short-

chain pocket of the average structure of covalent-orlistat in conformation I. The hexyl tail 

of covalent-orlistat clearly interacts with the short-chain pocket in conformation I, with 

little interaction with the residues defining the shift pocket. Also, the conformations of 

residues from the crystal structure and the simulation are fairly similar. As shown in 

Figure 4B, the crystal structure residues of hydrolyzed orlistat defining the shift pocket 

were aligned with the shift pocket of the average structure of covalent-orlistat in 

conformation II, clearly demonstrating that the hexyl tail of covalent-orlistat interacts 

only with the shift pocket residues. In conformation II, it appears that the conformation of 

Thr2342 changes drastically between the simulation and the crystal structure (Fig. 4B). 

This difference is likely the result of orlistat hydrolysis due to crystal packing after the 

orlistat molecule is hydrolyzed, explaining why this change is not seen during the 

simulation. In addition, in the crystal structure, Tyr2343 packs against the hexyl tail of 
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covalent-orlistat in conformation I, but not the hexyl tail of hydrolyzed orlistat in 

conformation II. This observation raised the possibility that a conformational change of 

Tyr2343 may promote shifting of the hexyl tail. In the simulations, however, the 

positioning of Tyr2343 changed very little and it continued to pack against the hexyl tail of 

covalent-orlistat in conformation II. It is possible that the change in conformation of 

Tyr2343 may be a result of the hydrolysis and therefore undergoes the conformational 

change after the covalent bond is cleaved. Thus, a different conformation of Tyr2343 is 

observed in the crystal structure with hydrolyzed orlistat than in the simulations, in which 

orlistat is covalently bound before hydrolysis. The finding that the hexyl tail of orlistat 

attached to a 3-mer peptide in the absence of TE, including Tyr2343, could freely transit 

between conformations I and II also supports the above conclusion that Tyr2343 does not 

promote conformational transition of the hexyl tail. 
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FIGURE 4 

 

Figure 4. Hexyl tail interactions with short-chain and shift-pocket residues. (A) Short-

chain (Thr2342, Tyr 2343 and Tyr2462) and shift pocket (Tyr2309, Tyr 2343, Ala2430) residues 

when covalent-orlistat adopts conformation I. The crystal structure of covalent-orlistat 

(blue) is aligned with the average structure of conformation I (pink) in a representative 

simulation. Orlistat is shown in gray and the hexyl tail is shown in dark gray. (B) Short-

chain and shift pocket residues when covalent-orlistat adopts conformation II. The crystal 

structure of hydrolyzed orlistat (blue) is aligned with the average structure of 

conformation II (pink) in a representative simulation. Orlistat is shown in gray and the 

hexyl tail is shown in dark gray. 
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B6. Crystal Packing Restrains the Covalent-Orlistat Hexyl Tail in Conformation I  

The finding that orlistat exists in two different states in the complex structure 

solved by Pemble et al. is interesting because these structures are the result of co-

crystallization of TE and orlistat, not a crystal soaking experiment. During the lengthy 

co-crystallization process, the protein and ligand are co-incubated in solution and can 

freely react with each other without crystal packing restraints that are present in a crystal 

soaking experiment. Yet in this condition, only a portion of orlistat is hydrolyzed, 

suggesting that the non-hydrolzed covalent-orlistat cannot result solely from crystal 

packing. Rather, the crystal lattice may selectively pack TE with covalent-orlistat in 

conformation I from solution in one asymmetric unit and TE with hydrolyzed orlistat in 

conformation II from solution in another asymmetric unit. Once crystals are formed, the 

covalent-orlistat in conformation I may not be able to transit to conformation II due to 

crystal lattice restraint and therefore remains in non-hydrolyzed state. To test the above 

possibility, a 35-ns MD simulation of the crystal lattice involving chain A and B of 

FASN TE was performed and the RMSD and ω angle of each covalent-orlistat molecule 

was examined. Unlike our previous simulations containing only one FASN TE chain, the 

hexyl tail of the covalent-orlistat molecule appearing at the interface of the crystal lattice 

was contained in conformation I, as indicated by the ω angle of the hexyl tail (Fig. 5A), 

and a low and stable RMSD (Fig. 5B), indicating that the hexyl tail is contained in one 

position, conformation I, throughout the simulation. Interestingly, when examining the 

covalent-orlistat molecule in chain B, the molecule behaves much more similarly to the 

covalent-orlistat molecules from our FASN TE monomer simulations, with a transition 
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from conformation I to II, as noted by orlistat RMSD and single ω shift from 

conformation I to II.  

We also sought to determine which crystal contacts are responsible for stabilizing 

covalent-orlistat in the crystal lattice. We found that Arg2352, Thr2356, Pro2357, Gly2358, 

Cys2359, Glu2360, and Ala2361 from chain B are likely the crystal contacts responsible for 

constraining the crystal lattice and the orlistat molecule in chain A. In addition, Tyr2347 

and Thr2348 from chain B are responsible for stabilizing the short-chain pocket that 

accommodates the hexyl tail in conformation I in chain A. 
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FIGURE 5 

 

Figure 5. Crystal lattice simulation ω dihedral angle and RMSD. (A) ω dihedral angle of 

the hexyl tail of the covalent-orlistat molecule within the Chain A of the complex. (B) 

RMSD of this covalent-orlistat during this simulation. 
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B7. Accessibility of Water Molecules to the Active Site  

Previously, it was proposed that the hexyl tail in covalent-orlistat packs against 

His2481 of the catalytic triad, preventing access of a water molecule needed for hydrolysis 

of the covalent bond between orlistat and Ser2308. The shift of the hexyl tail may provide 

water molecules access to the TE active site for hydrolysis [213].  To test this hypothesis, 

water molecules in the active site were analyzed before and after the conformational 

transition of the hexyl tail. Because it has been shown previously that a water molecule 

can be potentially activated if the distance of the water molecule is ≤ 3.5 Å to the 

catalytic nitrogen of histidine and ≤ 4.0 Å to the carbonyl carbon atom of the covalent 

bond between orlistat and serine [303-305], only water molecules that satisfied these 

criteria were considered and were used to calculate the water occupancy in the active site 

with the hexyl tail in both conformations I and II during the simulations. Under this 

stringent condition, the average water occupancy of the three simulations (Table 4) in 

conformations I and II are 21.2 % and 30.6 % (Fig. 6B), respectively. Thus, it appears 

that in both conformations, the active site can be occupied by a water molecule for a 

significant amount of the time. The hexyl tail in conformation I does not block the active 

site and prevent water access. In addition, transition to conformation II does not 

significantly increase water access to the active site.  

 

B8. Catalytically Critical Interactions at the Active Site  

Next, it was determined whether the conformational transition of the hexyl tail 

might affect any catalytically important interactions in the active site by first examining 

the stability of the conserved salt bridge between Asp2338 and His2481, which is 
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catalytically important because it orients His2481 to deprotonate a water molecule for 

nucleophilic attack [293] (Fig. 6A). The average occupancy of this salt bridge (the 

oxygen atom of Asp2338 within 3.5 Å of the nitrogen atom of His2481) in three simulations 

(Table 4) is 99.5 % in conformation I and 93.9 % in conformation II (Fig. 6B). These 

observations suggest that Asp2338 and His2481 couple tightly both before and after 

conformational transition of the hexyl tail and that the conformational transition does not 

significantly affect the stability of this salt bridge.   

In addition to the salt bridge, a hydrogen bond between the catalytic nitrogen of 

His2481 and the hydroxyl moiety of covalent-orlistat was also identified (Fig. 6A). In 

contrast to the occupancy of the Asp2338-His2481 salt bridge, the average occupancy of this 

hydrogen bond over all three simulations (Table 4) dropped significantly from 55.8 % in 

conformation I to 19.3 % in conformation II (Fig. 6B). This agrees with the distance 

between the catalytic nitrogen atom of His2481 and the oxygen atom of the hydroxyl 

moiety in covalent-orlistat in each conformation, which increased from 2.91 ± 0.21 Å in 

conformation I to 4.63 ± 0.99 Å in conformation II in the first simulation (Table 4). A 

similar increase in this distance was also observed for the second and third simulations 

(Table 4). These results indicate that in each simulation, the potential for orlistat and 

His2481 to form a strong hydrogen bond is diminished following the conformational 

transition. Therefore, the conformational transition of the hexyl tail does not appear to 

affect the salt bridge, but destabilizes the hydrogen bond between the catalytic nitrogen of 

His2481 and the hydroxyl moiety of covalent-orlistat.  
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B9. Activation of Catalytic Water Molecules 

To further understand how the conformational change of the hexyl tail affects 

catalysis, the presence of potentially activated water molecules in the active site of TE 

with orlistat in both conformations were investigated using the following criteria: A 

catalytically active water molecule (a) must strongly hydrogen bond with His2481 (at a 

distance ≤ 3.0 Å); (b) must be ≤ 4.0 Å from the carbonyl carbon atom of covalent-orlistat 

for nucleophilic attack; and (c) must form an optimal catalytic orientation angle of 105° ± 

5° with the carbonyl carbon and the carbonyl oxygen (Fig. 6C) [306].  As shown in Fig. 

6D, the average occupancy of water molecules that meet all three criteria is significantly 

increased from 0.1 % in conformation I to 4.6 % in conformation II (see also Table 4). 

This observation suggests that, when the hexyl tail adopts conformation I, a water 

molecule is unlikely to be catalytically activated, and the possibility of catalytic 

activation is significantly increased after the hexyl tail transitions to conformation II. 

 

B10. Correlation of Interactions in the Active Site  

To understand how the conformational transition may affect the potential 

activation of a water molecule for catalysis, the ability of water molecules to form strong 

hydrogen bonds (≤ 3.0 Å) with the catalytic nitrogen of His2481 was examined before and 

after the conformational transition of the hexyl tail. As shown in Fig. 4B and Table 4, the 

average occupancy of water molecules that can strongly hydrogen bond with His2481 is 

increased from 11 % in conformation I to 40 % in conformation II with a near 

significance (p=0.051).  
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Considering that there is a decrease in hydrogen bonding between His2481 and the 

hydroxyl moiety of covalent-orlistat and an increase in hydrogen bonding between 

His2481 and water (Fig. 6B), it is possible that these two events are correlated. To test this 

possibility, the occupancy of the hydrogen bond between His2481 and covalent-orlistat 

when there is a water molecule in the active site that satisfies all catalytic criteria was 

calculated, which was 0.7 %, 0.8 % and 1.0 % in the first, second and third simulation, 

respectively. Then, a correlation analysis was performed comparing the occupancy of the 

hydrogen bond between His2481 and covalent-orlistat and the occupancy of activated 

water molecules that satisfy all criteria for a catalytic interaction in both conformations I 

and II. As shown in Fig. 6E, there is a clear trend of linear correlation between these 

occupancies with a correlation coefficient of 0.94, indicating that a water molecule is 

more likely to catalytically interact with orlistat in the absence of the hydrogen bond 

between covalent-orlistat and His2481. Together, the above findings suggest that the 

hydrogen bond between covalent-orlistat and His2481 may need to be abrogated to 

successfully activate a catalytic water molecule. 
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FIGURE 6: 

 

Figure 6. Catalytically important interactions at the active site. (A) Hydrogen bond 

between His2481 and covalent-orlistat (magenta dashed line) and the salt bridge between 

His2481 and Asp2338 (orange dashed line) in simulated conformation I of orlistat. Ser2308, 

Asp2338 and His2481 residues of TE are depicted in green, orange and magenta, 

respectively. (B) Average occupancies of the active site water molecules and Asp2338-

His2481, orlistat-His2481, and water-His2481 hydrogen bonds in conformations I and II for 

all three simulations. (**p<0.01). (C) Activated water molecule in the active site of TE 

for nucleophilic attack of the covalent bond between orlistat and Ser2308 (black dashed 

line). The water molecule, the hydroxyl moiety oxygen and the carbonyl carbon are 

depicted as spheres. The salt bridge between Asp2338 and His2481 is shown by the orange 

dashed line. (D) Average occupancy of activated water molecules in conformations I and 

II. (**p<0.01). (E) Correlation between the occupancy of the orlistat-His2481 hydrogen 
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bond and the occupancy of activated water molecules in conformations I (blue points) 

and II (red points) of the first (◊), second (□) and third (Δ) simulation.  

 

TABLE 4: Catalytically important interactions at the active site. 

 Conf. First  
Simulation 

Second  
Simulation 

Third  
Simulation 

Active Site 
Water 
Occupancy (%) 

I 10.6 41.6 11.5 

II 31.4 28.9 31.5 

Occupancy of 
Asp2338-His2481 

Salt Bridge (%) 

I 100 98.4 100 

II 82.2 99.6 99.9 

Occupancy of 
Orlistat-His2481 

H-Bond (%) 

I 55.6 63.3 48.5 

II 6.0 25.9 25.9 

Orlistat-His2481  
H-Bond Distance 
(Å) 

I 2.91 ± 0.21 2.83 ± 0.13 2.90 ± 0.18 

II 4.63 ± 0.99 3.51 ± 0.65 3.53 ± 0.70 
Occupancy of 
H2O-His2481 H-
Bond (%) 

I 14.1 8.3 17.0 

II 57.8 36.9 25.6 

Occupancy of 
Activated H2O 
Molecule (%) 

I 0.3 0.0 0.0 

II 5.7 4.1 4.1 
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B11. Simulation of Truncated Orlistat Lacking the Hexyl Tail  

The above findings suggest that the hexyl tail in conformation I may help to 

stabilize the hydrogen bond between His2481 and covalent-orlistat. To test this possibility, 

an MD simulation analysis using a truncated covalent-orlistat lacking the hexyl tail was 

performed (Fig. 7A). For this purpose, the hexyl tail of covalent-orlistat in the crystal 

structure was virtually removed, parameterized, and simulated similarly as described 

above for the intact orlistat. Fig. 7B shows that the hydrogen bond between His2481 and 

the hydroxyl group of truncated covalent-orlistat was spontaneously and quickly 

disrupted at 8,190 ps. It remained in a disrupted state and did not re-form for any 

significant amount of time during the remainder of the simulation. Interestingly, the 

occupancy of water molecules that can be potentially activated before and after disruption 

of the hydrogen bond is 0.9 % and 4.3 %, respectively (Fig. 7C), which is consistent with 

the observations made for intact covalent-orlistat (Fig. 6D). Taken together with the 

results for intact covalent-orlistat, it is likely that the hexyl tail in conformation I 

stabilizes the hydrogen bond between His2481 and covalent-orlistat, which prevents 

His2481 from hydrogen bonding with and properly orienting and activating a water 

molecule for catalysis in the active site. 
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FIGURE 7: 

 

 

Figure 7. Simulation of truncated orlistat (A) lacking the hexyl tail in TE showing (B) 

the presence of the hydrogen bond between the truncated covalent-orlistat and His2481 and 

(C) occupancy of activated water molecules in the active site of TE before and after the 

spontaneous disruption of the hydrogen bond between truncated covalent-orlistat and 

His2481.  
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C. Conclusions and Discussion 

The co-crystal structure of human FASN TE with orlistat (ID: 2PX6) shows that 

orlistat is present in the active site of TE in two states: as a covalently-bound intermediate 

and as a hydrolyzed product. The hexyl tail of orlistat in these two different states adopts 

two different conformations (I and II). Using MD simulations, I found that covalent-

orlistat can adopt both conformations prior to hydrolysis. Further investigation shows that 

transition to conformation II is required for hydrolysis of covalent-orlistat, which 

destabilizes a hydrogen bond between the catalytic His2481 of TE and the hydroxyl moiety 

of orlistat, leading to formation of a hydrogen bond between His2481 and water molecules 

and allowing for the activation of a water molecule to hydrolyze the covalent bond 

between orlistat and Ser2308. 

The finding that orlistat exists in two different states in the complex structure 

solved by Pemble et al. is informative and consistent with the findings of our simulations 

[213]. As these observed structures are from co-crystallization of TE and orlistat, not 

from crystal soaking, orlistat may have been hydrolyzed by TE during the crystallization 

process. Because the hexyl tail in covalent- and hydrolyzed orlistat adopts two different 

conformations with ω dihedral angles of ~340° (conformation I) and ~140° 

(conformation II), and because covalent-orlistat can also adopt conformation II during 

simulation analysis, the shift of the hexyl tail from conformation I to II likely contributes 

to the hydrolysis. It is also noteworthy that the un-hydrolyzed covalently-bound orlistat 

intermediate was found in the co-crystal structure despite the lengthy co-crystallization 

process involving co-incubation of TE and orlistat, suggesting that hydrolysis of orlistat 

by TE may be a slow process.  
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In all simulations, the hexyl tail of covalent-orlistat undergoes a conformational 

transition in which the RSMD of covalent-orlistat changed; the ω angle shifted from 

~310° to ~170°; and the hexyl tail shifted its interaction from TE pocket I to TE pocket 

II; which together recapitulate the two conformations observed in the crystal structure. 

The two ω angles coincide with the two local minima calculated during the dihedral 

energy scan and represent conformations I and II found in the crystal structure, albeit 

with a phase difference compared with the crystal structure, which is likely due to crystal 

packing. One limitation of this study is that the simulations are short, and therefore a 

complete reverse transition of the covalent-orlistat hexyl tail from conformation II back 

to conformation I is not observed, which might take place upon longer simulation. 

However, physiologically, such a reverse transition is unlikely, based on the finding that 

when the hexyl tail transitions to conformation II, water molecules could be readily 

activated to hydrolyze covalent-orlistat. It is tempting to speculate that the 

conformational transition of the hexyl tail may be a rate-limiting step of orlistat 

hydrolysis, after which the hydrolysis step occurs very quickly, and the hexyl tail is 

unlikely able to reverse back to conformation I following the hydrolysis. Consistent with 

these speculations, covalent-orlistat is not found in conformation II and hydrolyzed 

orlistat is not found in conformation I in the co-crystal structure. Most importantly, these 

simulations have demonstrated that a hydrogen bond exists between the catalytic His2481 

residue and covalent-orlistat, which may control orlistat hydrolysis. It appears that in 

conformation I, the strong interaction between the catalytic nitrogen atom of His2481 and 

the hydroxyl moiety of covalent-orlistat greatly prevents water molecules from hydrogen 

bonding with the same atom of His2481 and from adopting the proper orientation for 
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activation and catalysis. Upon transition of the hexyl tail from conformation I to II, the 

hydrogen bond between His2481 and covalent-orlistat is disrupted, which frees and enables 

His2481 to hydrogen bond with and activate water molecules to attack the carbonyl carbon 

of the orlistat-Ser2308 residue. In the co-crystal structure, the distance between the 

catalytic nitrogen atom of His2481 and the hydroxyl moiety of covalent-orlistat is 3.9 Å in 

conformation I and 5.4 Å in conformation II. Although a distance of 3.9 Å in 

conformation I indicates a weak electrostatic interaction, it also indicates a good 

proximity for forming a potential hydrogen bond, considering that the crystal structure is 

a still snapshot of a protein, subjected to crystal packing, and may not capture the 

hydrogen bonding event. Nevertheless, both the crystal structure and simulation data 

suggest stronger interactions between the catalytic nitrogen atom of His2481 and the 

oxygen atom of the hydroxyl group of covalent-orlistat in conformation I than in 

conformation II.  

The stronger interaction between the catalytic nitrogen atom of His2481 and the 

oxygen atom of the hydroxyl group of covalent-orlistat in conformation I may be due to 

the hexyl tail in conformation I creating restraints that favor this interaction. Simulation 

of TE-covalently-bound to a truncated orlistat lacking the long hexyl tail shows that the 

hydrogen bond between His2481 and the hydroxyl moiety of truncated covalent-orlistat is 

quickly and spontaneously disrupted, accompanied with an increase in activated water 

molecules in the active site for hydrolysis. Thus, the truncated orlistat may be more easily 

hydrolyzed than the intact orlistat. Interestingly, it has been found previously that 

ebelactone B, a β-lactone compound containing an ethyl group in the same position as the 

hexyl tail of orlistat, was more effective in inhibiting FASN TE activity than ebelactone 
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A, which contains a methyl group [212], leading to the speculation that this moiety may 

be important for stabilizing the ligand in the TE active site and protecting it from 

hydrolysis [225,307]. We speculate that longer aliphatic carbon moieties in this position 

on the inhibitor may aid in the stabilization of the hydrogen bond that forms between 

His2481 and the hydroxyl moiety of the compound, perhaps by preventing conformational 

changes in the core of the ligand that could potentially disrupt the hydrogen bond. The 

simulation data supports this hypothesis by demonstrating that the hexyl tail in 

conformation I is needed to stabilize the hydrogen bond that forms between His2481 and 

the hydroxyl moiety of orlistat, which helps to prevent hydrolysis of the inhibitor. This 

stabilization is lost when the hexyl tail is virtually truncated, or undergoes transition, 

likely leading to rapid hydrolysis shortly thereafter.    

Considering that FASN over-expression causes increased metastatic potential, 

poorer prognosis, and resistance toward cancer chemotherapeutics in a wide variety of 

human cancers [94,96,148,149,178,308-312], targeting the fatty acid synthesis pathway 

may be a useful strategy for the treatment of cancer. Previous studies have shown that 

orlistat is nearly 1000-fold more potent in inhibiting pancreatic lipases than the 

hydrolyzed orlistat [222,313], thus, it is likely that hydrolyzed orlistat is likely also a very 

poor inhibitor of FASN TE. Information from this study may aid in the rational design of 

TE inhibitors that are resistant to hydrolysis and inactivation, and are thus more potent 

for anticancer treatment. One possible strategy is to design compounds that use and 

stabilize the hydrogen bond between the drug and His2481, therefore inhibiting the 

activation of a water molecule by His2481 for catalysis. Another strategy for next 

generation compound design may be to use moieties that block the space in the active site 
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near His2481 that water molecules must occupy for activation. This may be achievable, as 

it has previously been shown in a similar case of inhibitors of E. coli TEM-1 β-lactamase. 

Although β-lactamases have a different catalytic triad than that of TE, they contain an 

active site Ser, and inhibitors of β-lactamase, such as penicillanic acid, inhibit the enzyme 

by acetylation of this active site Ser [314]. A modified form of penicillanic acid,  6α-

(hydroxymethyl) penicillanate, created by incorporating a hydroxymethyl moiety 

designed to displace the catalytic water molecule in the active site, resulted in a retarded 

rate of hydrolysis of the acyl-enzyme intermediate [315]. The mechanism of action was 

later confirmed by x-ray crystallography [315]. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

105 
 

Chapter 4: Aim II: Identification of FDA Approved Proton Pump Inhibitors as 

Inhibitors of Human Fatty Acid Synthase Thioesterase 

 

A. Background and Rationale 

 In a majority of drug discovery research projects, lead compounds for a desired 

biological target are discovered by manually screening large libraries of compounds in a 

process known as high-throughput screening (HTS). An alternative strategy for drug 

discovery is to employ an in-silico screening method, in which virtual compound ligands 

are computationally matched to a receptor with known structure [316]. This technique 

was first envisioned in the 1970s, when investigators suggested that it may be possible to 

use computational simulations to predict the chemical interactions of ligands within 

receptors with elucidated structure [317,318]. A method for performing such screening 

was first described in the early 1980s, when the interaction between heme and 

myoglobin, as well as the binding of thyroid hormone analogs to prealbumin, was 

examined. The algorithms correctly predicted the binding of ligands to within 1 Å of x-

ray crystallography results, and also predicted other binding modes with good steric fit to 

the receptors [319]. A number of studies have also demonstrated the utility of in-silico 

screening and validating its use as a drug discovery tool [320,321]. In particular, a study 

examining and comparing HTS and in-silico screening for new inhibitors of protein 

tyrosine phosphatase-1B, a target for type II diabetes, showed that in-silico screening is 

more advantageous than HTS. In this study, a virtual library of 235,000 compounds was 

docked into the receptor, resulting in 365 of the top-scoring compounds for further test, 

while 400,000 compounds were screened against the target using traditional HTS 
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methods. Of the 400,000 compounds tested, HTS yielded 85 compounds with IC50 values 

less than 100 µM (6 with an IC50 less than 10 µM) with a hit rate of 0.0021 %. Of the 365 

compounds yielded from the in-silico screening, 127 compounds had IC50 values less 

than 100 µM (18 with an IC50 less than 10 µM), resulting in a hit rate of 34.8 %. Thus, in-

silico screening enriched the potential hit rate by approximately 1700 fold [322]. The 

compounds suggested by in-silico screening were also more ‘drug-like’ in character, with 

a higher number of compounds adhering to Lipinski’s rule of five for drug-likeness, 

which are parameters used to estimate the solubility and membrane permeability of 

potential drug candidates. Poor absorption and bioavailability, or the amount of 

unchanged drug that reaches the systemic circulation, are likely when a drug candidate 

has more than 5 hydrogen bond donors; more than 10 hydrogen bond acceptors; a 

molecular weight of greater than 500 Da; and a calculated water/octanol partition 

coefficient (CLogP) of greater than 5 [323]. Interestingly, hit compounds yielded from 

HTS and in-silico screening were dissimilar, suggesting that the two methods could be 

complimentary and that using both may increase the success rate of finding a useful lead 

compound. Indeed, the usefulness of in-silico screening methods has been demonstrated, 

as there are several examples of drugs on the market that have arisen from in-silico 

screening, including Viracept, a human immunodeficiency virus (HIV) protease inhibitor, 

and Relenza, an anti-influenza drug [316,324,325].   

In this study, in-silico ligand screening with virtual ligand libraries was used to 

search for novel inhibitors of FASN TE using the DOCK suite of programs. In previous 

studies, DOCK software has successfully produced potent hits with anti-tumor activity 

for various proteins implicated in cancer including BCR-ABL [326], protein kinase CK2 
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[327], and BCL2/BCL-XL [328]. DOCK screening works by first using the sphgen 

program within DOCK to generate a set of spheres that describe the active site, or desired 

binding pocket, of the receptor [282]. The spheres are used to approximate the positions 

of ligand atoms within the active site of the receptor. Then, scoring grids are generated 

using the grid program within DOCK. These grids evaluate the position of, and rapidly 

score, each ligand based on size and shape complementarity to the receptor active site, 

removing any ligands that have a high amount of steric interference with any active site 

residues. Ligands with the highest scores from the first round of docking were then 

subjected to AMBER scoring, which employs energy minimization and molecular 

dynamics simulations to evaluate the energy of the binding between each ligand and the 

receptor. The AMBER score is represented by electrostatic and van der Waals 

interactions, and the solvation energy of the ligand in complex with the receptor is 

calculated using the Generalized Born solvation model [329]. The final AMBER score is 

given as the E(Complex) – [E(Receptor) + E(Ligand)], with the solvated internal energies 

of each component approximated by the AMBER force field [281]. 

To fully investigate the FASN TE protein and to increase the probability of 

finding a novel inhibitor of TE activity, both in silico and HTS approaches were used. 

First, two compound libraries were virtually screened for this study: the ChemDiv library 

containing over 200,000 compounds and a library of FDA approved drugs containing 

approximately 2,000 compounds. Using a high-throughput fluorogenic assay with 

recombinant FASN TE protein to determine the ability of selected compound candidates 

to inhibit TE activity, a total of 81 compounds from the ChemDiv library and 34 

compounds from the FDA approved library were tested. A novel compound from the 



 

108 
 

ChemDiv library, designated 13C, inhibited FASN TE activity and was found to inhibit 

cellular proliferation in subsequent in vitro assays, but was not investigated further 

because it failed to inhibit lipid synthesis in vitro. Results detailing this compound can be 

found in Appendix D. However, another top-scoring compound from the virtual screen, 

pantoprazole, a proton pump inhibitor from the FDA approved library, inhibited TE 

activity in a dose-dependent manner. It was determined that other PPIs from the class, 

omeprazole, esomeprazole, lansoprazole and rabeprazole, were also effective in 

inhibiting TE activity, demonstrating their potential utility for inhibiting FASN, and thus 

satisfying Specific Aim II of this project. As a number of studies have found that 

treatment with PPIs can inhibit cancer cell proliferation, these results provide a potential 

novel mechanism by which PPIs may be acting in cancer cells, thus warranting further 

investigation.    

 

B. Results 

To search for novel inhibitors of the TE domain of human FASN, the highly-

resolved FASN TE crystal structure with a polyunsaturated fatty acid adduct [280] was 

obtained from the RCSB protein data bank and was prepared for in-silico ligand 

screening using the DOCK suite of programs (see Chapter 2). This FASN TE crystal 

structure was chosen for in-silico screening because it is more highly resolved at 1.48 Å, 

instead of the previously published crystal structure of FASN TE with orlistat in the 

active site that was used for modeling experiments (see Chapter 3), which is resolved at 

2.3 Å. A library containing approximately 2,000 FDA approved ligands was downloaded 

from the ZINC database. The grid program within DOCK was used to score each ligand 
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based on shape and size complementarity to the active site. The 200 top-scoring 

compounds were then subjected to AMBER scoring, which predicted the binding energy 

of each ligand in the active site. To select the group of compounds that would be further 

tested, all 200 ligands subjected to AMBER scoring were grouped based on chemical 

structure using the clustering tool Library MCS. Each cluster was visually examined 

within the TE active site using the Chimera visualization program to choose compounds 

that could potentially interact favorably with FASN TE residues through hydrogen 

bonding or other electrostatic interactions, such as hydrophobic interactions or pi-pi 

interactions. Any compound exhibiting a positive AMBER score was discarded. 

Representative compounds from each cluster were chosen based on AMBER score and 

the potential for favorable binding in the FASN TE active site. Ligands containing 

lactone or lactam moieties, or other moieties that could potentially be nucleophically 

attacked by the active site serine to form a covalent bond, such as an epoxide ring, were 

given special preference, as were compounds containing long-chain hydrocarbon 

moieties. The final 34 compounds (Table 1), which met all above criteria, were selected 

for further examination.  
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TABLE 1: 34 selected FDA approved compounds from DOCK screening. 

FDA Approved 
Compound 
Candidate 

Structure Use 

FDA1 Cefotiam 

 

Cephalosporin antibiotic 

FDA2 Fosinopril 

 

Angiotensin converting 
enzyme inhibitor for 

hypertension 

FDA3 Piperacillin 

 

Beta-lactam antibiotic 

FDA4 Tazobactam 

 

Beta-lactamase inhibitor 

FDA5 Fosfomycin 

 

Antibiotic 

FDA6 Roli-
tetracycline 

 

Tetracycline antibiotic 

FDA7 Benidipine 

 

Ca+ channel blocker for 
hypertension 

FDA8 Silibinin 

 

Antihepatotoxic and has in 
vitro anti-cancer effects 
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FDA9 Cisapride 

 

Gastroprokinetic agent 

FDA 
10 

Nicofuranose 

 

Hypolipidemic agent 

FDA 
11 

Dantrolene 

 

Muscle relaxant 

FDA 
12 

Nizatidine 

 

H2 receptor agonist for acid 
reflux treatment 

FDA 
13 

Bisoprolol 

 

Beta blocker 

FDA 
14 

Valacyclovir 

 

Antiviral for herpes 
treatment 

FDA 
15 

Pantoprazole 

 

Proton pump inhibitor for 
acid reflux treatment 

FDA 
17 

Acitretin 

 

Retinoid for psoriasis 
treatment 

FDA 
18 

Oxybutynin 

 

Anticholinergic for frequent 
urination 
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FDA 
19 

Pentamidine 

 

Antimicrobial 

FDA 
20 

Cefmetazole 

 

Cephalosporin antibiotic 

FDA 
21 

Furaltadone 

 

Antibiotic 

FDA 
22 

Butacaine 

 

Local anesthetic 

FDA 
23 

Bifonazole 

 

Imidazole antifungal 

FDA 
24 

13-cis-
retinoic acid 

 

Accutane, acne treatment 

FDA 
25 

Gabexate 

 

Serine protease inhibitor for 
treatment of pancreatitis 

FDA 
26 

Sulcotidil 

 

Vasodilator 

FDA 
27 

Capsaicin 

 

Active component of chili 
peppers 

FDA 
28 

Pramoxine 

 

Topical anesthetic 

FDA 
29 

Midodrine 

 

Vasopressor/ 
Antihypertensive 

FDA 
30 

Metoprolol 

 

Beta blocker 
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FDA 
31 

Dibutytryl-
adenosine 

 
 

cAMP analog 

FDA 
32 

Glipizide 

 

Anti-diabetic 

FDA 
33 

Fenofibrate 

 

Cholesterol lowering drug 

FDA 
34 

Bezafibrate 

 

Cholesterol lowering drug 
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These 34 compounds were then examined for their ability to inhibit TE activity 

using a fluorogenic assay with recombinant TE protein. The compound 4-

methylumbelliferyl heptanoate (4-MUH), which contains an ester moiety, is not 

fluorescent. However, when the ester bond is cleaved by TE, the product, 4-

methylumbelliferone (4-MU), fluoresces, providing a read-out for thioesterase activity. 

First, recombinant TE protein was expressed and purified, and confirmed by Western blot 

(Fig. 1A, also see Chapter 2), and the kinetic parameters of the protein were determined. 

The Km of the protein, which is equivalent to the concentration required to achieve 50 % 

of the maximal velocity (vmax), was determined by incubating FASN TE with various 

concentrations of 4-MUH and obtaining the fluorescence readout. A standard curve using 

4-MU was determined to quantify the product from TE catalysis (Fig. 1B), which was 

modeled into a Lineweaver-Burk plot (Fig. 1C) to ensure that a linear pattern of 

increasing fluorescence units vs. 4-MUH concentration was achieved [291]. The data 

were then fit using WinNonlin v2.0 software (Pharsight) with a 1 enzyme model with no 

weighing of the data (Fig. 1D). The Km of the protein was determined to be 38.45 µM.  
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FIGURE 1 

 

Figure 1: Determination of FASN TE kinetic parameters. (A) Recombinant FASN TE 

was expressed and purified. The purity of duplicate samples of the protein was confirmed 

with SDS-PAGE (left panel), and the presence of FASN TE was confirmed in duplicate 

samples via Western blot (right panel). (B) Standard curve plotting the fluorescence units 

yielded vs. µg of the fluorescent 4-MU. (C) Lineweaver-Burk plot of FASN TE activity. 

(D) The kinetic parameters of FASN TE were determined by plotting 4-MU product 

formed (pmol/min) vs. the substrate concentration (µM 4-MUH). The Km of the protein 

was determined using a 1 enzyme model with no weighing of the data.  
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Next, to determine if any of the selected compounds were able to inhibit FASN 

TE, 100 µM of each compound candidate was incubated with TE and 4-MUH. Orlistat, a 

known inhibitor of FASN TE [212], was used as a positive control (Fig. 2A). Compounds 

FDA15, 24 and 26, which reduced ≥ 40 % of enzyme activity (p<0.001), were selected 

for further investigation. Although FDA24, 13-cis-retinoic acid, and FDA26, sulcotidil, 

failed to inhibit FASN TE in a dose-dependent manner (data not shown), FDA15, 

pantoprazole, inhibited FASN TE activity in a dose-dependent manner (Fig. 2B) with an 

average IC50 value of 36.03 µM and a Ki value of 4.09 µM, which was calculated using 

the Cheng-Prusoff equation [288] (Table 2). Pantoprazole, as predicted by DOCK, is 

shown in the FASN TE active site (Fig. 2C). 

  

 

 

 

 

 

 

 

 

 

  

 

 



 

117 
 

FIGURE 2 

 

Figure 2: Pantoprazole inhibits FASN TE activity. (A) The ability of 34 FDA approved 

compounds to inhibit FASN TE activity was determined (100 % activity noted by red 

line). Compounds FDA15, 24 and 26 inhibited at least 40 % of protein activity (green 

line) (*p<0.05, **p<0.01, #p<0.001). (B) FDA15, pantoprazole, inhibited FASN TE 

activity in a dose-dependent manner. Each point is shown as the average ± SEM. (C) 

Pantoprazole binds in the active site of FASN TE, as predicted by DOCK. 
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To determine if any other compounds from the same cluster as pantoprazole could 

also potentially inhibit FASN TE activity, the remaining compounds from the cluster 

were tested using the same assay as described above. Interestingly, all the remaining 

compounds in this cluster, which appeared in the list of 200 top-scoring compounds from 

in-silico docking, were PPIs including omeprazole, lansoprazole and rabeprazole. It 

should be noted that PPIs are chiral molecules and they are commercially formulated as 

racemic mixtures of their respective R- and S-enantiomers. The virtual FDA library 

contained only the S-enantiomer of each PPI. Esomeprazole, containing only the S-

enantiomer of omeprazole, is also an FDA approved PPI that is commercially available. 

Esomeprazole, and racemic omeprazole, lansoprazole or rabeprazole were examined for 

their ability to inhibit FASN TE activity. As shown in Figure 3 and Table 2, except 

esomeprazole, all other racemic PPIs inhibited the esterase activity of FASN TE with Ki 

values of 3.4-5.9 µM. Based on these results, it is tempting to speculate that R-

omeprazole may be more active than the S- enantiomer. However, it is difficult to 

compare with racemic omeprazole, as esomeprazole is commercially available as two 

molecules of S-omeprazole in a coordination complex with Mg2+, which may affect its 

potency. 
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FIGURE 3 

 

Figure 3: Dose-dependent inhibition of FASN TE by PPIs. Each point is shown as the 

average of three independent experiments ± SEM.   
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TABLE 2: Chemical structure, IC50 and Ki of PPIs. 

PPI Structure IC50
a Ki

b 

Omeprazole 

 

29.52 
 ± 7.50 

3.35  
± 0.85 

 

Pantoprazole 

 

36.03 
 ± 6.99 

4.09 
± 0.79 

 

Lansoprazole 

 

46.47  
± 10.87 

5.27  
± 1.23 

 

Rabeprazole 

 

51.95  
± 17.56 

5.90  
± 1.99 

 

Esomeprazole 

 

117.84 
± 38.93 

13.38 
± 4.42 

 

 

 aThe IC50 of each PPI is the concentration of drug required to inhibit 50 % of the 

recombinant FASN TE activity, as measured by the 4-MUH fluorescent assay. 

bThe inhibition constant of each PPI (Ki), defined as the concentration of compound 

required to inhibit 50 % of the TE enzyme receptors, was calculated from the IC50 using 

the Cheng-Prusoff equation [288].  

 

C. Conclusions and Discussion 

 In-silico screening is a promising method for the discovery of novel lead 

candidates that target a number of different proteins with known structure. Investigators 

have demonstrated the ability of in-silico screening methods to correctly predict the 
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binding modes of known ligand inhibitors within their targets, and when paired with 

high-throughput screening, in-silico screening can enrich the potential hit rate and 

provides a facile method to screen large libraries of compounds inexpensively and in a 

short amount of time [316,320,321]. Indeed, several drugs that are currently on the 

market were initially discovered with in-silico screening methods [324,325], and a 

number of lead compounds for various proteins implicated in cancer have been 

discovered using the DOCK method employed in this study [330]. DOCK software, 

which performs two rounds of in-silico screening to find ligands that could potentially 

bind in the active site of a protein target with size, shape and chemical complementarity, 

was paired with a high-throughput fluorescence assay that measured the relative activity 

of FASN TE. Using the highly-resolved crystal structure of FASN TE with a 

polyunsaturated fatty acyl adduct in the active site [280], a library of approximately 2,000 

FDA approved drugs was screened. The top 200 scoring drugs were clustered into groups 

based on chemical structure. A total of 34 drugs to examine via HTS were chosen based 

on a number of criteria including predicted binding energy; chemical cluster; potential for 

favorable interaction in the FASN TE active site; presence of a lactone ring or other 

moiety that could covalently interact with the active site serine of FASN TE; and 

presence of aliphatic carbon chains. In this case, the integration of in silico screening and 

HTS was demonstrated to be particularly effective, because of the 34 drugs that were 

examined for their ability to disrupt the activity of a recombinant form of FASN TE,  10 

compounds, or nearly 1/3, inhibited FASN TE activity in a statistically significant 

manner. These drugs include FDA9, cisapride; FDA11, dantrolene; FDA13, bisoprolol; 

FDA17, acitretin; FDA21, furaltadone; FDA23, bifonazole; and FDA27, capsaicin. These 



 

122 
 

drugs were not examined further because at a high concentration of 100 µM, less than 40 

% of FASN TE activity was inhibited. A number of compounds stimulated FASN TE 

activity in a significant manner including FDA2, fosinopril; FDA5, fosfomycin; FDA12, 

nizatidine; FDA14 valacyclovir; FDA18, oxybutynin; FDA25 gebaxate; FDA28, 

pramoxine; FDA29 midodrine; and FDA30, metoprolol. Several lactam-containing 

compounds were also tested as part of this screen, and interestingly, each one increased 

FASN TE activity in a statistically significant manner. The drugs included FDA1, 

cefotiam; FDA3, piperacillin; and FDA4, tazobactam; and FDA20, cefmetazole. Each of 

these drugs increased FASN TE by greater than 130 %. It is unknown how these 

compounds may be activating TE activity, but considering that nucleophilic attack by the 

active site serine is required for ester bond hydrolysis, it is possible that these drugs are 

somehow priming or activating serine and increasing its nucleophilic activity. Of the 

remaining top hits that failed to have an effect on FASN TE activity, there are several 

reasons why this could be the case. Drugs with a very low solubility in water may have 

been unable to inhibit FASN TE activity due to the aqueous conditions in which HTS 

was performed. Also, during DOCK screening, the chemical structure of the drug alone 

was evaluated, which may not correspond to the formulation in which the drug is 

commercially available, thus affecting its ability to inhibit FASN TE activity. 

Additionally, when in-silico screening was used, binding predictions for each of the top 

hits were made using coordinates of a protein that was obtained during crystallization 

with a polyunsaturated fatty acid adduct. Because the receptor is kept frozen during the 

virtual screening process, active site residues are kept in an optimal position for binding 

with the fatty acid adduct. Thus, the positions of residues of the active site of FASN TE 
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may adopt a vastly different conformation during the actual in situ screening process and 

drugs that were predicted to bind with a very favorable binding energy may not actually 

bind with FASN TE.         

Several drugs inhibited at least 40 % of FASN TE activity, including FDA24, 13-

cis-retinoic acid, and FDA26, sulcotidil, however, neither drug inhibited FASN TE 

activity in a dose-dependent manner. FDA15, pantoprazole, was able to inhibit FASN TE 

activity in a dose-dependent manner, with a Ki value in the low micromolar range. 

Pantoprazole is a member of the FDA approved class of compounds known as proton 

pump inhibitors. Interestingly, when the cluster of compounds containing pantoprazole 

was examined, other commercially available FDA approved PPIs omeprazole, 

lansoprazole and rabeprazole also appeared in the cluster from the top 200 scoring 

compounds from the FDA approved library. Like pantoprazole, each PPI inhibited the 

activity of FASN TE in a dose-dependent manner with Ki values in the low micromolar 

range. Esomeprazole was much less potent in inhibiting FASN TE activity, however, it 

was suspected that the formulation of commercially available esomeprazole, in which 

two esomeprazole molecules are chelated to a magnesium ion, may have been the cause 

of apparent decrease in potency of esomeprazole compared to other PPIs. 

 PPIs are known to block acid secretion into the gastrointestinal tract by covalently 

binding with a cysteine residue of hydrogen/potassium ATPase in gastric parietal cells 

and irreversibly inhibiting the secretion of protons into the gastric lumen [249]. PPIs are 

likely not inhibiting FASN TE in this manner, as there are no cysteine residues in the 

FASN TE active site. However, x-ray crystallography will be required to determine the 

exact way in which each PPI inhibits FASN activity. Crystal structure studies will also 
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confirm whether or not DOCK correctly predicted the binding mode of each PPI within 

the FASN TE active site.  

 Recently, a number of studies have shown that PPI treatment can sensitize cancer 

cells to chemotherapeutic agents. It has been proposed that PPI treatment causes a 

modulation of pH homeostasis by binding with vacuolar ATPases in the membranes of 

these cells (reviewed in [259,260]). However, it has been shown that acidic extracellular 

pH, which is common in a tumor microenvironment, causes an increase in FASN 

expression [76], indicating a close relationship between pH balance and lipid synthesis. 

Indeed, one study noted that PPI treatment altered the composition of cellular lipid 

metabolites in pancreatic cancer cells [270]. The results of this drug screening study are 

the first to demonstrate that PPIs may directly target FASN TE, and thus alter the fatty 

acid synthesis pathway, providing a new mechanism by which PPIs may exert anti-cancer 

effects in tumor cells. This study also shows that combining in-silico screening with HTS 

was a  useful strategy in this study, and allowed us to quickly and successfully identify a 

new target and use for drugs that are already FDA approved. Applying such a strategy 

may allow for drug repurposing and fast-tracking of new treatment modalities.  
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Chapter 5: Aim III: Validation of Proton Pump Inhibitors as Inhibitors of Human 

Fatty Acid Synthase Thioesterase and Determination of their Therapeutic Potential 

as Anti-Cancer Agents in Pancreatic Cancer 

 

A. Background and Rationale 

Following lead compound discovery from high-throughput screening (HTS), the 

next phase in the drug discovery process is to test the therapeutic properties of lead 

compounds in appropriate cell lines and to determine if the selected compounds have the 

ability to inhibit the desired target in vitro. In this study, several cancer cell lines were 

used to examine the effects of PPIs on cancer cell growth, with BxPC-3 and PANC-1 

pancreatic cancer cell lines being used as a model system. BxPC-3 cells were originally 

cultured from an adenocarcinoma resected via biopsy from the body of the pancreas of a 

61-year-old woman, who died 6 months later even with chemotherapeutic and radiation 

treatment, although no metastasis was present. BxPC-3 cells have moderate to poor 

differentiation and when grown in mice, tumors from this cell line maintained the 

characteristics of the original primary adenocarcinoma [331]. PANC-1 cells were 

originally cultured from an adenocarcinoma resected from the head of the pancreas of a 

56-year-old male that had invaded the duodenal wall. PANC-1 cells have poor 

differentiation and upon injection into mice, an anaplastic carcinoma formed that grew 

progressively [332]. In studies comparing these two cell lines, PANC-1 cells have been 

found to have greater migration capacity than BxPC-3 cells [333,334]. However, both 

cell lines appear to have similar invasive propensities when examined in matrigel 

[335,336]. BxPC-3 cells express higher levels of the pro-angiogenic factors 
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cyclooxygenase-2 (COX-2) [337], prostaglandin E2 [338] and vascular endothelial 

growth factor (VEGF) [339] than PANC-1 cells, indirectly indicating that BxPC-3 cells 

may have a greater angiogenic potential. Of the four most common mutations observed in 

pancreatic cancer (see chapter 1), BxPC-3 cells display wild-type KRAS; mutated p53; 

wild-type CDKN2A/p16 with a homozygous deletion; and a homozygous deletion of 

SMAD4/DPC4. PANC-1 cells display mutated KRAS; mutated p53; a homozygous 

deletion of CDKN2A/p16; and wild-type SMAD4/DPC4 (reviewed in [337]). In addition, 

our lab has observed that BxPC-3 and PANC-1 have varying amounts of FASN protein 

expression, with BxPC-3 expressing a lower amount of FASN protein and PANC-1 

expressing a higher amount of FASN protein [149]. As BxPC-3 and PANC-1 cells 

display a number of widely different cellular characteristics, including a differential 

amount of FASN protein expression, these cell lines were chosen to represent the highly 

heterogeneous nature of tumor cells, reflecting differences that might be seen clinically.  

In this study, the ability of PPIs to inhibit cancer cell growth and lipid synthesis 

was examined in vitro. All PPIs were effective in inhibiting tumor cell proliferation, 

colony forming ability and lipid synthesis in BxPC-3 and PANC-1 cells, with 

lansoprazole demonstrating the highest potency. Furthermore, lansoprazole likely directly 

binds to the active site of FASN TE, which was determined using a probe specific for 

serine hydrolase enzymes. Lansoprazole also induced apoptosis in pancreatic cancer 

cells, and cell lines with a higher fatty acid synthesis activity were more sensitive to 

lansoprazole treatment. Additionally, supplementing cells with exogenous palmitate 

partially rescued the effects of lansoprazole on tumor cell proliferation and apoptosis 

induction, indicating that lansoprazole is likely affecting the fatty acid synthesis pathway. 
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These results satisfy Specific Aim III by demonstrating that a novel class of FASN TE 

inhibitors, PPIs, can decrease cellular proliferation and lipid synthesis in vitro. FASN 

inhibition is an important mechanism by which PPIs are inducing cytotoxic effects in 

tumor cells, thus indicating the potential utility of PPIs, especially lansoprazole, in cancer 

chemotherapy in cancer types, including pancreatic cancer, that over-express FASN.  

 

B. Results 

B1. PPIs Inhibit Cellular Proliferation and Colony Forming Ability  

To test the ability of each candidate PPI to inhibit cellular proliferation in cancer 

cells, human pancreatic cancer cell lines PANC-1 and BxPC-3 were treated with varying 

concentrations of the PPIs for 72 hours. Cellular proliferation was first examined using 

MTT assays. MTT assays allow for the estimation of the number of living cells in a 

sample by detecting the colorimetric change that occurs as the tetrazolium ring of the 

MTT dye is cleaved by dehydrogenase enzymes in the active mitochondria of living cells 

[340]. Each PPI exhibited a dose-dependent anti-proliferative effect in both PANC-1 

(Fig. 1A) and BxPC-3 cells (Fig. 1B) (Table 1). Lansoprazole offered the most consistent 

potent effect in both cell lines, with an average IC50 value of 231.53 µM in PANC-1 cells 

and 23.93 µM in BxPC-3 cells. A known inhibitor of FASN, orlistat, was also examined 

(Fig. 1 A, B). Although orlistat was more potent than PPIs in PANC-1 cells with an 

average IC50 value of 136.21 µM, its average IC50 value was 30.20 µM in BxPC-3 cells, 

which was comparable to the effect induced by lansoprazole (Table 1). 
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FIGURE 1: 

 

Figure 1: Dose-response curves of PPIs from MTT assays. The ability of each PPI, as 

well as orlistat, to inhibit cellular proliferation was measured by MTT assay in (A) 

PANC-1 cells and (B) BxPC-3 cells. Each point is shown as the average of three 

independent experiments ± SEM.   

 

TABLE 1: IC50 values of PPIs from MTT assays. 

PPI/Orlistat PANC-1 IC50 (μm) PPI/Orlistat BxPC-3 IC50  (μm) 
Lansoprazole  231.53 ± 6.79  Rabeprazole  21.88 ± 14.18 
Rabeprazole  246.37 ± 56.89  Lansoprazole  23.93 ± 1.90 
Omeprazole 276.87 ± 31.31  Pantoprazole 76.13 ± 17.61 
Pantoprazole 322.37 ± 7.21  Omeprazole 144.4 ± 21.30 
Esomeprazole  333.33 ± 75.33  Esomeprazole  232.4 ± 55.34 
Orlistat 136.21 ± 35.71 Orlistat 30.20 ± 5.36 
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As MTT assays only allow for an estimation of living cells, and thus an 

estimation of IC50, cell survival in the presence of each PPI was also examined using 

colony formation assays to confirm that PPIs could inhibit cell survival in a dose-

dependent manner. Colony formation assays examine the ability of single cells to grow 

into colonies and to theoretically undergo unlimited division in the presence or absence 

of cytotoxic agents [341,342]. PANC-1 and BxPC-3 cells were treated with each PPI or 

orlistat for 10-14 days and their colony forming ability was inhibited in a dose-dependent 

manner (Fig. 2 A, B). Again, Lansoprazole was the most potent inhibitor of colony 

formation, with an average IC50 of 58.56 µM in PANC-1 cells and 6.71 µM in BxPC-3 

cells (Table 2). Rabeprazole also appeared to be one of the most potent PPIs to affect 

both cellular proliferation and colony formation, however rabeprazole was one of least 

efficacious PPIs to inhibit FASN TE activity (see chapter 4), indicating that rabeprazole 

may be affecting cancerous cells through other pathways. Additionally, lansoprazole was 

more potent in inhibiting colony forming ability than orlistat in both cell lines (Table 2). 

Therefore, lansoprazole was selected as the lead candidate. 
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FIGURE 2 

 

Figure 2: Dose-response curves of PPIs from colony formation assays. The ability of 

each PPI or orlistat to inhibit cellular proliferation was measured by colony formation 

assay in (A) PANC-1 cells and (B) BxPC-3 cells. Each point is shown as the average of 

three independent experiments ± SEM.   

 

TABLE 2: IC50 values of PPIs and orlistat from colony formation assays. 

PPI PANC-1 IC50 (μm) PPI BxPC-3 IC50  (μm) 
Lansoprazole  58.56 ± 11.93 Lansoprazole  6.71 ± 0.84 
Rabeprazole  117.36 ± 41.33 Rabeprazole 7.88 ± 4.92 
Omeprazole 127.83 ± 16.12 Esomeprazole 13.33 ± 0.89 
Pantoprazole 143.73 ± 27.78 Omeprazole 14.80 ± 2.24 
Esomeprazole  166.47 ± 41.20 Pantoprazole  18.51 ± 14.32 
Orlistat 68.02 ± 17.60 Orlistat 8.45 ± 1.83 
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  To examine why lansoprazole is more effective to BxPC-3 than PANC-1 cells, 

the relative amount of FASN protein was determined using Western blot analysis and the 

amount of lipid synthesis by analyzing [14C]-acetate incorporation into lipids in each cell 

line (DPM/105 cells). Although PANC-1 has a much higher level of FASN protein than 

BxPC-3 cells, the amount of [14C] incorporated into lipids extracted from BxPC-3 cells 

was approximately 1.75 fold higher than lipids extracted from PANC-1 cells, indicating 

that BxPC-3 has a higher amount of lipid synthesis (p<0.05) (Fig. 3 A, B). This is not 

unusual, as the rate limiting step of fatty acid synthesis is the conversion of acetyl-CoA to 

malonyl-CoA by acetyl-CoA carboxylase [6]. Because the reaction rate is being 

controlled by acetyl-CoA carboxylase, the rate of fatty acid synthesis does not necessarily 

correlate with the amount of FASN protein. These results indicate that because BxPC-3 

cells have a higher rate of fatty acid synthesis and its survival may be more dependent on 

this higher rate of lipid synthesis, FASN blockade may be more detrimental to this cell 

line, especially due to the toxic accumulation of malonyl-CoA [196]. These results also 

indicate that the fatty acid synthesis pathway may be a target of PPIs. 
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FIGURE 3: 

 

Figure 3: FASN protein expression and activity in PANC-1 and BxPC-3 cells. (A) 

PANC-1 cells have higher FASN protein expression than BxPC-3 cells, as measured by 

Western blot. A representative blot is shown. (B) The amount of lipid synthesis in BxPC-

3 cells is about 1.75-fold higher (n=3, *p<0.05), as measured by the incorporation of 

[14C]-acetate into synthesized lipids. 

 

B2. PPIs Inhibit Fatty Acid Synthesis in Whole Cells 

Although the ability of PPIs to inhibit recombinant FASN TE activity had been 

shown, it was necessary to demonstrate that the fatty acid synthesis pathway is a target of 

lansoprazole in whole cells. In order to test this, PANC-1 and BxPC-3 cells were treated 

with lansoprazole for 4 hours followed by a 2 hour incubation with [14C]-acetate. The 

amount of radioactive carbon incorporated into newly synthesized lipids was determined 

by extracting lipids from the cells and measuring the radioactivity using scintillation 

counting. Lansoprazole inhibited the lipid production rate in both PANC-1 and BxPC-3 

cell lines in a dose-dependent manner (Fig. 4 A, B). The average IC50 of FASN synthesis 
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inhibition by lansoprazole was 134.55 µM in PANC-1 cells and 149.83 µM in BxPC-3 

cells (Fig. 4C).  

Rabeprazole, omeprazole, esomeprazole and pantoprazole were also examined in 

PANC-1 cells, with average IC50 values of 257.6, 532.7, 549.6 and 641.2 µM 

respectively (Fig. 5A, B), indicating that lansoprazole is clearly the most potent inhibitor 

of lipid synthesis by FASN. As a comparison, orlistat was also examined in PANC-1 

cells, and inhibited fatty acid synthesis with an IC50 value of 208.5 µM (data not shown). 
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FIGURE 4 

 

Figure 4: Lansoprazole inhibits FASN lipid synthesis. Lansoprazole decreased the 

incorporation of [14C]-acetate into lipids in a dose-dependent manner in (A) PANC-1 

cells and (B) BxPC-3 cells. Each point is shown as the average of at least three 

independent experiments ± SEM. (C) The IC50 values of lipid synthesis inhibition by 

lansoprazole is shown for both cell lines.    
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FIGURE 5 

 

Figure 5: PPIs inhibit FASN lipid synthesis. (A) Rabeprazole, omeprazole, esomeprazole 

and pantoprazole each inhibit lipid synthesis in PANC-1 cells in a dose-dependent 

manner, but to a lesser degree than lansoprazole. Each point is shown as the average of 

two independent experiments. (B)  The IC50 values of lipid synthesis inhibition by each 

PPI, and orlistat, is shown.  
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B3. Lansoprazole Competitively Inhibits the Active Site of FASN TE 

To confirm that lansoprazole directly associates with the active site of FASN TE 

in full-length FASN, cell lysate was generated from PANC-1 cells. PANC-1 cells were 

chosen, as they have a higher amount of protein expression than BxPC-3 cells. The lysate 

was incubated with the ActivX Desthiobiotin-fluorophosphonate (FP) serine hydrolase 

probe in the presence and absence of lansoprazole. This probe irreversibly binds to and 

labels the active site serine of serine hydrolase enzymes, such as FASN TE, and can be 

detected using Western blot with HRP-conjugated streptavidin. As shown in Fig. 6A and 

6B, labeling of FASN TE by the probe is inhibited by lansoprazole in a dose-dependent 

manner. However, lasoprazole had no effect on FASN expression, as determined using 

Western blot, or on the binding of the probe to other potential hydrolases (Fig. 6B). To 

determine the type of enzymatic inhibition that lansoprazole imparts on FASN TE, 

recombinant FASN TE was incubated with increasing concentrations of lansoprazole in 

the presence of a range of 4-MUH concentrations and the fluorescence yielded from 

hydrolyzed 4-MU was quantified. A Lineweaver-Burk plot was created by plotting 1/v 

vs. 1/[4-MUH] for each lansoprazole concentration. The slope of each line plotted 

increases with each increasing lansoprazole concentration; each line has a different x-

intercept; and the lines intersect near the y-intercepts inside the plot, indicating that 

inhibition of FASN TE by lansoprazole is likely competitive in nature (Fig. 6C) [291].  
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FIGURE 6 

 

Figure 6: Direct inhibition of FASN TE by lansoprazole. (A) Incubating PANC-1 cell 

lysate with increasing concentrations of lansoprazole decreased the labeling of FASN TE 

by a serine hydrolase probe, indicating that lansoprazole is directly binding in the FASN 

TE active site. The expression of FASN remained unchanged. (B) Increasing 

concentrations of lansoprazole did not affect the labeling of other serine hydrolase 

proteins by the probe, indicating that lansoprazole inhibition is specific to FASN TE. 

Representative blots are shown for A and B. (C) Incubating recombinant FASN TE with 
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lansoprazole (50, 25, 6.25 µM) in the presence of various concentrations of 4-MUH 

yielded linear relationships with varying slopes and x-intercepts, when plotted via the 

Lineweaver-Burk method, indicating competitive inhibition. Representative plots are 

shown, and the left panel is a zoomed in view of the right panel. 

 

B4. Lansoprazole Induces Cell Death In Vitro  

Blockade of the fatty acid synthesis pathway has been shown to elicit apoptotic 

cell death, likely through toxic buildup of malonyl-CoA [196]. The ability of 

lansoprazole to elicit cell death was confirmed by two different methods to examine early 

and late stage apoptosis. First, apoptosis was examined in BxPC-3 cells by quantitating 

the amount of cytoplasmic histone-associated DNA-fragments formed following a 72 

hour treatment with lansoprazole using the Cell Death Detection ELISA kit (Roche). 

DNA fragmentation leading to a release of nucleosomes from the nucleus into the 

cytoplasm is an early event in apoptosis, thus this test allows us to quantify cells in early 

apoptosis following lansoprazole treatment [343]. The induction of apoptosis was also 

confirmed by examining the cleavage of poly(ADP-ribose) polymerase (PARP) via 

Western blot following treatment with lansoprazole for 24 hours. The cleavage of PARP 

by executioner caspases is a hallmark of the execution phase of late stage apoptosis 

[344]. As the concentration of lansoprazole is increased, both DNA fragmentation (Fig. 

7A) and formation of cleaved-PARP increased (Fig. 7B) in a dose-dependent manner, 

indicating that lansoprazole causes apoptosis in these cancer cells. 
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FIGURE 7 

 

 

Figure 7: Initiation of apoptosis by lansoprazole. (A) Increasing concentrations of 

lansoprazole increase the induction of apoptosis in BxPC-3 cells in a dose-dependent 

manner, as measured by quantifying amount of cytoplasmic histone-associated DNA-

fragments formed following lansoprazole treatment. Each point is shown as the average 

of three independent experiments ± SEM. (B) Apoptosis induction was confirmed by 

examining the cleavage of PARP-1 via Western blot following treatment with increasing 

concentrations of lansoprazole. A representative blot is shown.  
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B5. Palmitate Supplementation Rescues the Effect of Lansoprazole on Cellular 

Proliferation and Apoptosis  

To demonstrate that lansoprazole treatment is indeed affecting the fatty acid 

synthesis pathway, BxPC-3 cells were treated with varying concentrations of 

lansoprazole in the presence and absence of 3.75 µM palmitic acid, and cellular 

proliferation was determined with MTT assay as described above. As palmitate is the 

main product of fatty acid synthesis by FASN, supplementing with exogenous palmitate 

following FASN inhibition should attenuate the effects of lansoprazole treatment by 

replenishing the cellular lipid supply, especially for the synthesis of phospholipids for 

membranes of proliferating cells, thus preventing cell death due to end product starvation 

(as reviewed in [345]). Palmitate supplementation alone did not enhance cellular 

proliferation, and in fact seemed to be slightly detrimental to cancer cell growth, however 

the difference was not statistically significant (p=0.19) (Fig. 8A). FASN expression also 

remained unchanged following supplementation with exogenous palmitate (Fig. 8B). The 

addition of palmitate partially rescued the cells from lansoprazole treatment, increasing 

the IC50 by approximately 1.7 fold (p<0.001) (Fig. 8C). As the addition of palmitate 

alone has no effect on cellular proliferation, but can rescue cells treated with 

lansoprazole, it is likely that lansoprazole is inhibiting the fatty acid synthesis pathway. 

The effect of exogenous palmitate supplementation on apoptosis induction by 

lansoprazole was also examined. BxPC-3 cells were treated in the presence and absence 

of 3.75 µM palmitic acid with the addition of 25 µM lansoprazole. Treatment with 

palmitic acid reduced apoptosis induction also by approximately 40 % (p<0.001) (Fig. 

8D). 
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FIGURE 8 

 

Figure 8: Palmitate supplementation rescues the effects of lansoprazole treatment. (A) 

The addition of 3.75 µM palmitate has no statistically significant effect on cell growth 

compared to DMSO control, as measured by MTT assays (n=3, p=0.19). (B) The addition 

of 3.75 µM palmitate has no effect on FASN protein expression, as measured by Western 

blot. (C) The effect of lansoprazole treatment on cellular proliferation, as measured by 

MTT assay, is mitigated by the addition of 3.75 µM palmitate. The IC50 of lansoprazole 

is increased approximately 1.7-fold with the addition of palmitate (n=3, ***p<0.001). (D) 

The effect of apoptosis induced by treatment with 25 µM lansoprazole, as measured by 
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cell death detection, is reduced with the addition of 3.75 µM palmitate by approximately 

40 % (n=3, ***p<0.001).   

    

B6. Effect of Lansoprazole on Extracellular and Intracellular pH  

PPIs are known to inhibit H+/K+ ATPases and thus may also inhibit vacuolar 

ATPases in tumor cells. Therefore, lansoprazole may affect cellular proliferation by 

altering pH homeostasis, and the extracellular and intracellular pH in the presence and 

absence of lansoprazole was examined in BxPC-3 cells. Addition of lansoprazole did not 

affect the pH balance of the growth media, which was collected and measured by a pH 

meter following a 72 hour incubation, indicating that an alteration in extracellular pH was 

not a factor in affecting cellular growth (data not shown). The intracellular pH of BxPC-3 

cells, treated in the presence or absence of various concentrations of lansoprazole for 72 

hours, was measured by incubating the cells with the pHrodo red intracellular pH sensor, 

which exhibits a differential in fluorescence that is pH dependent. As shown in Figure 

9A, intracellular pH was not affected by lansoprazole treatment in a statistically 

significant manner, indicating that alteration of pH homeostasis unlikely contributes to 

lansoprazole-induced cell death in BxPC-3 cells. These results are expected, as all cell 

lines used in this study were cultured in buffered media in order to minimize any effects 

caused by a change in cellular pH.    

 

B7. Lansoprazole Treatment has a Greater Effect in Cells with Higher FASN Activity 

To further demonstrate that the anti-proliferative and cell death inducing effect of 

lansoprazole is a direct result of FASN blockade, paired cells lines with varying amounts 
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of FASN activity was examined. First, FASN protein expression was evaluated in a 

PANC-1 vector control cell line PANC-1/V4 and a PANC-1 ectopic FASN over-

expressing cell line, PANC-1/F7. These cell lines, created in our lab, have previously 

been used to show that cells with higher FASN protein expression are more intrinsically 

resistant to both radiation and gemcitabine treatment [149]. Western blot analysis 

confirmed that FASN protein expression is up-regulated in F7 over-expressing cells, and 

the [14C]-acetate lipid-incorporation assay showed that the FASN synthesis rate is 2-fold 

higher in the F7 over-expressing cells compared to the V4 vector-control cells (Fig. 9B). 

Conversely, when these cell lines were treated with lansoprazole, F7 over-expressing 

cells are 1.5-fold more sensitive to lansoprazole treatment than V4 cells (p<0.05) as 

determined using colony formation assay (Fig. 8C). As with BxPC-3 and PANC-1 cells, 

the paired cell lines that exhibited a higher rate of fatty acid synthesis were more 

sensitive to lansoprazole treatment. As conversion of acetyl-CoA to malonyl-CoA by 

acetyl-CoA carboxylase is the rate limiting step of fatty acid synthesis [6], inhibition of 

FASN is likely more harmful to cells that have a higher rate of fatty acid synthesis, due to 

the toxic accumulation of malonyl-CoA [196]. These results demonstrate the likelihood 

that lansoprazole is targeting FASN and indicating that lansoprazole may have utility in 

sensitizing cells to chemotherapeutic treatment. 
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FIGURE 9 

 

Figure 9: Effect of lansoprazole on intracellular pH and differential effects of 

lansoprazole in paired cells with varying FASN activity. (A) Treatment with varying 

concentrations of lansoprazole does not significantly affect intracellular pH, as measured 

in BxPC-3 cells. Each point is shown as the average of three independent experiments ± 

SEM. p>0.05 for all concentrations when compared to DMSO control. p=0.17 when 

comparing DMSO to 12.5 µM lansoprazole. (B) FASN protein expression is increased in 

PANC-1/F7 FASN over-expressing cells, when compared to PANC-1/V4 vector control 

cells. A representative blot is shown. (C) Lipid synthesis in PANC-1/F7 over-expressing 

cells is 2-fold higher than in PANC-1/V4 cells (n=3, **p<0.01). (D) PANC-1/V4 cells 
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are 1.5-fold more resistant to lansoprazole treatment than PANC-1/F7 cells, as measured 

by colony formation assay (n=3, *p<0.05).   

 

C. Conclusions and Discussion  

 In this study, the therapeutic potential of PPIs was evaluated in several pancreatic 

cancer cell lines, and fatty acid synthesis as a target of PPI treatment was also 

investigated. All PPIs investigated inhibited cellular proliferation, colony forming ability 

and lipid synthesis in vitro, with lansoprazole being the most potent inhibitor. 

Lansoprazole also induced dose-dependent apoptotic cell death. Interestingly, as noted in 

the previous chapter, lansoprazole was not the most potent PPI for inhibiting recombinant 

FASN TE activity, and the ability of each PPI to decrease cellular proliferation and fatty 

acid synthesis did not completely correspond with their ability to inhibit recombinant 

FASN TE. The most likely reason is that each drug may be differentially taken up by the 

cells, possibly due to drug formulation or the chemical differences of each compound, 

and lansoprazole may be the PPI that can enter the cells the most easily. Lansoprazole 

may also be the most stable PPI, thus it can exert it effects with greater potency. Another 

discrepancy that must be addressed is that the IC50 of lansoprazole required to inhibit 

lipid synthesis was higher than the IC50 required to inhibit cellular proliferation or colony 

formation. However, the time of treatment could explain this discrepancy, as cells were 

treated with lansoprazole for only 4 hours before measuring lipid synthesis, versus 

treatment for 72 hours and 10-14 days before measuring cellular proliferation or colony 

formation, respectively. It is also possible that there are other mechanisms by which PPIs 

are acting in cancer cells. Regardless, the involvement of the fatty acid synthesis pathway 
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as a mechanism by which lansoprazole exerts its effects against cancer cells was 

confirmed by demonstrating the ability of lansoprazole to directly block the FASN TE 

active site in full-length FASN protein in a competitive manner. Supplementation of 

exogenous palmitate partially rescued the effects of lansoprazole on cellular proliferation 

and apoptosis induction, and cells with a higher amount of lipid synthesis were more 

sensitive to lansoprazole treatment, indicating that the fatty acid synthesis pathway is 

likely a target by which lansoprazole is acting in cancer cells. As discussed previously, 

the modulation of pH homeostasis is an important mechanism by which PPIs interfere 

with cancer cell growth and increase the sensitivity of cancer cells to chemotherapeutic 

intervention [261]. In the cell lines and buffered culture conditions used in this particular 

study, pH deregulation was not likely a factor, as both the extracellular and intracellular 

the pH remained constant with increasing doses of lansoprazole treatment.      

 Recently, there has been considerable interest in PPIs as anti-cancer agents and 

PPI use in combination with other chemotherapeutic agents appears to be an attractive 

treatment regimen, as long-term and high-dose PPI treatment has been shown to be well 

tolerated in patients with few side effects [258,346], and both pantoprazole and 

lansoprazole are available in IV formulations. Indeed, a phase II clinical trial evaluating 

the combination of IV pantoprazole with doxorubicin in the treatment of solid tumors is 

currently underway [276]. In this study, high micromolar doses of lansoprazole were 

required to inhibit pancreatic cancer cell growth and lipid synthesis. These results might 

be of concern, however, in pharmacokinetic studies with lansoprazole, in which 30 mg 

oral lansoprazole was given daily in days 1-7, followed by 30 mg IV lansoprazole over 

30 minutes daily in days 8-14, the maximal plasma concentration (Cmax) of lansoprazole 
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reached 1705 (± 292) ng/mL, which is equivalent to a concentration of approximately 5 

µM [347]. Theoretically, a treatment regimen could be readily adapted for use in clinical 

trials with cancer patients that could reach the higher micromolar concentrations required 

for the therapeutic effects against cancer cells, by increasing the frequency and amount of 

drug administered in each dose.  

 FASN is an important protein to study and pursue the possibility of identifying 

and developing anticancer agents. The importance of the fatty acid synthesis pathway in 

the formation, maintenance, and progression of many types of cancer has been well 

documented, as has its involvement in the development resistance to chemotherapeutic 

treatment, thus, the development of a FASN inhibitor may have wide-reaching 

implications for patients with many types of tumors that over-express FASN (reviewed in 

[345]). Inhibiting FASN has been shown to be a highly selective way to target cancerous 

tissues without affecting normal tissue, as normal cells express very low levels of FASN 

[42,348]. Also, blocking cellular metabolism, which lies downstream of many of the 

pathways that are mutated in cancer, provides a strategy to target cancers of all types, 

regardless of the type or location of mutations up-stream [168]. Despite the apparent 

utility of blocking FASN for anti-cancer treatment, very little progress has been made in 

the development of potential FASN inhibitors. Although FDA approved, orlistat is 

unlikely to find use as an anti-cancer agent due to the side effect of weight loss, as well as 

its poor systemic availability. Several first-generation FASN inhibitors, such as C75 and 

cerulenin, have also induced severe side effects such as weight loss and anorexia in test 

animals, likely through stimulation of the fatty acid oxidation pathway. Other FASN 

inhibitors, such as the novel compound C93 and the natural product EGCG, do not 
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activate fatty acid oxidation or weight loss in test animals, but the current status of these 

compounds is unknown (reviewed in [349]). Clearly, more studies are needed to establish 

lansoprazole as a FASN inhibitor in vivo and to determine if lansoprazole administration 

can increase the efficacy and potency of current cytotoxic agents to increase cancer cell 

killing and tumor cell burden. Nevertheless, the results of this study provide further 

evidence that FASN inhibition and treatment with PPIs could potentially be a useful anti-

cancer strategy for many types of cancer, including pancreatic cancer.  
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Chapter 6: Summary and Future Directions 

 

A. Summary and Future Directions for Specific Aim I  

In this dissertation study, molecular dynamics simulations were used to examine 

the mechanism of orlistat hydrolysis by the thioesterase domain of human FASN. 

Previously, crystal structure studies demonstrated that orlistat is present in the active site 

of TE both as covalent-orlistat, in which orlistat forms a covalent bond with the active 

site Ser2308 of TE, and hydrolyzed orlistat. In each orlistat state, the hexyl tail of orlistat 

adopts two different conformations, conformation I in covalent-orlistat and conformation 

II in hydrolyzed orlistat. Analysis of MD simulations demonstrated that the hexyl tail of 

covalent-orlistat can adopt both conformations I and II within TE. In conformation I, 

hydrogen bonding between the hydroxyl moiety of orlistat and His2481 of the catalytic 

triad prevents the proper orientation of water molecules for catalysis of the covalent bond 

between orlistat and Ser2308. However, the hexyl tail can shift to conformation II while 

still covalently bound to TE, which then disrupted the hydrogen bond between orlistat 

and His2481, allowing water molecules to be properly oriented for catalysis. 

   There are a number of proposed future studies that could build upon the results 

gained in this study. First, to experimentally confirm the role of the orlistat hexyl tail in 

hydrolysis and validate the MD simulation results, a recently described technique called 

temperature-scan cryocrystallography could be used. In conjunction with standard 

crystallography, this technique allows for the observation of reaction intermediates via 

cryotrapping, in which increasing temperature is used as a ‘mimic’ for time. As the 

temperature is increased, the structure of the protein crystal can relax, allowing for the 
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reaction to progress [350]. Theoretically, this technique could be used to observe the 

hydrolysis reaction within the TE active site, and confirm the role of the hexyl tail by 

capturing the position of the hexyl tail as the reaction proceeds. Following such a line of 

study would be highly feasible, as Dr. Jing-Yuan Liu, one of my mentors and committee 

members at IUSM, has extensive crystallography experience and is also acquainted with 

the authors of this study, indicating a high potential for collaboration.  

Another future direction is to design orlistat derivatives that interact irreversibly 

with TE, and are resistant to hydrolysis. Based on the conclusions of this study, it could 

be speculated that hydrolysis resistance could be achieved with compounds that stabilize 

the hydrogen bond with His2481. Hydrolysis resistance could also be achieved with 

compounds that contain moieties that block the area of the active site occupied by the 

catalytic water. Several collaborations within the IU community have been created in 

order to carry out the following future studies. We have designed several orlistat 

derivatives that contain bulky moieties that could potentially form hydrogen bonds with 

His2481, while simultaneously blocking the active site from water molecules (Fig. 1).  

These derivatives are currently being synthesized in collaboration with Dr. Haibo Ge in 

the Department of Chemistry and Chemical Biology at IUPUI. In order to examine the 

hydrolysis potential of each derivative, we are collaborating with Dr. David Jones in the 

Division of Clinical Pharmacology at IUSM to create a method to separate parent orlistat 

from the hydrolyzed product and subsequently quantify the amount of hydrolyzed orlistat 

product that is created by recombinant FASN TE protein. Upon incubation with the 

synthesized orlistat derivatives, we expect to see a differential creation of hydrolyzed 

product compared to orlistat, indicating that the derivatives are more resistant to 
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hydrolysis by FASN TE. Additionally, it would be highly interesting to virtually modify 

orlistat within the FASN TE crystal structure to create the orlistat derivatives depicted in 

Figure 1 and repeat MD simulations to virtually predict the behavior of each derivative, 

to complement experimental studies. 
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FIGURE 1 

      

Figure 1: Orlistat derivatives. Orlistat derivatives 1, 2, 20 and 21 contain added moieties 

(depicted in red) that are designed to both form hydrogen bonds with His2481 and block 

the space within the FASN TE active site that water must occupy to catalyze the 

hydrolysis of the covalent bond between orlistat and Ser2308. 
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B. Summary and Future Directions for Specific Aims II and III  

The goal of the second part of this study was to search for novel inhibitors of 

FASN TE using in-silico ligand screening with DOCK. In total, a library of novel 

compounds containing approximately 200,000 ligands and a library of FDA approved 

drugs containing approximately 2,000 compounds were virtually screened. Of almost 200 

compounds tested with a high-throughput method using recombinant FASN TE, it was 

found that one of the candidate ligands tested, FDA approved pantoprazole, could inhibit 

FASN TE activity in a dose-dependent manner. Pantoprazole is a member of a class of 

drugs called proton pump inhibitors, which inhibit gastric acid secretion by irreversibly 

binding to and inhibiting proton pumps in gastric parietal cells. Further examination 

determined that other PPIs, omeprazole/esomeprazole, lansoprazole and rabeprazole, also 

appeared among the highest scoring compounds from in-silico screening, and each 

inhibited FASN TE activity. All PPIs, especially lansoprazole, decreased tumor cell 

proliferation, colony forming ability and lipid synthesis in a dose-dependent manner in 

several pancreatic cancer cell lines. Further study determined that lansoprazole directly 

interacts with the active site of FASN TE in a competitive manner, inducing cell death in 

a dose-dependent manner. Supplementation with exogenous palmitate partially rescued 

the effects of lansoprazole, and cells with higher levels of FASN activity were more 

sensitive to lansoprazole treatment. As PPIs are currently under investigation as 

chemotherapeutic agents for use in combination therapy, the results of this study provide 

a mechanism by which PPIs, especially lansoprazole, are exerting their effects in cancer 

cells, and also demonstrate the utility of targeting FASN for anti-cancer treatment.  
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There are a number of studies that should be performed as a follow-up to the work 

presented here. In the immediate future, an imperative study would be to examine the 

effects of lansoprazole on fatty acid synthesis in tumor cells in vivo, to determine if the 

fatty acid synthesis pathway is indeed affected by lansoprazole treatment, confirming that 

this mechanism is an important pathway by which lansoprazole is acting in vivo. After 

implanting PANC-1 ectopic xenografts into mice, lansoprazole-mediated inhibition of 

FASN could be measured in vivo by administering lansoprazole or vehicle control 

intravenously to the tumor-bearing mice. Flank tumors would then be excised and FASN 

activity measured by the incorporation [14C]-acetate into lipids in the tumor tissue. A 

study to determine if lansoprazole treatment can synergize the effect of the first line 

chemotherapy drug for the treatment of pancreatic cancer, gemcitabine, or radiation 

treatment, or could potentially reduce the resistance of pancreatic cancer cells to either 

gemcitabine or radiation treatment, both in vitro and in vivo are also highly important and 

informative studies that should be conducted. As one of my thesis committee members, 

Dr. Karen Pollok, is the Director of the In Vivo Therapeutics Core at IUSM, it would be 

highly possible to perform in vivo studies with her assistance and expertise.  

In addition, it is reasonable that the effect of lansoprazole treatment could be 

examined in other cancer types that are known to over-express FASN, and that 

combination therapies with lansoprazole could also be investigated. Performing x-ray 

crystallography with a protein crystal of FASN TE with lansoprazole would also provide 

invaluable information about the way in which lansoprazole interacts with the FASN TE 

active site, and could aid in the design of novel lansoprazole derivatives as FASN 

inhibitors. Further in the future, it is feasible that clinical trials with human patients could 
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be conducted, as lansoprazole is already FDA approved and is available in IV 

formulation, to determine if concurrent lansoprazole treatment is able to increase the 

efficacy of chemotherapeutic treatment. Lastly, it would be highly interesting to 

collaborate with an epidemiologist to examine medical data to determine the incidence of 

cancer in patients who have been subjected to long-term PPI therapy. Such a study may 

provide evidence that PPI therapy is useful as strategy for the prevention and treatment of 

cancer that should be further investigated. 

 

C. Final Remarks 

 There are many ways that completing the work presented in this thesis shaped my 

development as a graduate student, but one of the greatest lessons I learned throughout 

my time as a graduate student researcher was the importance of alternative strategies. 

When trying to publish my results for Specific Aim I, we ran into a lot of trouble 

convincing reviewers that the hexyl tail conformational transition was not just a simple 

relaxation. We had to think outside the box to find new ways to demonstrate that two 

unique conformations of the hexyl tail existed. Although it certainly didn’t seem like it at 

the time, I was very fortunate for this experience, because later in my graduate school 

career, I was sure to employ multiple strategies when examining the effects of 

lansoprazole for Specific Aim III. I wanted to be sure that the results I generated were 

harder to question or refute, and thus I tried to answer each question I was asking from at 

least two angles, especially when trying to demonstrate that the fatty acid synthesis 

pathway is affected by lansoprazole treatment. I also learned that new strategies may also 

drive the research in a new direction that wasn’t originally envisioned. Following 
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multiple rounds of virtual screening and testing compounds with HTS, I found only one 

potential novel inhibitor of FASN TE with very moderate potency and although I was 

frustrated, I elected not to abandon the project. Instead, I decided to take the project in a 

different direction by virtually screening a new library of FDA compounds with a new, 

more highly resolved, FASN TE crystal structure. I never imagined that not only would I 

find a new inhibitor of FASN TE that was already FDA approved, but that I would find 

one from a class of drugs that has already garnered a high amount of interest in the cancer 

field, thus providing new information on how this drug may be affecting cancer cell 

growth. Although it is definitely the case that some projects must be abandoned, I fully 

realized the importance of exhausting alternative strategies before giving up on a project. 

I think that understanding the importance of troubleshooting and having the foresight to 

look at a question from multiple angles, as well as being able to more fully defend a 

position or actions, will serve any graduate student well in any career, not just scientific 

research.  

 It is possible that my research of orlistat within FASN TE my lead to the design of 

new inhibitors of TE for use in cancer treatment, or that my research with PPIs may 

provide a rationale for further investigating their use in cancer treatment. Knowing that I 

have contributed new information that may have an impact on clinical treatments and 

outcomes makes all of the sacrifices necessary to successfully complete graduate school 

seem extremely small in comparison. Focusing on the big picture is important advice for 

any graduate student—because in the end, when your graduate career comes to a close, 

the struggles are worth it.         

 



 

157 
 

Appendices 

 

Appendix A: Gaussian and Molecular Dynamics Input Files 

A. Input Files Used for Orlistat Parameterization 

Detailed explanations of each value contained in the following files used for 

orlistat parameterization can be found in the Gaussian03 online user’s manual 

(http://www.lct.jussieu.fr/manuels/Gaussian03/g_ur/keywords.htm). 

 The capped orlistat-serine complex was optimized by using the following .gau 

file: 

%chk=orlistat_opt.chk 
#P b3lyp/6-31G* Opt=modredundant 
 
orlistat B3LYP geo out 
 
0  1 
 
C 9.61900 3.09900 35.26300 
C 10.17400 2.55200 33.95500 
O 9.46100 1.90700 33.19800 
H 10.40300 3.64100 35.79300 
H 8.79000 3.77400 35.05100 
H 9.26600 2.27400 35.88100 
N 11.33900 2.46400 33.47000 
C 12.23400 1.83600 32.48900 
C 11.68500 2.16800 31.08700 
O 11.68900 3.34300 30.69900 
C 12.26600 0.31900 32.73900 
O 13.12100 -0.32000 31.76800 
H 11.90800 3.11700 33.98900 
H 13.23800 2.24600 32.59500 
H 12.64900 0.12600 33.74100 
H 11.25700 -0.08400 32.65400 
N 10.90500 1.45800 30.37700 
C 10.19400 1.81100 29.11500 
H 10.74400 0.52100 30.71700 
H 9.67700 0.93200 28.73100 
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H 10.91600 2.15900 28.37600 
H 9.47000 2.60100 29.31500 
C 16.33600 1.83200 30.27000 
C 17.61800 1.02900 30.48300 
C 17.45200 0.01400 31.61900 
C 17.57700 -1.42200 31.08500 
C 16.29100 -2.24400 31.29100 
C 15.11100 -1.73000 30.42900 
C 13.72400 -2.46300 30.55300 
C 12.68800 -1.53900 31.29100 
O 11.49200 -1.86700 31.40200 
C 13.75800 -3.93200 31.09800 
O 12.42200 -4.45400 31.24100 
C 14.68200 -4.88700 30.26400 
C 14.00800 -5.78100 29.14500 
O 12.67200 -6.32400 29.46600 
C 12.68100 -7.70200 29.52600 
O 13.76100 -8.28100 29.37500 
C 11.39400 -8.54800 29.78100 
C 10.09300 -7.89000 29.26300 
C 9.23700 -8.80400 28.35100 
C 7.88200 -8.16000 28.05000 
C 9.00500 -10.2130 28.90500 
N 11.24900 -8.84900 31.22300 
C 11.25000 -10.1060 31.68000 
O 11.13300 -10.4270 32.86500 
C 14.06000 -5.05800 27.77000 
C 13.84800 -6.02500 26.60200 
C 15.16600 -6.37500 25.89300 
C 14.95500 -7.49200 24.86100 
C 14.65500 -6.91200 23.47300 
C 14.80600 -7.95500 22.36400 
C 15.67100 -7.38900 21.23300 
C 14.99400 -7.52800 19.86200 
C 14.50100 -6.17700 19.33900 
C 13.93800 -6.31100 17.92100 
C 12.72700 -5.39300 17.69800 
H 16.48300 2.54400 29.45800 
H 15.52100 1.15400 30.01500 
H 16.08800 2.37000 31.18500 
H 18.42900 1.71300 30.73300 
H 17.86600 0.50000 29.56300 
H 18.22500 0.18600 32.36800 
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H 16.47100 0.14400 32.07700 
H 18.39600 -1.91800 31.60600 
H 17.80600 -1.38500 30.02000 
H 16.49300 -3.28100 31.02300 
H 16.00700 -2.19900 32.34200 
H 15.42000 -1.79700 29.38600 
H 14.95600 -0.67700 30.66600 
H 13.35400 -2.54700 29.53100 
H 14.18300 -3.88300 32.10100 
H 11.94900 -3.94700 31.90600 
H 15.17000 -5.56100 30.96700 
H 15.45300 -4.28000 29.79000 
H 14.65600 -6.65100 29.04000 
H 11.51400 -9.49600 29.25700 
H 10.36300 -6.99900 28.69600 
H 9.49000 -7.58900 30.11900 
H 9.76600 -8.90900 27.40400 
H 8.03600 -7.15600 27.65500 
H 7.29500 -8.10300 28.96700 
H 7.34900 -8.76200 27.31400 
H 9.96500 -10.6810 29.12300 
H 8.41500 -10.1510 29.82000 
H 8.46900 -10.8100 28.16700 
H 11.14700 -8.08700 31.87800 
H 11.36200 -10.9000 30.95700 
H 13.27900 -4.29800 27.74300 
H 15.03100 -4.57400 27.65900 
H 13.17400 -5.56300 25.88100 
H 13.39200 -6.94100 26.97800 
H 15.89200 -6.70700 26.63500 
H 15.54900 -5.48800 25.38800 
H 15.85800 -8.10000 24.80500 
H 14.12000 -8.11800 25.17600 
H 13.63200 -6.53600 23.46400 
H 15.33900 -6.08600 23.27800 
H 13.82200 -8.21200 21.97300 
H 15.27900 -8.84900 22.77000 
H 16.61900 -7.92700 21.21300 
H 15.86500 -6.33400 21.42800 
H 14.14300 -8.20300 19.95400 
H 15.70700 -7.94700 19.15200 
H 13.71900 -5.80300 19.99900 
H 15.33100 -5.47100 19.33000 
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H 14.71700 -6.04700 17.20600 
H 13.63700 -7.34500 17.75400 
H 12.35800 -5.51800 16.68000 
H 11.93900 -5.65300 18.40500 
H 13.02400 -4.35600 17.85100 

 
1 2 7 8 F 
#* * * * F (additional dihedrals to be frozen listed by atom number as above) 
 
 

Opt=modredundant indicates to Gaussian that internal coordinates are to be used for the 

frozen dihedrals, and the line 0   1 is used to indicate to Gaussian that the charge on this 

particular molecule is 0. 

  

 To calculate the electrostatic potential (ESP) for the optimized orlistat ligand, the 

coordinates of the optimized orlistat-serine complex were input into Gaussian with a 

similar .gau file as above, but this time with this route card preceding the coordinates: 

 
%chk=floB_hf.chk 
#P HF/6-31G* Geom=check SCF=Tight Pop=MK IOp(6/33=2) 
 
orlistat HF ESP 
 
0  1 
 
 

IOp(6/33=2) instructs Gaussian to write out potential points and potentials, and 

SCF=Tight indicates tight convergence. 

 

The ESP data from Gaussian was converted into RESP format using the script 

esp.sh, which contained the following: 

#!/bin/csh 
xlf /usr/local/Amber/AMBER8/amber8/src/resp/readit.f 
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grep "Atomic Center " $1 > a 
grep "ESP Fit" $1 > b 
grep "Fit    " $1 > c 
./a.out  
rm -f a b c a.out readit.o 
 

 To perform the RESP charge fitting, a two-step procedure was used. In the first 

step, the charges of the caps were specified as by Cornell et al. The resp.in file included 

the following information: 

orlistat-resp run #1 
 &cntrl   
 ihfree=1,  
 qwt=0.0005, 
 iqopt=2,   
 / 
    1.0  
orlistat  
   0   111 
   6  -1 
   6  -1 
   8  -1 
   1  -1 
   1  -1 
   1  -1 
   7   0 
   6   0 
   6   0 
   8   0 
   6   0 
   8   0 
   1   0 
   1   0 
   1   0 
   1   0 
   7  -1 
   6  -1 
   1  -1 
   1  -1 
   1  -1 
   1  -1 

#Remaining atoms would continue to be defined below. 
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ihfree=1 indicated to RESP to weakly restrain only the heavy atoms, with a strength of 

0.0005 AU (qwt=0.0005). iqopt=2 indicated that RESP should read in initial charges 

from a .qin file, where we defined and fixed the cap charges. In the resp.in file, each atom 

was defined by its atomic number (1 for hydrogen, 6 for carbon, 7 for nitrogen and 8 for 

oxygen) in the same order as in the Gaussian optimization and ESP coordinates. A 

designator of 0 indicated that the charge for the atom should be calculated freely, whereas 

a designator of -1 indicated that the charge is fixed and should be read-in from the qin 

file: 

 

 -0.366200  0.597200 -0.567900  0.112300  0.112300  0.112300  0.000000 0.000000 
  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 
 -0.415700 -0.149000 0.217900  0.097600  0.097600  0.097600  0.000000  0.000000 
  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 
  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 
  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 
  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 
  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 
  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 
  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 
  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 
  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 
  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 
  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 

 
 
  
To perform the second step of RESP, a new input file is created, with the same RESP 

parameters as above, except qwt, which is upped to 0.001, that freezes all atoms except 

for methyl and methylene hydrogen atoms. This step is necessary to ensure that 

rotationally-degenerate atoms have the same charge. For frozen atoms, the charges 

calculated from the previous step are read-in from a new .qin file, with the charge on all 

methyl and methylene hydrogens listed as 0 in order to calculate a new charge. To 
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indicate in the resp.in file that a set of hydrogen atoms are to have an equivalent charge, 

the first hydrogen atom in the atom list is designated as 0, and the equivalent hydrogen 

atom(s) are designated as the atom number of the first hydrogen.   

 

B. Input Files Used for the Validation of Covalent-Orlistat Parameterization  

 The QM package Gaussian03 was used to calculate the single point energy of 

each ω angle rotamer of the 3-mer covalent-orlistat peptide in order to create a potential 

energy surface of the ω angle. The ω angle is described by variable d25. The z-matrix 

input file for the rotamer at 338 degrees (orlistat_8A_338.gau) appeared as follows: 

%chk=orlistat_338_SP.chk 
#HF/6-31G* SCF=Tight 
 
_338_SP 
 
0   1 
N 
H  1  r2 
H  1  r3  2  a3 
H  1  r4  2  a4  3  d4 
C  1  r5  2  a5  3  d5 
H  5  r6  1  a6  2  d6 
H  5  r7  1  a7  2  d7 
C  5  r8  1  a8  2  d8 
O  8  r9  5  a9  1  d9 
C  9  r10  8  a10  5  d10 
O  10  r11  9  a11  8  d11 
N  8  r12  5  a12  1  d12 
C  12  r13  8  a13  5  d13 
C  13  r14  12  a14  8  d14 
O  14  r15  13  a15  12  d15 
C  15  r16  14  a16  13  d16 
C  16  r17  15  a17  14  d17 
C  17  r18  16  a18  15  d18 
C  18  r19  17  a19  16  d19 
C  19  r20  18  a20  17  d20 
C  20  r21  19  a21  18  d21 
C  21  r22  20  a22  19  d22 
C  15  r23  14  a23  13  d23 



 

164 
 

O  23  r24  15  a24  14  d24 
C  22  r25  21  a25  20  d25 
O  25  r26  22  a26  21  d26 
C  25  r27  22  a27  21  d27 
C  27  r28  25  a28  22  d28 
O  28  r29  27  a29  25  d29 
C  29  r30  28  a30  27  d30 
O  30  r31  29  a31  28  d31 
C  30  r32  29  a32  28  d32 
C  32  r33  30  a33  29  d33 
C  33  r34  32  a34  30  d34 
C  34  r35  33  a35  32  d35 
C  34  r36  33  a36  32  d36 
N  32  r37  30  a37  29  d37 
C  37  r38  32  a38  30  d38 
O  38  r39  37  a39  32  d39 
C  28  r40  27  a40  25  d40 
C  40  r41  28  a41  27  d41 
C  41  r42  40  a42  28  d42 
C  42  r43  41  a43  40  d43 
C  43  r44  42  a44  41  d44 
C  44  r45  43  a45  42  d45 
C  45  r46  44  a46  43  d46 
C  46  r47  45  a47  44  d47 
C  47  r48  46  a48  45  d48 
C  48  r49  47  a49  46  d49 
C  49  r50  48  a50  47  d50 
H  12  r51  8  a51  5  d51 
H  13  r52  12  a52  8  d52 
H  14  r53  13  a53  12  d53 
H  14  r54  13  a54  12  d54 
H  33  r55  32  a55  30  d55 
H  33  r56  32  a56  30  d56 
H  17  r57  16  a57  15  d57 
H  17  r58  16  a58  15  d58 
H  16  r59  15  a59  14  d59 
H  16  r60  15  a60  14  d60 
H  16  r61  15  a61  14  d61 
H  22  r62  21  a62  20  d62 
H  25  r63  22  a63  21  d63 
H  27  r64  25  a64  22  d64 
H  27  r65  25  a65  22  d65 
H  28  r66  27  a66  25  d66 
H  32  r67  30  a67  29  d67 
H  37  r68  32  a68  30  d68 
H  38  r69  37  a69  32  d69 
H  34  r70  33  a70  32  d70 
H  36  r71  34  a71  33  d71 
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H  36  r72  34  a72  33  d72 
H  36  r73  34  a73  33  d73 
H  35  r74  34  a74  33  d74 
H  35  r75  34  a75  33  d75 
H  35  r76  34  a76  33  d76 
H  40  r77  28  a77  27  d77 
H  40  r78  28  a78  27  d78 
H  41  r79  40  a79  28  d79 
H  41  r80  40  a80  28  d80 
H  42  r81  41  a81  40  d81 
H  42  r82  41  a82  40  d82 
H  43  r83  42  a83  41  d83 
H  43  r84  42  a84  41  d84 
H  44  r85  43  a85  42  d85 
H  44  r86  43  a86  42  d86 
H  45  r87  44  a87  43  d87 
H  45  r88  44  a88  43  d88 
H  46  r89  45  a89  44  d89 
H  46  r90  45  a90  44  d90 
H  47  r91  46  a91  45  d91 
H  47  r92  46  a92  45  d92 
H  48  r93  47  a93  46  d93 
H  48  r94  47  a94  46  d94 
H  49  r95  48  a95  47  d95 
H  49  r96  48  a96  47  d96 
H  50  r97  49  a97  48  d97 
H  50  r98  49  a98  48  d98 
H  50  r99  49  a99  48  d99 
H  26  r100  25  a100  22  d100 
H  21  r101  20  a101  19  d101 
H  21  r102  20  a102  19  d102 
H  20  r103  19  a103  18  d103 
H  20  r104  19  a104  18  d104 
H  19  r105  18  a105  17  d105 
H  19  r106  18  a106  17  d106 
H  18  r107  17  a107  16  d107 
H  18  r108  17  a108  16  d108 
N  10  r109  9  a109  8  d109 
H  109  r110  10  a110  9  d110 
C  109  r111  10  a111  9  d111 
H  111  r112  109  a112  10  d112 
H  111  r113  109  a113  10  d113 
C  111  r114  109  a114  10  d114 
O  114  r115  111  a115  109  d115 
O  114  r116  111  a116  109  d116 
Variables: 
r2= 1.0104 
#Each subsequent variable would be listed below 
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The mini.in file, used to execute the minimization and energy calculation of each 

dihedral rotamer within the Big Red Supercomputer environment, contained the 

following: 

  minimize structure 
 &cntrl 
  imin=1,maxcyc=1000,ncyc=500, 
  cut=1000,ntb=0, 
  ntc=1,ntf=1, 
  ntpr=100,igb=6, 
  ntr=1,restraintmask=':1-3', 
  restraint_wt=25.0 
 / 
 

C. Input Files Used for Molecular Modeling and MD Simulations 

Detailed explanations of each value contained in the following files used for the 

MD simulations can be found in the AMBER11 user’s manual 

(http://ambermd.org/doc11/Amber11.pdf). Each step of the MD simulation was 

performed using the Big Red supercomputer.  

 

The tleap script used to prepare the topology and coordinate files of the FASN TE 

system with covalent-orlistat for AMBER simulation contained the following: 

 
source leaprc.ff03 
source leaprc.gaff 
loadoff unk_new_definitions.lib 
loadAmberParams unk.frcmod 
x=loadpdb orlistat_new_definitions_for_MD_HID.pdb 
charge x 
addions x Na+ 0 
solvatebox x TIP3PBOX 8 
savepdb x orlistat_HID_solvate.pdb 
saveamberparm x orlistat_HID_solvate.top orlistat_HID_solvate.crd 
charge x 
check x 
quit 
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The first step of the system equilibration, which minimized the energy of the 

water molecules and the counter ions in the system, used the following input file: 

  minimize structure 
 &cntrl 
  imin=1,maxcyc=1000,ncyc=500, 
  cut=8.0,ntb=1, 
  ntc=2,ntf=2, 
  ntpr=100, 
  ntr=1, restraintmask=':1-281', 
  restraint_wt=500.0 
 / 
 

The second step of the system equilibration, which removed the restraints and 

minimized the energy of the whole system, used the following input file: 

  minimize structure 
 &cntrl 
  imin=1,maxcyc=25000,ncyc=10000, 
  cut=8.0,ntb=1, 
  ntc=2,ntf=2, 
  ntpr=100, 
  ntr=0, 
 / 
 

The third step of the system equilibration, which heated the system from 0 to 300 

K, used the following input file: 

heat structure 
 &cntrl 
  imin=0,irest=0,ntx=1, 
  nstlim=25000,dt=0.002, 
  ntc=2,ntf=2, 
  cut=8.0, ntb=1, 
  ntpr=500, ntwx=500, 
  ntt=3, gamma_ln=2.0, 
  tempi=0.0, temp0=300.0, 
  ntr=1, restraintmask=':1-281', 
  restraint_wt=10.0, 
  nmropt=1 
 / 
 &wt TYPE='TEMP0', istep1=0, istep2=25000, 
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  value1=0.1, value2=300.0, / 
 &wt TYPE='END' / 
 

The fourth step of the equilibration, which equilibrated the system with a constant 

pressure dynamics simulation, used the following input file: 

heat structure 
 &cntrl 
  imin=0,irest=1,ntx=5, 
  nstlim=25000,dt=0.002, 
  ntb=2, pres0=1.0, ntp=1,taup=1.0, 
  ntc=2,ntf=2, 
  cut=8.0, 
  ntpr=100, ntwx=100, ntwr = 1000 
  ntt=3, gamma_ln=2.0, 
  tempi=300, temp0=300.0, 
  ntr=1, restraintmask=':1-281', 
  restraint_wt=10.0 
/ 

The final step of the equilibration and beginning of the MD simulation used the 

following input file: 

heat structure 
 &cntrl 
  imin=0,irest=1,ntx=5, 
  nstlim=2500000,dt=0.002, 
  ntc=2,ntf=2, 
  cut=8.0, ntb=2, ntp=1, taup=2.0, 
  ntpr=1000, ntwx=1000, 
  ntt=3, gamma_ln=2.0, 
  temp0=300.0 
/ 
 

The production steps of the MD simulation used a series of input files to perform 

the MD simulation within the Big Red Supercomputer environment. Each production step 

simulated 10 ns of the total simulation, building upon each previous portion of the 

simulation. An example prod input file contained the following: 

production MD 
&cntrl 
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  imin=0,irest=1,ntx=5, 
  nstlim=5000000,dt=0.002, 
  ntc=2,ntf=2, 
  cut=8.0, ntb=2, ntp=1, taup=2.0, 
  ntpr=5000, ntwx=5000, 
  ntt=3, gamma_ln=2.0, 
  temp0=300.0, 
 / 
 
 
D. Input Files for MD Simulation Trajectory Analysis  

The ptraj module of AMBER was used to process each simulation, and was then 

used to extract a variety of information from the simulations. First, to process the 

simulation, each production output .mdcrd coordinate file was combined into one file 

using the image_equil_prod.ptraj input file. In addition, the first 60 ps from the 

equilibration step were excluded from the trajectory by indicating the frame number in 

which the trajectory should begin: 

trajin equil.mdcrd 301 2500 5 
trajin prod.mdcrd 
trajin prod2.mdcrd 
trajin prod3.mdcrd 
trajin prod4.mdcrd 
center :1-281 
image familiar 
trajout extended_equil_prod_orlistat_HID_imaged.mdcrd 
 
 
Desired information could then be extracted from the trajectory by using the newly 

written mdcrd file in conjunction with the ptraj module. Instructions on how to request 

specific trajectory information with ptraj can be found in the AMBER manual. 

 

RMSD: 

trajin ../equil_prod_orlistat_HID_extended_imaged.mdcrd 
center :1-281 
image familiar 
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rms first mass out rmsd_equil_prod_whole_structure :1-281@CA,C,N 
rms first mass out rmsd_equil_prod_catalytic_triad_ser2308 :88 
rms first mass out rmsd_equil_prod_whole_structure_without_loops :1-105,109-123,141-
229,241-281@CA,C,N 
go 
    

RMSF: 

trajin ../extended_equil_prod_orlistat_HID_imaged.mdcrd 
strip @H* 
strip @?H* 
rms out rmsd_noH :1-281@CA,C,N 
atomicfluct out orlistat_equil_prod_noH_byres :1-281 byres 
atomicfluct out orlistat_equil_prod_noH_byres_bfactor :1-281 byres bfactor 
atomicfluct out orlistat_equil_prod_noH_byatom_bfactor :1-281 byatom bfactor 
atomicfluct out orlistat_equil_prod_noH_byatom :1-281 byatom 
atomicfluct out orlistat_equil_prod_noH_residue_byres_bfactor :88 byres bfactor 
atomicfluct out orlistat_equil_prod_noH_residue_byres :88 byres 
atomicfluct out orlistat_equil_prod_noH_residue_byatom_bfactor :88 byatom bfactor 
atomicfluct out orlistat_equil_prod_noH_residue_byatom :88 byatom 
go 
 

Hexyl tail-pocket distance: 

trajin ../extended_equil_prod_orlistat_HID_imaged.mdcrd 
distance a :88@C7,C8,C9,C10,C11,C12,C13 :119,122,123,242 mass out distance_pocket1 
distance b :88@C7,C8,C9,C10,C11,C12,C13 :89,123,212 mass out distance_pocket2 
 

Dihedral angle: 

trajin ../extended_equil_prod_orlistat_HID_imaged.mdcrd 
dihedral tail_shift :88@C15 :88@C13 :88@C12 :88@C11 out tail_shift 
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Some of the dihedral angle information is output as negative numbers. To correct this, the 

following .awk script is used: 

{ 
   if ($2 ~ /-/) { 
                print $1 "\t" $2+360 
                } else { 
                print $1 "\t" $2 
                        } 
} 
 

E. Free Energy Calculations 

 To calculate the free energy of orlistat, either in the 3-mer complex or within TE, 

during each MD simulation, snapshots were first extracted from the trajectory and then 

the free energy was calculated using the MM_PBSA module of AMBER. An explanation 

of each value contained in the files can be found in the AMBER manual. First, a topology 

file containing only orlistat with all solvent removed was prepared by Tleap. Snapshots 

from each simulation were extracted using an extraction.in file, as shown below for the 3-

mer peptide containing orlistat: 

@GENERAL 
PREFIX snapshot_confI 
PATH ./ 
COMPLEX 0 
RECEPTOR 1 
LIGAND 0 
RECPT ../orlistat_rec.top 
GC 1 
AS 0 
DC 0 
MM 0 
GB 0 
PB 0 
MS 0 
NM 0 
@MAKECRD 
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BOX YES 
NTOTAL 10370 
NSTART 1547 
NSTOP 1947 
NFREQ 8 
NUMBER_LIG_GROUPS 0 
NUMBER_REC_GROUPS 1 
RSTART 1 
RSTOP 116 
@TRAJECTORY 
TRAJECTORY ../../equil_prod_three_mer_imaged.mdcrd 
@PROGRAMS 

 

Where NTotal is the total number of atoms in the simulation, including solvent atoms; 

NStart and NStop indicate the desired frame numbers of the simulation that the snapshots 

will be extracted from; NFreq indicates the frequency in which a frame snapshot will be 

extracted; and RStart and RStop indicate the first and last atom number of the 3-mer 

orlistat peptide. 

 Following frame extraction, free energy calculations were performed using the 

Big Red Supercomputer using the following input file: 

@GENERAL 
 PREFIX snapshot_confI 

PATH ../extract_snapshots_confI/ 
COMPLEX 0 

 RECEPTOR 1 
 LIGAND 0 
 RECPT ../orlistat_rec.top 

GC 0 
 AS 0 
 DC 0 
 MM 1 
 GB 1 
 PB 1 
 MS 1 
 NM 0 
 @PB 
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PROC 2 
 REFE 0 
 INDI 1 
 EXDI 80 
 FILLRATIO 2 
 SCALE 2 
 LINIT 1000 
 PRBRAD 1.4 
 ISTRNG 0 
 RADIOPT 0 
 NPOPT 1 
 CAVITY_SURFTEN 0.0072 
 CAVITY_OFFSET 0 
 SURFTEN 0.0072 
 SURFOFF 0 
 @MM 

  DIELC 1 
 @GB 

  IGB 2 
 GBSA 1 
 SALTCON 0 
 EXTDIEL 80 
 INTDIEL 1 
 SURFTEN 0.0072 
 SURFOFF 0 
 @MS 

  PROBE 0 
 @PROGRAMS 
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Appendix B: Covalent-Orlistat AMBER Parameters 

To manually parameterize covalent-orlistat, all atoms of the molecule were 

assigned using AMBER Parm99 atom types. Assigning atoms types to orlistat was 

relatively straightforward. As all the carbon atoms in covalent-orlistat are single-bonded, 

straight-chain carbons, all carbon atoms were assigned as either aliphatic carbons (CT) or 

carbonyl carbons (C). All oxygen atoms were assigned as carbonyl oxygen (O), ester 

oxygen (OS), or hydroxyl oxygen (OH). Both nitrogen atoms in the molecule were 

assigned as amide/amino nitrogen (N). Assigning most hydrogen atoms was also 

straightforward. Any hydrogen atom bound to nitrogen was assigned AMBER atom type 

H, the designator for any hydrogen atom bound to nitrogen, and the hydrogen atom of the 

hydroxyl group was assigned atom type HO. Assigning the hydrogen atoms bonded to 

carbon atoms proved to be a little more difficult. All remaining hydrogen atoms were 

assigned HC, indicating a hydrogen atom bonded to an aliphatic carbon atom that is not 

bonded to any electron withdrawing groups, or H1, indicating a hydrogen atom bonded to 

an aliphatic carbon that is bonded to an electron withdrawing group, such as a carbonyl 

oxygen or an ester group. Using tleap also gave us a clue as to how to assign some of the 

hydrogen atoms. For example, when the hydrogen atom bonded to the carbon atom that 

was bonded to the ester oxygen or hydroxyl oxygen was named as HC, the angle 

information was not recognized by AMBER, but was recognized when the hydrogen 

atom was assigned as H1, indicating that H1 is likely the correct designation. All atom 

type information is shown in Figure 1 and Table 1. 
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FIGURE 1 

   

 
Figure 1: Orlistat atom type and charge indicator. All charge and atom type information 

for each labeled atom is shown in Table 1. Note: some atom names are skipped (e.g. N2) 

because they were part of the caps that were deleted after charge information was 

calculated. All atoms were designated with typical AMBER parameters.  
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TABLE 1: Charge and AMBER atom type for each covalent-orlistat atom. 

Atom Name Atom Type Charge 
C2 C 0.5973 
C4 CT -0.0249 
C5 CT 0.96957 
C7 CT -0.21391 
C8 CT 0.154356 
C9 CT -0.0384 
C10 CT -0.22333 
C11 CT -0.0256 
C12 CT 0.289982 
C13 CT -0.21377 
C14 C 0.64416 
C15 CT 0.487977 
C16 CT -0.21933 
C17 CT 0.375761 
C18 C 0.734028 
C19 CT -0.09274 
C20 CT -0.18998 
C21 CT 0.486037 
C22 CT -0.60515 
C23 CT -0.60515 
C24 C 0.497094 
C25 CT -0.47223 
C26 CT 0.095986 
C27 CT 0.089067 
C28 CT -0.18191 
C29 CT -0.02542 
C30 CT -0.04101 
C31 CT -0.03524 
C32 CT -0.03744 
C33 CT 0.015044 
C34 CT 0.176255 
C35 CT -0.23118 
O1 O -0.5679 
O3 OS -0.70774 
O4 O -0.50997 
O5 OH -0.7108 
O6 OS -0.32649 
O7 O -0.58682 
O8 O -0.56608 
N1 N -0.4157 
N3 N -0.45928 
H1 H 0.2179 
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H2 H1 0.0843 
H3 HC 0.048444 
H4 H1 -0.04318 
H5 H1 0.040469 
H6 H1 0.109389 
H7 H 0.342667 
H8 H1 0.056854 
H9 HC -0.04794 
H10 HO 0.388459 

H11a (Named 1H11 in 
AMBER) 

H1 
-0.1563 

H11b (Named 2H11 in 
AMBER) 

H1 
-0.1563 

H12a (1H12) HC 0.065465 
H12b (2H12) HC 0.065465 
H13a (1H13) HC -0.0192 
H13b (2H13) HC -0.0192 
H14a (1H14) HC 0.036318 
H14b (2H14) HC 0.036318 
H14c (3H14) HC 0.036318 
H15a (1H15) HC 0.050923 
H15b (2H15) HC 0.050923 
H16a (1H16) HC 0.148555 
H16b (2H16) HC 0.148555 
H16c (3H16) HC 0.148555 
H16d (4H16) HC 0.148555 
H16e (5H16) HC 0.148555 
H16f (6H16) HC 0.148555 
H17a (1H17) HC 0.125201 
H17b (2H17) HC 0.125201 
H18a (1H18) HC -0.00748 
H18b (2H18) HC -0.00748 
H19a (1H19) HC -0.00836 
H19b (2H19) HC -0.00836 
H20a (1H20) HC 0.051187 
H20b (2H20) HC 0.051187 
H21a (1H21) HC 0.026561 
H21b (2H21) HC 0.026561 
H22a (1H22) HC 0.026055 
H22b (2H22) HC 0.026055 
H23a (1H23) HC 0.018544 
H23b (2H23) HC 0.018544 
H24a (1H24) HC 0.006275 
H24b (2H24) HC 0.006275 
H25a (1H25) HC -0.01062 
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H25b (2H25) HC -0.01062 
H26a (1H26) HC -0.03437 
H26b (2H26) HC -0.03437 
H27a (1H27) HC 0.049487 
H27b (2H27) HC 0.049487 
H27c (3H27) HC 0.049487 
H28a (1H28) HC -0.05 
H28b (2H28) HC -0.05 
H29a (1H29) HC 0.007992 
H29b (2H29) HC 0.007992 
H30a (1H30) HC 0.066143 
H30b (2H30) HC 0.066143 
H31a (1H31) HC 0.026347 
H31b (2H31) HC 0.026347 
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Appendix C: DOCK Input Files 

Explanations of each value contained in the following files used for in-silico 

ligand screening can be found in the DOCK user’s manual (http://dock.compbio.ucsf.edu/ 

DOCK_6/dock6_manual.htm) or the DOCK6.0 tutorial.  

 

A. Input Files Used for Receptor and Ligand Preparation 

Spheres were generated using the program sphgen_cpp, along with the input file 

INSPH. INSPH contained the following: 

rec.ms 
R 
X 
0.0 
4.0 
1.4 
rec.sph 
 

The box for grid generation was created using the DOCK command showbox, 

along with the input file box.in. Box.in contained the following: 

Y 
5 
selected_spheres_reduced.sph 
1 
rec_box.pdb 
 

 The grid input file, grid.in, contained the following: 

compute_grids Yes 
grid_spacing 0.3 
output_molecule No 
contact_score No 
energy_score Yes 
energy_cutoff_distance 9999 
atom_model A 
attractive_exponent 6 
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repulsive_exponent 12 
distance_dielectric Yes 
dielectric_factor 4 
bump_filter Yes 
bump_overlap 0.75 
receptor_file rec_charged.mol2 
box_file rec_box.pdb 
vdw_definition_file ../parameters/vdw_AMBER_parm99.defn 
score_grid_prefix Grid 

 

B. Input Files Used in DOCK Ligand Screening 

 The input file (dock.in) for the first round of DOCK, grid scoring, contained the 

following: 

ligand_atom_file zinc.mol2 
ligand_outfile_prefix FASN 
limit_max_ligands no 
read_mol_solvation no 
write_orientations no 
write_conformations no 
skip_molecule no 
calculate_rmsd no 
rank_ligands yes 
max_ranked_ligands 200 
scored_conformer_output_override no 
orient_ligand yes 
automated_matching yes 
receptor_site_file ../grid/selected_spheres_reduced.sph 
max_orientations 1000 
critical_points yes 
chemical_matching no 
use_ligand_spheres no 
flexible_ligand no 
bump_filter no 
score_molecules yes 
contact_score_primary no 
contact_score_secondary no 
grid_score_primary yes 
grid_score_secondary yes 
grid_score_vdw_scale 1 
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grid_score_es_scale 1 
grid_score_grid_prefix ../grid/grid 
minimize_ligand yes 
simplex_max_iterations 1000 
simplex_max_cycles 1 
simplex_score_converge 0.1 
simplex_cycle_converge 1 
simplex_trans_step 1 
simplex_rot_step 0.1 
simplex_tors_step 10 
simplex_final_min_add_internal no 
simplex_secondary_minimize_pose no 
simplex_random_seed 0 
atom_model all 
vdw_defn_file  ../parameters/vdw_AMBER_parm99.defn 
flex_defn_file ../parameters/flex.defn 
flex_drive_file ../parameters/flex_drive.tbl 

 

The input file (dock.in) for AMBER scoring contained the following: 

ligand_atom_file lig.amber_score.mol2 
ligand_outfile_prefix output 
limit_max_ligands no 
read_mol_solvation no 
write_orientations no 
write_conformations no 
num_scored_conformers_written 1 
skip_molecule no 
calculate_rmsd no 
rank_ligands yes 
max_ranked_ligands 200 
scored_conformer_output_override no 
orient_ligand no 
flexible_ligand no 
bump_filter no 
score_molecules yes 
contact_score_primary no 
contact_score_secondary no 
grid_score_primary no 
grid_score_secondary no 
dock3.5_score_primary no 
dock3.5_score_secondary no 
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continuous_score_primary no 
continuous_score_secondary no 
gbsa_zou_score_primary no 
gbsa_zou_score_secondary no 
gbsa_hawkins_score_primary no 
gbsa_hawkins_score_secondary no 
amber_score_primary yes 
amber_score_secondary no 
amber_score_receptor_file_prefix FASN 
amber_score_movable_region ligand 
amber_score_before_md_minimization_cycles 100 
amber_score_after_md_minimization_cycles 100 
amber_score_gb_model 5 
amber_score_md_steps 3000 
amber_score_minimization_cycles 100 
amber_score_nonbonded_cutoff 18 
amber_score_temperature 300 
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Appendix D: Novel Compound 13C  

To search for novel inhibitors of the TE domain of human FASN, the FASN TE 

crystal structure with orlistat [213] was obtained from the RCSB protein data bank and 

was prepared for in-silico ligand screening using the DOCK suite of programs (see 

Chapter 2). A virtual library, ChemDiv, containing over 200,000 total ligands, was scored 

using DOCK. The 2000 top scoring compounds were scored by AMBER and clustered 

into groups based on chemical structure using Library MCS (ChemAxon). Any 

compound with a positive AMBER score, indicating unfavorable binding energy, was 

discarded and the Lipinski parameters for drug-likeness were calculated for remaining 

compounds [323]. Any compound violating more than one parameter was discarded. All 

remaining compounds were visually examined within the TE active site using the 

Chimera visualization program, and a total of 81 compounds were chosen to examine 

further, ensuring that each chemical cluster, as determined by Library MCS, was 

represented.  

 Compound 13C (Fig. 1A) was initially chosen from the screen because it contains 

a lactone moiety. Unlike the lactone of orlistat, which could be readily opened upon 

nucleophilic attack because its 4-membered ring is sterically hindered and therefore 

unstable, 13C contains a 6-membered ring with double bonds, which is more stable. 

However, the DOCK program predicted that 13C would bind in the active site of FASN 

TE with the lactone moiety in close proximity to the active site serine, demonstrating the 

possibility that 13C may have the potential to be nucleophically attacked by the active 

site serine, covalently modifying the enzyme (Fig. 1B). Indeed, chosen compounds were 

examined for their ability to inhibit TE activity using a fluorogenic assay with 



 

184 
 

recombinant TE protein, and 13C inhibited FASN TE activity in a dose-dependent 

manner, with an IC50 of 19.18 µM and a Ki of 2.18 µM (Fig. 1C). 13 C also inhibited 

cellular proliferation in PANC-1 cells, with an IC50 of 101.5 µM (Fig. 1D). However, 

studies with 13C were discontinued when 13C was unable to inhibit FASN activity, as 

measured by the incorporation of [14C]-acetate into lipids, in vitro (Fig. 1E).  
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FIGURE 1 

 

Figure 1: Novel compound 13C inhibits recombinant FASN TE activity and inhibits 

tumor cell proliferation. (A) Compound 13C from the ChemDiv library was chosen due 

to the presence of a lactone moiety (circled in yellow). (B) The binding mode of 13C 

predicted by DOCK indicates that the lactone moiety may be in close proximity to the 

active site serine of FASN TE (circled in yellow). 13C inhibited (C) the activity of 

recombinant FASN TE and (D) PANC-1 cellular proliferation in a dose-dependent 

manner, but did not inhibit (E) the incorporation of [14C]-acetate into lipids. 
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