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Hyperoxia causes pulmonary toxicity in part by injuring alveolar
epithelial cells. Previous studies have shown that toxic oxygen-
derived species damage DNA and this damage is recognized and
repaired by either human enzyme 8-oxoguanine DNA glycosylase
(hOgg1) or Escherichia coli enzyme formamidopyrimidine DNA
glycosylase (Fpg). To determine whether these DNA repair proteins
can reduce O,-mediated DNA damage in lung cells, A549 lung epi-
thelial cells were transduced with either hOgg1 or Fpg using a ret-
roviral vector containing enhanced green fluorescent protein. Ex-
pression of each gene in the transduced cells was confirmed by
fluorescent microscopy, Northern blotting, Western blotting, and
an enzymatic oligonucleotide cleavage assay. A549 cells expressing
either hOgg1 or Fpg were protected from hyperoxia as evidenced
by a decrease in DNA damage and a corresponding increase in cell
survival. Further, we determined that overexpression of hOgg1 or
Fpg partially mitigated the toxic effects of hydrogen peroxide in
lung cells. Our data suggest that increased expression of DNA
base excision repair genes might represent a new approach for
protecting critical lung cells from the toxic effects of hyperoxia.
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High concentrations of oxygen are often required to maintain
normoxemia in acute lung injury; yet, hyperoxia is also a com-
mon cause of acute lung injury (1). Current evidence indicates
that the damaging effects of oxygen are mediated by reactive
oxygen species (ROS) such as the superoxide anion (O,") (2-4).
Oxygen and ROS can damage alveolar epithelial cells, leading
to loss of the alveolar capillary barrier function (5). Mecha-
nisms of oxygen-mediated lung injury include lipid peroxida-
tion of cell membrane, structural damage of key proteins, and
depletion of cellular reducing agents such as the reduced form
of nicotinamide adenine dinucleotide phosphate (6).

Hyperoxia has been thought to be a cause of DNA damage
and mutagenesis for decades (7, 8). More recent studies indi-
cate that oxidant-mediated lung injury is associated with DNA
damage as evidenced by an increase in p53 and p53-related
gene products (9-11). Nonetheless, it is not clear how DNA
damage and acute lung injury are linked and whether repair of
acute DNA damage will reduce lung cell injury.

Oxygen and other oxidizing agents cause DNA single- and
double-strand breaks that may result in cell death (12, 13).
The main products of oxygen-induced DNA damage are 8-oxo-
7,8-dihydro-2’-deoxyguanosine and imidazole ring—opened gua-
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nine (Fapy-Gua), followed by imidazole ring—opened adenine
(Fapy-Ade) and cytosine glycol (14). Generation of oxidative
DNA damage is prevented by antioxidant enzymes such as
catalase (14) and superoxide dismutase (14) by reducing the
amount and toxicity of ROS.

Eukaryotes possess a number of DNA repair enzymes that
can rapidly reverse DNA damage. One of the key DNA repair
enzymes involved in the base excision repair (BER) pathway
in human cells to reverse oxidant-mediated DNA damage is
8-oxoguanine DNA glycosylase (hOggl) (15, 16). hOggl is a
functional, but not structural, analog of the Escherichia coli for-
mamidopyrimidine-DNA glycosylase (Fpg) (17, 18). hOggl re-
moves 7,8-dihydro-8-oxoguanine (8-0xoG) and other oxidative
guanine modifications from nuclear and mitochondrial DNA.
hOggl is present in mitochondria as well as in nuclei of human
cells (19), as mitochondrial DNA is even more prone to oxi-
dant-mediated damage than nuclear DNA is (20, 21). Wilson
and colleagues have reported that BER protein Oggl can re-
pair mtDNA damage in human cells (22). Deletion of the Oggl
gene results in accumulation of 8-0xoG and an increase in mu-
tational risk (23, 24). Fpg repairs 8-oxo purines, FaPy purines,
and the imidazole ring—opened aminoethyl purines (25). Oggl
deficiency in yeast, as well as Fpg deficiency in bacteria, results
in a spontaneous mutator phenotype (26).

Although hOggl and Fpg are considered prime candidates
for repair of oxidant-mediated DNA damage (27-31), it is not
known whether these DNA repair proteins can protect mam-
malian lung cells from hyperoxia. Thus, we hypothesized that
overexpression of hOggl or Fpg in lung cells might enhance
resistance to hyperoxic injury. hOggl or Fpg was transduced
into A549 alveolar epithelial cells using a retroviral vector
pSF91. The cells transduced with either hOggl or Fpg were
more resistant to hyperoxia when compared with vector con-
trol cells with less DNA damage, and enhanced cell survival.
Further, overexpression of either hOggl or Fpg protected hu-
man lung cells from H,O,-induced DNA damage. These data
suggest that rapid reversal of oxidant-mediated DNA damage
may enhance resistance of lung cells to the toxic effects of hy-
peroxia.

METHODS

Construction of Vectors

The retroviral vector pSF91N, based on murine stem cell virus back-
bone, was a gift of Dr. C. Baum, University of Hamburg, Germany
(32). The bicistronic retroviral vector pSF91 was essentially con-
structed as described previously (33), with an internal ribosome entry
site (IRES) upstream to the gene expressing enhanced green fluores-
cence protein (EGFP).

hOggl was a gift from Dr. S. Mitra (University of Texas Medical
School, Galveston, TX). The hOggl-6 cDNA was amplified by poly-
merase chain reaction (PCR) by primers (5'-ATCGAATTCCAC-
CATHCCTGCCTGCCCGCGCGCTTCTGCCCA-3" and 5'-ATC-
GTCGACTITAGCCTTACGGCCCTTTGGA-3') to introduce a Kozak
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sequence at the 5" end of the gene to increase translation efficiency
(34). This product was digested with EcoRI and NorI and then ligated,
using T4 DNA ligase, into pSF91. After transformation into DHS5«
competent cells (Life Technologies, Gaithersburg, MD), colonies con-
taining pSF91-hOgg1l were identified by PCR with the 5’-SF91 primer
and the 3’-hOggl-6 primer. The inserts were sequenced to confirm
the integrity of the hOggl-6 gene. The hOggl-6 sequence is identical
to that previously reported (15, 16), except that it lacks the 6 C-termi-
nal codons (amino acids 317-322) of the wild-type gene. Eight micro-
grams of purified vector DNA was mixed with Lipofect AMINE (Life
Technologies) and transfected into phoenix-AMPHO cells. The viral
supernatant was then used to infect the GP+ES86 packaging cells.
GP+ES86 cells exhibiting high fluorescent intensity were selected as
stable producer populations. Virus supernatant (titers > 1 X 10° parti-
cles/ml) was filtered through a 0.45-pm Acrodisc filter (Gelman Sci-
ences, Ann Arbor, MI), and the filtered supernatant was incubated
overnight with A549 cells in a solution containing 10 wg/ml polybrene
(Sigma, St. Louis, MO). After 36 hours, the infected cells were selected by
fluorescence-activated cell sorting.

The Fpg gene was cloned from HB101 E. coli cells using PCR
primers that introduced EcoRI and Sall sites at the 5" and 3’ termini
of the gene, respectively (31, 33). The reaction conditions used for
PCR were as described in the Tfl polymerase (Promega, Madison,
WI) protocol. The PCR product and vector pGEX 4T-1 (Amersham
Pharmacia Biotech, Piscataway, NJ) were digested with EcoRI and
Sall, and the purified DNAs were ligated using T4 ligase (Life Tech-
nologies). After confirming the DNA sequence of the insert, the Fpg
cDNA within the pGEX4T-1 vector was amplified in another round
of PCR to introduce a Kozak sequence at the 5’ end of the gene
(primers as in the foregoing). This PCR product was digested with
EcoRI and Sall and ligated to linearized pSF91 vector using T4 ligase.
The transient and stable producer cells were constructed and used to
transduce A549 cells as in the foregoing.

Northern Blot Analysis

Total cellular RNA was isolated from cells (5 X 10°) using the RNeasy
Mini Kit (Qiagen, Valencia, CA) as per the manufacturer’s instruc-

a hOgg1 or Fpg gene insert
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tions. Total cellular RNA (15 pg) was separated in a 1.2% formamide,
agarose gel containing 18% formaldehyde and transferred onto Hy-
bond-N nylon membrane (Amersham Pharmacia Biotech) using a
10X standard saline citrate solution (1.5 M NaCl, 0.15 M sodium ci-
trate). The membrane was prehybridized in 10 ml of Hyb-9 solution
(Gentra Systems, Minneapolis, MN) for 1 hour. Full-length cDNA
fragments of each gene were labeled with [a-**P]dCTP (Amersham
Pharmacia Biotech) using the Megaprime DNA Labeling System
(Amersham Pharmacia Biotech) as per the manufacturer’s protocol.
After a 24-hour hybridization, the membrane was washed with low,
medium, and high stringency washes, and visualized by autoradiogra-
phy on Hyperfilm MP (Amersham Pharmacia Biotech).

Western Blot

Cell lysates were separated by sodium dodecyl sulfate-polyacryla-
mide gel electrophoresis (10%), and then electroblotted to presoaked
Immobilon-P membranes (Millipore, Bedford, MA) for 18 hours at 40
mA constant current in transfer buffer (192 mM glycine, 20 mM Tris—
HCI, and 15% methanol). The membranes were blocked by soaking
in 1.5% bovine serum albumin in TBS-T (50 mM Tris-HCI, pH 7.5,
150 mM NadCl, and 0.05% Tween-20) solution for 2 hours at room
temperature. Each blot was incubated with rabbit polyclonal antibod-
ies to hOggl (Novus Biologicals, Littleton, CO) at a dilution of 1:500
at room temperature for 1-1.5 hours. The membranes were briefly
rinsed with deionized water and then washed five times with TBS-T
(50 mM Tris-HCI, pH 7.5, 150 mM NacCl, and 0.5% Tween 20) for 10
minutes per wash (35, 36). Secondary anti-rabbit peroxidase-conju-
gated antibodies (Sigma—Aldrich, St. Louis, MO) at 1:1,000 were then
added and incubated with the membrane at room temperature for 45
minutes. Finally, the membrane was extensively washed as previously
described and exposed on Kodak OMAT film using a chemilumines-
cence detection kit (Pierce, Rockford, IL).

Enzyme Activity Assay

The hOggl activity of transduced cells was quantified by detecting
the cleavage of the 23-bp oligonucleotide substrate, containing a sin-
gle 8-oxoguanine lesion 5'-GAA-CTA-GTGOATC-CCC-CGG-

Figure 1. Construction and ex-
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pression of retroviral vector con-
taining the hOggl or E. coli
Fpg coding regions. (a) Mam-
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malian expression construct. From
5'-end: LTR, spleen focus-form-
ing virus (SFFV), multiple clone
sites with the mIFN-y insert
(EcoRl and Sall sites), internal ri-
bosome entry site, EGFP, and
3’-end LTR. The transcript con-
tains EGFP, the vector’s splice
donor and splice acceptor sites,
and BER gene. (b) Expression
of EGFP in A549 cells. Phase
contrast (A, C) and fluorescence
(B, D) microscopy of retroviral-
transduced A549 cells express-
ing EGFP/hOgg1 (A, B—popu-
lation; C, D—Clone 10) (X400).
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GCT-GC-3' (Trevigen, Gaithersburg, MD). Cell lysates from control
cells and cells transduced with hOggl (10-pg protein samples) were
reacted separately with 0.1 pmol of y-[**P]-dATP end-labeled 23-bp
substrate at 37°C for 1 hour in 150 pl of analysis buffer (10 mM N-2-
hydroxythylpiperazine-N’-2-ethane sulfonic acid-KOH, pH 7.4, 10
mM KCl, 10 mM ethylenediamine tetraacetic acid [EDTA], and 0.1
mg/ml bovine serum albumin). The reaction was terminated by addi-
tion of 90% formamide loading buffer, and the samples were sepa-
rated by denaturing sodium dodecyl sulfate polyacrylamide gel (20%)
electrophoresis. The gel was dried and exposed on X-ray film. The rel-
ative fractions of full length and cut substrate were determined by
densitometric analysis using Kodak Analysis Software (Kodak, Roch-
ester, NY). Fpg activity was detected as described previously using a
26-bp 8-oxoG-containing oligonucleotide, 5'-AATTCACCGGTAC-
COGTCTAGAATTCG-3' (33, 37).

Hyperoxic Exposure

A549 cells were grown in Dulbecco’s modified Eagle’s medium sup-
plemented with penicillin (100 U/ml)/streptomycin (100 pg/ml) and
10% fetal bovine serum, counted, and seeded on 100-mm? tissue cul-
ture dishes at a concentration of 8 X 10* cells/ml. Next day, the cells
were subjected to hyperoxia in a NuAire Nu-3500 cell culture incuba-
tor (NuAire Inc., Plymouth, MN). The incubator was infused with
95% O,-5% CO, for 12, 24, 48, 72, and 96 hours. Control A549 cells
were incubated in room air-5% CO, for the same time intervals. O,
concentrations were monitored with a mini Oxygen Ted 60T meter
(Teledyne Analytical Instruments, City of Industry, CA). O, tension
in culture medium was 647 = 9 mm Hg (38). At each time point, the
cells were harvested for assessment of DNA damage (Comet assay)
and cell survival (colony forming assay).

H,0, Exposure

A549 cells were plated into 60-mm dishes (five dishes) at a density of
3 X 10° cells/dish overnight. Next day, the cells were washed with
phosphate-buffered saline (PBS) and incubated in the presence of
H,0, (0, 100, 200, 400, and 1,000 pM) at room temperature for 20
minutes. The cells were washed with PBS and used for assessment of
DNA damage (Comet assay) and cell survival (colony forming assay).

Comet Assay

The Comet assay was performed according to the manufacturer’s in-
structions using a CometAssay kit (Trevigen). Briefly, after exposure of
cells to hyperoxia or H,O,, cells were washed with Ca’*- and Mg?*-free
PBS (Trevigen) at a concentration of 3 X 10° cells/ml. The cell suspen-
sion was mixed with liquefied agarose at a 1:10 (vol/vol) ratio. A small
aliquot of this mixture was immediately transferred onto the slide pro-
vided. After cell-lysis at 4°C, slides were treated with alkali solution (0.3
M NaOH, 1 mM EDTA) for 60 minutes to unwind the double-stranded
DNA. Slides were electrophoresed at 1 volt/cm for 10 minutes. After
staining with SYBR green dye, samples were visualized and photo-
graphed by fluorescent microscopy using an Olympus BX60 Microscope
System and Paxit software (MIS, Franklin Park, IL). Tail length was de-
fined as the distance between the leading edge of the nucleus and the
end of the tail. Seventy-five determinations were made for each sample
using Adobe Photoshop software (Adobe System Inc., San Jose, CA).

Colony Forming Assays

After exposure of cells to hyperoxia or H,0, as described in previous
sections, 1 ml of trypsin-EDTA (0.25%:1 mM) was added to each
plate and incubated for 1 minute at 37°C. After the incubation, 5 ml of
media containing fetal bovine serum was added and the cells were re-
suspended. Viability of the cells was determined by trypan blue (0.4%
wt/vol) exclusion. The viable cells were then counted and plated at
various concentrations in triplicate on 100-mm? tissue culture plates.
After 10-14 days, the colonies were stained with 1% methylene blue
in 50% ethanol and enumerated.

Statistical Analysis

Experiments were performed in triplicate and repeated at least three
times. Student’s ¢ test and analysis of variance were performed, and
significant difference was accepted at p < 0.05.

RESULTS

Analysis of Transgene Expression

To express DNA repair proteins in host cells, we subcloned
the E. coli Fpg gene into pSF91 (Figure 1a) from pGEX 4T-1
Fpg. Vector pSF91, derived from murine stem cell virus back-
bone and LN-based retroviral vectors, was used for transduc-
tion of A549 cells and hematopoietic progenitor cells (31, 33)
(Figure 1a). After selection for EGFP with fluorescence-acti-
vated cell sorting, more than 95% of the cells expressed EGFP
(Figure 1b). The A549 cell population expressing EGFP (Fig-
ure 1b) was serially diluted to isolate single clones. Clone 10 is
shown as representative of 27 clones selected (Figure 1b).

Northern blot analysis was performed to determine which
clones contained actively transcribed transgenes and the rela-
tive expression level for each colony (Figure 2). hOggl trans-
gene transcript is approximately 2 kb, which includes the vec-
tor’s splice donor and splice acceptor sites (Figure 2a). hOggl
expression was also confirmed by Western blotting (Figure 2b).
Various amounts of hOggl expression were demonstrated, as
expected, at a molecular weight of 39 kD. Finally, the successful
expression of hOggl was displayed in an enzymatic cleavage ac-
tivity assay (Figure 2c). Similarly, the expression of Fpg in A549
cells was detected by Northern blot (Figure 2d). Enhanced Fpg
expression in A549 cells was also confirmed by enzyme cleav-
age activity assay (data not shown).

Protection from Hyperoxia

A population of hOggl-expressing A549 cells showed less
DNA damage compared with vector-transduced control cells
(Figure 3A). As shown in a representative picture of the Comet
assay, exposure to hyperoxia for 3 days increased the tail length
in vector-transduced cells, but this was not seen in hOggl-
transduced cells (Figure 3B). Similarly, a population of A549
cells expressing Fpg was protected from hyperoxia (Figure
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Figure 2. Expression and activity analysis of hOgg1-transduced A549
cells. (A) Northern blot analysis of hOgg1 mRNA. Clones 2, 5, 10, 15,
and 16 expressing different amounts of hOggl mRNA. (B) Western
blotting analysis of hOgg1 protein. Clones 2, 5, 10, 15, and 16 express-
ing different amounts of hOgg1 protein. (C) hOggl1 enzyme activity
detected by oligonucleotide cleavage assay. Control, oligonucleotide
without cleavages; Clones 2, 5, 10, 15, and 16 expressing different
amounts of enzyme activity. Ten micrograms of cell-free extract reacted
with 2.5 pM v-[32P]-dATP-labeled 8-oxoguanine-containing 23-bp oli-
gonucleotide for 60 minutes at 37°C. The cleavage product of reaction
was a 9-bp oligonucleotide. (D) Nouthern blot analysis of Fpg DNA ex-
pression.
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Figure 4. Effect of variable hOgg1 expression on DNA damage in hy-
peroxia. (A) Various A549 cell clones expressing different amounts of
hOgg1 activity were incubated in 95% O, for 72 hours, and DNA dam-
age was detected by Comet assay (*p < 0.05, compared with the vector
control). (B) Relationship between hOggl enzymatic activity and resis-
tance to hyperoxia. hOggl activity (oligonucleotide cleavage assay)

A549 )
hOggl Figure 3. Effect of DNA BER
protein expression in A549 cell
population on O,-induced DNA
damage. A549 cells expressing
either hOgg1 or Fpg were in-
cubated in 95% O, or room air
for 72 hours. DNA damage was
measured by Comet assay, and
tail length was defined as the
distance between the leading
edge of the nucleus and the
end of the tail. (A) A549 cell
population expressing hOgg1.
(B) Comet assay showing de-
creased DNA damage in hOgg/1-
transduced A549 pop- ulation.
(C) A549 cell population ex-
pressing Fpg. *p < 0.05, com-
pared with the vector control.
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3C). We generated 27 A549/hOggl clones that variably ex-
pressed the transgene hOggl. Eight clones (2, 5, 10, 12, 15-17,
and 26) were selected that expressed different levels of the
hOggl transgene; yet, each clone demonstrated significant pro-
tection from DNA damage when incubated in hyperoxia (Fig-
ure 4A).

We assessed the relationship between hOggl activity and
resistance to DNA damage during hyperoxia. The results showed
that the levels of hOggl DNA repair activity in various A549
cell clones correlated with resistance to hyperoxic DNA dam-
age in A549 cells (r = 0.79, p < 0.05) (Figure 4B). Although a
correlation exists, hOggl activity in an individual A549 cell
clone does not reliably predict the degree of protection from
hyperoxia.

AS549 cells expressing either hOggl or Fpg demonstrated
longer survival compared with the vector-transduced control cells
(p <0.05, Figures S5A and 5B). However, there were no significant
differences between Fpg and hOggl in the ability to protect the
cells from hyperoxia. Similarly, five hOggl clones (2, 5, 10, 15,
and 16) expressing significantly different levels of the hOggl
transgene demonstrated a similar ability to sustain cell survival
during hyperoxia (Figure 6A). The relationship between hOggl
activity and cell survival demonstrated only a marginal correla-
tion (r = 0.55, p < 0.05) (Figure 6B). Further, the correlation
between DNA damage and cell survival in the hOggl clones
was also marginal (r = 0.54, p < 0.05).

Protection from H,0,

To assess whether overexpression of BER genes would afford
protection from H,0O,, DNA damage and cell survival were as-
sayed in lung cells overexpressing hOggl or Fpg in the pres-

and DNA damage (tail length measured by the Comet assay) were
compared in A549 cell clones with variable expression of hOgg1 pro-
teins. The hOgg1 activity was expressed as a cleavage index (Cl) indi-
cating the ratio of cleaved oligonucleotide to total oligonucleotide.
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ence or absence of H,0,. Overexpression of hOggl or Fpg sig-
nificantly protected against DNA damage by H,0, (0-1,000
wM) compared with the vector-transduced control cells (p <
0.05, Figures 7A and 7B). Further, overexpression of hOggl
partially enhanced cell survival in the presence of H,O, (200
and 1,000 puM) compared with the vector-transduced control
cells (p < 0.05), whereas overexpression of Fpg did not en-
hance cell survival (Figures 7C and 7D). These data suggest
that H,O, might injure DNA of lung cells in a manner different
from hyperoxia, and that the protective effects of BER pro-
teins such as hOggl or Fpg on cell survival also differ.

DISCUSSION

We report a successful reduction in oxygen toxicity to lung
cells by overexpression of BER repair proteins in these cells.
Using an improved bicistronic retroviral vector (33, 39), we
were able to transduce lung epithelial cells with either hOggl
or Fpg DNA to achieve protein overexpression with each trans-
gene. Overexpression of hOggl or Fpg protected the lung cells
from hyperoxia-induced injury as demonstrated by either DNA
damage or cell survival assays. This is the first study to show
that overexpression of DNA BER proteins can be protective
from oxygen toxicity in lung cells.

High concentrations of oxygen likely damage DNA of lung
cells by forming an array of reduced ROS (9, 13). Evidence
that DNA is a target for this damage is provided by the in-
crease in DNA damage-inducible proteins such as p53 and
p21 in the lung during hyperoxia (10, 13, 40). In a manner sim-
ilar to hyperoxia, bleomycin induces p53 and p21 expression,
and this has been localized to type II alveolar epithelial cells in
the lung (11). Of interest, hyperoxia is a frequently suspected
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Figure 5. Effect of DNA BER protein expression on cell survival. A549
cells expressing hOgg1 or Fpg were incubated in 95% O, and cell sur-
vival was measured by colony forming assay. Cell survival was expressed
as percentage of surviving colonies in hyperoxia to surviving colonies in
room air. (A) A549 cell population expressing hOgg1. (B) A549 cell pop-
ulation expressing Fpg. *p < 0.05, compared with the vector control.

cofactor in clinical bleomycin toxicity (41). Bleomycin gener-
ates DNA lesions typical of the injury/repair cycle associated
with oxidant damage (42). Widespread injury to the alveolar
epithelium by hyperoxia or drugs may jeopardize the integrity
of the lung. Type II cell injury and death is a catastrophic
event for the alveolar unit as the type II cell is the progenitor
of the type I alveolar epithelial cell (43) and is the major
source of pulmonary surfactant proteins (44). New strategies
are needed to protect alveolar epithelial cells from O, toxicity.
Our study suggests one approach to achieving protection is to
rapidly reverse O,-induced DNA damage (Figure 8).

Recognition and removal of 8-oxoguanine residues from
DNA is dependent on similar enzymes in bacterial and eukary-
otic cells. The Fpg and hOggl DNA glycosylases recognize and
initiate repair of 8-oxoguanine and formamidopyrimidine le-
sions produced by oxidative and alkylative DNA damage, re-
spectively. The BER genes release the modified base from the
sugar molecule of a nucleotide leaving an apurinic/apyrimi-
dinic (AP) site in the DNA (45). After release of the damaged
bases, downstream enzymes, including AP endonucleases (Apel),
DNA polymerase-, and DNA ligase, continue the repairing pro-
cess by filling and sealing the gap (26, 45).

Both hOggl and Fpg have AP lyase activity for removing
5'-terminal deoxyribose phosphate flanking the DNA strand
breaks next to abasic sites (46), although Fpg is more active in
this respect than hOggl (47). Recent studies have shown that
hOggl is a strong glycosylase but a much weaker AP lyase
(47). It has been suggested that hOggl acts with other mem-
bers of the BER pathway, namely the major AP endonuclease
(Apel/ref-1) or B-polymerase, to augment its inherent low
lyase activity during hydrolytic processing of the AP site (47).
This has been confirmed for the human T-G mismatch glyco-
sylase that is dislocated by Apel/ref-1 (48). However, en-
zymes downstream to hOggl may be rate-limiting in human
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Figure 6. Effect of variable hOgg1 expression on cell survival in hyper-
oxia. (A) A549 cell clones expressing different amounts of hOgg1 were
incubated in hyperoxia, and cell survival was measured by colony form-
ing assay (*p < 0.05, compared with the vector control). (B) Relation-
ship between hOgg1 enzymatic activity and resistance to hyperoxia-
induced toxicity (r = 0.55, p < 0.05).
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Figure 7. Protection from hydrogen peroxide-induced toxicity.
Detection of DNA damage by the Comet assay: (A) A549 cell
population expressing hOgg1. (B) A549 cell population express-
ing Fpg. Detection of cell survival by the colony forming assay:
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cells (31, 49). It would be interesting to determine if increased
expression of these downstream enzymes (Apel/ref-1 and/or
B-polymerase) will augment cell survival with coexpression of
either hOggl or Fpg (31).

Our studies also demonstrate that cells overexpressing
hOggl or Fpg were protected from the cytotoxic effects of ex-
posure to H,O,. Among various lesions associated with oxida-
tive DNA damage, 8-0xoG is the most important because of
its abundance and mutagenicity. 8-oxoG and formamidopyri-
midine are both substrates for Fpg and hOggl (50); however,
recent studies have shown that the rate of excision of 7-me-
thyl-formamidopyrimidine by hOggl is less than that of Fpg
(51). hOggl and Fpg exhibit both N-glycosylase and 3’ and 5’
B-lyase activities for the removal of deoxyribose phosphate.
Therefore, protection against H,O, as evidenced in our study
might be mediated by these other activities.

Although exposure to H,O, is often used as a surrogate for
ROS damage generated during hyperoxia, it is unclear if H,O,
causes a similar type of DNA damage. Studies in Chinese
hamster ovary cells revealed that H,O, produces mutagenic
single-strand DNA damage, whereas hyperoxia causes sister
chromatid exchanges and other chromosome aberrations (52).
Iron chelators enhance survival of cells exposed to H,O,, but
not when exposed to hyperoxia (53). The toxicity of H,O, is
probably dependent on the formation of hydroxyl radicals
(*OH) through the Fenton reaction, as scavengers of ROS re-
duce ‘OH formation and prevent the lethal action of H,0O,
(13, 54). However, hydrogen peroxide has direct effects on re-
dox-signaling pathways, independent of hydroxyl radical for-
mation (55).

Hyperoxia
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Figure 8. Hyperoxia: possible mechanisms of DNA damage and repair.

DNA ligase I or DNA

Recovery Jigase I/XRCC1
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(C) A549 cell population expressing hOgg1. (D) A549 cell pop-
ulation expressing Fpg. *p < 0.05, compared with the vector
control.

Although overexpression of BER proteins in lung cells
protected from hyperoxia-induced DNA damage, it appears
that BER proteins were less effective in protecting the cells
from cell death. These findings are consistent with a role for
DNA damage to be a contributing but not sole mechanism of
hyperoxia-induced cell death. Apoptosis is generally consid-
ered to be the predominant mode of cell death from oxidative
insults (56), which is controlled by complex signaling involving
many regulatory proteins such as DNA damage-inducible
proteins, proinflammatory factors, and cell cycle regulation ki-
nases (57). However, necrosis during acute lung injury is also
observed, particularly in A549 cells under hyperoxic condition
(58), suggesting a dual mode of cell death (59). Other factors
such as cell types and confluence state may determine the
mode of cell death (60). Thus, we speculate that enhanced ex-
pression of BER proteins in A549 cells may protect from one
type of hyperoxia-induced cell injury but not another. A limi-
tation to the use of A549 cells is that they might also not accu-
rately reflect the degree of DNA damage or repair that occurs
to alveolar epithelial cells in vivo.

In summary, we have been able to successfully reduce hy-
peroxia-induced DNA damage to lung cells by overexpression
of DNA BER protein hOggl or Fpg. This is the first study to
demonstrate that DNA BER proteins have protective effects
on reducing O, toxicity in lung cells. Our data suggest that in-
creased expression of DNA BER genes might represent a new
approach for protecting critical lung cells from the toxic ef-
fects of hyperoxia.
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