X-Composer: Enabling Cross-Environments In-Situ Workflows
between HPC and Cloud

Feng Li
Indiana University - Purdue University
Indianapolis, IN, USA
li2251@purdue.edu

Feng Yan
University of Nevada
Reno, NV, USA
fyan@unr.edu

ABSTRACT

As large-scale scientific simulations and big data analyses become
more popular, it is increasingly more expensive to store huge
amounts of raw simulation results to perform post-analysis. To
minimize the expensive data I/O, “in-situ” analysis is a promising
approach, where data analysis applications analyze the simulation
generated data on the fly without storing it first. However, it is
challenging to organize, transform, and transport data at scales
between two semantically different ecosystems due to the distinct
software and hardware difference. To tackle these challenges, we
design and implement the X-Composer framework. X-Composer
connects cross-ecosystem applications to form an “in-situ” scientific
workflow, and provides a unified approach and recipe for support-
ing such hybrid in-situ workflows on distributed heterogeneous
resources. X-Composer reorganizes simulation data as continu-
ous data streams and feeds them seamlessly into the Cloud-based
stream processing services to minimize I/O overheads. For evalua-
tion, we use X-Composer to set up and execute a cross-ecosystem
workflow, which consists of a parallel Computational Fluid Dy-
namics simulation running on HPC, and a distributed Dynamic
Mode Decomposition analysis application running on Cloud. Our
experimental results show that X-Composer can seamlessly couple
HPC and Big Data jobs in their own native environments, achieve
good scalability, and provide high-fidelity analytics for ongoing
simulations in real-time.

CCS CONCEPTS

« Computing methodologies — Modeling and simulation; Dis-

tributed computing methodologies; Parallel computing method-

ologies; « Software and its engineering — Software organization
and properties;

KEYWORDS

HPC, cloud computing, in-situ data analysis, scientific workflows.

This work is licensed under a Creative Commons Attribution International 4.0 License.

PASC 21, July 5-9, 2021, Geneva, Switzerland
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8563-3/21/07.
https://doi.org/10.1145/3468267.3470621

Dali Wang
Oak Ridge National Laboratory
Oak Ridge, TN, USA
wangd@ornl.gov

Fengguang Song
Indiana University - Purdue University
Indianapolis, IN, USA
fgsong@iupui.edu

ACM Reference Format:

Feng Li, Dali Wang, Feng Yan, and Fengguang Song. 2021. X-Composer:
Enabling Cross-Environments In-Situ Workflows between HPC and Cloud.
In Platform for Advanced Scientific Computing Conference (PASC 21), July
5-9, 2021, Geneva, Switzerland. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3468267.3470621

1 INTRODUCTION

HPC and Big Data ecosystems are designed and manufactured for
their own purposes (HPC ecosystem for computation-intensive
computing and Big Data ecosystem for data-intensive processing
and analyses), and hence are significantly different from each other
in both software and hardware designs. In the HPC world, software
and hardware systems are designed for fastest execution of large-
scale parallel computing programs. An HPC system often consists
of hundreds of thousands of high-end servers equipped with many
CPU cores and large-size memories, which are tightly connected
by high-speed interconnects such as InfiniBand. Also, simple and
minimal operating systems and software stacks are used in the com-
puter nodes for efficient operations. Moreover, the message-passing
library (MPI) is commonly employed in HPC systems such that
processes in different address spaces can work collaboratively and
exchange data with each other through point-to-point or collective
communications.

On the other hand, in the Big Data world, applications are usu-
ally designed to collect, process, and analyze large amounts of
data to gain important knowledge. For instance, software in a Big
Data ecosystem such as Apache Spark [51] and Hadoop [20] can
use the high-level MapReduce programming model to execute big
data analysis jobs on clusters of commodity machines [12]. More
recently, cloud computing technologies such as containers and
service-oriented architectures have further hidden the complexity
of parallel software packages, and have made Big Data platforms
more accessible to developers. Overall, the generic architecture and
software design commonly found in Big Data ecosystems can help
users quickly analyze data at large scales in an affordable, flexible,
and elastic manner. More details of the differences between the
HPC and Big Data ecosystems have been discussed by Reed and
Dongarra [41].

Although HPC and Big Data ecosystems are different and mostly
divergent, in reality, many scientific computing applications have
components of both large-scale computations and big data analyses.

https://doi.org/10.1145/3468267.3470621
https://doi.org/10.1145/3468267.3470621
https://doi.org/10.1145/3468267.3470621
https://creativecommons.org/licenses/by/4.0/

For instance, peta-bytes of data may be generated from a single
run of a scientific simulation. Also, the simulation results need to
be analyzed to get insights or new knowledge. Traditionally, the
simulation-generated data is stored in a parallel file system, then
copied to another site, and read again by different analysis applica-
tions for further investigations. Such a data storage/movement/post-
analysis pattern is often extremely expensive, and hence there is
an inevitable trend to pursue in-situ data analysis. In a typical
in-situ data analysis, the analysis applications continuously pro-
cess/analyze the in-memory data structures while the simulation
applications are running and generating data [6, 16, 18, 23].

Most existing in-situ computing frameworks are designed for
executing in the HPC ecosystem (in many cases, involving one
or two HPC systems). To support HPC-based in-situ computing,
any required data analysis applications must be ported and pre-
compiled for the HPC systems. If the data analysis application
needs special data-processing functionalities such as aggregation,
group operation, they have to be manually reimplemented using the
common parallel programming models such as MPI and OpenMP.
However, cloud computing platforms already provide mature and
easy-to-use tools and environments for data processing and ma-
chine learning based analysis. For example, the Helios system from
Microsoft [40] is designed for large scale data ingestion, indexing,
and efficient queries. In Helios, telemetry data (e.g., logs, heartbeat
information) are formatted as easy-to-understand data records, and
a variety of tasks such as monitoring, debugging, and reporting are
automatically supported.

In the HPC world, however, complex data processing and analyt-
ics systems like Helis are mostly absent or hard to deploy, and it is
important yet challenging to utilize Big Data toolchains to analyze
HPC simulations on HPC systems. Porting Big Data toolchains to
HPC systems can be a temporal solution [33, 34]. However, with
the bigger demands in using Big Data toolchains, the fast grow-
ing of Big Data ecosystem, and the increasingly more complex
software-hardware co-design optimizations, such a temporal solu-
tion requires tremendous manual efforts that are not efficient nor
scalable. A more promising alternative approach is to have simu-
lation data transformed into the formats supported by Big Data
toolchains (e.g., indexed records) in an automated and efficient man-
ner and then stream them to external services deployed in Cloud
platforms on the fly. With simulation data formatted as indexed
records, Cloud-based online stream processing systems can utilize
the data layout semantics to conduct large-scale complex analysis.
For example, Dynamic Mode Decomposition (DMD) analysis in
Section 2.3 requires data aggregation in both time and space, which
fits very well in a typical stream processing scenario. Section 4
analyzes the effect of data communication overhead between HPC
and Cloud systems.

To this end, we design and implement the X-Composer software
framework, which seamlessly bridges the separate ecosystems of
HPC and Cloud. To the best of our knowledge, this work is the first
to compose in-situ workflows that consist of both HPC-native and
Cloud-native application components, and enable transparent yet
efficient data transformation between the two semantically different
ecosystems. Specifically, we regard simulation data as records that
can be indexed by its fields, so that complex operations such as
filtering, reduction, aggregation can be realized using high-level

abstractions. By bridging HPC simulations with external Cloud-
based analytics, the elastic services and native software in the
Cloud can be utilized to analyze HPC-based simulations effectively
without lots of re-implementation time and efforts. Moreover, the
elasticity of Cloud can help our data analytic services scale up and
out easily when there is more data to be processed.

X-Composer includes a client library and a deployable manager
component. MPI applications can be linked with the X-Composer
client library, and invoke corresponding library calls to generate
indexed data. The manager component (X-Composer Manager) sup-
ports authentication of Cloud/HPC systems, and can submit jobs
to both sides using their native schedulers (e.g. Slurm [50] for HPC
and Kubernetes [7] for Cloud). X-Composer Manager launches
cross-environment workflow using two-level scheduling: at the
first level, X-Composer Manager utilizes the platform-specific au-
thorization services to deploy/configure applications to the com-
puting platforms; at the second level, HPC batch jobs and Cloud
analysis tasks are launched with the native schedulers. When X-
Composer submits jobs to HPC, the simulation data is transformed
to Cloud-native indexed records, and continuously streamed to
the data analysis services deployed in Cloud, where the data ob-
jects together with their scheme information are organized and
analyzed. The X-Composer framework provides several essential
features to realize cross-environments in-situ workflows. Firstly,
X-Composer lets users launch and execute such cross-environment
workflows in a secure and protected way, by utilizing the native
authorization services in both platforms. Secondly, X-Composer
handles necessary data transformations between Cloud and HPC
platforms automatically, so that simulation applications only need
to be modified slightly to enable rich analytical services provided by
external Cloud platforms. Furthermore, X-Composer provides flexi-
ble configurations for cross-environment workflows. For example,
the mapping between simulation processes and data analysis end-
points can be customized to minimize data transmission overhead
and minimize data flow stalls.

To evaluate the X-Composer system, we develop a real-world
cross-ecosystem scientific workflow, which has a parallel MPI-based
computational fluid dynamics (CFD) simulation running in HPC,
and a distributed online DMD analysis application using stream
processing service deployed in Cloud. We build and execute this
workflow on the TACC Stampede2 HPC [46] and XSEDE Jetstream
Cloud systems [45, 48]. From the experimental results, we observe
that by linking CFD applications with X-Composer, we can effec-
tively migrate the simulation data from HPC system. Compared
with the traditional file-system based approach, X-Composer re-
duces the elapsed time of the workflow by 1.5 times, while using
512 MPI processes and 8 Cloud endpoints. Also, by using the re-
mote Cloud analysis services, we are able to provide online timely
insights into the ongoing fluid dynamics.

In the rest of the paper, the next section introduces the back-
ground of in-situ processing on HPC and stream processing on
Cloud. We present the system design of the proposed X-Composer
framework in Section 3. Then we demonstrate the usage of X-
Composer with real-world in-situ workflows in Section 4, and show
its performance. In Section 5 we discuss recent related work on
in-situ processing and workflow management. In Section 6, we
conclude the paper with future work.

2 BACKGROUND

In this section, we first introduce HPC in-situ processing and Cloud-
based stream processing. Then, we introduce the Dynamic Mode
Decomposition, which is a data analysis method we have deployed
in our Cloud-based stream processing service.

2.1 In-situ processing on HPC systems

Originally, the Latin world term in situ has the meaning of “on-
site” or “in place”. Researchers have been using “in-situ” to describe
the situation when visualization/analysis programs can process
simulation data without any data movements or if the visualiza-
tion/analysis routines reside in the same processes with simulation
[6, 44]. There is also a broader definition of “in-situ” processing:
processing data while it is generated [9, 11, 23, 32]. More detailed
terminology description and classification of in-situ has been intro-
duced [10]. In this paper, we use the broader definition of in-situ,
for which parallel simulations are running in an HPC system, at
the same time data is continuously offloaded to a Cloud system for
further data analysis.

Generally, in-situ analysis can be realized in different ways on
HPC systems. In a tightly-coupled model, parallel applications (e.g.,
LAMMPS [39]) let users couple simulation with other code either
by linking LAMMPS as a library or letting LAMMPS call the other
code. In a loosely-coupled model (e.g., when using DataSpaces [16],
ADIOS?2 [24], or Decaf [18] libraries), both simulation and analysis
applications need to call specific transport library interfaces, so that
data movement can be carried out by the specific data transport
runtime system. Also, both loosely-coupled and tightly-coupled
models require modifying simulation and analysis applications’
code at a low level, so that it can be linked with the corresponding
transport libraries.

Cloud platforms typically provide more robust and easy-to-use
programming abstractions. For example, a “word count” application
on a data stream can be simply implemented in Spark Streaming
in one line as: input.as[String].flatMap(_.split("_")).groupBy("value"
).count(). This application reads the incoming data records, splits
them into separate words, and counts the occurrences of each word.
Under the hood, Spark runtime automatically partitions the data
records and uses multiple executors to “count” in parallel. Such
high-level operations make developers handle parallelism easily,
without worrying about the low-level programming primitives
(e.g. MPI) or manually dealing with concurrent access to shared
variables. We argue that it’s easier and more efficient for analysis
applications to implement application logic with such high-level
data abstractions, which are usually provided by modern distributed
stream processing frameworks.

2.2 Cloud-based stream processing data
analytics

Nowadays, it has become common that data is generated contin-
uously over time. For example, sensor data generated from IoT
devices or web logs are produced from multiple sources and can
accumulate quickly every day. Instead of storing the data and doing
post-processing in the future, stream processing can be used to give
real-time insights into the data. The advantage of being “real-time"

is essential in various scenarios such as online fraud detection and
emergency handling, where it can help early decision-making.

In data stream processing, “unbounded” datasets (or “data streams”)
are used as input. New data records are continuously added to
the data streams, where they can be analyzed on the fly. Popular
stream processing frameworks (e.g., Apache Kafka [30], Flink [8],
Storm([21], and Spark Streaming [22]) have been extensively used in
different domain fields to provide in-time analytics for various data
sources. Popular Cloud providers now also offer big data analytics
as a service (e.g., Google DataProc [27], Amazon Kinesis Streams
[26]), so that users can interact with the service using their favorite
programming languages (e.g. Python), regardless of platform in-
frastructure. In the case of computational fluid dynamics (CFD) in
the HPC domain, scientific simulations can run over days or even
months, and real-time analysis of simulation results can signifi-
cantly help scientists analyze ongoing simulations. For instance,
analysis of data generated while the simulation is in progress can
help scientists discover important patterns and understand behav-
iors, which users would otherwise have to wait till the simulation
finishes. In this work, we explicitly utilize the convenience and
advantages of Cloud-based stream processing to provide timely
insights into the running scientific simulations.

2.3 Analytical Method of Dynamic Mode
Decomposition

In fluid dynamics, the flow fields are organized in a complex, high-
dimensional dynamical system. It is well known that important flow
features can be recognized through visual inspections of the flow,
even when there are perturbations and variations [47]. This means
that some coherent structures exist in the fluid fields, which contain
useful dynamical information of the fluids and can help researchers
understand the patterns/behaviors of the fluid flows. To mathe-
matically extract those coherent structures from such dynamical
systems, modal analysis techniques, such as Dynamic Mode Decom-
position analysis (DMD [43]), are often used. More specifically, the
DMD data analysis solely relies on snapshots (or measurements)
of a given dynamic system, and provides the spatial-temporal de-
composition of those data into a set of dynamical modes [31]. Since
DMD is data-driven and does not need to model the governing equa-
tions of the fluids, DMD is considered as an “equation-free” and
“data-driven” method. Traditionally, DMD analysis has been used
to study fluid structures from dynamic flow geometries [42]. In this
paper, we use DMD as an analysis example, and show how it can be
deployed in the Cloud as a part of the distributed stream processing
service, to analyze ongoing CFD simulations at real-time.

3 METHODOLOGY

In this section, we present the design of X-Composer and explain
how X-Composer solves the challenges of offloading analytical
tasks to Cloud systems from the running simulations. A high-level
design overview of X-Composer is present in Figure 1.

Typically, numerical simulations such as CFD or MD simulations
are computation intensive applications. In HPC, “scheduling” is
done by batch schedulers such as Slum. In a Slurm job on HPC, users
describe the number/type of nodes they require, and how they want

HPC platform

Numerical X-Composer

imulations C library

[HPC batch scheduler |

Cloud platform

BigData analysis
[Stream processing]

ML/DL based analysis

Cloud container
orchestrator

X-Composer (Manager)

AuthN/AuthZ

Process mapping

Format control

Legends

Data flow

Control flow

Monitoring

Figure 1: High-level design of X-Composer. X-Composer provides a C client library which HPC applications (e.g. CFD or MD simulations) can link with. X-
Composer Manager can launch cross-environment workflows using HPC and Cloud credentials. It also configures the format conversion, process/dataflow map-
ping between HPC and Cloud applications. Native HPC scheduler and Cloud orchestrator are used by X-Composer to submit tasks to both Cloud and HPC

environments.

to arrange the MPI processes on compute nodes for efficient execu-
tion. On the right-hand side, BigData analysis is typically deployed
in Cloud platforms. Analysis tasks such as data stream processing,
machine learning (ML) or deep learning (DL) based analysis are
usually packaged as containers. Container orchestration tools such
as Kubernetes make it possible to scale out the analysis processes
for increasingly large amounts of data.

The X-Composer Manager sits between HPC and Cloud plat-
forms. It manages the authentication/authorization of both sides,
and prepares job submission to the native job schedulers in both
platforms (as seen in the control flows in Figure 1). The X-Composer
Manager first launches the Cloud services and HPC simulations
respectively using the credentials provided by the user. A shared
token is copied to both sides so that the client library can securely
connect to the Cloud endpoints. After the cross-environment work-
flow is established, data flow happens solely between HPC and
Cloud components, without passing through the X-Composer Man-
ager. To easily patch traditional parallel simulations with Big Data
Analytics capabilities, X-Composer provides the following features:

e Provides a C library that parallel applications can be linked
with, so that they can transform the in-data data structures
into indexed records on the fly.

e Coordinates job submissions to both HPC and Cloud plat-
forms, and manages authentication in both platforms.

e Provides users with a simple interface to define various types
of interactions between HPC processes and Cloud endpoints.

In the rest of this section, we will present more details about
how we design X-Composer. We first introduce the HPC and Cloud
components, and then show how X-Composer bridges the two
ecosystems using the HPC and Cloud native schedulers to enable
cross-platform in-situ workflows.

3.1 HPC components

The HPC environment has a simpler software stack than the Cloud
environment for efficient parallel executions. For this reason, we
provide an HPC-side client library, which has a simple interface

HPC Deployment Cloud Deployment

008 8

0600 |
=

Stream Processing
service

| ammam
. | NSNS

Figure 2: Binding MPI process to Cloud endpoints. In this example, processes
0 - 3,4 - 7 are connected to two different Cloud endpoints.

for HPC applications so that it allows existing simulation code to
easily adapt to the X-Composer services. During the runtime of the
simulation applications, in-memory data structures are converted
into indexed data records, and then sent out to Cloud while the
simulation is running. For example, an example record can contain
such information: process_id, time_step, pressure, where the
pressure field includes the temperature information of all fluids
simulated by a process at a certain time step.

The C library interface provided by X-Composer is shown in
Listing 1. In the defined APIL, the xcomposer_init function initial-
izes the connections between HPC and Cloud by registering data
fields from the simulation to the remote Cloud service endpoints.
The data fields are denoted by the field_name variable in the API,
such as “pressure” or “velocity_x". The xcomposer_init function
also registers each MPI process rank to one of the existing Cloud
endpoints for future data writes. To output multiple fields simulta-
neously, the initialization function can be called several times with
different instances of field_name.

During the time-step based scientific simulations, the xcomposer_put

function is called iteratively, to transform the field data output from
the simulation processes into stream records, which are sent to the
Cloud endpoint the process has connected to. Each stream record
contains the time-step information and the serialized field data of

the simulation process. On the Cloud side, stream records received

from all endpoints will be aggregated, and analyzed by the stream

processing service, which will be discussed in Section 3.2.

// initialize the X-Composer service, by connecting each MPI

// process with one of the Cloud endpoints.

xcomposer_ctx* xcomposer_init(const char *field_name,
MPI_Comm comm, char *endpoint_file_path);

// write a chunk of in-memory data (void* values) out.
int xcomposer_put(xcomposer_ctx *context, int stepid,
void* values, size_t data_len);

// finalize the X-Composer services.
int xcomposer_finalize(xcomposer_ctx* context);
Listing 1: The X-Composer C client APIL.

To support different types of mappings between MPI processes
and Cloud endpoints, X-Composer provides a utility Python APL
In X-Composer, the default mapping scheme, called “contiguous
mapping”, evenly divides all MPI ranks into contiguous groups, and
assigns each group one Cloud endpoint, as shown in Figure 2. As-
signing separate Cloud endpoints for different groups of processes
enables us to achieve a higher data transfer rate. Process grouping
also provides a higher degree of flexibility. Users can decide how
many endpoints are necessary based on the outbound bandwidth
of HPC sites and inbound bandwidth of each Cloud endpoint, as
shown in Listing 2.
def contiguous_mapper(mpi_rank, mpi_size, num_endpoints):

group_size = math.ceil(mpi_size/num_endpoints) #round up.
local_id = mpi_rank % group_size
group_id = mpi_rank // group_size
return (group_id, local_id)
Listing 2: An example of defining contiguous mapping between MPI pro-
cesses and Cloud endpoints using the provided Python API. Users can specify

different patterns of mapping by providing similar Python scripts to the X-
Composer Manager.

3.2 Cloud-based data analysis components

In this subsection, we first introduce how we set up the Cloud
stream processing service, and then describe how different com-
ponents in the Cloud service are bound together to analyze the
incoming streamed simulation data to provide insights.

We choose Spark Streaming [22] as our example stream pro-
cessing engine, which supports scalable, high-throughput, fault-
tolerant stream processing of live data streams. We choose Spark
Streaming over other streaming engines (e.g., Apache Storm/Heron)
because the Spark ecosystem is more widely used, and has better
analysis library support. With the core Spark functionality, we are
able to apply standard data operations to streams such as map, re-
duce, filter, join, as well as realizing advanced algorithms by directly
calling Spark Machine Learning and Graph Processing libraries. In
this paper, we deploy a Spark cluster and Cloud endpoints within a
Kubernetes cluster in the Jetstream Cloud [45]. As a popular con-
tainer orchestration system, Kubernetes provides an abstraction
layer above different Cloud providers [7]. This way our stream
processing component can be easily reproduced on different Cloud
providers like Google Cloud Platform or Amazon AWS.

Figure 3 shows the overall design of our Cloud setting with
the Spark stream processing engine. In the current X-Composer

/Kubernetes Cluster

i
Endpoint 0 -
———— Redis-server
Endpoint 1
S
_

Figure 3: The deployment of our Cloud components. Each Redis-server con-
tainer acts as an endpoint, and exposes the same TCP port to outside. The
Spark-executor containers will read available data streams from Redis-server
containers. All containers are scheduled in the Kubernetes cluster deployed
in Jetstream, and use the in-cluster network to communicate with each other.

prototype implementation, we use Redis server instances as our
Cloud endpoints. Redis! is an in-memory data structure store, and
used to accept data streams from the HPC components. We use
spark-redis connector? to let the Redis instances forward struc-
tured data to Spark stream processing services deployed in Cloud.
Note that X-Composer is designed as a general-purpose middle-
ware to enable cross-platform in-situ workflows. Thus the Cloud
analysis component is not limited to Spark, and other programming
environments and models can also be supported by X-Composer.

All the Redis instances export TCP port 6379 to the outside of the
Cloud system. All of our Cloud services (Spark stream processing en-
gine and Redis server instances) are containerized and are scheduled
using Kubernetes’s native scheduling, which makes users’ work
much easier to adapt to different Cloud providers. More specifically,
our Spark-executor container built in X-Composer is comprised of
the Python-based DMD analysis library PyDMD [15], and several
Scala software packages such as spark-redis. More details about the
software we use in the Cloud services of X-Composer are described
in Section 4. Also, we create and manage the Kubernetes cluster in
the Jetstream Cloud by using a customized Kubespray software 3.
After the Kubernetes cluster is set up, we create a Kubernetes ser-
vice account and store its credentials in the X-Composer Manager.
With the locally stored credentials, X-Composer Manager can con-
nect to the Kubernetes cluster and launch the pre-built containers
remotely.

3.2.1 Data Processing in Cloud. When data is aggregated from
different endpoints, Spark-executors will read records from data
streams sent by all MPI processes. Fluid data (in terms of snapshots)
from different simulation processes are added to the separate data
streams over time.

Figure 4 shows how data records in one data stream are aggre-
gated as Spark “Dataframes”, which are then processed by analysis
code. In X-Composer, we let Spark manage the task scheduling and
parallelism, so that multiple executors can be mapped to different
data streams and process the incoming data concurrently. Each data
stream will be mapped to a partition of RDD. We use the rdd. pipe
function in Spark to send Dataframe data from the main Spark con-
text to external programs (in our case the Python interpreter). This
operation happens concurrently with all data streams, thanks to the
design of Spark that enables a high degree of parallelism. The results

Uhttps://redis.io
Zhttps://github.com/RedisLabs/spark-redis
Shttps://github.com/zonca/jetstream_kubespray

https://redis.io
https://github.com/RedisLabs/spark-redis
https://github.com/zonca/jetstream_kubespray

Dataframe

Fluid data records over time

step=0

step=i = values step=i+1 values
step=1

A data stream

step=19 = values

values

DMD analysis

rdd.collect!) rdd.pipe("env python
DMDAnaly.py")

values

Figure 4: Data processing in the Cloud. Each MPI process sends data through a data stream, then unbounded data in each data stream is re-arranged into micro-
batches (aka Spark Dataframes). Micro-batches from multiple data streams are treated as partitions of one Resilient Distributed Dataset (RDD). The rdd.pipe

function then sends each partition to the external Python script exactly once.

of all Spark-executors are then collected using the rdd.collect
function so that they can be visualized/presented.

3.3 Support for Authentication and Security

Since there are separate X-Composer components running across
geographically distributed computing platforms, it is important
that both control flow and data flow are protected. Here we discuss
how we support the authentication/security in X-Composer.

During the workflow setup, X-Composer can access both
HPC and Cloud platforms securely. Currently we deploy our X-
Composer Manager in the HPC login node, which has a secure ac-
cess to HPC computing resources by default. For the Cloud platform,
we assume there is a ready-to-use Kubernetes cluster (either man-
aged by the user directly or orchestrated by Cloud providers like
Google Cloud/AWS). X-Composer Manager stores the Kubernetes
service account credentials, so that it can create/control/delete con-
tainers remotely. A random token is also generated by X-Composer
Manager in this setup stage, which will be used in later workflow
executions.

During the workflow execution, the random token generated
from the setup stage is used to protect the data flow between HPC
and Cloud systems. Specifically, all Redis instances in the Cloud use
this token as password to accept incoming connections. This token
is also composed in HPC Slurm jobs so that HPC applications can
initiate secure dataflow to Cloud endpoints.

Connecting HPC to outside clouds: In a typical HPC system,
only the login nodes and designated gateway nodes are accessible
to the public network. Incoming connections to compute nodes are
not allowed for security reasons. However, most HPC systems allow
outbound traffic from compute nodes to the outside. In systems like
Stampede2, such outbound connections are allowed by default; in
other systems such as PSC Bridges, users are can specific SLURM
options (e.g. “-egress”) to enable outbound traffic from compute
nodes. Such outbound traffic is usually routed to one or several
gateway nodes and then travels to public network. In X-Composer,
we launch the Cloud analysis and expose the endpoints first, so
that processes in HPC can initiate connections to them.

4 EXPERIMENTAL RESULTS

We perform two sets of experiments to evaluate the performance
of in-situ scientific workflows using X-Composer. The first set of
experiments use a real-world CFD simulation running in HPC,
with DMD analysis running in Cloud, to show the workflow’s
good end-to-end time. The second set of experiments use synthetic

workflows across HPC/Cloud to evaluate X-Composer’s throughput
and quality of service at different scales.

We use TACC Stampede2 as our HPC platform to run CFD simula-
tions, and use TACC Jetstream Cloud [45, 48] as our Cloud platform
to run DMD data analysis. The specifications of Stampede2 and
Jetstream systems are shown in Table 1a and 1b, respectively.

4.1 Design and implementation of a hybrid
HPC-Cloud CFD scientific workflow

Figure 5: Visualization of WindAroundBuildings simulation using Par-
aView [1]. In this figure, arrows show the velocity of the wind, and colors
in the buildings represent different pressure.

Our cross-environment in-situ scientific workflow consists of
two applications: CFD simulation and DMD analysis. For the CFD
simulation application, we use the parallel OpenFOAM software
[28, 38] to implement it, and execute it on TACC Stampede2. In
OpenFOAM, a “solver” refers to a simulation algorithm (e.g., using
LES [13] or DNS [36]); and a “case” describes the physical con-
dition of the simulation problem. We choose simpleFoam as our
solver, which is a steady-state solver for incompressible, turbulent
flow, using the SIMPLE (Semi-Implicit Method for Pressure Linked
Equations) algorithm.

The simulation problem we solve is the WindAroundBuildings
problem, which is displayed in Figure 5. This specific computa-
tion can simulate how wind flows will behave around a group of
buildings in an urban area. To support such an in-situ workflow exe-
cution with X-Composer, we replace the original runTime() .write
function in the simpleFoam solver with our xcomposer_put func-
tion, and link the solver executable with our X-Composer client
library. We run the simulation problem with a process layout of
1 X1 x 16 (in x, y, z directions respectively), so that each process is
responsible for a horizontal slice of the whole problem space. The

Table 1: Hardware and software information of the TACC Stampede2 HPC system and the XSEDE Jetstream Cloud system. Jetstream and Stampede2 are connected

through 40 x 4 Gbps network in TACC.

(a) Stampde2 HPC

Information
CPU Intel Xeon Phi 7250
#cores 68 cores per node

Main memory 96 GB DDR4 per node

Network 100 Gb/s Intel Omni-Path
MPI Intel IMPI 18.02
Compiler version | GCC 5.4

OpenFOAM v7

Lustre filesystem | 30 PB, 4 MDSs & 66 OSTs

(b) Jetstream Cloud
Information
Host CPU 24 cores
Host RAM 128 GB
Host storage 2TB
Host network 10 gigabit Ethernet
VM image Ubuntu-1804-latest
VM type ml.large
VM vCPUs 10
VM memory 30 GB
Kubernetes version | 1.17.6
Spark version 3.0.1
Redis version 5.0

=0,regionid=0
group=0,regioni 1

=0,regionid=1
group=0,regioni 1

group=0,regionid=2

roup=0,regionid=3
1p Jreup 9

1

8 8 8]

6 & 3 6

4 4 4 4

2 \w 2 2 2

o 5 o NEPAN
5 10 5 10 5 10 5 10

batchid batchid batchid | batchid
gmup:D.regmnld:d-1 group=0,regionid=5 y group=0,regionid=6 __ group=0,regionid=7

10 0 0 10

8 8 8 8

6 & 6 6

4 4 4 4

o T f o T T 0 T T o T T
5 10 5 10 5 10 5 10
batchid habchid. batchid_. batchid

1 group=0,regionid=8 1 group=>0,regionid=9 1 group=D0,regionid=10 0 group=0,regionid=11

8 8 8 8

6 6 6 6

4 4 4 4

2 2 2 2

o T T o T T 0 T T o T T
5 10 5 10 5 10 5 10
batchid | | batchid batchid batchid

10 grou p=[’).regl0n|d=1410 grou p=L.Lreg|on|u=u10 grou;:»=L.J.reg|omu=L410 group=0.regionid=15

— \values

8 8 8 8

6 6 6 6

4 4 4 4

2 2 2 2

0 : . 0 ~\ ; ; 0 . ; 0 . ‘
5 10 5 10 5 10 5 10
batchid batchid batchid batchid

Figure 6: Analysis results of eigenvalues of DMD low-rank operator from each
process region’s output. Each subplot shows the average sum of square dis-
tances from eigenvalues to the unit circle of that region. Values closer to 0
mean fluids in that region are more stable.

velocity fields of each process region are streamed to Cloud service
providers through the X-Composer client library, and are contin-
uously analyzed by the DMD service deployed in the Jetstream
Cloud.

On the Cloud side, the data analysis application (or the DMD
service) reads streams sent from HPC processes through the Cloud
endpoints described in Section 3.1. Figure 6 shows the visualization
results of the DMD analysis on 16 data streams received by 1 Cloud
endpoint. Within the figure, each subplot shows the DMD result of
the fluid data from one CFD simulation process. Each subplot reveals
how the fluid dynamics change over time for a particular domain

region. This figure can also inform users how stable each region’s
fluid flow is at real-time, while the simulation is still running. For
instance, regions 9 and 10 in the figure (marked in orange color)
shows high eigenvalues, and can easily tell users that those regions
are significantly unstable and may need further analysis.

4.2 End-to-end workflow time

One issue of in-situ processing is that the data analysis application
may slow down the simulation application, increasing the overall
end-to-end time of the workflow. Traditionally, simulation applica-
tions write output to a parallel file system. Later the stored data files
are read for post-analysis. Such file-based I/O is usually expensive,
and can severely slow down the primary simulation applications.

To investigate how the simulation application and the combined
in-situ workflow (with Cloud-based DMD analysis) can be affected
by different I/O methods, we configure the simpleFoam solver (with
512 processes) in three different modes:

(1) File system-based: simulation output data is written to a
parallel Lustre file system using the “collated” write method
provided in OpenFOAM.

(2) X-Composer: simulation output data is sent to Cloud end-
points, using the proposed X-Composer APL

(3) Simulation-only: The simulation runs with all data writes
disabled.

We use a slightly modified WindAroundBuildings case in our
experiments, which has finer cells (200, 160, 80 cells in the x, y,
z directions, respectively) so that the simulation can utilize more
processes. The simulation is configured to run 1000 steps, and
writeInterval is set as 5 (steps). The simulation is launched with
512 processes (on 8 Stampede2 KNL nodes) with a process layout of
8 X 8 X 8 (in x, y, z directions respectively), using the “hierarchical”
decomposition method in OpenFOAM. With such a configuration,
47.8MB data are generated by all processes in each step. Hence, the
total 1000 steps will generate 47.8MB * 1000/5 = 9.56GB of data,
where 5 is the writeInterval.

Figure 7 shows the time breakdown when we run our Win-
dAroundBuildings case in file system-based, X-Composer and simu-
lation only modes, respectively. For the file system-based mode, we
use the Lustre system described at Table 1a. For the X-Composer
mode, we use the contiguous mapping with 8 Cloud endpoints.
From the figure, we can see that the file system-based mode takes

M Simulation m Transfer Analysis

X-Composer 129 9.0
Filesystem-based 63.7
Simulation-only
0 20 40 60 80 100 120 140 160

Time in Seconds

Figure 7: Simulation elapsed time comparison when running WindAround-
Buildings case with file-based I/0, X-Composer and simulation-only. The
figure shows that while file-based I/O significantly slows down the simula-
tion application, the proposed X-Composer method doesn’t affect simulation
much.

significantly more time compared with the simulation-only mode.
The main reason is that the “collated” file write operation requires
coordination of simulation processes which stalls the simulation
processes. Note that in the “collated” I/O method? provided by
OpenFOAM, the outputs from all MPI processes are collated to a
single file that is then written by the master processor.

In comparison, when the X-Composer mode is used, simulation
applications can run with a minimal slowdown. This is due to the
fact that X-Composer asynchronously writes in-process simulation
data to streams, from each simulation process, independently. Com-
pared with the file-based method, no shared file systems are used
for the output of the bulk simulation, so the simulation can run with
much fewer stalls. From this experiment, we see that integrating
CFD simulations with X-Composer can give users timely insights
into the ongoing simulations, meanwhile not significantly slowing
down the performance of the simulations.

4.3 Throughput

In order to better understand the throughput performance of our
proposed X-Composer system, we conduct the second set of exper-
iments, in which we demonstrate how the system will scale when
we use more HPC and Cloud resources.

In the second set of experiments, we use a synthetic data gener-
ator to produce output data at different rates in order to stress the
system. The synthetic data generator is an MPI application where
each process generates simulation data at a user-specified rate. Data
generated from all processes are streamed to the distributed stream
processing service through multiple Cloud endpoints, as we have
seen in Subsection 3.1.

Figure 8 shows the aggregated throughput from all data genera-
tor processes with the process number ranging from 64 to 512. Each
data generator process generates data at a rate of 0.68MB/s. As the
number of data generator processes increases, the required total
communication volume will increase linearly. In our experiments,
when we use a larger number of process numbers, we also need
to increase the number of Spark-executors and Cloud endpoints
(i.e., Redis server instances) correspondingly. The ratio among MPI
processes, Cloud endpoints, and Spark-executors is set as 64 : 1 : 16.

4The default “uncollated” I/O method in OpenFOAM gives worse performance due to
frequent metadata operations applied to a large number of files.

250

205.05 207.37
200 -—

150
100
50

Throuphput in MB/s

64 128 192 256 320 384 448 512
of simulation processes

Figure 8: Running workflow with a synthetic data generator in HPC, and
Spark-based query analysis in Cloud. Each group of 64 MPI processes write
data to the same Cloud endpoint, which is served by 16 spark executors in
Cloud.

From Figure 8, we can observe that when we run the synthetic
simulation experiments with less than 320 processes, the in-situ
workflow throughput increases linearly with the number of pro-
cesses. However, when there are more than 320 processes, the
throughput does not increase anymore and it plateaus at 221.24
MB/s. We have also used the iperf benchmark tool [25] to measure
the bandwidth between TACC Stampede2 and Jetstream, which
reports around 450 MB/s aggregated bandwidth when we use 512
MPI processes and 8 Cloud endpoints. We acknowledge that our
highest throughput of 221.24 MB/s is less than the physical network
bandwidth between the TACC Stampede2 and Jetstream systems.
To understand the performance issue, we have also measured the
throughput between Stampede2/Jetstream environments by just
using the Redis built-in benchmark library °, and we found out
the resulting throughput is also significantly lower than the raw
bandwidth measured by the iperf tools. The parallel hiredis library
— that provides the Redis API — uses the request-reply communica-
tion model, which requires packets to travel from the client to the
server, then back from the server to the client to carry the reply.
Although we have already applied general optimization techniques
such as pipelining, the current implementation still cannot utilize
the full link speed between TACC Stampede2 and Jetstream Cloud.
We expect that using the other asynchronous messaging libraries
such as ZeroMQ [53] may improve the throughput further, and we
plan to investigate and add support for them in the future.

5 RELATED WORK

Scientific workflows have been widely used to incorporate multiple
decoupled applications running on distributed computational re-
sources. To manage data dependencies among different applications,
and correctly schedule computational tasks, workflow management
systems (e.g., Pegasus [14], Kepler [35]) are often used. However,
these workflow systems heavily rely on file-based I/O, and only
schedule coarse-grain workflow tasks in a sequential manner (i.e., a
later task cannot start until all the previous tasks have exited). In the
case of our X-Composer, simulation data is streamed continuously
to Cloud services, where data analysis will be conducted while the
simulations continue running.

There exist several previous works to enable advanced analysis
on scientific data through customized analysis operations. For in-
stance, LABIOS [29] utilizes the label-based I/O system to bridge

Shttps://redis.io/topics/benchmarks

https://redis.io/topics/benchmarks

HPC and Big Data applications. NIOBE [19] uses I/O forwarding
nodes and burst buffer to stage data and offload the data format
conversion operations. ArrayUDF [17] provides a user-defined func-
tions (UDF) abstraction for multi-dimensional arrays with general-
ized structural locality support, so that computation that requires
neighborhood information can be carried out with the high-level
UDF interface. However, these works typically require a shared file
system or shared storage system.

Data transport libraries such as ADIOS [32], Decaf [18], and
Zipper [23] can be used to construct in-situ workflows that consist
of separate parallel applications. Paraview Catalyst [2] and SENSEI
[3] utilize the standard visualization toolkit (VTK) data representa-
tion, and allow simulation and visualization/analysis applications
coupled through customized “adapters”. Although those solutions
do not rely on file-based communications between applications,
they most often require applications to run in an HPC ecosystem.
Differently, in X-Composer, data can be sent from HPC applications
to endpoints exposed by Cloud services, so that decoupled applica-
tions can collaborate while residing in their native environments.

There are a few recent works targeting constructing workflows in
heterogeneous environments. Parsl [4] is a library that allows devel-
opers to express parallelism of workflows in Python. It uses Python
objects, files, and futures as the input of applications. DagOn* [37]
is a Python-based workflow engine that allows users to define par-
allel jobs represented by directed acyclic graphs on a combination
of local machines, remote servers, and cloud-based infrastructures.
Beeflow [9] is a workflow management system that supports tradi-
tional workflows as well as workflows with in situ analysis, and it
utilizes events-synchronization primitives to enforce in situ work-
flow logic. Yildiz et al. [49] explore the combination of task-based
computing model and in situ workflows using Decaf and PyCOMPs,
by integrating Decaf’s in situ components as a sub-workflow of the
task-based PyCOMPs workflow. Badia et al. [5] use a holistic way
to express a workflow, where both data/computing are integrated
into a single flow built on high-level interfaces. Most of these works
still use file abstractions as the dependencies between tasks, and
the consumer of the tasks cannot utilize the semantics of the data.
In comparison, X-Composer treats data as continuous streams of
indexed records, and supports a single in-situ workflow running
across distinct HPC and Big Data ecosystems, thus high-level data
operations such as filtering, grouping can be easily supported.

Zanuz et al. [52] proposed a framework to run an in-transit work-
flow consisting of parallel MD simulation and distributed stream
processing using Flink. In their setup, all BigData tools are deployed
in the same cluster where the parallel MPI-based simulation runs.
From our experience, setting up BigData tool-chains for HPC en-
vironments and can require significant administrative assistance.
In comparison, X-Composer explicitly places the Cloud-friendly
analysis (such as stream processing) to the external Cloud platform,
and utilizes Cloud technologies such as container orchestration to
make the deployment and management easier.

6 CONCLUSION AND FUTURE WORK

In this paper, we design a prototype in-situ workflow framework
X-Composer to bridge the HPC and Cloud ecosystems. X-Composer

automates the construction and management of the complex in-
teractions and dataflows between the native applications deployed
in HPC and Cloud. X-Composer also provides a unified approach
and recipe for supporting hybrid in-situ workflows on distributed
heterogeneous resources. X-Composer transforms simulation data
generated in the HPC into stream records, and sends the stream
records to a distributed stream processing service deployed in Cloud.
Through a case study using real applications, we demonstrate how
the Cloud-based stream processing service is set up, and how it
partitions, processes, and analyzes the stream data continuously.
We use the parallel OpenFOAM simulation which runs on TACC
Stampede2, and DMD analysis which is deployed in the XSEDE
Jetstream Cloud to verify the effectiveness of our framework. Ex-
perimental results show that extending MPI-based simulations via
X-Composer enables stream processing services deployed in Cloud
for providing in-time analysis of ongoing fluid dynamics. The ex-
periments also show good throughput and quality of service of
X-Composer at moderate scales.

In our future work, we plan to extend X-Composer to support
in-situ workflows depicted in more complex directed acyclic graphs
(DAG). More advanced monitoring and failure recovery mecha-
nisms can be added to X-Composer to provide support for complex
workflows. More advanced data aggregation functionality can be
supported on the HPC side so that processes may utilize the band-
width more efficiently, Additionally, analytical performance models
can be designed to automatically decide how to distribute compu-
tation tasks of an in-situ workflow to different environments (e.g.,
HPC and Cloud), based upon application-specific requirements such
as computation time, waiting time in queues, memory consumption,
and migration cost.

ACKNOWLEDGMENTS

This research is supported by the NSF award #1835817 and the DOE
contract #DE-AC05-000R22725. This work also used the Extreme
Science and Engineering Discovery Environment (XSEDE), which
is supported by NSF grant number ACI-1548562.

REFERENCES

[1] J. Ahrens, Berk Geveci, and C. Law. 2005. ParaView: An End-User Tool for
Large-Data Visualization. In The Visualization Handbook. Elsevier.

Utkarsh Ayachit, Andrew Bauer, Berk Geveci, Patrick O’Leary, Kenneth Moreland,
Nathan Fabian, and Jeffrey Mauldin. 2015. ParaView Catalyst: Enabling In Situ
Data Analysis and Visualization. In Proceedings of the First Workshop on In Situ
Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV2015).
ACM, New York, NY, USA, 25-29.

[3] Utkarsh Ayachit, Brad Whitlock, Matthew Wolf, Burlen Loring, Berk Geveci,
David Lonie, and E. Wes Bethel. 2016. The SENSEI Generic In Situ Interface.
In 2016 Second Workshop on In Situ Infrastructures for Enabling Extreme-Scale
Analysis and Visualization (ISAV). 40-44.

Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel S Katz, Ben Clifford, Rohan
Kumar, Lukasz Lacinski, Ryan Chard, Justin M Wozniak, Ian Foster, et al. 2019.
Parsl: Pervasive parallel programming in python. In Proceedings of the 28th
International Symposium on High-Performance Parallel and Distributed Computing.
25-36.

[5] Rosa M Badia, Jorge Ejarque, Francesc Lordan, Daniele Lezzi, Javier Conejero,
Javier Alvarez Cid-Fuentes, Yolanda Becerra, and Anna Queralt. 2019. Workflow
environments for advanced cyberinfrastructure platforms. In 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS). IEEE, 1720—
1729.

Janine C Bennett, Hasan Abbasi, Peer-Timo Bremer, Ray Grout, Attila Gyulassy,
Tong Jin, Scott Klasky, Hemanth Kolla, Manish Parashar, Valerio Pascucci, et al.
2012. Combining in-situ and in-transit processing to enable extreme-scale sci-
entific analysis. In SC’12: Proceedings of the International Conference on High

[2

—_
=t

—_
2

[7

[

[12]

[13]

[14]

[15]

[16

[17]

(18

[20]
[21]
[22

[23

[24

[30]

[31]

[32]

Performance Computing, Networking, Storage and Analysis. IEEE, 1-9.

David Bernstein. 2014. Containers and Cloud: From LXC to Docker to Kubernetes.
IEEE Cloud Computing 1, 3 (2014), 81-84.

Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache Flink: Stream and batch processing in a
single engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering 36, 4 (2015).

Jieyang Chen, Qiang Guan, Zhao Zhang, Xin Liang, Louis Vernon, Allen McPher-
son, Li-Ta Lo, Patricia Grubel, Tim Randles, Zizhong Chen, et al. 2018. BeeFlow:
A Workflow Management System for In Situ Processing across HPC and Cloud
Systems. In 2018 IEEE 38th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 1029-1038.

Hank Childs, Sean D. Ahern, James Ahrens, et al. 2020. A Terminology for
in Situ Visualization and Analysis Systems. The International Journal of High
Performance Computing Applications 34, 6 (Aug. 2020), 576-691.

Jai Dayal, Drew Bratcher, Greg Eisenhauer, Karsten Schwan, Matthew Wolf,
Xuechen Zhang, Hasan Abbasi, Scott Klasky, and Norbert Podhorszki. 2014.
Flexpath: Type-based publish/subscribe system for large-scale science analyt-
ics. In 2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing. IEEE, 246-255.

Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing
on large clusters. Commun. ACM 51, 1 (2008), 107-113.

James W Deardorff. 1970. A numerical study of three-dimensional turbulent
channel flow at large Reynolds numbers. Journal of Fluid Mechanics 41, 2 (1970),
453-480.

Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J
Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira Da Silva, Miron Livny,
et al. 2015. Pegasus, a workflow management system for science automation.
Future Generation Computer Systems 46 (2015), 17-35.

Nicola Demo, Marco Tezzele, and Gianluigi Rozza. 2018. PyDMD: Python dynamic
mode decomposition. Journal of Open Source Software 3, 22 (2018), 530.

Ciprian Docan, Manish Parashar, and Scott Klasky. 2012. Dataspaces: an inter-
action and coordination framework for coupled simulation workflows. Cluster
Computing 15, 2 (2012), 163-181.

Bin Dong, Kesheng Wu, Surendra Byna, Jialin Liu, Weijie Zhao, and Florin Rusu.
2017. ArrayUDF: User-defined scientific data analysis on arrays. In Proceedings
of the 26th International Symposium on High-Performance Parallel and Distributed
Computing. 53-64.

Matthieu Dreher and Tom Peterka. 2017. Decaf: Decoupled dataflows for in situ
high-performance workflows. Technical Report. Argonne National Lab.(ANL),
Argonne, IL (United States).

Kun Feng, Hariharan Devarajan, Anthony Kougkas, and Xian-He Sun. 2019.
NIOBE: An Intelligent I/O Bridging Engine for Complex and Distributed Work-
flows. In IEEE International Conference on Big Data.

Apache Software Foundation. 2020. Apache Hadoop. https://hadoop.apache.org
Apache Software Foundation. 2020. Apache Storm. https://storm.apache.org/
Apache Software Foundation. 2020. Spark Streaming. https://spark.apache.org/
streaming/

Yuankun Fu, Feng Li, Fengguang Song, and Zizhong Chen. 2018. Performance
analysis and optimization of in-situ integration of simulation with data analysis:
zipping applications up. In Proceedings of the 27th International Symposium on
High-Performance Parallel and Distributed Computing. 192-205.

William F Godoy, Norbert Podhorszki, Ruonan Wang, Chuck Atkins, Greg Eisen-
hauer, Junmin Gu, Philip Davis, Jong Choi, Kai Germaschewski, Kevin Huck,
et al. 2020. ADIOS 2: The Adaptable Input Output System. A framework for
high-performance data management. SoftwareX 12 (2020), 100561.

Vivien Gueant. 2020. iPerf - The TCP, UDP and SCTP network bandwidth
measurement tool. https://iperf.fr

Amazon Inc. 2020. Amazon Kinesis - Process & Analyze Streaming Data - Amazon
Web Services. https://aws.amazon.com/kinesis/

Google Inc. 2020. Google Cloud Dataproc. https://cloud.google.com/dataproc
Hrvoje Jasak, Aleksandar Jemcov, Zeljko Tukovic, et al. 2007. OpenFOAM: A C++
library for complex physics simulations. In International workshop on coupled
methods in numerical dynamics, Vol. 1000. ITUC Dubrovnik Croatia, 1-20.
Anthony Kougkas, Hariharan Devarajan, Jay Lofstead, and Xian-He Sun. 2019.
LABIOS: A Distributed Label-Based I/O System. In Proceedings of the 28th Inter-
national Symposium on High-Performance Parallel and Distributed Computing -
HPDC ’19. ACM Press, Phoenix, AZ, USA, 13-24.

Jay Kreps, Neha Narkhede, Jun Rao, et al. 2011. Kafka: A distributed messaging
system for log processing. In Proceedings of the NetDB, Vol. 11. 1-7.

J. Nathan Kutz, Steven L. Brunton, Bingni W. Brunton, and Joshua L. Proctor.
2016. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems.
SIAM, Philadelphia, PA.

Jay F. Lofstead, Scott Klasky, Karsten Schwan, Norbert Podhorszki, and Chen Jin.
2008. Flexible IO and Integration for Scientific Codes through the Adaptable IO
System (ADIOS). In Proceedings of the 6th International Workshop on Challenges
of Large Applications in Distributed Environments (CLADE "08). ACM, Boston, MA,
USA, 15.

[33

[34

[35

&
2

(37

[38

[39

[40

N
fury

[42

[43

(44

~
)

[46

[47

[48]

[49

[50

[51

[52

o
=

Xiaoyi Lu, Md. Wasi Ur Rahman, Nusrat Islam, Dipti Shankar, and Dhabaleswar K.
Panda. 2014. Accelerating Spark with RDMA for Big Data Processing: Early Expe-
riences. In 2014 IEEE 22nd Annual Symposium on High-Performance Interconnects.
IEEE, 9-16.

Xiaoyi Lu, Dipti Shankar, Shashank Gugnani, and Dhabaleswar K Panda. 2016.
High-performance design of apache spark with RDMA and its benefits on various
workloads. In 2016 IEEE International Conference on Big Data (Big Data). IEEE,
253-262.

Bertram Ludascher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger,
Matthew Jones, Edward A Lee, Jing Tao, and Yang Zhao. 2006. Scientific workflow
management and the Kepler system. Concurrency and Computation: Practice and
Experience 18, 10 (2006), 1039-1065.

Parviz Moin and Krishnan Mahesh. 1998. Direct numerical simulation: a tool in
turbulence research. Annual review of fluid mechanics 30, 1 (1998), 539-578.
Raffaele Montella, Diana Di Luccio, and Sokol Kosta. 2018. Dagon™: Executing
direct acyclic graphs as parallel jobs on anything. In 2018 IEEE/ACM Workflows
in Support of Large-Scale Science (WORKS). IEEE, 64-73.

OpenCFD. 2019. OpenCFD Release OpenFOAM v1906. https://www.openfoam.
com/releases/openfoam-v1906/

Steve Plimpton. 1995. Fast parallel algorithms for short-range molecular dynamics.
Journal of computational physics 117, 1 (1995), 1-19.

Rahul Potharaju, Terry Kim, Wentao Wu, Vidip Acharya, Steve Suh, Andrew
Fogarty, Apoorve Dave, Sinduja Ramanujam, Tomas Talius, Lev Novik, et al.
2020. Helios: hyperscale indexing for the cloud & edge. Proceedings of the VLDB
Endowment 13, 12 (2020), 3231-3244.

Daniel A Reed and Jack Dongarra. 2015. Exascale computing and big data.
Commun. ACM 58, 7 (2015), 56—68.

Clarence W Rowley, Igor Mezi¢, Shervin Bagheri, Philipp Schlatter, and Dan S
Henningson. 2009. Spectral analysis of nonlinear flows. Journal of fluid mechanics
641 (2009), 115-127.

Peter J Schmid. 2010. Dynamic mode decomposition of numerical and experi-
mental data. Journal of fluid mechanics 656 (2010), 5-28.

Christopher Sewell, Katrin Heitmann, Hal Finkel, George Zagaris, Suzanne T
Parete-Koon, Patricia K Fasel, Adrian Pope, Nicholas Frontiere, Li-ta Lo, Bronson
Messer, et al. 2015. Large-scale compute-intensive analysis via a combined in-
situ and co-scheduling workflow approach. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
1-11.

Craig A. Stewart, Timothy M. Cockerill, Ian Foster, David Hancock, Nirav Mer-
chant, Edwin Skidmore, Daniel Stanzione, James Taylor, Steven Tuecke, George
Turner, Matthew Vaughn, and Niall I. Gaffney. 2015. Jetstream: A Self-Provisioned,
Scalable Science and Engineering Cloud Environment. In Proceedings of the 2015
XSEDE Conference: Scientific Advancements Enabled by Enhanced Cyberinfras-
tructure (XSEDE ’15). Association for Computing Machinery, St. Louis, Missouri,
1-8.

TACC. 2020. Stampede2 User Guide - TACC User Portal.
utexas.edu/user-guides/stampede2

Kunihiko Taira, Steven L Brunton, Scott TM Dawson, Clarence W Rowley, Tim
Colonius, Beverley] McKeon, Oliver T Schmidt, Stanislav Gordeyev, Vassilios
Theofilis, and Lawrence S Ukeiley. 2017. Modal analysis of fluid flows: An
overview. Aiaa Journal (2017), 4013-4041.

John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly Gaither, Andrew
Grimshaw, Victor Hazlewood, Scott Lathrop, Dave Lifka, Gregory D Peterson,
et al. 2014. XSEDE: accelerating scientific discovery. Computing in science &
engineering 16, 5 (2014), 62-74.

Orcun Yildiz, Jorge Ejarque, Henry Chan, Subramanian Sankaranarayanan,
Rosa M Badia, and Tom Peterka. 2019. Heterogeneous hierarchical workflow
composition. Computing in Science & Engineering 21, 4 (2019), 76-86.

Andy B Yoo, Morris A Jette, and Mark Grondona. 2003. Slurm: Simple linux
utility for resource management. In Workshop on Job Scheduling Strategies for
Parallel Processing. Springer, 44-60.

Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. 2016. Apache
Spark: A Unified Engine for Big Data Processing. Commun. ACM 59, 11 (Oct.
2016), 56-65.

Henrique C Zantz, Bruno Raffin, Omar A Mures, and Emilio J Padrén. 2018.
In-transit molecular dynamics analysis with Apache flink. In Proceedings of
the Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and
Visualization. 25-32.

ZeroMQ. 2020. ZeroMQ, an open-source universal messaging library. https:
//zeromq.org/get-started

https://portal.tacc.

https://hadoop.apache.org
https://storm.apache.org/
https://spark.apache.org/streaming/
https://spark.apache.org/streaming/
https://iperf.fr
https://aws.amazon.com/kinesis/
https://cloud.google.com/dataproc
https://www.openfoam.com/releases/openfoam-v1906/
https://www.openfoam.com/releases/openfoam-v1906/
https://portal.tacc.utexas.edu/user-guides/stampede2
https://portal.tacc.utexas.edu/user-guides/stampede2
https://zeromq.org/get-started
https://zeromq.org/get-started

	Abstract
	1 Introduction
	2 Background
	2.1 In-situ processing on HPC systems
	2.2 Cloud-based stream processing data analytics
	2.3 Analytical Method of Dynamic Mode Decomposition

	3 Methodology
	3.1 HPC components
	3.2 Cloud-based data analysis components
	3.3 Support for Authentication and Security

	4 Experimental Results
	4.1 Design and implementation of a hybrid HPC-Cloud CFD scientific workflow
	4.2 End-to-end workflow time
	4.3 Throughput

	5 Related work
	6 Conclusion and future work
	Acknowledgments
	References

