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Abstract: In recent years, human activity recognition has garnered considerable attention both in industrial and academic 
research because of the wide deployment of sensors, such as accelerometers and gyroscopes, in products such 
as smartphones and smartwatches. Activity recognition is currently applied in various fields where valuable 
information about an individual’s functional ability and lifestyle is needed. In this study, we used the popular 
WISDM dataset for activity recognition. Using multivariate analysis of covariance (MANCOVA), we 
established a statistically significant difference (p < 0.05) between the data generated from the sensors 
embedded in smartphones and smartwatches. By doing this, we show that smartphones and smartwatches 
don’t capture data in the same way due to the location where they are worn. We deployed several neural 
network architectures to classify 15 different hand and non-hand oriented activities. These models include 
Long short-term memory (LSTM), Bi-directional Long short-term memory (BiLSTM), Convolutional Neural 
Network (CNN), and Convolutional LSTM (ConvLSTM). The developed models performed best with watch 
accelerometer data. Also, we saw that the classification precision obtained with the convolutional input 
classifiers (CNN and ConvLSTM) was higher than the end-to-end LSTM classifier in 12 of the 15 activities. 
Additionally, the CNN model for the watch accelerometer was better able to classify non-hand oriented 
activities when compared to hand-oriented activities. 

1 INTRODUCTION 

Over the past decade, smartphones have become an 
important and indispensable aspect of human lives. 
More recently, smartwatches have also been widely 
accepted as an alternative to conventional watches, 
which is referred to as the quantified self movement 
(Swan, 2013). Even in low- and middle-income 
countries, smartphones have been embedded in the 
social fabric (Purkayastha et al., 2013), even though 
smartwatches haven’t. Thus, working on both 
smartphone and smartwatch sensor is still quite 
relevant. Smartphones and smartwatches contain 
sensors such as accelerometer, gyroscope, GPS, and 
much more. These sensors help capture activities of 
daily living such as walking, running, sitting, etc. 
and is one of the main motivations for many to own 
a smartwatch. Previous studies have shown 
accelerometer and gyroscope to be very effective in 
recognition of common human activity (Lockhart et 
al., 2011). In this study, we classified common human 
activities from the WISDM dataset through the use of 

deep learning algorithms. 
The WISDM (Wireless Sensor Data Mining) Lab 

in the Department of Computer and Information 
Science of Fordham University collected data from 
the accelerometer and gyroscope sensors in the 
smartphones and smartwatches of 51 subjects as they 
performed 18 diverse activities of daily living (Weiss, 
2019). The subjects were asked to perform 18 
activities for 3 minutes each while keeping a 
smartphone in the subject’s pocket and wearing the 
smartwatch in the dominant hand. These activities 
include basic ambulation related activities (e.g., 
walking, jogging, climbing stairs), hand-based daily 
activities (e.g., brushing teeth, folding clothes), and 
various eating activities (eating pasta, eating chips) 
(Weiss, 2019). The smartphone and smartwatch 
contain both accelerometer and gyroscope sensors, 
yielding a total of four sensors. The sensor data was 
collected at a rate of 20 Hz (i.e., every 50ms). Either 
one of Samsung Galaxy S5 or Google Nexus 5/5X 
smartphone running the Android 6.0 was used. The 
LG G Watch was the smartwatch of choice. A total of 
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15,630,426 raw measurements were collected. 
We answer three main research questions in the 

analysis of this data. Firstly, are there significant 
differences in how the two devices capture data, even 
though they both contain similar accelerometer and 
gyroscope sensors? Secondly, what is the best method 
to recognize the activities that were performed by the 
subjects through this sensor data? Thirdly, by 
using an identified activity, how accurately can we 
forecast or simulate the activities? We conducted a 
MANCOVA analysis, which showed that there is a 
statistically significant difference between the data 
obtained from the accelerometer and gyroscope in the 
smartphone and smartwatch. After separating the 
smartphone and smartwatch data, we classified the 
activities using  neural  network  architectures, 
including Long short-term memory (LSTM), Bi- 
directional Long short-term memory (BiLSTM), 
Convolutional Neural Network (CNN), and 
Convolutional LSTM (ConvLSTM). Finally, we 
developed a GRU model to forecast the last 30 
seconds of the watch accelerometer’s raw values and 
calculated the accuracy metrics of this forecasting 
with the actual values. 

 
 

2 RELATED WORKS 
 

Due to the increase in the availability of several 
sensors like accelerometer and gyroscope in various 
consumer products, including wearables, there has 
been a rise in the number of research studies on human 
activity recognition (HAR) using sensor data. In one 
of the earliest HAR studies, Kwapisz et al. used 
phone accelerometers to classify 6 human activities, 
including walking, jogging, climbing the stairs, 
walking down the stairs, sitting, and standing using 
machine learning models like logistic regression and 
multilayer perceptron (Kwapisz et al., 2011). Their 
models recognized most of the activities with an 
accuracy of 90%. Esfahni et al. created the PAMS 
dataset containing both smartphone’s gyroscope and 
accelerometer data (Esfahani and Malazi, 2017). 
Using the section of the data collected from holding 
the phone with non-dominant hand, they developed 
multiple machine learning models to identify the 
same six activities as Kwapisz et al., and obtained a 
precision of more than 96% for all the models. 
Random forest and multilayer perceptron models 
outperformed the rest, with a precision of 99.48% and 
99.62% respectively. These results were better than 
the ones obtained from data collected when the phone 
was held in the dominant thigh (Esfahani and Malazi, 
2017). Also, Schalk et al. obtained more than 94% 

accuracy for same activities as above by developing a 
LSTM RNN model (Pienaar and Malekian, 2019). 
Agarwal et al. proposed a LSTM-CNN Architecture 
for Human Activity Recognition learning model for 
HAR. This model was developed by combining a 
shallow RNN and LSTM algorithm, and its overall 
accuracy on the WISDM dataset achieved 95.78% 
accuracy (Agarwal and Alam, 2020). In addition, 
previous studies like Walse et al. (Walse et al., 2016) 
and Khin (Oo, 2019) have also used the WISDM 
accelerometer data to classify a maximum of 6 
activities in their work. Although the above models 
could generally recognize human activities, they were 
evaluated on their ability to recognize just six human 
activities and therefore do not provide generalization. 
Our study addresses these shortcomings by 
developing several deep learning algorithms for 15 
human activities recorded in the WISDM data. We 
select the best model based on the F1 score, i.e., 
considering both precision and recall. Here, we 
obtained an average classification accuracy of more 
than 91% in our best performing model. Additionally, 
we try to simulate the data 30 seconds into the future 
and provide metrics that might be used by other 
researchers to build more generalizable models. 

 
 

3 METHODOLOGY 

3.1 WISDM Dataset Description 

The WISDM dataset contains raw time series data 
from phone and watch’s accelerometer and gyroscope 
(X-, Y-, and Z-axis). The raw accelerometer’s and 
gyroscope’s signals consist of a value related to each 
of the three axes. The raw data was segmented into 
10-second data without overlapping. Three minutes 
(180 Seconds) of raw data was divided into eighteen, 
10-seconds segment where each segment’s range was 
calculated to obtain 18 values. This was further 
divided into 10 equal-sized bins to give X 0-9; Y 0-9, 
Z0-9. Features were generated based on these 10 bins 
obtained the raw accelerometer and gyroscope 
readings. Binned distribution, average, standard 
deviation, variance, average absolute difference, and 
time between the peaks for each axis were calculated. 
Apart from these, other features, including Mel- 
frequency cepstral coefficients, cosine distance, 
correlation, and average resultant acceleration, were 
calculated but are not used in this study. After this 
preprocessing, we finally had the following entries for 
each of the device sensors: 
• phone accelerometer: 23,173 
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• phone gyroscope: 17,380 
• watch accelerometer: 18,310 
• watch gyroscope: 16,632 
Also, the activities are divided into two classes: non- 
hand and hand-oriented activities. 
• Non-hand-oriented activities: walking, jogging, 
stairs, standing, kicking, and sitting 
• Hand-oriented activities: dribbling, playing 
catch, typing, writing, clapping, brushing teeth, 
folding clothes, drinking and eating 

 
3.2 MANCOVA Analysis 

Multivariate Analysis of (Co)Variance (MANCOVA) 
explores the relationship between multiple dependent 
variables, and one or more categorical and/or 
continuous outcome variables. To perform the 
MANCOVA analysis on our data, we used the X-, Y- 
, Z-axis data of the accelerometer and gyroscope at 
each time epoch as the dependent variables. The 
categorical variables were the phone and watch. We 
defined our null hypothesis that there is no 
statistically significant difference between the phone 
and watch data. The alternate hypothesis was that 
there is a statistically significant difference between 
the phone and watch data. The null hypothesis was 
rejected as we obtained a statistically significant 
difference between the phone and the watch data (p 
less than 0.05). 

 
3.3 Classification Models 

The MANCOVA analysis showed a significant 
difference between the phone and watch data. 
Therefore, we created separate classification models 
for the phone and watch. We selected 44 features from 
the watch and phone data with an activity label 
attached to each row in the dataset. The activities 
include walking, jogging, walking up the stairs, 
sitting, standing, typing, brushing teeth, eating soup, 
eating chips, eating pasta, drinking, eating 
sandwiches, kicking, playing catch, dribbling a ball, 
writing, and clapping. Thus, a total of 18 activities. We 
combined all the different eating activities to form a 
combined ”eating” activity. This reduced the number 
of activities to 15. We used the Keras package in 
Python for the experiments. The architecture of the 
watch accelerometer classification models is 
described below. In each case of training the models, 
we stopped the epochs when the training loss became 
equal to the validation loss to prevent overfitting: 

3.3.1 Long Short-term Memory (LSTM) 
Networks 

Hochreiter and Schmidhuber originally introduced 
LSTMs (Hochreiter and Schmidhuber, 1997), and 
were refined and popularized later (Sherstinsky, 2018) 
(Zhou et al., 2016). LSTMs are a special kind of 
recurrent neural networks (RNNs) capable of learning 
long-term dependencies. This quality in the network 
architecture helps to remember certain useful parts of 
the sequence and helps in learning parameters more 
efficiently. The scaled dataset was input into the 
LSTM model containing 128 LSTM units, followed 
by a dropout layer (0.3 units), dense layer (64 Units), 
dropout layer (0.2 units), dense layer (64 units), dense 
layer (32 units) and a last dense layer with 15 units 
(for the number of classes). We used Softmax as the 
activation function in the last layer, ReLU for the 
previous layers, and the Adam optimizer. The loss was 
calculated in categorical cross-entropy. The model 
was trained for 226 epochs with a batch size of 32. 

3.3.2 Bi-directional Long Short-term 
Memory (BILSTM) Networks 

We also implemented a BiLSTM model to observe 
the effects of either direction on performance. In the 
BiLSTM, we fed the data once from the beginning to 
the end and once from the end to the beginning. By 
using two hidden states in BiLSTM, we can preserve 
information from both the past and the future at any 
point in time. The parameters of our BiLSTM model 
is similar to the LSTM model. 

3.3.3 Convolutional LSTM 

Xingjian introduced convolutional LSTM’s (Shi et 
al., 2015) in 2015. Convolutional LSTMs 
(ConvLSTM) are created by extending the fully 
connected LSTM to have a convolutional structure in 
both the input-to-state and state-to-state transitions. 
ConvLSTM network captures spatiotemporal 
correlations better and outperforms Fully Connected 
LSTM networks. 

The scaled data is reshaped and inputted to a 1- 
dimensional convolution layer with 128 filters of 
kernel size 4 followed by a dropout layer (0.4), LSTM 
layer with 128 units, Dense layer with 100 units, 
Dense layer with 64 units, Dropout layer with 0.2 
dropout rate, Dense layer with 32 units, and finally a 
Dense layer with 15 units for classification. We used 
Softmax as the activation function in the last layer, 
ReLU for the previous layers, and Adam optimizer. 
The loss was calculated in categorical cross-entropy. 
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The model was trained for 95 epochs with a batch size 
of 32. 

3.3.4 Convolutional Neural Network (CNN) 

The data is reshaped and inputted to a 1-dimensional 
convolution layer with 128 filters of kernel size 10 
followed by a dropout layer (0.4), 1-dimensional 
convolution layer with 128 units and 10 kernel size, 
dropout layer with 0.2 dropout rate, 1-dimensional 
max-pooling layer with 0.2 pool size, flatten layer, 
dense layer with 64 units and finally a Dense layer 
with 15 units for classification. We used Softmax as 
the activation function in the last layer, ReLU for the 
previous layers, and Adam optimizer. The loss was 
calculated in categorical cross-entropy. The model 
was trained for 148 epochs with a batch size of 32. 

 
 

4 RESULTS 

4.1 Classification Results 

To classify the activities, we utilized four classifiers, 
namely Long short-term memory (LSTM), Bi- 
directional Long short-term memory (LSTM), 
Convolutional Neural Network (CNN), and 
Convolutional LSTM (ConvLSTM). The Precision 
and F1 scores were used as evaluation metrics to 

accelerometer data with a Macro-F1 measure of 
0.849, 0.848 and 0.843 and 0.825 for the CNN, 
BiLSTM, ConvLSTM, and LSTM models, 
respectively. These classifiers’ performance was not 
greatly different from each other, with all the 
classifiers having a Macro-F1 measure of more than 
0.80 (80%) with the CNN marginally performing the 
best with a Macro-F1 measure of 0.849 (84.9%). 

The watch accelerometer data were divided into 
training, testing, and validation data, respectively, in 
0.8, 0.1, and 0.1 ratios. These data contain 14648, 
1831, and 1831 records for training, testing, and 
validation, respectively. The classifiers’ precision 
values on the watch accelerometer data separated into 
hand oriented and non-hand oriented classes are 
presented in Tables 3 and 4 below. 

 
Table 3: The precision values of different classifiers for 
watch accelerometer data (Non hand-oriented activities). 

 
 

   Activities     CNN      BiLSTM    ConvLSTM LSTM    Mean    
Walking 0.861 0.869 0.925 0.846 0.875 
Jogging 0.833 0.859 0.865 0.872 0.857 
Stairs 0.909 0.939 0.900 0.862 0.903 
Sitting 0.918 0.836 0.844 0.851 0.862 
Standing 0.917 0.818 0.669 0.760 0.791 
Kicking 0.926 0.857 0.867 0.857   0.877 

 

Mean 0.894 0.863 0.845 0.841   0.861 
 

Table 4: The precision values of different classifiers for 
watch accelerometer data (Hand-oriented activities). 

analyze the performance of the classifiers.    
 

Table 1: The Macro-F1 values of different classifiers for 
watch sensor data. 

 

Models Accelerometer Gyroscope Both 
CNN 0.849 0.687 0.774 
BiLSTM 0.848 0.617 0.721 
ConvLSTM 0.843 0.658 0.754 
LSTM 0.825 0.627 0.743 

 

Table 2: The Macro-F1 values of different classifiers for 
phone sensor data. 

 

Models Accelerometer Gyroscope Both 
CNN 0.796 0.387 0.631 
BiLSTM 0.773 0.429 0.611 
ConvLSTM 0.814 0.432 0.638 
LSTM 0.756 0.395 0.743 

Tables 1 and 2 demonstrate the Macro-F1 values 
of the different classifiers for the watch and phone 
data. From the above tables, the classifiers performed 
better with the watch data. Also, the classifier 
performed better with accelerometer than gyroscope 
data. Thus, the classifiers performed best on the watch 

 
Tables 3 and 4 show that the precision of the 

convolutional input classifiers (CNN and 
ConvLSTM) was higher than the end-to-end LSTM 
classifiers. The convolutional classifiers gave the best 
classifications in 12 of 15 activities irrespective of the 
class of the activities (i.e., non-hand-oriented and 
hand-oriented activities). The convolution input 
layer has also been shown to outperform conventional 
fully connected LSTM in capturing spatiotemporal 
correlations in data (Shi et al., 2015). Another fact 
that can be inferred from the table 3 above is that the 
classifiers perform better in the non-hand-oriented 
activities like standing, stairs, etc. than the hand- 
oriented activities like eating, clapping, etc. with the 

Activities CNN BiLSTM ConvLSTM LSTM Mean 
Typing 0.862 0.773 0.838 0.671 0.786 
Brushing 0.981 0.955 0.963 0.972 0.968 
Drinking 0.867 0.808 0.801 0.768 0.811 
Eating 0.757 0.884 0.677 0.779 0.774 
Catch 0.850 0.871 0.870 0.906 0.874 
Dribbling 0.844 0.802 0.797 0.768 0.802 
Writing 0.807 0.816 0.906 0.836 0.841 
Clapping 0.785 0.902 0.758 0.769 0.804 
Folding 0.821 0.830 0.871 0.794 0.829 
Mean 0.842 0.849 0.831 0.807 0.832 
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exception of brushing teeth, which has the highest 
precision values of all the classifiers. 

 
4.2 Forecasting Results 

In addition to the classification models, we also 
predicted the last 30 seconds of the raw data for all the 
eating activities. To achieve this, we utilized a 
gated recurrent unit (GRU) model. We used the Root 
Mean Square Error (RMSE), Mean Square Error, 
Mean Absolute Percentage Error (MAPE), and 
symmetric Mean Absolute Percentage Error (sMAPE) 
as evaluation metrics. 

 
Table 5: The different performance metrics of different 
activities for phone data. 

 
 

   Activities  RMSE  MSE  MAPE  sMAPE 
H (eating soup) 0.078 0.00603 126.580 40.57 
I (eating chips) 0.070 0.00494 11.43 10.59 
J (eating pasta) 0.039 0.00152 7.263 7.25 

findings suggest that non-hand-oriented activities like 
standing, stairs, etc. are better generalized and 
better classified than hand-oriented activities like 
eating, clapping, etc. with the exception of brushing 
teeth as the classifiers performed better and had 
higher precision values. This implies that the 
smartwatch accelerometer data can better classify 
non-hand oriented activities even if the smartwatch is 
located on the dominant hand. A recent study by 
Agarwal et al. (Agarwal and Alam, 2020), used a 
lightweight RNN-LSTM architecture to classify 6 
different non-hand oriented activities based on 
smartphone accelerometer data. They obtained an 
average of 0.9581 (95.81%) precision. Our best 
model obtained a precision to 92.6% for kicking 
and 98.1% for brushing teeth. We obtained an 
average of 89% precision for 6 non-hand oriented 
activities recognition and 84% for 9 hand oriented 
activities. However, these are not directly 
comparable, as we also calculated the Macro-F1 

K (drinking 
from cup) 
L (eating 
sandwich) 

0.083 0.00687 13.080 13.296 

0.050 0.00247 4.45 4.54 

values, which consider both the precision and recall 
i.e., when our model accurately classifies the activity 
but also fails at classifying the activity. This should 

   Mean 0.064       0.0044          32.56        15.25      

Table 5 shows that GRU gave the best forecast for 
eating sandwiches when compared to other activities 
like drinking from a cup, eating pasta, eating chips, 
eating soup, etc. Also, it can be inferred from Table 5 
that the MAPE overstated the error found in activity 
H because of the presence of outliers when compared 
to the values of other activities with their respective 
sMAPE. 

 
 

5 DISCUSSION 

The statistically significant difference (p < 0.05) 
between the same kind of sensors in smartphones and 
smartwatches using a MANCOVA analysis points to 
some interesting observations. This is likely due to the 
location of the pocket in comparison to the hand. 
However, there is more to it than just the differences 
in the X-, Y-, and Z-axis values due to the height of 
the sensors from the ground. Our analysis showed that 
the difference between the peaks and the throughs was 
also larger in the smartwatch. Furthermore, 
identifying a constant that differentiated the X-, Y-, or 
Z-axis between the two devices was practically 
impossible. This means that the difference between 
the sensors is not purely due to the height from the 
ground. Following this distinction, we created various 
deep learning models to classify 15 different activities 
based on the smartwatch accelerometer data only. Our 

be   considered   as   a   better   measure   for   HAR. 
Moreover, we also did better at HAR compared to 
other papers that used the WISDM data and used 
LSTM-CNN, and shallow RNN. Accurate HAR is 
clinically relevant, not only because individuals have 
started using wearables widely, but also because there 
are many clinically-relevant sensors such as the 
BioStamp MC10, fall detection devices, and 
telemedicine sensors. These sensors might also be 
useful to identify mental health issues (Addepally and 
Purkayastha, 2017) or motor function disorders (Ellis 
et al., 2015) using mHealth apps. All these devices 
have accelerometer and gyroscope sensors to 
understand patient’s gait, posture, and stability for 
accurate measurement of other clinical features. As 
home healthcare, senior home care and health care 
outside the hospital settings become more common, 
the application of HAR is becoming more relevant. 

We also created a GRU model to forecast the last 
30 seconds of raw data generated by the watch 
accelerometer for 4 eating activities based on the 
previous 210 seconds data. We obtained an average 
RMSE of 0.064, which implies a minimal difference 
from the actual values. Thus, we can say that 
generating such sensor data for generalizing models 
might also be a feasible approach for retraining 
models or transfer learning of models to similar 
sensors of other devices. This is a future direction that 
we are pursuing. 

 
 

5 
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6 LIMITATIONS 

Although the use of classification models such as 
Long short-term memory (LSTM), Bi-directional 
Long short-term memory, Convolutional Neural 
Network (CNN) and Convolutional LSTM, etc., is a 
fairly common approach to predicting the movement 
of a person, this study does not provide the needed 
generalization with the hand-oriented activities. We 
have not, for example, examined differences in the 
performance metrics of the eating activity when 
forecasting the raw values of the last 30 seconds of 
the watch accelerometer. 

 
 

7 CONCLUSION 

In this study, we classified smartphone and 
smartwatch accelerometer and gyroscope data. We 
classified the majority of the activities using artificial 
neural network algorithms, including Long short-term 
memory (LSTM), Bi-directional Long short-term 
memory, Convolutional Neural Network (CNN), and 
Convolutional LSTM. Our classification analysis on 
15 different activities resulted in an average 
classification accuracy of more than 91% in our best 
performing model. Although previous findings 
indicated that 6 human activities were used during the 
analysis, our study followed several 15 human 
activities, which are better generalized than those in 
major studies conducted previously. It is possible that 
outcomes would vary if over 20 or 25 human 
activities are used. Future researchers should 
consider investigating the impact of more human 
activities. Nonetheless, our results provide the needed 
generalization for non-hand oriented activities 
recognition cases only. 
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