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Abstract: This article presents a novel concept of the position estimator algorithm for voice coil
actuators used in precision scanning applications. Here, a voice coil motor was used as an actuator
and a sensor using the position estimator algorithm, which was derived from an electro-mechanical
model of a voice coil motor. According to the proposed algorithm, the position of coil relative to the
fixed magnet position depends on the current drawn, voltage across coil and motor constant of the
voice coil motor. This eliminates the use of a sensor that is an integral part of all feedback control
systems. Proposed position estimator was experimentally validated for the voice coil actuator in
integration with electro-mechanical modeling of the flexural mechanism. The experimental setup
consisted of the flexural mechanism, voice coil actuator, current and voltage monitoring circuitry
and its interfacing with PC via a dSPACE DS1104 R&D microcontroller board. Theoretical and
experimental results revealed successful implementation of the proposed novel algorithm in the
feedback control system with positioning resolution of less than ±5 microns at the scanning speed of
more than 5 mm/s. Further, proportional-integral-derivative (PID) control strategy was implemented
along with developed algorithm to minimize the error. The position determined by the position
estimator algorithm has an accuracy of 99.4% for single direction motion with the experimentally
observed position at those instantaneous states.

Keywords: flexural; sensorless; micropositioning; estimator; biflex

1. Introduction

The progress in the fields of electronics, material science and advanced manufacturing has made
increasing demands for ultra-precision technology like micro and nano-positioning stages. These
stages have many commercial applications such as laser scanning, biological scanner applications
(e.g., tracking of bio cells using optical twizzers), stereolithography applications for the development
of prototypes, micromachining and scanning probes (like the scanning tunneling microscope (STM),
atomic force microscopy (AFM), etc.) [1] and the use of various actuators like voice coil motors (VCMs)
and piezo-electric actuators. The significance of symmetrical topology in XY flexural mechanisms
has been a major consideration in reducing errors [2] and this symmetric arrangement of double
parallelogram flexural (DPF) modules has been considered in previous work [2,3]. The fundamentals
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of elastic averaging and its advantages have been illustrated using a three-beam parallelogram flexure
mechanism that improves the performance and strength [4]. Symmetric geometry in DPF provides
flexibility in design tradeoffs that result in enhanced performance parameters such as positioning
accuracy [5]. These mechanisms are especially used in applications like ultra-precision diamond
turning machines [6]. In XY positioning, some mechanisms have also been developed using dual servo
featuring magnetically levitated motion stage and high accuracy position feedback with capacitive
sensors and a laser interferometer [7]. Some synthesized mechanisms like 3-PPR planar parallel
manipulators that have a D or U-shaped base have been developed and tested. These also involve
compact actuators for the XY stage featuring vibration isolation so that the effect of ground vibration
does not impact performance. Furthermore, to enhance the range of motion, multiple DPF mechanisms
have been used [8–10].

The analytical approach involves coupling between torsion and the bending of flexural elements
that have been used in the 3-layer polysilicon micromachining process [11]. Crossed flexural pivots with
leaf spring have also been used for a simple design purpose. Shape optimization of these springs offers
stress reduction, enhanced fatigue life and an extended range of operation [12]. Micromanipulators
based on the flexural mechanism and piezo actuated stages enable an enhanced range of motion.
The serial connection of flexural elements was eliminated by the double compound parallelogram
system that supports and provides amplification of the motion [13,14]. Different endeavors have been
made to use composite materials for flexure design that immensely affect the dynamic response of
the system [15]. Rotational motion can also be achieved by using flexural elements, but it results in
insufficient damping that puts a constraint on performance [16]. Monolithic mechanism provides
ease of manufacturing while eliminating mechanical losses like backlash, wear and friction [17–19].
Hyperbolic-shaped, hybrid flexure hinges with monolithic compliant mechanisms are also used in
micro electro-mechanical systems (MEMS) devices such as optical shutters and mechanical locks [20].
Efforts have also been made to work on nonlinear behavior of piezo scanners in scanning probe
microscopes (SPM) and atomic force microscopy (AFM) [21]. A compliant multi-stable structure
was developed using mutually connected tetrahedral units. These compliant, multi-stable structures
showed large geometric modification when actuated between their stability regions [22–24]. The
micromotion XY positioning stage, which was developed by M. Olfania et al. [25], is comprised of
electrostatic comb-drive actuators and employs a good motion range. A novel two-stage amplifying
mechanism was designed for a large range of motion and high natural frequency ranges. This involves
a dynamic model of the positioner from the input/output transfer equation and the parameters obtained
from the frequency response analysis [25,26]. The DPF mechanism has been used to design the single
DOF flexural mechanism and a novel position estimator algorithm has been implemented to predict
the displacement of motion stage. This has eliminated the need for high cost sensors to measure
the displacement. Further, proportional-integral-derivative (PID) control was used in this setup
to minimize the error between the reference input position and actual displacement of the motion
stage [27,28].

A new scanner for AFM was designed for vertical motion, which requires high precision and high
bandwidth [29]. The nonlinear characteristics arising from force equilibrium conditions in flexural
beams were analyzed to observe the effects of load-stiffening and elasto-kinematic behavior [30]. A
magneto-resistive position sensing system was used in the dual-stage nano-positioner, which yields
sub-nanometer accuracy over a large work area [31]. A novel XY planar positioning stage was
developed by W. Wang et al. for a large motion range without any over-constraints; it eliminates
parasitic error and relies on piezo-electric actuators for enhanced accuracy [32]. Electromagnetic
actuators can also be used in integration with kinematic and dynamic modeling of mechanical and
electromagnetic systems involved. This method involves compliance and stiffness determination using
the matrix method [33]. Decoupled prismatic limbs are constructed with compound parallelogram
flexures and bridge type displacement amplifiers. This decoupling property was widely adopted in
micro and nanoscale manipulators [34–36]. High bandwidth nano-positioning systems have also been
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used in video-rate AFM and probe-based nanofabrication applications. The integral resonant control
method was employed in integration with feedforward inversion technique to obtain high speed
and accuracy [37,38]. Some precision positioning mechanisms used an inchworm-type piezoelectric
actuator that bypasses close tolerance constraints and is easy to assemble [39]. A nano-measuring
machine (NMM) was developed using piezo-electric actuators for multipurpose traceable topographic
measurements, which require accuracy in nanometers. Exhaustive analysis has been conducted
regarding the design methods employed in these mechanisms because of the multiple degrees of
freedom required for manufacturing of complicated nanostructures [40,41]. Glenn et al. [6] proposed a
method to estimate displacement of voice coil motors for high precision positioning application using
sliding mode observer. However, this method is useful only for VCMs that exhibit back-emf that varies
with displacement and thus, we needed a different approach to predict the displacement of the motion
stage of the mechanism that uses fixed back-emf constant.

Due to the tremendous variety of position sensor techniques and the broad range of applications,
it is very challenging to make explicit performance comparisons. In numerous applications, attributes
such as the physical size and price play a vital part over performance. Nonetheless, it is illuminating
to assess some attributes of performance.

Strain gauges are generally considered to be the simplest and least cost displacement sensor. Due
to their size (few mm2), strain gauges are appropriate for placing directly on to actuators or stages
having a range around 10–500 µm [42]. Though strain gauges can be calibrated to attain high resolution,
it is acceptable to consider an error of 1% of the full-scale range (FSR) because of drift and the indirect
correlation between the measured strain and real motion. Piezoresistive sensors are tinier than strain
gauges and can be attached to actuators that are only 1 mm long with a range of up to 1 m. Though the
resolution of piezoresistive sensors is very high, the accuracy is restricted by various factors such as
nonlinearity and temperature sensitivity [43]. In the case of piezoresistive sensors, an error limitation
of 1% FSR is acceptable. Though strain gauges need contact with actuator or flexural elements, they do
not affect any forces between the stationary reference frame and moving platforms, in this sense, they
are considered to be of a non-contact type [44].

Capacitive sensors are comparatively simple in construction, offer the greatest value of resolution
over small ranges, are oblivious to temperature and can be calibrated to an accuracy of 0.01% FSR [45].
Nevertheless, in common function applications where the sensor is not calibrated after commissioning,
alignment errors may restrict the accuracy to 1% FSR [46].

Eddy current sensors can deliver exceptional resolution for motion ranges greater than 100 µm.
They are more responsive to temperature than capacitive sensors but are less vulnerable to dust and
pollutants, which is essential in industrial atmospheres [47].

Linear variable differential transformers (LVDT) are amongst the highest popular sensors in
industrial applications having a range from a few millimeters to tens of centimeters. They are pretty
simple and have a high-level inherent linearity. However, they also have a narrow range of operational
frequencies and can affect the motion with inertia and friction. The highest resolution is restricted by
the physical structure of the transducer, which is usually applicable for ranges greater than 1 mm. The
frequency range of operation of LVDT is constrained by the necessity to prevent eddy currents in the
core [48].

As compared to other sensor techniques, laser interferometers deliver an extraordinary degree of
accuracy. Stabilized interferometers can accomplish accuracy around the range of 1 µm. Nonlinearity
is similarly on the order of a few nanometers. Due to the low-noise and intense range of operation, the
active range of an interferometer can be very high in the ranges of a few meters [49].

Linear encoders are utilized in similar applications to interferometers where accuracy is the
most important parameter. Over larger ranges of operation, accuracy around the range of 1 µm is
possible [50]. Even larger accuracies are achievable with linear encoders working on the theory of
diffraction. The accuracy of these sensors can exceed 50 nm over ranges of up to 250 mm, which is
comparable to the most excellent laser interferometers [51].
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All the systems discussed above involve high cost sensors to measure the displacement of the
motion stage in the range of a micrometer. The mounting and alignment procedure for these sensors
is also tedious and time-consuming. To overcome these issues, we initiated the novel concept of the
position estimator algorithm in which the voice coil motor is used as both the actuator and sensor.

This proposed concept and system is applicable in various fields where the voice coil motor
is used as an actuator. The idea of physical modeling of the system has not been implemented to
date for micro positioning stages having voice coil actuators. Though the method is not novel, the
implementation of the idea on a different application proves the novelty and industrial benefits as well.
It has numerous applications ranging from meso scale to microscale scanning: laser manufacturing,
optical microscopy, optical twizzering, precision metrology equipment and the characterization of
micro–nano systems [2,10,14,27]. Furthermore, it can be applicable for biomedical imaging and
scanning purposes such as industrial-computed tomography scanning to construct digital 3D models
and non-destructive testing. It also has application in the terrestrial laser scanning technique, which
is gaining increasing interest due to its advantages of non-contact, high speed, high accuracy and
large-scale work envelopes.

2. Position Estimator Algorithm

Voice coil actuators for a single stage allow linear movements over a limited range of motion and
they were originally used in radio speakers. In speakers, the mass of diaphragm is less, and voice coil
actuators are designed to carry designed very small pay load. Voice coil actuators are direct-drive
devices based on a permanent magnetic field and current-carrying coil windings, and the actuation
force is directly proportional to the applied current. They are used for precision positioning where
large range of motion is desired, which is achieved by multiple VCMs in series. These VCMs also
provide actuations with zero friction and submicron accuracy.

In a typical closed-loop servo system, the position sensor sends feedback signals to the actuator
enabling high speed motion with a high degree of precision and accuracy. Additionally, a position
sensor is necessary to provide a feedback loop of the precision position control. In this research, VCM
was used for a dual purpose: as an actuator (i.e., its primary objective) and as a sensor to determine the
relative position of coil with respect to fixed magnet position. Linear voice coil actuators are available
in the range of 1–50 mm with low peak forces varying from 0.7 to 2000 N and strokes that vary from 1
to 50 mm. A typical voice coil actuator manufactured by BEI Kimco Ltd., Vista, CA, USA [27] was
used in DPF to apply a desired force on the primary motion stage with required frequency.

2.1. Position Estimator Logic

Figure 1 shows a representation of position estimator logic for an electrical model of VCM. The
governing equation of electrical circuit voice coil actuator motion is given in (1–3) where vs(t) is the
voltage supplied to VCM in volts, R is the resistance of the coil in ohms, i(t) is the instantaneous current
drawn by VCM in amperes, L is the inductance of the coil in milli-Henry, α is the motor constant in
N/A, di(t)/dt is the rate of change of current with respect to time and dx(t)/dt is the velocity of the coil.

vs(t) = Ri(t) + L
di(t)

dt
+ α

dx(t)
dt

. (1)

dx(t)
dt

=
1
α

(
vs(t) −Ri(t) − L

di(t)
dt

)
. (2)

x(t) =
1
α

∫ (
vs(t) −Ri(t) − L

di(t)
dt

)
dt. (3)
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Using Equation (3), we developed an algorithm for the measurement of the stroke of the voice coil
actuator with zero initial conditions as shown in Figure 1. Here, the instantaneous value of the current
is a result of Ohm’s law using instantaneous voltage supplied to VCM and the value of the resistance of
the coil. The instantaneous voltage was measured in real time across the two terminals of the voice coil.

2.2. MATLAB Simulation of Position Estimator

Position estimator algorithm presented in Section 2.1, was simulated using MATLAB SIMULINK
software with DPF mechanism as single DOF mechanism. Figure 2 shows a representation of DPF
with VCM equivalently in electrical and mechanical model. Part A denotes a fully constrained fixed
block on which the permanent magnet of VCM was mounted. Part B shows moving mass on which a
coil of VCM was mounted. This flexural model was equivalently considered as a single DOF spring
mass damper system in which m is the moving mass, k is the stiffness and c is the damping coefficient.
Properties of the mechanical and electrical systems are tabulated in Table 1.
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Table 1. Properties of the mechanical and electrical system.

Sr. No. Parameter Value

1 Stiffness (k) 0.63 N/mm
2 Damping Coefficient (c) 0.0345 Ns/mm
3 Mass (m) 11.7 × 10−3 kg
4 Resistance (R) 9.1 Ω
5 Inductance (L) 4.2 mH
6 Force Sensitivity (α) 8.81 N/A

2.3. Simulink Model

The Simulink model containing a voltage generator, electrical model, mechanical model and
position estimation model is shown in Figure 3. The estimator sub-model consisted of mathematical
modeling using Equation (3). Input for current and voltage in the simulation was the pure sine wave
function based on desired amplitude and frequency generated by the voltage generator block.
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Figure 3. Simulink model for the position estimator algorithm.

Figures 4–7 represent a comparison of the position estimator output and actual position from
mechanical simulation at frequencies of 0.1, 1, 5 and 10 Hz. In each figure, “(a)” represents the
comparison of estimator and actual, and “(b)” is the error between those values. The summary of
comparison error at various frequencies is given in Table 2. The error range was ±0.14 to ±0.6 µm.
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Table 2. Summary of error at various frequencies.

Amplitude (mm) Frequency (Hz) Error (µm)

5.5

0.1 ±0.14
1 ±0.16
5 ±0.4
10 ±0.6

Figure 3 illustrates the mechanical model, electrical model, position estimation model and voltage
generator. Voltage input was provided to the electrical model via the voltage generator, which generates



Sensors 2020, 20, 662 8 of 20

the current signal and was further fed to the mechanical model. The mechanical model gave the
output as the displacement and velocity. Stroke estimation block was used to estimate a stroke value
based on current and voltage signal. Further, estimated stroke and stroke (position) obtained from the
mechanical model were compared.

The errors shown in the Figures 4–7 were peak to peak values, but the values of error mentioned
in the related text and Table 2 were only a one side error since both input and output were the sine
wave. The need to test the algorithm for various frequencies comes into picture later in the case of
2-D scanning. In this case, there is a need of different operating frequencies to track various paths in
2D plane. As a reason, amplitude was kept constant and frequency was varied. The effect of ground
vibrations increased and came into the picture as we increased frequency, which could be seen in
Figures 6 and 7. In this case, the asymmetric behavior of error was due to the transient behavior of
mechanical and electrical models involved.

3. Development of the Experimental Setup

For validation, we developed a flexural mechanism based on a double flexural mechanism to
eliminate the parasitic error and angular rotation error as shown in Figure 8. Here, the parasitic
error refers to the unwanted displacement of motion stage in the direction perpendicular to the force
applied. Investigation describes that DPF yields no parasitic error displacement and results in perfect
straight-line motion. Displacement (δ in mm) of a DPF was obtained using Equation (4) [28] in which
F is the force applied by VCM in N; L is the length of the flexural beam in mm; E is the modulus of
elasticity for beam material in N/mm2, I is the area moment of inertia in mm4, b is the width of the
beam in mm and d is the height of the beam in mm.

δ =
FL3

12EI
and I =

bd3

12
. (4)
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The range of parameters selected for the mechanism was based on the linearity of the material
selected (i.e., beryllium copper). A required deflection of ±5 mm was considered for our model as the
geometrical constraint of the design. The required force was 5 N and it was determined based on the
linear behavior of material used for the mechanism. Ranges of length, width and thickness, which
were selected based on Equation (4), are given in Table 3.
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Table 3. Ranges of dimensions for parametric analysis.

Parameter of Beam Range in mm

Length 50–150
Width 10–30

Thickness 0.5–1

The DPF model was analyzed for the linear operating range with a constant exciting force of 5
N. The beams used are cantilever and mass were attached at the free end. It was observed from a
parametric analysis that the required deflection was obtained with minimum stresses when length =

100 mm, width = 20 mm and thickness = 0.5 mm. The calculated area moment of inertia, deflection,
damping factor and theoretical stiffness were I = 270.83 × 10−3 mm4, δ = 7.91 mm, ζ = 0.00125 and
k = 0.6321 N/mm respectively. Using these dimensions, a single DOF positioning mechanism was
developed using DPF as shown in Figure 8.

Biflex Mechanism

Planar flexural mechanism was analyzed using the feature-based parametric modeling technique
finite element analysis (FEA) tool ANSYS as shown in Figure 9 below. Figure 9a shows meshing with
28,497 nodes and 13,510 quad elements. Figure 9b shows displacement of the biflex mechanism in the
X direction only. The objective was to find dimensions of the flexural beam that give the desired range
with minimum stresses being developed.
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Figure 9. ANSYS simulation of the biflex mechanism.

FEA was carried out to analyze variation in length, thickness and width of flexural beam of
the DPF-based biflex model. The dimensions of flexural beams were finalized the same as that of
DPF. This biflex mechanism was manufactured using a standard wire electrical discharge machining
(EDM) process. Figure 10 shows a manufactured XY flexural mechanism. The material used for the
mechanism was stainless steel.
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Figure 10. Manufactured XY flexural mechanism.

4. System Identification

The developed biflex mechanism was interfaced with PC for further experimental analysis
and testing. Mechatronic integration involved connecting/communicating the mechanical system
with PC via various electronic and microcontroller systems. It contained the mechanical system,
sensors, actuators, a power amplifier, microcontrollers and interfacing software. Once assembly and
alignment were ensured with appropriate accuracy, a flexural mechanism was further interfaced with
a PC-computer by mounting an optical encoder via a microcontroller. Figure 11 shows a system
integration, which connects the XY mechanism, VCM, Renishaw RGH22 Optical encoder to the dSPACE
DS1104 Controller.
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4.1. Static Analysis

Figure 12 shows a comparison between theoretical, simulation using FEA and experimental
results. It was observed that force–deflection curve was linear and had a fixed slope. The slope of this
line represents the stiffness of the flexural mechanism. The experimental force–deflection curve was
further compared with FEA results and it was observed that there was very good agreement of around
±50 microns.Sensors 2020, 20, 662 11 of 20 
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Figure 12. Comparison of theoretical, finite element analysis (FEA) and experimental force
deflection characteristics.

4.2. Dynamic Analysis

Before determining transient response of the system, it was necessary to estimate the natural
frequency of the system. The mass of all of these components was measured using an electronic balance
machine; it was 6.335 kg and stiffness was K = 3.688 N/mm. The undamped natural frequency of
the system was calculated to be ωn = 24.12 rad/s = 3.84 Hz. System response for the step input was
determined to show the behavior of the system towards changing input conditions.

Logarithmic decrement δ1 was used for the calculation of damping factor, which is given by
Equation (5) in which X0 and Xn are the consecutive peak values between n oscillations obtained in
step response.

δ1 =
1
n

[
log

(X0

Xn

)]
= 0.0809. (5)

Damping factor (ζ) is given by Equation (6),

ζ =
δ1√

4π2 + δ1

= 0.0128. (6)

The damped natural frequency was ωd = 1
τ = 1

0.288 = 3.472 Hz, where τ is the time constant
measured between two consecutive peaks as shown in Figure 13.
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Figure 13 shows a step response of a current system. It clearly had significant damping of
vibrations due to system structural damping. From the step response, both the damping factor (ζ) and
the damped natural frequency (ωn) were determined. From these values of ζ and ωn, we determined
transfer function for X direction as given in Equation (7).

G(s) = K
ω2

n

s2 + 2ζωns +ω2
n
=

1.0136
s2 + 3.458s + 580.13

. (7)

The frequency response for the transfer function is given in Figure 14. From the frequency
response, we found that experimental natural frequency was 24 rad/s, which was close to the theoretical
natural frequency of 24.12 rad/s at the beginning of this section.
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5. Experimental Validation of the Position Estimator Algorithm

Figure 15 shows a mechatronic integration of the sensorless operation on a given mechanism,
which uses VCM as an actuator. It consisted of a mechanism mounted with VCM, LCAM (linear
current amplifier), DC power supply, DS1104 microcontroller with CLP board, PC equipped with
MATLAB software, RTI, RTW, control desk environment optical encoder and current and voltage
monitoring circuitry. PC-generated command signal through a control desk graphical user interface
(GUI) environment and ds1104 microcontroller converted digital signal to analogue signal via DAC
port. Furthermore, the DAC port was connected to LCAM, which amplifies the signal and drives the
voice coil motor with a commanded signal. The VCM-generated linear force and coil of VCM was
rigidly fixed to the motion stage of the mechanism. Displacement of the motion stage was dependent
on the direction of the current. During displacement of the motion stage, the voltage and current
monitory circuit continuously monitored the voltage and current drawn by the voice coil motor. A coil
of VCM was rigidly fixed, voltage and current drawn by the coil were further processed as presented
in the algorithm, and relative position of the motion stage was predicted.Sensors 2020, 20, 662 13 of 20 
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Figure 15. Experimental setup for sensorless validation.

The procedure described above was adopted for the demonstration of the proposed position
estimator algorithm. Hence, the input signal was commanded to VCM and the output amplitude was
measured in two ways, one by position estimator and one by an optical encoder at various frequencies.
The Renishaw RGH22 optical encoder having a resolution of 50 nm was used solely for validation of
the position estimator algorithm. It was observed that there was a close match between both results
and error in the position estimator, which gives sub µm accuracy in the range of 2–5 µm for the
amplitude ranging from 500 to 2500 µm respectively. The results of the position estimator algorithm
for amplitudes ranging from 500 to 2500 µm, frequencies ranging from 0.75 to 5 Hz at speeds of 1.5 and
50 mm/s are given in Figures 16 and 17. It was observed that the difference between position estimator
output results and actual optical encoder output were ±5 to ±7 µm.
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6. PID Control Implementation

Figures 18 and 19 demonstrate the PID control implementation results on the biflex mechanism
at various amplitudes and frequencies. We observed the difference of ±3 µm and ±6 µm at scanning
speeds of 1.5 mm/s and 50 mm/s respectively.
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Further, it was implemented on the biflex mechanism for a more application-oriented validation 

purpose. 

A reference circle of diameter 2 mm was resulted as an outcome of the same amplitude = 1 mm 

and frequency = 0.15 Hz provided to both X and Y direction VCMs. In this case, 2D tracking results 

from the measurement of two different signals each measure in X and Y directions as shown in Figure 

21a,b. These separate signals were then plotted on the XY plot to display tracking in the 2D plane as 

shown in Figure 22. To trace a circle of diameter 2 mm, two sine inputs were given at a phase 

difference of 90° and the mentioned of 99.4% was the accuracy for these plots. 

Figure 19. Position estimator output for amplitude = 2500 µm and frequency = 5 Hz at a scanning
speed = 50 mm/s.

PID control logic was used in the integration with the position estimator algorithm to achieve
better accuracy as shown in Figure 20. It calculated the error between the reference position and
predicted position, and it generated actuation signals to send to VCM via DAC port. In this research
we got two sensor feedback outputs. One from the proposed novel position estimator algorithm that
generated a position output signal as described in previous sections and another from the optical
encoder, which was only used for validation. Considering the algorithm output as a feedback, we
implemented the PID controller as shown in Figure 20 and PID parameters were tuned using the
standard Ziegler–Nichols scheme.
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7. XY Scanning Using the Position Estimator Algorithm

The developed novel algorithm was initially implemented on a single DOF flexural
mechanism. Further, it was implemented on the biflex mechanism for a more application-oriented
validation purpose.

A reference circle of diameter 2 mm was resulted as an outcome of the same amplitude = 1 mm and
frequency = 0.15 Hz provided to both X and Y direction VCMs. In this case, 2D tracking results from
the measurement of two different signals each measure in X and Y directions as shown in Figure 21a,b.
These separate signals were then plotted on the XY plot to display tracking in the 2D plane as shown
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in Figure 22. To trace a circle of diameter 2 mm, two sine inputs were given at a phase difference of 90◦

and the mentioned of 99.4% was the accuracy for these plots.Sensors 2020, 20, 662 16 of 20 

 

  

(a) (b) 

Figure 21. Separate outputs from the algorithm in each the (a) X and (b) Y direction for tracking a 

circle of diameter 2mm. 

 

Figure 22. Experimental demonstration of the position estimator algorithm for tracking a circle with 

a diameter of 2 mm. 

We found the accuracy of around 5–10 µm between the reference input position and position 

predicted by the developed algorithm. The same input strategy was adopted for the zigzag path as 

that of the circle. The only change done was the frequency of the Y-direction actuator was increased 
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Figure 24 shows the tracking of motion stage in the Lissajous way close agreement of around 99.2% 

between the optical encoder output and estimator algorithm output was observed. Similarly, any 

two-dimensional path could be scanned by providing appropriate amplitude and frequency to the X 
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Figure 21. Separate outputs from the algorithm in each the (a) X and (b) Y direction for tracking a circle
of diameter 2mm.
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Figure 22. Experimental demonstration of the position estimator algorithm for tracking a circle with a
diameter of 2 mm.

We found the accuracy of around 5–10 µm between the reference input position and position
predicted by the developed algorithm. The same input strategy was adopted for the zigzag path as
that of the circle. The only change done was the frequency of the Y-direction actuator was increased
from 0.15 to 0.75 Hz as shown in Figure 23b and it yielded in zigzag tracking of the motion stage.
Figure 24 shows the tracking of motion stage in the Lissajous way close agreement of around 99.2%
between the optical encoder output and estimator algorithm output was observed. Similarly, any
two-dimensional path could be scanned by providing appropriate amplitude and frequency to the X
and Y direction VCMs.
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8. Conclusions

Design of the DPF, biflex mechanisms and their experimental setup were developed. The
mechatronic integration was carried out using dSPACE DS1104 microcontroller. System identification
was carried out and experimental model was developed. Developed transfer function was validated
experimentally. Furthermore, novel position estimator algorithm was developed for flexural based
scanning system using VCM as an actuator and the accuracy of 99.4% was achieved for single direction
and 99.2% for 2D scanning. The PID control feedback was used for the proposed novel position
estimator and it was validated with due experimentation. It makes sense to say that error is proportional
to the displacement of the motion stage at higher frequencies. It was observed that the positioning
resolution was ±2.5 µm at a speed of 1.5 mm/s scanning. Position resolution and accuracy achieved
using the PID control were summarized in Table 4.
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Table 4. Summary of achievements of the position estimator algorithm.

Parameter Sensor Used for
Validation

Position Estimator Output

Without PID With PID

Scanning range 15 mm 15 mm 15 mm
Position Resolution ±2 µm ±5 µm @1.5 mm/s ±2.5 µm @1.5 mm/s

The proposed novel position estimator algorithm eliminated the use of the current high cost
sensors for precise positioning. This will further eliminate sensor alignment; mounting difficulties
and it would result in overall cost reduction of the scanning mechanism. This algorithm has a wide
range of applications that range from micro scanning for micro manufacturing to any microscopic
applications. Further, this algorithm can be tested for various types of inputs such as triangular or
square wave input and system disturbances as well.

Author Contributions: S.D. conceived and planned the presented idea. The design and parametric optimization
of the flexural mechanisms was carried out by S.M. Mechatronic integration of dSPACE DS1104 with voice coil
motor and optical encoder was carried out by A.R. and M.S. The position estimator algorithm was conceptualized
and mathematically derived by S.D. and A.R. The experimental validation of this estimator algorithm was carried
out by M.S. and S.M. PID controller was designed and implemented by S.D. and A.R. All authors have read and
agreed to the published version of the manuscript.

Funding: This research work was financially supported by Department of Science & Technology (DST), Government
of India (Grant No. SR/FTP/ETA-011/2011) and Indian Space Research Organization – UoP Cell (Grant No.
PU/ISRO-STC/1349). The APC was funded by Indiana University Purdue University Indianapolis (IUPUI),
Indianapolis IN USA 46202.

Conflicts of Interest: The authors declare that there is no conflict of interest.

References

1. Slocum, A. Bearings with mechanical contact between elements. In Precision Machine Design; Proc. Society of
Manufacturing Engineers: Dearborn, MI, USA, 1992.

2. Awtar, S. Synthesis and Analysis of Parallel Kinematic XY Flexure Mechanisms. Ph.D. Thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA, 2004.

3. Awtar, S.; Slocum, A.H. A large range XY flexure stage for nanopositioning. In Proceedings of the
EUSPEN 2005—The 5th International Conference of the European Society for Precision Engineering and
Nanotechnology, Montpellier, France, 8–11 May 2005.

4. Awtar, S.; Shimotsu, K.; Sen, S. Elastic averaging in flexure mechanisms: A three-beam parallelogram flexure
case study. J. Mech. Robot. 2010, 2, 041006. [CrossRef]

5. Awtar, S.; Slocum, A.H. Constraint-based design of parallel kinematic XY flexure mechanisms. J. Mech. Des.
2007, 129, 816. [CrossRef]

6. Glenn, B.C.; Bouton, C.E. Sensorless position control of a linear voice-coil transducer using sliding mode
observers. In Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and
Health Monitoring, San Diego, CA, USA, 7–10 March 2005; Volume 5757.

7. Choi, Y.M.; Gweon, D.-G. A high-precision dual-servo stage using halbach linear active magnetic bearings.
IEEE/ASME Trans. Mechatron. 2011, 16, 925–931. [CrossRef]

8. Chung, G.-J.; Choi, K.-B. Development of Nano Order Manipulation System Based on 3-PPR Planar Parallel
Mechanism; IEEE: Shenyang, China, 2004; pp. 612–616.

9. Ito, S.; Schitter, G. Comparison and classification of high-precision actuators based on stiffness influencing
vibration isolation. IEEE/ASME Trans. Mechatron. 2016, 21, 1169–1178. [CrossRef]

10. Ito, S.; Steininger, J.; Schitter, G. Low-stiffness dual stage actuator for long rage positioning with nanometer
resolution. Mechatronics 2015, 29, 46–56. [CrossRef]

11. Huang, J.-M.; Liu, A.Q.; Deng, Z.L.; Zhang, Q.X.; Ahn, J.; Asundi, A. An approach to the coupling effect
between torsion and bending for electrostatic torsional micromirrors. Sens. Actuators A Phys. 2004, 115,
159–167. [CrossRef]

http://dx.doi.org/10.1115/1.4002204
http://dx.doi.org/10.1115/1.2735342
http://dx.doi.org/10.1109/TMECH.2010.2056694
http://dx.doi.org/10.1109/TMECH.2015.2478658
http://dx.doi.org/10.1016/j.mechatronics.2015.05.007
http://dx.doi.org/10.1016/j.sna.2004.04.032


Sensors 2020, 20, 662 19 of 20

12. Freire Gómez, J.; Booker, J.D.; Mellor, P.H. 2D shape optimization of leaf-type crossed flexure pivot springs
for minimum stress. Precis. Eng. 2015, 42, 6–21. [CrossRef]

13. Pinskier, J.; Shirinzadeh, B.; Clark, L.; Qin, Y.; Fatikow, S. Design, development and analysis of a haptic-enabled
modular flexure-based manipulator. Mechatronics 2016, 40, 156–166. [CrossRef]

14. Kim, J.-J.; Choi, Y.-M.; Ahn, D.; Hwang, B.; Gweon, D.-G.; Jeong, J. A millimeter-range flexure-based
nano-positioning stage using a self-guided displacement amplification mechanism. Mech. Mach. Theory
2012, 50, 109–120. [CrossRef]

15. Kenton, B.J.; Leang, K.K. Flexure design using metal matrix composite materials: Nanopositioning example.
In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, St Paul, MN, USA,
14–19 May 2012; pp. 4768–4773.

16. Chen, K.-S.; Trumper, D.L.; Smith, S.T. Design and control for an electromagnetically driven X–Y–θ stage.
Precis. Eng. 2002, 26, 355–369. [CrossRef]

17. Lai, L.; Gu, G.-Y.; Li, P.; Zhu, L.M. Design of a decoupled 2-DOF translational parallel micro-positioning
stage. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai,
China, 9–13 May 2011; pp. 5070–5075.

18. Chen, M.-Y.; Huang, H.-H.; Hung, S.-K. A new design of a submicropositioner utilizing electromagnetic
actuators and flexure mechanism. IEEE Trans. Ind. Electron. 2010, 57, 96–106. [CrossRef]

19. Lin, R.; Zhang, X.; Long, X.; Fatikow, S. Hybrid flexure hinges. Rev. Sci. Instrum. 2013, 84, 085004. [CrossRef]
[PubMed]

20. Luharuka, R.; Hesketh, P.J. Design of fully compliant, in-plane rotary, bistable micromechanisms for MEMS
applications. Sens. Actuators A Phys. 2007, 134, 231–238. [CrossRef]

21. Korayem, M.H.; Sadeghzadeh, S.; Homayooni, A. Semi-analytical motion analysis of nano-steering devices,
segmented piezotube scanners. Int. J. Mech. Sci. 2011, 53, 536–548. [CrossRef]

22. Ohsaki, M.; Nishiwaki, S. Shape design of pin-jointed multistable compliant mechanisms using snapthrough
behavior. Struct. Multidiscip. Optim. 2005, 30, 327–334. [CrossRef]

23. Mitcheson, P.D.; Yeatman, E.M.; Rao, G.K.; Holmes, A.S.; Green, T.C. Energy harvesting from human and
machine motion for wireless electronic devices. Proc. IEEE 2008, 96, 1457–1486. [CrossRef]

24. Santer, M.; Pellegrino, S. Compliant multistable structural elements. Int. J. Solids Struct. 2008, 45, 6190–6204.
[CrossRef]

25. Olfatnia, M.; Cui, L.; Chopra, P.; Awtar, S. Large range dual-axis micro-stage driven by electrostatic comb-drive
actuators. J. Micromech. Microeng. 2013, 23, 105008. [CrossRef]

26. Liu, P.; Yan, P.; Zhang, Z. Design and analysis of an X–Y parallel nanopositioner supporting large-stroke
servomechanism. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 2015, 229, 364–376. [CrossRef]

27. Mulik, S.S.; Deshmukh, S.P.; Shewale, M.S.; Zambare, H.B.; Sundare, A.P. Design and implementation of
position estimator algorithm on double flexural manipulator. In Proceedings of the 2017 International
Conference on Nascent Technologies in Engineering Field (ICNTE 2017), Navi Mumbai, India, 27–28 January
2017; pp. 1–5.

28. Deshmukh, S.P.; Zambare, H.; Mate, K.; Shewale, M.S.; Khan, Z. System identification and PID implementation
on Double Flexural Manipulator. In Proceedings of the 2015 International Conference on Nascent Technologies
in the Engineering Field (ICNTE 2015), Navi Mumbai, India, 9–10 January 2015; pp. 1–5.

29. Schitter, G.; Astrom, K.J.; DeMartini, B.E.; Thurner, P.J.; Turner, K.L.; Hansma, P.K. Design and Modeling of a
High-Speed AFM-Scanner. IEEE Trans. Control. Syst. Technol. 2007, 15, 906–915. [CrossRef]

30. Awtar, S.; Slocum, A.H.; Sevincer, E. Characteristics of Beam-Based Flexure Modules. J. Mech. Des. 2007, 129,
625. [CrossRef]

31. Tuma, T.; Haeberle, W.; Rothuizen, H.; Lygeros, J.; Pantazi, A.; Sebastian, A. A dual-stage nanopositioning
approach to high-speed scanning probe microscopy. In Proceedings of the 2012 IEEE 51st IEEE Conference
on Decision and Control (CDC), Wailea, HI, USA, 10–13 December 2012; pp. 5079–5084.

32. Wang, W.; Han, C.; Choi, H. 2-DOF kinematic XY stage design based on flexure element. In Proceedings of
the 2011 IEEE International Conference on Mechatronics and Automation, Chengdu, China, 5–8 August
2012; pp. 1412–1417.

33. Xiao, S.; Li, Y. Optimal design, fabrication, and control of an XY micropositioning stage driven by
electromagnetic actuators. IEEE Trans. Ind. Electron. 2013, 60, 4613–4626. [CrossRef]

http://dx.doi.org/10.1016/j.precisioneng.2015.03.003
http://dx.doi.org/10.1016/j.mechatronics.2016.10.004
http://dx.doi.org/10.1016/j.mechmachtheory.2011.11.012
http://dx.doi.org/10.1016/S0141-6359(02)00147-2
http://dx.doi.org/10.1109/TIE.2009.2033091
http://dx.doi.org/10.1063/1.4818522
http://www.ncbi.nlm.nih.gov/pubmed/24007099
http://dx.doi.org/10.1016/j.sna.2006.04.030
http://dx.doi.org/10.1016/j.ijmecsci.2011.05.001
http://dx.doi.org/10.1007/s00158-005-0532-2
http://dx.doi.org/10.1109/JPROC.2008.927494
http://dx.doi.org/10.1016/j.ijsolstr.2008.07.014
http://dx.doi.org/10.1088/0960-1317/23/10/105008
http://dx.doi.org/10.1177/0954406214533103
http://dx.doi.org/10.1109/TCST.2007.902953
http://dx.doi.org/10.1115/1.2717231
http://dx.doi.org/10.1109/TIE.2012.2209613


Sensors 2020, 20, 662 20 of 20

34. Li, Y.; Xu, Q. A novel piezoactuated XY stage with parallel, decoupled, and stacked flexure structure for
micro-/nanopositioning. IEEE Trans. Ind. Electron. 2011, 58, 3601–3615. [CrossRef]

35. Li, Y.; Xu, Q. Design and analysis of a totally decoupled flexure-based XY parallel micromanipulator. IEEE
Trans. Robot. 2009, 25, 645–657.

36. Yao, Q.; Dong, J.; Ferreira, P.M. Design, analysis, fabrication and testing of a parallel-kinematic
micropositioning XY stage. Int. J. Mach. Tools Manuf. 2007, 47, 946–961. [CrossRef]

37. Yong, Y.K.; Moheimani, S.O.R.; Kenton, B.J.; Leang, K.K. Invited review article: High-speed flexure-guided
nanopositioning: Mechanical design and control issues. Rev. Sci. Instrum. 2012, 83, 121101. [CrossRef]

38. Yong, Y.K.; Aphale, S.S.; Reza Moheimani, S.O. Design, identification, and control of a flexure-based XY
stage for fast nanoscale positioning. IEEE Trans. Nanotechnol. 2009, 8, 46–54. [CrossRef]

39. Zhang, Z.; Hu, H. Flexural mechanism design analysis for a new piezoelectric inchworm actuator. In
Proceedings of the 2009 International Conference on Measuring Technology and Mechatronics Automation,
Zhangjiajie, China, 11–12 April 2009; pp. 98–101.

40. Dai, G.; Pohlenz, F.; Danzebrink, H.-U.; Xu, M.; Hasche, K.; Wilkening, G. Metrological large range scanning
probe microscope. Rev. Sci. Instrum. 2004, 75, 962–969. [CrossRef]

41. Du, E.; Cui, H.; Zhu, Z. Review of nanomanipulators for nanomanufacturing. Int. J. Nanomanuf. 2006, 1, 83.
[CrossRef]

42. Fleming, A.J.; Leang, K.K. Integrated strain and force feedback for high-performance control of piezoelectric
actuators. Sens. Actuators A Phys. 2010, 161, 256–265. [CrossRef]

43. Barlian, A.A.; Park, W.T.; Mallon, J.; Rastegar, A.J.; Pruitt, B.L. Review: Semiconductor piezoresistance for
microsystems. Proc. IEEE 2009, 97, 513–552. [CrossRef] [PubMed]

44. Messenger, R.K.; Aten, Q.T.; McLain, T.W.; Howell, L.L. Piezoresistive feedback control of a MEMS thermal
actuator. J. Microelectromech. Syst. 2009, 18, 1267–1278. [CrossRef]

45. Baxter, L.K. Capacitive Sensors: Design and Applications; IEEE Press: Piscataway, NJ, USA, 1997.
46. Kim, M.; Moon, W.; Yoon, E.; Lee, K.R. A new capacitive displacement sensor with high accuracy and

long-range. Sens. Actuators A Phys. 2006, 14, 135–141. [CrossRef]
47. Fericean, S.; Droxler, R. New noncontacting inductive analog proximity and inductive linear displacement

sensors for industrial automation. IEEE Sens. J. 2007, 7, 1538–1545. [CrossRef]
48. Proksch, R.; Cleveland, J.; Bocek, D. Linear Variable Differential Transformers for High Precision Position

Measurements. U.S. Patent No. 7,262,592, 2 May 2006.
49. Dukes, J.N.; Gordon, G.B. A two-hundred-foot yardstick with graduations every microinch. Hewlett-Packard

J. 1970, 21, 2–8.
50. Khiat, A.; Lamarque, F.; Prelle, C.; Pouille, P.; Leester-Schädel, M.; Büttgenbach, S. Two-dimension fiber optic

sensor for high-resolution and long-range linear measurements. Sens. Actuators A Phys. 2010, 158, 43–50.
[CrossRef]

51. Lee, J.Y.; Chen, H.Y.; Hsu, C.C.; Wu, C.C. Optical heterodyne grating interferometry for displacement
measurement with subnanometric resolution. Sens. Actuators A Phys. 2007, 137, 185–191. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TIE.2010.2084972
http://dx.doi.org/10.1016/j.ijmachtools.2006.07.007
http://dx.doi.org/10.1063/1.4765048
http://dx.doi.org/10.1109/TNANO.2008.2005829
http://dx.doi.org/10.1063/1.1651638
http://dx.doi.org/10.1504/IJNM.2006.011382
http://dx.doi.org/10.1016/j.sna.2010.04.008
http://dx.doi.org/10.1109/JPROC.2009.2013612
http://www.ncbi.nlm.nih.gov/pubmed/20198118
http://dx.doi.org/10.1109/JMEMS.2009.2035370
http://dx.doi.org/10.1016/j.sna.2005.12.012
http://dx.doi.org/10.1109/JSEN.2007.908232
http://dx.doi.org/10.1016/j.sna.2009.12.029
http://dx.doi.org/10.1016/j.sna.2007.02.017
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Position Estimator Algorithm 
	Position Estimator Logic 
	MATLAB Simulation of Position Estimator 
	Simulink Model 

	Development of the Experimental Setup 
	System Identification 
	Static Analysis 
	Dynamic Analysis 

	Experimental Validation of the Position Estimator Algorithm 
	PID Control Implementation 
	XY Scanning Using the Position Estimator Algorithm 
	Conclusions 
	References

