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Abstract 

Online social networks (OSNs) routinely share and analyze user data. This requires protection 

of sensitive user information. Researchers have proposed several techniques to anonymize the 

data of OSNs. Some differential-privacy techniques claim to preserve graph utility under certain 

graph metrics, as well as guarantee strict privacy. However, each graph utility metric reveals 

the whole graph in specific aspects. 

We employ persistent homology to give a comprehensive description of the graph utility in 

OSNs. This paper proposes a novel anonymization scheme, called PHDP, which preserves 

persistent homology and satisfies differential privacy. To strengthen privacy protection, we add 

exponential noise to the adjacency matrix of the network and find the number of adding/deleting 

edges. To maintain persistent homology, we collect edges along persistent structures and avoid 

perturbation on these edges. Our regeneration algorithms balance persistent homology with 

differential privacy, publishing an anonymized graph with a guarantee of both. Evaluation result 

show that the PHDP- anonymized graph achieves high graph utility, both in graph metrics and 

application metrics. 

Index terms: Online social network; privacy and utility; differential privacy; persistent 

homology. 
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I. INTRODUCTION 

Online social networks (OSNs) have a lot of incentives to share user data with third parties. 

This sharing can enable targeted advertisements, friendship or connection recommendations, 

and the analysis of collaboration between researchers. When OSN data is shared, various 

anonymization techniques can be employed to preserve the privacy of OSN users. 

Differential-privacy mechanisms are widely used because they provide a strong privacy 

guarantee without the assumption of background knowledge of the attackers [7]. These 

mechanisms are applied to different abstraction models to preserve different kinds of graph 

information. For instance, the dK-2 series model [20] stores the information as pairs of node 

degrees. The published graph maintains the degree distribution of the original graph. The 

Hierarchical Random Graph (HRG) model stores a cluster of nodes in the same branch of the 

HRG tree [22]. The HRG model has superior performance in preserving clustering information. 

Although these mechanisms claim to preserve graph utility under some specified utility metrics, 

the true utility of the published graphs is questionable for two reasons: First, the chosen metrics 

are limited by the graph abstraction models. Previous studies have shown that none of the 

mechanisms have good performance under all the metrics [9]. Second, existing metrics only 

describe the graph in a certain angle. For example, while the degree distribution and the 

clustering coefficient disjointedly reveal the graph utility in two specific aspects, each aspect 

does not cover the other. Thus, lots of useful graph information gets lost or distorted during the 

graph anonymization process, especially when the anonymization mechanisms are based on 

these types of graph metrics. 



 

In this paper, persistent homology is employed to analyze graph utility. Persistent homology 

tracks the topological features of the whole graph at different distance resolutions in different 

dimensions [11]. Unlike the well-studied utility metrics, persistent homology gives a 

comprehensive summarization of the graph. Since persistent homology is a novel utility metric, 

the main challenge of our anonymization scheme is to extract the corresponding persistent 

homology information and preserve it in the published graph. 

First, our scheme model the OSN by an adjacency matrix for two reasons: (1), the adjacency 

matrix contains the same topological information as the distance matrix. Because the persistent 

homology filtering phase tracks the persistent structures with different distances, the structures 

in distance matrix can be easily map to the ones in adjacency matrix. (2), the adjacency matrix 

has less sensitivity in edge adding or deleting than other graph abstraction models, i.e., it 

requires less noise under the same privacy level. 

Second, to preserve the persistent homology in OSNs, we analyze the theoretical meaning 

behind the barcodes. We find that the graph data are squished when calculating the barcodes, 

which is different from existing studies of point cloud data [2, 19]. Squishing complicates the 

analysis of high-dimensional holes but also opens the opportunity to extract the actual shapes 

of the persistent structures in OSNs. While original persistent homology defines 3-D voids 

in H2 bars, 4-D voids in H3 bars, etc., these high dimensional voids are squished into special 

kinds of 2-D holes. Therefore, preserving the polygons (holes in OSNs) defined by the barcodes 

is preserving persistent homology. 

Third, we design an anonymization algorithm which preserves the holes and satisfies differential 

privacy. The holes occupy a small part of the network; differential privacy is maintained through 



 

modifying the other parts. Particularly, we divide the adjacency matrix into four kinds of sub-

matrices, according to the corresponding subgraphs with or without holes. Then different 

regeneration algorithms are employed to each kind of matrix for the purpose of satisfying 

differential privacy and preserving the holes at the same time. 

Because holes are the persistent structures, preserving the holes opens a new angle to balance 

differential privacy with persistent homology. Existing mechanisms aim to preserve the high 

degree nodes, the communities, and the clusters in the network, but pay no attention to the 

holes. However, a hole, i.e., nonexistent relationships in an area, also contains meaningful 

information describing the network. Our PHDP scheme emphasizes the holes. We consider 

other structures as the links between holes, and these structures are determined when holes 

are fixed. 

The major technical contributions of this study are the following: (1) introducing a novel utility 

metric, persistent homology, in the analysis of OSNs, (2) proposing the PHDP scheme to 

balance differential privacy and persistent homology in graph anonymization, and (3) evaluating 

the PHDP scheme with two real-world datasets and comparing it with other anonymization 

schemes. 

II. Preliminaries 

In this paper, an online social network graph is modeled as an unweighted undirected graph 𝐺𝐺 =

(𝑉𝑉,𝐸𝐸), where 𝑉𝑉 is the set of vertices and 𝐸𝐸 is the set of edges. 

A. DIFFERENTIAL PRIVACY 

Differential privacy is designed to minimize the chance of record identification. When modeling 
OSNs, the records are the edges. Differential privacy requires that an adversary cannot detect 



 

if an edge exists in the original network with high confidence. Two OSNs with at most one edge 
difference are called neighbor graphs. Sensitivity is defined as follows: 

Definition 1 

(SENSITIVITY). The sensitivity (𝛥𝛥𝛥𝛥)  of a function 𝛥𝛥  is the maximum distance of any two 

neighbor graphs in the ℓ1 norm. 

𝛥𝛥𝛥𝛥 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝐺𝐺1,𝐺𝐺2

∥ 𝛥𝛥(𝐺𝐺1) − 𝛥𝛥(𝐺𝐺2) ∥  (1) 

In our scheme, the function 𝛥𝛥 outputs the number of edges added or deleted (𝛥𝛥0 and 𝛥𝛥1). If only 
considering the upper triangle of the adjacency matrix, adding or deleting one edge causes an 
increase or decrease of 1 in 𝛥𝛥0 or 𝛥𝛥1, which means 𝛥𝛥𝛥𝛥 = 1. 
 
Definition 2 
 
(𝜖𝜖 −DIFFERENTIAL PRIVACY). A randomized algorithm 𝐴𝐴 achieves 𝜖𝜖 −differential privacy if 
for all neighbor graphs, 𝐺𝐺1 and 𝐺𝐺2, and all output values, 𝑆𝑆 ⊆ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐴𝐴). 
 

𝑃𝑃𝑃𝑃[𝐴𝐴(𝐺𝐺1) ∈ 𝑆𝑆] ≤ 𝑅𝑅𝜖𝜖 × 𝑃𝑃𝑃𝑃[𝐴𝐴(𝐺𝐺2) ∈ 𝑆𝑆]  (2) 

Equation (2) calculates the probability that two neighbor databases have the same result, which 

means the adversary cannot differentiate them under the same algorithm. Based on this 

definition, researchers developed the exponential mechanism to achieve 𝜖𝜖 − differential privacy 

when the result is an output space. It smoothes the original distribution by exponentiating the 

probabilities with respect to the sensitivity, 𝛥𝛥𝛥𝛥, and the desired privacy parameter, 𝜖𝜖. [22] 

Theorem 1 

(EXPONENTIAL MECHANISM). For a function 𝛥𝛥: (𝐺𝐺,𝑂𝑂𝑆𝑆) →, the randomized algorithm A that 

samples an output 𝑂𝑂  from 𝑂𝑂𝑆𝑆  with the probability proportional 

to exp (𝜖𝜖⋅𝑓𝑓(𝐺𝐺,𝑂𝑂𝑂𝑂)
2𝛥𝛥𝑓𝑓

) achieves 𝜖𝜖 −differential privacy. 

where 𝑂𝑂𝑆𝑆 is the output space containing all the outputs. 



 

 

 

 
 
 

 

 

Fig. 1: An example of the simplicial complex 
 

B. Persistent homology 

Persistent homology is a utility metric that summarizes the graph in multi-scales. Simply 

speaking, persistent homology is a summarization of holes along different dimensions and 

different δ, where δ is the distance to build margins of holes. In real world cases, we call an 

object as a hole when it has bounding margin(s) but it has no plane region, e.g., the circles and 

the polygons. When defining persistent homology, we follow this rule but extend it to other 

dimensions. 

Persistent homology is presented in the form of barcodes, which have two parts. The Vietoris-

Rips (VR) simplicial complex describes the structural change at different spatial resolutions in 

one dimension, while the Betti number describes the dimensions [3]. 

VR simplicial complex. Persistent homology is based on the simplicial complex. A simplicial 

complex set 𝐾𝐾  contains points, line segments, triangles and high-dimension 

components. 𝐾𝐾 satisfies the following conditions: 



 

1. Any face of a simplex from 𝐾𝐾 is in 𝐾𝐾, where the face of 𝐾𝐾n is the convex hull of the non-

empty subset of the 𝑅𝑅 + 1 points, which define  𝐾𝐾n.w 

2. The intersection of any two simplices, 𝜎𝜎1,𝜎𝜎2 ∈ 𝐾𝐾, is either ∅ or a face of both 𝜎𝜎1 and 𝜎𝜎2. 

In a simplicial 𝑘𝑘 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑅𝑅𝑐𝑐 , the highest dimension of simplices is 𝑘𝑘 . For instance, the 1 −

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑅𝑅𝑐𝑐 is the line segment, the 2 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑅𝑅𝑐𝑐 is the convex hull of the triangle and the 3 −

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑅𝑅𝑐𝑐 is the convex hull of the tetrahedron. 

The VR complex is one of the abstract models of the simplicial complex. It introduces the 

distance parameter δ, and then forms the simplicial complex set K, such that for all node 

pairs (𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗) ∈ 𝐾𝐾, the distance between 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑗𝑗  is less than or equal to δ. 

Fig. 1 shows an example with one 3-complex, one 2-complex and some 1-complexes. The node 

set {O,U, T,W} has no 2-complex because the pairwise distance within O-W and T-U both are 

above δ. 

Barcode. While the VR complex is defined on the specific δ, persistent homology chooses 

various δ and gives an increasing sequence of VR complexes. 

𝐾𝐾0 ⊆ 𝐾𝐾1 ⊆ ⋯ ⊆ 𝐾𝐾𝑛𝑛 = 𝐾𝐾  (3) 

Persistent homology collects the features in a wide range of distance and gives a 

comprehensive description of the structure. 

Through applying Betti numbers, the persistent homology overcomes the restriction of 

dimension. The Betti number Bettin gives the number of (n+1)-dimensional holes. 

Particularly, Betti0 is the number of connected components, Betti1 is the number of holes 

and Betti2 is the number of voids. 

 



 

 

 

 

 

Fig. 2: Scheme overview 
 
In 𝑅𝑅 dimension, the vector space of 𝑅𝑅-holes is represented by 𝐻𝐻𝑛𝑛, which can be calculated by 

the 𝑅𝑅-cycles and 𝑅𝑅 −boundaries [24]. This calculation gives the Betti intervals to describe the 

homology of 𝐻𝐻𝑛𝑛. These intervals are called barcode, where each interval means a component 

or a hole in the corresponding dimension [11]. For example, the 𝐻𝐻1 interval [1, 2) in Fig. 3 is 

related with the 𝐻𝐻1 hole {P, Q, S, R}. The intervals begin with the δ the holes born. And they 

end with the 𝛿𝛿 the holes die. The intervals show the birth time and death time of the components. 

In conclusion, the barcode collects the information of the existing periods of all components and 

holes when changing the distance 𝛿𝛿. 

In OSNs, a 2-D hole is a polygon with at least 4 sides. Because there is no ideal circle in the 

OSN, polygons are appropriate for the common definition of holes, which has a circular 

boundary and the inside is empty. The high-dimensional holes are the voids, which have 

triangles as surface and an empty interior. A polygon with at least 4 sides implies that all nodes 

on the polygon have at least one node which is not directly connected, while the triangles have 

all nodes pair-wisely connected. When we increase the 𝛿𝛿, there are more edges in the network, 

which may both forming and filling, i.e., adding and deleting, holes. 

 



 

III. SCHEME 

Given an OSN 𝐺𝐺, our goal is to publish an anonymized network 𝐺𝐺′ that maximally preserves 

persistent homology while satisfying 𝜖𝜖 −differential privacy. The general idea of the PHDP 

scheme is to preserve the persistent structures in the anonymized graph. Fig. 2 shows the 

structure of the scheme. Section III-A describes how the OSN graph is modeled as an 

adjacency matrix and the corresponding distance matrix. Section III-B describes the division of 

the adjacency matrix into four types depending on if the corresponding subgraph has holes. 

Afterwards, the PHDP scheme applies an MCMC procedure to output the number of flips 

required to achieve differential privacy. Section III-C describes the application of different 

regeneration algorithms to the varying types of sub-matrices in order to preserve existing holes 

and prevent the creation of new ones. 

Anonymizing user identity without perturbing the graph structural information leaves the OSN 

vulnerable to potential de-anonymization attacks [16]. Hence, the PHDP scheme includes both 

the naive ID removal and the differential-privacy topological anonymization. Since the published 

graph 𝐺𝐺′ contains no identity information, the original vertex label is trivial. Only the graph 

topology information is applied with anonymization and utility preservation. 

 

 

 

 

 

 

 

Fig. 3: An example of the barcode 



 

A. SYSTEM MODEL 

The PHDP scheme employs the adjacency matrix model. Compared to the other graph 

abstraction models, e.g., dK-2 and HRG, the adjacency matrix model has the least 

sensitivity (𝛥𝛥𝛥𝛥 = 1). Because the differential privacy noise is proportional to sensitivity, the 

resulting adjacency model has the least distortion. Another reason for choosing the adjacency 

matrix model is that it can be easily transformed to a distance matrix—the input for barcode 

extraction. 

To link the adjacency matrix with the distance matrix, we must first establish the definition of 

distance. Given an unweighted OSN graph 𝐺𝐺, the most direct definition of distance δ is the 

length of the shortest path between a pair of users. Following that definition, persistent 

homology is captured based on the distance matrix. Fig. 3 gives an example of the barcode. In 

the original network, four nodes P, Q, S, R form a square. When 𝛿𝛿 < 1, there are no edges in 

the graph. Each node is a component in H0, so there are four bars in [0, 1). When 𝛿𝛿 ≥ 1, the 

nodes are connected together to form a component and this component exists until the end. So 

there is one bar of 𝐻𝐻0 in [1,∞). When 𝛿𝛿 < 2, the node pairs P-S and R-Q are not connected. 

Then the four nodes form a hole in 2-dimension. So there is one bar of 𝐻𝐻1 in [1, 2). 

Obviously, under this definition of distance, there is an equivalent relationship among the graph 

topology, the adjacency matrix 𝑀𝑀𝑚𝑚 and the distance matrix 𝑀𝑀𝑑𝑑. For example, we can use Ma to 

build an isomorphic graph of the graph 𝐺𝐺. We can also traversing the edges to generate the 

distance matrix. 

The process of capturing persistent homology is a filtration in 𝑀𝑀𝑑𝑑. Taking Fig. 3 as the example, 

we have 

 



 

 

 
 

 

Equation (3) suggests that filtration is also employed among three adjacency matrices with 𝛿𝛿 =

0,1,2. And 𝛿𝛿 = 0 is omitted because 𝑀𝑀𝑚𝑚 is a zero matrix and 𝐾𝐾0 = ∅. 

 

 

 

 

The example shows that given 𝛿𝛿, the new graph connects all the node pairs with distance less 

than or equal to 𝛿𝛿 in the original graph. 

B. ANONYMIZATION 

With the adjacency matrix 𝑀𝑀𝑚𝑚, Algorithm 1 has two phases of anonymization. The first phase is 

dividing: Ma splits into sub-matrices according to the barcode. The second phase is noise 

injection: the number of flips of 0s and 1s in the sub-matrix are calculated based on the 

differential-privacy criteria. Then in the regeneration sub-scheme, the position of the 1s 

preserves the persistent homology. 

Dividing. In the dividing phase, the nodes are divided into different groups according to the 

barcodes they involved. The input of the dividing algorithm is the whole graph and the 

corresponding adjacency matrix. The output is a node sequence, placing nodes in the same 

group adjacent to each other. 



 

In order to preserve the 𝐻𝐻0 bars, we need to locate the connected components and extract the 

corresponding nodes. When 𝛿𝛿 = 0, each node in the graph is a component. The number 

of 𝐻𝐻0  bars equals the number of nodes, which is trivial because it equals the size of the 

adjacency matrix. When 𝛿𝛿 ≥ 1, the number of 𝐻𝐻0 bars equals to the number of disconnected 

subgraphs. For preserving these 𝐻𝐻0  bars, the adjacency matrix should have a node label 

sequence that groups the nodes according to the subgraphs they belong to. 

In order to protect the 𝐻𝐻1 and 𝐻𝐻2 bars, we need to locate the holes in the network. The nodes 

involved in each bar are extracted based on the Morse Theory [18]. In particular, for each 2-D 

and 3-D hole, the 2-D boundaries and 3-D boundaries are extracted. The nodes belonging to 

the same boundary, i.e., the same hole, are grouped together. If the original graph has 

disconnected subgraphs, each hole is contained in a single subgraph. Hence, grouping them 

together does not violate the previous grouping result. Fig. 1, for example, has one subgraph 

(itself) and one hole. The new node sequence can be {{O, T, U, W}, {P, S, Q, R}}. 

The two steps of grouping give a new vertex label sequence and the corresponding adjacency 

matrix Ma. Then Ma is divided into four kinds of sub-matrices according to the node groups of 

barcodes. 

• 𝑀𝑀0 , which only contains 0, shows there are 0 edges between two disconnected 

subgraphs. 

• M1, whose nodes are extracted from 𝐻𝐻1 and 𝐻𝐻2 bars, shows the edges within a hole 

component (in Fig. 1, the nodes {O, T, U, W}). 

Algorithm 1 Anonymization algorithm 



 

Input: Adjacency matrix 𝑀𝑀𝑚𝑚, privacy budget ϵ.Output: Number of flips f0 and f1 in each sub-

matrix 

Get the barcodes, group nodes correspond with each bar. 

Get a sequence of node labels, rebuild 𝑀𝑀𝑚𝑚 with the sequence. 

Divide 𝑀𝑀𝑚𝑚 into sub-matrices according to groups. 

for each sub-matrix in 𝑀𝑀𝑚𝑚 do 

5: Apply the MCMC procedure, get the distribution of (f0,f1). 

Apply the exponential mechanism, sample (f0,f1)=(a,b) with probability exp(ϵ⋅p(a,b)2). 

end for 
return f0, f1 for each sub-matrix. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: An example of dividing the 𝑀𝑀𝑚𝑚 

• M2, whose nodes are not extracted from barcode, shows the edges in a subgraph 

without holes (in Fig. 1, the nodes {P,S, Q, R} 

• M3 shows the edges between the nodes from M1 and M2 matrices (in Fig. 1, the nodes 

{O, U, S} 



 

From the description, M1 and M2 are matrices on the diagonal; M0 and M3 are not on the 

diagonal. Fig. 4 shows the 𝑀𝑀𝑚𝑚  corresponding to a simple graph with two disconnected 

subgraphs. One subgraph has one 𝐻𝐻1  bar (in 𝑀𝑀11 ) while the other has two 𝐻𝐻1  bars 

(in 𝑀𝑀12 and 𝑀𝑀13). 

Noise injection. In this phase, each sub-matrix is perturbed to satisfy the differential-privacy 

criteria. The perturbed matrix 𝑀𝑀𝑚𝑚
′  is graphic, meaning it can regenerate a graph, if and only 

if 𝑀𝑀𝑚𝑚
′  has the following three properties: First, 𝑀𝑀𝑚𝑚

′  only contains Os and ls. Second, 𝑀𝑀𝑚𝑚
′  is 

symmetric. Third, the values on the diagonal of 𝑀𝑀𝑚𝑚
′  are a110, because self-loop is not allowed 

in OSNs. 

Hence, only one of two symmetric matrices needs the anonymization. For instance, in Fig. 4, 

the algorithm perturbs 𝑀𝑀31 then copies it to 𝑀𝑀33. When the sub-matrix is on the diagonal, only 

the upper triangle of the matrix is perturbed. The row number and column number of a matrix 

is represented by ℎ and 𝑤𝑤. Then to a sub-matrix not on the diagonal, the effective size 𝑆𝑆 = ℎ ⋅

𝑤𝑤. To a sub-matrix on the diagonal, the effective size 𝑆𝑆 is the size of the upper triangle (except 

the diagonal), which is ℎ2−ℎ
2

. 

Because the basic step of graph anonymization is edge addition or deletion when the differential 

privacy is defined on edges, we use two numbers 𝛥𝛥0  and 𝛥𝛥𝑐𝑐  to model the anonymization 

process. 𝛥𝛥0 shows the number of Os flipping to ls, and 𝛥𝛥𝑐𝑐 shows the number of ls flipping to 0s. 

It requires the data structure, i.e., the adjacency matrix, to store the 0s and ls. 

 

 

Fig. 5: Example of 2-D hole in H1 



 

 

 

 
 
 

 

Fig. 6: Example of none 2-D hole in 𝐻𝐻1 

In order to achieve 𝜖𝜖 − differential privacy, we apply the exponential mechanism to the 

adjacency matrix of the graph. However, the exponential mechanism requires the natural 

distribution of (𝛥𝛥0,𝛥𝛥1), then it calculates the two numbers 𝛥𝛥0 and 𝛥𝛥1. Thus, we employ a Markov 

Chain Monte Carlo (MCMC) procedure to obtain the approximate natural distribution. MCMC is 

a class of algorithms for sampling from a probability distribution [12]. After the Markov chain 

reaches its stationary distribution, the subsequently visited states of the chain can be used to 

simulate the natural distribution. 

In our work, the states of the Markov chain are adjacency matrices and the neighbor states are 

two adjacency matrices with one number difference, i.e., one edge adding or deleting. 

Particularly, beginning from the original sub-matrix, each step of the Markov chain has the 

following sub-steps: (1) Uniformly and randomly choose one out of 𝑆𝑆 numbers in the adjacency 

matrix. (2) Flip that number, i.e., 0 changes to 1 or 1 changes to 0, and build the new adjacency 

matrix. (3) Compare the new matrix with the very beginning matrix to get the numbers of flips 𝛥𝛥0 

and 𝛥𝛥1; record the two numbers. (4) Go to the next MCMC step. 

Applying the MCMC procedure described above from zero to a large step size, we can find the 

approximate distribution of (𝛥𝛥0,𝛥𝛥1) . Particularly, the probability of a target pair (𝛥𝛥0,𝛥𝛥1)  =



 

(𝑅𝑅, 𝑏𝑏) is denoted as 𝑐𝑐(𝑅𝑅,  𝑏𝑏), which is the number of times f0=a and f1=b divided by the total 

number of steps of the Markov chain. 

Finally, the exponential mechanism is embedded with the MCMC procedure to satisfy 

differential privacy. Specifically, the Markov chain is the same. Instead of the unperturbed 

probability 𝑐𝑐(𝑅𝑅,  𝑏𝑏),  the algorithm samples (𝛥𝛥0,𝛥𝛥1) = (𝑅𝑅, 𝑏𝑏)  with perturbed 

probability exp�𝜖𝜖⋅𝑝𝑝(𝑚𝑚,𝑏𝑏)
2𝛥𝛥𝑓𝑓

�, where 𝛥𝛥𝛥𝛥 = 1 

C. REGENERATION 

The regeneration sub-scheme designs algorithms to choose the 1s and 0s to flip, which 

preserves the persistent homology as well as satisfies the requests of 𝛥𝛥0 and 𝛥𝛥1. Although all 

sub-matrices have the corresponding flipping numbers, the four kinds of sub-

matrix 𝑀𝑀0,𝑀𝑀1,𝑀𝑀2,𝑀𝑀3 have different regeneration algorithms. For the matrices representing the 

barcodes, i.e., 𝑀𝑀0 and 𝑀𝑀1, we need to preserve the structures in it. For the matrices not directly 

representing the barcodes, i.e., 𝑀𝑀2 and 𝑀𝑀3, we have more freedom to change edges. 

M0. In order to preserve 𝐻𝐻0, the 𝑀𝑀0 matrix has a strict restriction that all values in it are 0. 

Although the 𝑀𝑀0 matrix does not produce any 𝛥𝛥𝑐𝑐 , the regenerated matrix cannot consume 

any 𝛥𝛥0  or 𝛥𝛥𝑐𝑐  either. Similarly, the 𝛥𝛥0  and 𝛥𝛥𝑐𝑐  consumption in 𝑀𝑀1  matrices is also restricted 

because the holes need to be preserved. Hence, 𝑀𝑀2 and 𝑀𝑀3 matrices consume all the 𝛥𝛥0 

and 𝛥𝛥𝑐𝑐 in 𝑀𝑀0. 

M1. The 𝑀𝑀1 matrices are related with 𝐻𝐻1 and 𝐻𝐻2 bars. According to the definition of persistent 

homology, the barcode in 𝐻𝐻𝑛𝑛  shows the (𝑅𝑅 + 1) -dimensional holes. Fig. 3 and Fig. 5 give 

examples of 2-dimensional holes, which both have a [1, 2) bar in 𝐻𝐻1. Their distance matrices 

are 𝑀𝑀𝑑𝑑(4) is a square. 𝑀𝑀𝑑𝑑(5) is a pentagon. The distance matrices suggest that the necessary 

condition of a 2 − 𝐷𝐷 hole (𝐻𝐻1) existing is that 𝛿𝛿 is less than the maximum value in 𝑀𝑀𝑑𝑑. 



 

 

 

 

 

When 𝛿𝛿 = 0, no edges are formed. Therefore, the birth time of 𝐻𝐻1 bars is no less than 1. The 2-D 

hole is defined as a polygon with at least 4 sides. In OSNs, since the holes are in the form of 

polygons, we use polygons as the basic hole structure to analysis barcodes. 

Unlike other data structures with fixed positions for each node, OSNs only define the relationships 

between nodes. Consequently, OSNs have the possibility called squishing. In a 2-D view of the 

OSN, a node can be put inside or outside a hole with different squishing results, which influences 

the existence of the hole. Taking Fig. 6 as the example, in the first result, the square {P,Q,S,R} is a 

2-D hole. However, in the second result, there are no holes because all the components are 

triangles. Considering all the squishing results, there are no 𝐻𝐻1 bars in the barcode of Fig. 6. The 

necessary and sufficient condition of 𝐻𝐻1  bar existing is that under a specific 𝛿𝛿 , in all squishing 

results, there is at least one area which is not filled with a triangle. 

The persistent homology also has the ability to capture high-dimensional holes. For example, a 

sphere with the surface and a void is a simple 3-D hole. When it squishes to 2-D, there should be 

two layers of surface overlapping with each other. A 3-D hole is inferred from the two layers of 

surface and there is an 𝐻𝐻2 bar. The hexagon in Fig. 7 is another example. The maximum distance 

is 3 in 𝑀𝑀𝑑𝑑. When 𝛿𝛿 = 2, there are two squishing results with the surface filled by triangles. Thus 

the 𝐻𝐻1 bar dies and the 𝐻𝐻2 bar exists when 𝛿𝛿 = 2. And its barcode is in Table I. 

 

 

 



 

TABLE I Barcodes of Polygons 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: Example of 3-D hole in 𝐻𝐻2 

We do experiment on the barcodes of polygons, as shown in Table I. Because polygons having 

more than 7 sides rarely exist in OSNs, the 𝐻𝐻0,𝐻𝐻1 and 𝐻𝐻2 bars are suitable to rep-resent the 

persistent structures. Having the mapping between persistent structures and the barcodes, we 

can generate 𝑀𝑀1 matrices without changing the barcodes. 

Similar to 𝑀𝑀0, the regeneration of the 𝑀𝑀1 matrices also has the restriction that no edge is added 

or deleted. However, edge exchanging makes it possible to reduce 𝛥𝛥0 and 𝛥𝛥𝑐𝑐 at the same time 

inside the 𝑀𝑀1  matrices. Simply speaking, exchanging one of two edges’ end nodes, e.g., 

replacing the edge P-Q, R-T with the edge P-T, Q-R, results in reducing 𝛥𝛥0 and 𝛥𝛥1 by two. In 

our scheme, we model a 𝑅𝑅-sided polygon with a length-𝑅𝑅 sequence. Different permutation of 

the 𝑅𝑅 nodes represents different linking relationships, but they all represent a 𝑅𝑅-sided polygon. 



 

After examining all the permutations, we choose the one who lets 𝛥𝛥0 or 𝛥𝛥1 reduce to zero or 

reduce 𝛥𝛥0 and 𝛥𝛥𝑐𝑐 as much as possible. 

Observing Table I, we also make a hypothesis about the high dimensional holes. For a polygon 

with n sides (𝑅𝑅 > 3), it has an 𝐻𝐻1 bar [1,  ⌈𝑛𝑛
3
⌉). When ⌈𝑛𝑛

3
⌉ < ⌊𝑛𝑛

2
⌋, it has at least one bar [⌈𝑛𝑛

3
⌉,  ⌊𝑛𝑛

2
⌋) in 

high dimension (higher than 𝐻𝐻1). Several properties related to the hypothesis are analyzed 

in Section IV. 

M3. The purpose of regenerating the 𝑀𝑀3 matrices is to avoid creating new holes while adding 

or deleting edges. As shown in Fig. 9(a), the 𝑀𝑀3 matrices capture the edges between two 

structures, denoted by A and B. The nodes in A that connect to B form the set 𝐴𝐴∗ The nodes 

in 𝐵𝐵  that connect to the node 𝐴𝐴𝑖𝑖  forms the set 𝐴𝐴𝑖𝑖∗ . In the basic example, {𝐴𝐴2,𝐴𝐴3,𝐴𝐴4},𝐴𝐴2∗ =

{𝐵𝐵2,𝐵𝐵3}. 

When the regeneration step successfully preserves the bar-codes, the 𝑀𝑀3  matrices and 

corresponding edges should obey the following rules: 

1. The nodes in 𝐴𝐴 ∗ should be adjacent to each other, i.e., ∀𝐴𝐴𝑖𝑖 ∈ 𝐴𝐴∗,∃𝐴𝐴𝐴𝐴 ∈ 𝐴𝐴∗, (𝐴𝐴𝑖𝑖,𝐴𝐴𝑗𝑗) ∈ 𝐸𝐸. 

2. Sorting the sequence of 𝐴𝐴𝑖𝑖∗ according to size in non-decreasing order 𝐴𝐴𝑖𝑖∗,𝐴𝐴𝑗𝑗∗, … ,𝐴𝐴𝑘𝑘∗ , the 

sequence should have 𝐴𝐴𝑖𝑖∗ ⊆ 𝐴𝐴𝑗𝑗∗ ⊆ ⋯ ⊆ 𝐴𝐴𝑘𝑘∗ . 

 

 

 

 

 

Fig. 8: Example of edge exchanging steps 
 

 



 

 
 

 

 

 

 

 

 

 

Fig. 9: Examples of edges in M3 matrices 

3. The structure belonging to 𝑀𝑀1 should have at most three nodes to connect to the other 

structure. For instance, if A is a hole, then |𝐴𝐴 ∗ | ⩽ 3, where |𝐴𝐴 ∗ | shows the cardinality 

of the set 𝐴𝐴 ∗ 

The examples of violating these three rules are shown in Fig. 9(b), 9(c), and 9(d), respectively. 

When the nodes in 𝐵𝐵 ∗ are not adjacent, they simply create polygons with more than three 

sides. When 𝐴𝐴𝑖𝑖∗ and 𝐴𝐴𝑗𝑗∗ both have exclusive nodes, they also create polygons. When |𝐴𝐴 ∗ | = 4, 

according to the second rule, there is at least one node in 𝐵𝐵 connecting the four nodes in 𝐴𝐴. 

Then a polygon with 𝑅𝑅 sides becomes a polygon with 𝑅𝑅 − 1 sides, and the barcode has been 

changed. 

The edges are added or deleted based on the three rules. In particular, when deleting edges, 

our scheme chooses the smallest set 𝐴𝐴𝑖𝑖∗ and deletes the nodes in the set, ensuring 𝐴𝐴𝑖𝑖∗ ⊆ 𝐴𝐴𝑗𝑗∗. 

After this step, our scheme chooses 𝐴𝐴𝑗𝑗∗ and resumes the same deleting process. When adding 

edges, our scheme begins from adding nodes to the largest set 𝐴𝐴𝑘𝑘∗ . Furthermore, 𝐴𝐴∗ is restricted 

to three nodes if 𝐴𝐴 belongs to 𝑀𝑀1. 



 

When structure 𝐴𝐴  contains both hole components and non-hole components, our scheme 

should not choose more than three nodes that originally belonged to the 𝑀𝑀1 matrices. Taking 

the 𝑀𝑀32 in Fig. 4 as the example, we can first add three nodes from 𝑀𝑀11 to 𝐴𝐴∗. And if we want 

more edges, we can also add nodes from 𝑀𝑀21 to 𝐴𝐴∗, but nodes in 𝐴𝐴∗ should be connected. 

M2. Given the rules of the 𝑀𝑀3 matrix, regenerating 𝑀𝑀2 matrices becomes simple. Intuitively, 

an 𝑀𝑀2 matrix can be divided into two 𝑀𝑀2 matrices and two 𝑀𝑀3 matrices. And the two 𝑀𝑀2 

matrices can be further divided until the size of each matrix is only one. Because the diagonal 

value of 𝑀𝑀2 matrices should all be 0, regenerating the 𝑀𝑀2 matrix can be viewed as regenerating 

a group of 𝑀𝑀3 matrices. In these 𝑀𝑀3 matrices, both 𝐴𝐴 and 𝐵𝐵 contain no holes. So only the first 

and second properties need to be considered in the regeneration. 

 

 

 

 

 

 

Fig. 10: Comparing 𝛿𝛿 with 𝑛𝑛
3
 

After regenerating all the sub-matrices, we combine them together to form M′a, and use M′a to 

build the new graph G′. 

IV. ANALYSIS 

A. Privacy 

Property 1. 

The anonymization algorithm achieves ϵ edge differential privacy. 



 

Proof. 

In the MCMC procedure, the true distribution of (𝛥𝛥0,𝛥𝛥1) is well approximated when the total 

step number is large enough. Then applying the exponential mechanism in sampling gives 

the (𝛥𝛥0,𝛥𝛥1) under differential privacy. 

The conquer-and-divide procedure achieves differential pri-vacy when 𝛥𝛥0 and 𝛥𝛥𝑐𝑐 of the super-

matrix is calculated and satisfied. Because differential privacy is only concerned about the 

value 𝛥𝛥0 and 𝛥𝛥1, dividing the (𝛥𝛥0,𝛥𝛥1) into different matrices does not violate the differential 

privacy criteria for the super-matrix. 

Furthermore, the persistent structure has the characteristic of preventing identity leakage. The 

polygons are the basic structure of persistent homology bars. The nodes on a polygon are 

isomorphic to each other. Also the barcode often has a group of the same bars. Hence, 

preserving the barcodes does not mean revealing the identity. 

B. High-dimensional holes 

Two properties related to the hypothesis of high-dimensional holes follow: 

Property 2. 

For a polygon with n nodes, holes do not exist when 𝛿𝛿 ⩾ ⌊𝑛𝑛
2
⌋. 

Proof. 

In a polygon with n nodes, the maximum pairwise distance is ⌊𝑛𝑛
2
⌋. When 𝛿𝛿 ⩾ ⌊𝑛𝑛

2
⌋, all pair of nodes 

are connected, and all holes die. 

Property 3. 

For a polygon with n nodes, there are no 𝐻𝐻1 holes existing when 𝛿𝛿 ⩾ ⌈𝑛𝑛
3
⌉. 



 

Proof. 

According to the definition of 𝐻𝐻1 holes, it exists if and only if there is at least one area not filled 

with triangles in 2-D. So there is at least one polygon that has more than three sides. Fig. 

10(a) shows the case of 𝛿𝛿 = 𝑛𝑛
3
. After linking the edges of length 𝑛𝑛

3
, the remaining part, i.e., the 

polygon in the middle, is a triangle. Fig. 10(b) shows the case of 𝛿𝛿 > 𝑛𝑛
3
. The remaining part is a 

tetragon, and its diagonals have length greater than 𝑛𝑛
3
. Because 𝛿𝛿 is restricted to integers in this 

paper, the upper limit of 𝐻𝐻1 hole is ⌈𝑛𝑛
3
⌉. 

Intuitively, a high-dimensional hole exists only if the low-dimensional surface is complete. 

Considering a ball, when there is a hole on its surface, the void inside is broken. Then we have 

the hypothesis that high dimensional-holes only exist when 𝛿𝛿 ∈ [⌈𝑛𝑛
3
⌉, ⌊𝑛𝑛

2
⌋). 

V. EVALUATION 

The proposed scheme aims to preserve the persistent structures in the OSN. However, the 

ultimate impact of the persistent homology on the utility of the graph needs further validation 

through evaluation. The evaluation is based on the Facebook dataset, and the ca-HepPh 

dataset [17]. The detailed information is shown in Table II. The barcode extraction program is 

based on Perseus [18]. 

The dK-2 graph model, which differential privately pre-serve the dK-2 series in OSN 

anonymization, is employed to compare with PHDP [20]. Moreover, we also apply the Erdó’s-

Rényi (E-R) graph model to anonymize the graph, in which the edge present probability equals 

to the average edge present probability in the original graph [8]. The two differential privacy 

schemes, dK-2 and PHDP, are compared under the same differential privacy level 𝜖𝜖 = 10. 

Furthermore, PHDP is also evaluated under a strict privacy level of 𝜖𝜖 = 1. According to Equation 

https://ieeexplore-ieee-org.proxy.ulib.uits.iu.edu/abstract/document/#deqn2


 

(2), here the same ϵ means the same probability that the adversary can differentiate two 

neighboring databases, i.e., the same anonymization power. Although PHDP and dK-2 have 

different graph abstraction models, i.e., adjacency matrix and joint degree matrix, the definition 

of differential privacy gives us the opportunity to uniformly compare the privacy. 

TABLE II Network Dataset Statistics 

 

 

 

A. BARCODES 

The first part of the evaluation is to validate the ability to preserve persistent homology of the 

schemes. Fig. 11 report the persistent barcodes of the ca-HepPh dataset and we obtain the 

same result in the Facebook dataset. Although all four anonymized graphs have 

more 𝐻𝐻1  or 𝐻𝐻2  bars, PHDP has much less distortion in barcodes. In the original ca-HepPh 

graph, there are 16 𝐻𝐻1 bars and 1 𝐻𝐻2 bar. PHDP (𝜖𝜖 = 10) performs the best in preserving the 

bars: there are 22 𝐻𝐻1  bars and 1 𝐻𝐻2   bar. The PHDP (𝜖𝜖 = 1)  result has 28 𝐻𝐻1  bars and 

3 𝐻𝐻2 bars. The dK-2 result has 300 𝐻𝐻1 bars and 17 𝐻𝐻2 bars. The 𝐻𝐻2 bars are [3, 4) which implies 

that the anonymized graph has a 9-sided polygon. The E-R result has 591 𝐻𝐻1  bars and 

49 𝐻𝐻2 bars. 

The Facebook barcodes show a similar distribution. In the original graph, there are 185 𝐻𝐻1 bars 

and 28 𝐻𝐻2 bars. And the two numbers are 314 and 71 in the PHDP (𝜖𝜖 = 10) result, 327 and 58 

in the PHSP (𝜖𝜖 = 1) result, 1142 and 76 in the dK-2 result, and 1688 and 21 in the E-R result. 

The increase of the 𝐻𝐻1 and 𝐻𝐻2 bars suggests that there are more holes in the anonymized 

graph. The users ‘on hole’ are farther apart than the users ‘on non-hole’. While PHDP is 

https://ieeexplore-ieee-org.proxy.ulib.uits.iu.edu/abstract/document/#deqn2


 

confirmed to preserve the persistent homology information under differential privacy criteria, the 

utility of dK-2 and E-R anonymized graphs is questionable because of the injected holes. 

 
Fig. 11: Barcodes of the ca-HepPh graph 

 

 
 

 

 

 

Fig. 12: Degree distribution 

B. UTILITY METRICS 

To demonstrate the links between preserving persistent structures and graph utility, the 

performance of published graph under utility metrics are compared. The evaluation includes 

two graph utility metrics, the degree distribution and the clustering coefficient, and one 

application utility metric, the influence maximization. 

Degree distribution. Degree distribution is the number of connections of nodes among the 

graph. Fig. 12 shows the degree distribution of the two datasets. The PHDP and dK-2 

anonymized graphs match the degree distribution of the original graph. Compared to the original 



 

ca-HepPh graph, the degree distribution of the PHDP result (ϵ=10) has a root-mean-square 

error (RMSE) of 0.018, the PHDP result (ϵ=1) has a RMSE of 0.022, the dK-2 result (ϵ=10) has 

a RMSE of 0.018, but the E-R result has a RMSE of 0.110. Compared to the original Facebook 

graph, the PHDP (ϵ=10), PHDP (ϵ=1), dK-2 and E-R results have RMSE of 0.053, 0.062, 0.036 

and 0.072. 

The dK-2 anonymized graph maintains a similar degree distribution because it stores the paired 

degree information. The PHDP anonymized results suggest that the persistent homology 

information may have a soft impact on the degree. Intuitively, the holes restrict the edges. The 

E-R model only has the information of the average degree. 

Clustering coefficient. The clustering coefficient shows the level of nodes clustering 

together. Fig. 13 is the clustering coefficient of the two datasets. Only the PHDP anonymized 

graphs preserve some clustering information. The original ca-HepPh graph has an average 

clustering coefficient of 0.52, and it is 0.40 to PHDP (ϵ=10), 0.37 to PHDP (ϵ=1), 0.16 to dK-

2 (ϵ=10) and 0.09 to E-R. The average clustering coefficients of the original Facebook graph, 

the PHDP (ϵ=10) result, the PHDP (ϵ=1), the dK-2 result and the E-R result are 0.45, 0.33, 0.30, 

0.13 and 0.10, respectively. 

 

 
 

 

 

 

Fig. 13: Clustering coefficient distribution 



 

 

 

 

 

 

Fig. 14: Percentage of influenced users 

As shown in the evaluation of the barcodes, in a increasing order of number of holes the graphs 

are the original graph, the PHDP (ϵ=10), the PHDP (ϵ=10), the dK-2 and the E-R results. This 

order is also the decreasing order of clustering coefficient. It implies that holes occupy the 

position of clusters and then decrease the clustering coefficient. While holes are the opposite 

of clusters, the PHDP anonymized graphs preserve the clustering information by protecting the 

holes. When all holes in the graph are established, then remaining parts can be filled with 

clusters. In a real OSN, this shows that the number of holes are less than the number of clusters. 

Hence, storing holes opens a novel angle to maintain the graph structure. 

Influence maximization. Influence maximization [15] is an application that first chooses the 

important users as seeds, then uses the seeds to influence other people. In the evaluation, a 

greedy algorithm based on the independent cascade model [6] is employed to choose the 

seeds who have the most ability to broadcast information. Then the percentage of influenced 

users are compared among different anonymized graphs, with the same propagation 

probability, 0.2. 

Fig. 14 shows the percentage of influenced users. Although all four anonymized graphs achieve 

a similar data with the original graph, the PHDP results outperform the other. Com-pared to the 

original ca-HepPh data, the PHDP (ϵ=10) result has a RMSE of 0.40, the PHDP (ϵ=1) has a 



 

RMSE of 0.37, the dK-2 result has a RMSE of 2.50 and the E-R result has a RMSE of 2.30. 

Compared to the original Facebook data, the RMSEs are 1.58 of PHDP (ϵ=10), 2.43 of 

PHDP (ϵ=1), 7.57 of dK-2 (ϵ=10) and 2.13 of E-R. 

This experiment suggests that the PHDP anonymized graphs are good at simulating the 

information broadcasting ability of OSNs. Since the influence maximization problem is closely 

related to the recommendation and advertisement application, the PHDP anonymized graph 

achieves high utility. 

VI. RELATED WORK 

Persistent homology is a description of topology [24]. It has many applications, e.g., analyzing 

persistent aircraft networks [19], calculating the distance between networks [14], and 

scheduling robot paths in uncertain environments [2]. Persistent homology is novel in security 

analysis. Speranzon and Bopardikar achieved K-anonymity [23] based on the zigzag persistent 

homology [4, 21]. 

Ghrist proposed the barcode to demonstrate persistent homology [11]. It was applied to analyze 

the structure of the complex network [13] and random complexes [1]. In our previous research, 

persistent homology barcodes are introduced to evaluate the utility preservation of existing OSN 

anonymization schemes. However, none of existing anonymization scheme can preserve 

persistent structures. 

Several mechanisms were employed to anonymize the identity and the network topology. K-

anonymity based mechanisms were developed to hide sensitive data among relational 

data [23]. They were designed for specific parameters, while the adversary can exploit other 

structural information to deanonymize the data [16]. Fortunately, the differential privacy-based 



 

mechanisms were studied to solve these vulnerabilities [7, 10]. Chen et al. employed the 

adjacency matrix model to achieve differential privacy, which inspires our work because it has 

the minimum sensitivity values [5]. 

VII. CONCLUSION 
In this paper, we address the utility concerns of the published graph by designing a novel 

anonymization scheme called PHDP under differential privacy. Unlike the existing 

anonymization schemes based on traditional components, e.g., node degree or clusters, PHDP 

employs a novel metric called persistent homology. When the persistent structures are in the 

form of holes, PHDP preserves the holes as well as satisfies the differential-privacy criteria. 

Evaluations on real OSNs confirm that protecting the holes help PHDP outperform the other 

schemes in both the graph utility metric and application metric. In the future, in addition to 

MCMC as the approximation method, we will try other methods to optimize the noise injection 

phase. 
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