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ABSTRACT

Balasubramanian Linknath Surya. M.S.E.C.E., Purdue University, May 2020. ASIC-
Implemented MicroBlaze-based Coprocessor for Data Stream Management Systems.
Major Professor: John J. Lee.

The drastic increase in Internet usage demands the need for processing data in

real time with higher efficiency than ever before. Symbiote Coprocessor Unit (SCU),

developed by Dr. Pranav Vaidya, is a hardware accelerator which has potential of

providing data processing speedup of up to 150x compared with traditional data

stream processors.

However, SCU implementation is very complex, fixed, and uses an outdated host

interface, which limits future improvement. Mr. Tareq S. Alqaisi, an MSECE grad-

uate from IUPUI worked on curbing these limitations. In his architecture, he used a

Xilinx MicroBlaze microcontroller to reduce the complexity of SCU along with few

other modifications.

The objective of this study is to make SCU suitable for mass production while

reducing its power consumption and delay. To accomplish this, the execution unit of

SCU has been implemented in application specific integrated circuit and modules such

as ACG/OCG, sequential comparator, and D-word multiplier/divider are integrated

into the design. Furthermore, techniques such as operand isolation, buffer insertion,

cell swapping, and cell resizing are also integrated into the system.

As a result, the new design attains 67.9435 µW of dynamic power as compared to

74.0012 µW before power optimization along with a small increase in static power,

39.47 ns of clock period as opposed to 52.26 ns before time optimization.

Keywords: Symbiote Coprocessor Unit, ACG/OCG, sequential comparator, D-

word multiplier/divider, FPGA.
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1. INTRODUCTION

Due to the exponential increase in number of devices that continuously stream data

and the availability of large wireless networks, the demand for systems that have effi-

cient computational power with limited resource has increased. These systems which

are designed to process continuously arriving data streams with limited hardware

resources are known as Data Stream Management Systems (DSMSes). The streams

contain data with high rate and in variable pattern. Aurora [1], Nile [2], Gigascope [3],

and Symbiote Coprocessor Unit (SCU) [4] are some of the DSMSes that have been

developed.

1.1 Previous Work

Symbiote Coprocessor Unit [4] is a hardware accelerated coprocessor with tuple

processing speedup in the range 12.3x to 150x compared to its software-based coun-

terparts. The execution engine of it is a Single Instruction Multiple Data (SIMD)

Very-large Instruction Word (VLIW) processor. Stream Controller (SC) is the hard-

ware Finite State Machine (FSM) of SCU which takes care of control and configuration

part of the system. However, SCU has many disadvantages. First, the complexity

of finite state machine is high such that it limits future expansion. Second, it uses

Hyper Transport protocol to interface with host processor which is obsolete. Finally,

it uses bus interconnects that are exclusively designed for that version of SCU, which

limits flexibility of hardware in future.

Thus, a following study by Mr. Tareq’s [5] updates the SCU architecture as

follows:
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• Xilinx MicroBlaze is used instead of stream controller.

• The Hyper Transport protocol is replaced with PCIe bus to increase the com-

patibility of SCU.

• AMBA AXI4 bus interconnect is used to communicate within the system.

1.2 Motivation

The SCU is now flexible and has simpler hardware yet it is implemented in an

FPGA. It is a known fact that the Application Specific Integrated Circuit (ASIC) of

a design is faster than its FPGA implementation. This study aims to implement the

most important part of SCU, the execution unit, as an ASIC and improve its timing

and power requirements further. When it comes to ASIC, three things are consid-

ered as bottlenecks: timing, power, and area. They are termed bottlenecks because

the design requirements of an integrated circuit are specified with these attributes.

For example, a designer would be given constraints such as maximum power limits,

maximum frequency of operation, and maximum area of chip that the designed cir-

cuit must satisfy in order to be sent for manufacturing. However, there is always a

trade-off between these three attributes of a circuit which must be addressed. This

work integrates many features into the hardware of SCU to address them.

1.3 Thesis Outline

This chapter gave the introduction needed for this work. Next chapter discusses

a MicroBlaze-based coprocessor for data stream management systems, which is the

previous work of this thesis. Chapter 3 explains this thesis work in detail, and chapter

4 explains the experimental setup and results of this study. Chapter 5 concludes the

thesis and suggests some future work related to this topic.
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2. MICROBLAZE-BASED COPROCESSOR FOR DATA

STREAM MANAGEMENT SYSTEMS

2.1 Introduction

A MicroBlaze-based Coprocessor for Data Stream Management Systems (MCDSMS)

[5] is an FPGA-based hardware that is designed to perform tuple processing in an

efficient way with reduced hardware complexity. Since the MCDSMS [5] is an exten-

sion of Symbiote Coprocessor Unit (SCU) [4], it is also sometimes referred to as SCU

in this work, since the working principle for both is basically same.

Based on the relatively persistent nature of data stream tuples, the paths of SCU

can be divide into two parts, tuple processing path and configuration path. Figure 2.1

shows the tuple processing path consisting of modules that process the continuously

varying data and needs to be optimized for high performance. The configuration path

consists of components that pass the controlling bits that arrive not so frequently and

need not be optimized for performance.

Components such as command/response FIFOs and stream controller that are in

the configuration path of the SCU and are called as Stream Management Unit (SMU)

as they are responsible for configuring the SCU. The components such as write stripe

pipe, read stripe pipe, stream register file, input/output FIFOs, instruction memory,

Branch and Stall Unit (BSU) and execution unit are in the tuple processing path and

are collectively called as Stream Processing Unit (SPU) as they are responsible for

processing the streams. To maintain the performance same as that of the original

SCU, changes are only made in the stream management unit.

The interface between host and processor is the Hyper Transport (HT) inter-

face which communicates with read/write stripes to send/receive data and com-

mand/response FIFOs to send/receive commands/responses, respectively. The Stream
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Register File (SRF) is the storage place of streams and is connected to input/output

FIFOs to send data to execution unit and to receive data from execution unit. The

SCU at its core has a SIMD-VLIW execution unit which exploits data level parallelism

and instruction level parallelism in DSMS operations.

The second version of SCU, that is MCDSMS shown in Figure 2.2, replaces the SC

in the first version. It consists of a MicroBlaze controller, interfaces for the MicroBlaze

to communicate with other components, and a Dispatch unit. The SPU uses the

same SCU components identified in the tuple processing path of previous version.

The MicroBlaze has three interfaces, namely command/response FIFOs interface,

instruction memory interface, and Kernel run monitor interface. These interfaces

are used by MicroBlaze to communicate with command/response FIFOs, instruction

memory, and kernel run monitor, respectively. PCIe is used as the interface between

Fig. 2.1. Symbiote Coprocessor Unit Architecture [4].
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host and the coprocessor. Therefore, PCIe interacts with dispatch unit of MCDSMS

and RAM of the host processor. All data are given to dispatch unit which then

segregates the commands from tuples and send them to command/response FIFOs.

The tuples are sent to read stripe pipe which in turn puts them into SRF. The

following sections discuss the architecture of the MCDSMS in detail.

2.2 Basic Workflow

Whenever the host processor wants to execute a kernel, it performs a sequence of

steps. These steps are explained briefly in this section. First, the host processor sends

the configuration data such as kernel information, kernel IDs, and tuple information

to the management part of SCU. Kernel information tells what operations need to be

Fig. 2.2. Architecture of MicroBlaze-based Coprocessor for Data
Stream Management Systems [5].
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done with the given tuples. Tuple information is basically the information of where

the tuples corresponding to the kernel are stored in memory and what is their length.

After sending this data, the host processor sends the actual tuples upon which the

operations must be carried out, to the processing part of SCU. These data are stored

in stream register file and acknowledgment signal is sent back to host processor. Once

this configuration part is over, the host processor initiates the execution of kernel by

sending “RUN” command. The execution unit then processes the tuples and store the

results to SRF via output pipes. After all the results have been stored into memory,

the module that monitors the execution unit sends an interrupt signal to MicroBlaze

which in turn notifies the host processor that the processing is completed. The host

processor can then read back the results.

2.3 Sub-systems and Interfaces

As stated earlier, the MCDSMS can be divided into SMU and SPU. MicroBlaze is

the main controlling unit of SMU. MicroBlaze uses subsystems as the interface to com-

municate with other modules that are outside the microcontroller. The MicroBlaze

subsystem contains standard and application specific AXI4 memory-mapped periph-

erals that are explained in the following subsections. Figure 2.3 shows the MicroBlaze

subsystem components.

Kernel Run Monitor Interface (KRM-IF)

MicroBlaze communicate with KRM using its interface named Kernel Run Mon-

itor Interface (KRM-IF). KRM-IF contains three types of register files namely Ker-

nel Descriptor File (KDR), Stream Descriptor File (SDR), and Offset Register File

(ORF). Figure 2.4 shows the overall architecture of the KRM-IF. Host processor ini-

tiates the execution process by sending Run kernel command along with the kernel

ID to SMU through KRM-IF. Figure 2.5 shows the states of KRM-IF finite state

machine.
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Fig. 2.3. MicroBlaze subsystem [5].

Fig. 2.4. Kernel Run Monitor Interface (KRM-IF) architecture [5].
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Instruction Memory Interface (IMEM-IF)

Information regarding the kernel and its IDs are stored in IMEM. MicroBlaze

communicates with IMEM through IMEM-IF. IMEM-IF maps Stream Controller

Interconnect (SCTX) of SCU used by IMEM to AXI4-Lite.

Figure 2.6 shows the block diagram of IMEM-IF. All transaction requests from

MicroBlaze have two components: transaction ID and command. These transactions

are sent to interface where it is mapped to respective registers and then to IMEM.

After MicroBlaze sends the request, it waits for acknowledgement signal from instruc-

tion memory. All acknowledgements have the transaction IDs for which response is

sent. However, the response may or may not have response data in it. All responses

from instruction memory is stored in registers inside IMEM-IF. MicroBlaze reads

Fig. 2.5. KRM-IF finite state machine [5].
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these responses whenever needed by asserting the read enable signal in one of the

interface’s register. Figure 2.7 shows the IMEM-REQ-CNTRL Register. Figure 2.8

illustrates IMEM-RESP-STAT register which the IMEM-IF must monitor to update

the MicroBlaze regarding the status of IMEM.

Command - Response FIFO Interface (CRFIFO-IF)

The commands from host processor are stored in command FIFO, and responses

from SCU are stored in response FIFO. MicroBlaze communicates with these FIFOs

through CRFIFO-IF. Figure 2.9 shows the block diagram of the CRFIFO-IF. The

commands from host processor are of double word length; the CRFIFO-IF breaks

down them into two words and stores them into their internal registers for the Mi-

croBlaze to access. Two response words from MicroBlaze are combined in the internal

registers and sent to host processor. Furthermore, CRFIFO-IF maps configuration

and status signals to the FIFO configuration status register shown in Figure 2.10.

Dispatch Unit (DU)

Dispatch unit does the job of mapping host processor interface with standard in-

terconnect and expose the internal memory of SPU to MicroBlaze. Figure 2.11 shows

the block diagram of dispatch unit. When DU receives data from host processor, it

segregates tuples from commands and sends each of them to their respective places.
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Fig. 2.6. Instruction Memory Interface (IMEM-IF) input and output signals [5].

Fig. 2.7. Instruction Memory Request Control (IMEM-REQ-CNTRL) Register [5].
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Fig. 2.8. Instruction Memory Response Status (IMEM-RESP-STAT) Register [5].

Fig. 2.9. Command/Response FIFO Interface (CRFIFO-IF) signals [5].
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Fig. 2.10. FIFO-CNFG-STAT [offset = 10h] Register [5].

Fig. 2.11. Architecture of Dispatch Unit (DU) [5].
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3. POWER AND TIME OPTIMIZATION TECHNIQUES

USED

The speedup of Symbiote Coprocessor Unit’s (SCU) FPGA implementation is in the

range of 12.3 to 150 times than that of other software-based Data Stream Management

Systems. It is well known that the Application Specific Integrated Circuit (ASIC)

implementation of a module is faster but sometimes power hungrier than the FPGA

implementation of the same. The objective of this study is to make SCU suitable for

mass production and to improve its timing and power requirements. The first step

in this direction is to implement the Execution Unit (EU) of SCU as an application

specific integrated circuit. Then, improving the timing and power requirement, which

is directly related to increasing the performance and efficiency of the design.

SCU has an execution unit that is VLIW-SIMD-based arithmetic and logic unit.

The key to higher performance in DSMS is the ability to exploit fine-grain instruction-

level parallelism. One of the methods used for exploiting fine-grain parallelism is to

specify multiple independent operations per instruction, which is the idea of very long

instruction word (VLIW). Similar to super-scalar processor, VLIW processor has the

potential to issue and complete more than one operation at a time. However, there

is a difference between them in the mechanism with which the parallel processing is

done. The hardware of VLIW processor is not responsible for discovering possibilities

to execute multiple operations concurrently as in case of super-scalar processors.

The long instruction word of the VLIW processor already encodes the concurrent

operations that are to be executed. This facility of VLIW processors significantly

reduces the hardware complexity compared to a super-scalar implementation. There-

fore, a VLIW processor has the same effect as a super-scalar RISC or CISC processor,

but the later design does so with complex parts of a high-performance super-scalar

hardware. It is not required for a VLIW processor to have decoding and dispatch-
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ing hardware that tries to reconstruct parallelism from a serial instruction stream

since VLIW instruction explicitly specify all possible parallelism within it. The ba-

sic diagram of a Very Large Instruction Word (VLIW) processor is shown in Figure

3.12. It is seen clearly from the figure that there exist functional units, namely FU0,

FU1, FU2, FU3, . . . , FUn from which the appropriate operation is executed for each

instruction.

In order to make an application specific integrated circuit of the explained VLIW

processor, the hardware of the design is written in a hardware description language

such as Verilog or System Verilog or VHDL. In this work, Verilog language is used

to code the hardware of the execution unit. The code must be simulated and de-

bugged for functional errors using industry standard tools. Industry standard tools

are software developed by companies such as Synopsys, Cadence, and Mentor Graph-

ics. These are software used in ASIC industry to design, analyze, test, and approve

actual integrated circuits which are sold for custom applications.

In this work, the functional verification of pre-synthesis RTL code is done using

Mentor Graphics’ ModelSim [6]. Once the functional verification is done, the RTL

Fig. 3.1. Block diagram of Very Large Instruction Word (VLIW) processor [7].
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code is then synthesized with a library file using a software known as Design Compiler

from Synopsys [8]. Synthesizing is a process in which the modules written in RTL

code are mapped to the actual gates and flip-flops in a library file provided by a

vendor. In this thesis work the library files are provided by Synopsys, so the vendor

is the Synopsys Corporation. The RTL is synthesized with SAED28RVT0P725C.db

standard cell library, and the Verilog file is now turned into a gate level netlist. After

the synthesis, various reports of the design such as constraint report, clock gating

report, and area report are generated. The netlist is analyzed for synthesis errors,

along with the generated reports.

One of the objectives of this study is to reduce the power consumption of ASIC

implementation of SCU, which can be achieved using clock gating, operand isolation,

and MSB comparison techniques. However, these techniques cannot be directly inte-

grated into the SCU as it was not designed with this intention originally. Therefore, to

add these mechanisms into SCU, in this thesis, three modules are designed to suit the

hardware. They are AND Clock Gate/OR Clock Gate (ACG/OCG) modules, Double

Word (D-word) multiplier/divider, and sequential comparator. These techniques are

integrated into the netlist and re-synthesized iteratively until it meets the required

power dissipation levels. Along with these modules, operand isolation technique is

also used to reduce dynamic power. The power reports of the modules before and

after adopting these techniques can be obtained and checked for improvements.

After synthesis is done, the updated netlist is cross-checked with pre-synthesis

RTL code for functional equivalence. This process is done by using software named

Formality, provided by Synopsys. If the netlist is functionally equivalent to pre-

synthesis RTL code, the netlist is analyzed with a timing check software known as

PrimeTime [9], provided by Synopsys. Static Timing Analysis (STA) is done in this

tool. STA is a process in which a design is checked if it satisfies the setup requirement

for a specified frequency along with hold time requirement.

The other objective of the study is to improve the timing, which is to decrease

the delays within data paths. To accomplish this, the design module is inserted
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with buffers/inverters, cells are up-scaled/down-scaled, and are swapped to make the

design meet timing requirements specified in a constraint file. The timing report of

the updated maximum and minimum paths are then generated and checked if the

objectives are accomplished. Figure 3.2 shows the simplified flow diagram of the

work done. The formal verification step explained earlier is an additional work done

to confirm that the generated netlist is functionally correct. This step does not come

under basic flow of the work, due to which it is not shown in the flow diagram.

Fig. 3.2. Flow diagram of work done.
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3.1 Power Optimization Modules

The increase in desirability of portable devices, demand for reliability and perfor-

mance, extension of battery life, reduction of package cost, and reduction of green

cost have resulted in energy efficiency becoming a critical feature of modern electronic

devices. CMOS technology is the key element in the development of VLSI systems

since CMOS consumes less power. Moreover, power optimization has become a very

important concern in deep sub-micron CMOS technologies as the sizes of transistors

become smaller. Reduction in power consumption and overall power management on

the chip are the key challenges due to the shrinkage in size of integrated circuits. For

many designs, power optimization is important in order to extend battery life. Thus,

this work aims to reduce the dynamic power requirement of the SCU’s execution unit

by introducing various power optimization modules and features into the device.

The modules that were instantiated into the system are discussed in following

subsections and the operand isolation technique is discussed in a separate section as

there was no module designed for this technique; instead, it was directly integrated

into the system.

3.1.1 AND Clock Gate (ACG)/ OR Clock Gate (OCG) Modules

The power consumption in a chip can be due to two factors, namely static power

and dynamic power. Static power is the power consumed when the transistors are in

a stable state. Dynamic power is the power consumed when the state of transistors

changes. The formula for the dynamic power is given as:

Pdynamic = xcv2f

where, x = activity factor

c = capacitance

v = voltage

f = operating frequency
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It is seen from the formula that, factors such as frequency, switching activity,

voltage, and capacitance of the device under consideration affect the dynamic power

directly. This section describes two types of modules that are integrated into the

circuit to reduce dynamic power consumption through reduction in switching activity.

This method is named as clock gating; as the name suggests, this technique is

simply gating the clock pulse reaching a Flip-Flop (FF) when there is no need of a

clock pulse in the design. Consider an FF that copies input to output at the triggering

edge of a clock, the next inactive edge of the clock does not change the output of it

but still causes transition in the device. However, for the clock signal to have the

next active edge, it is mandatory for it to have that inactive edge. Let’s consider the

below mentioned cases:

• When the output of an FF is not being read at the current clock cycle.

• When the input of an FF is not changing in the current clock cycle.

In these cases, there is no need for clock signal to reach the terminals of FF. This

will prevent unnecessary switching activity of clock terminals. Clock gating can be

done in two ways, AND-type clock gating and OR-type clock gating.

AND-Type Clock Gating

Consider an AND gate where one of its input is connected to “ENABLE” and

other input connected to clock signal as shown in Figure 3.3.

Fig. 3.3. AND gate used in clock gating.
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When the enable pin is high, the clock is transferred to the output; however, if

the enable is low, the output of AND gate is low. This prevents the clock signal to

reach FFs whenever enable is low.

OR-Type Clock Gating

In this case, we use an OR gate with an enable connected to one input and clock

connected to other input as shown in Figure 3.4.

When the enable is low; the clock is transferred to gate output. When the enable

is high; the gate output also remains high. This characteristic can also be used to

prevent clock signals reach FFs when not required.

Problems in Direct Clock Gating and ACG/OCG as a Solution

Considering an AND-type clock gate, to get the same duty cycle at the output of

AND gate as of the original clock signal, it must be ensured that the change of state of

enable signal does not occur when the clock is high. For this to be achieved, the enable

input must toggle only when clock is at ‘0’ state. Else, the clock pulse gets clipped as

shown in Figure 3.5. This causes a glitch in clock path. Therefore, AND-typed clock

gate outputs the proper duty cycle of a clock only if the enable signal changes state

when clock is low. There are two cases that arise when considering the source of ‘EN’

signal. First, if the source of ‘EN’ signal is a positive edge-triggered FF, setup and

Fig. 3.4. OR gate used in clock gating.
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hold timing checks are in the next positive and negative edges respectively from the

clock edge where the data is launched from the sending FF. However, this situation

is not possible to guarantee the data to pass reliably under all operating conditions.

Second, if the source of ‘EN’ signal is a negative edge-triggered FF, setup checks are

performed with respect to the next rising edge and hold check is performed on the

same falling edge (zero-cycle) of the clock edge from which the data is sent.

Contrary to the first possibility, the second one assures the data to pass reliably

under all conditions. ACG module is the design which captures this functionality and

provides solution for pulse clipping in AND-type clock gating. It has a negative level-

triggered latch and an AND gate connected to it. Figure 3.6 shows the diagrammatic

representation of ACG module.

On the other hand, for an OR-type clock gating, the enable signal must change

only when the clock is at ‘1’ state. That is, the clock pulse gets clipped as shown in

Figure 3.7 if there is a change in enable signal when clock is low. If ‘EN’ signal is

launched from a positive edge-triggered FF, setup check is with respect to next falling

edge and hold check is on the same rising edge as that of the edge from which the data

is launched. This situation guarantees correct operation in all operating conditions.

This functionality is captured by OCG module shown in Figure 3.8, where it has a

positive level-triggered latch and an OR gate connected to it.

Fig. 3.5. Pulse clipping in AND-type clock gating [10].
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Fig. 3.6. AND-type clock gating with latch to avoid pulse clipping [10].

Fig. 3.7. Pulse clipping in OR-type clock gating [10].
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3.1.2 D-word Multiplier / Divider

One of the ideas behind reducing dynamic power consumption is to reduce the

number of transitions a transistor undergoes. This can be done by using the gates

which produce a fewer number of transitions for the changes in input rather than

using the gates which produce transitions for all changes in input but with same

functionality as the earlier gate. This section deals with one module that is used to

reduce dynamic power, known as D-word multiplier / divider. To get the essence of

this technique, the truth table of XOR gate shown in Figure 3.9 is first analyzed.

It is understood from the truth table that in an XOR gate, any transition in inputs

will always cause a change of state at the output. This property of XOR gate makes

it a power-hungry gate. However, if the truth table of AND gate shown in Figure 3.10

and OR gate shown in Figure 3.11 are examined, it is clearly seen that the transition

from one of its input to output is blocked by the other input.

For AND gate, if one of its input is ‘0’, the transition from the other input does

not reach output at any case. NAND gate follows AND gate, due to which, ‘0’ in one

of its input is a blocking state. For OR gate, this blocking state is ‘1’ in one of its

inputs, it is known from the truth table that a ‘1’ in one of its inputs does not allow

its output to change further until the same input is changed. Similarly, for NOR

gate, as it follows OR gate, it has a blocking state of ‘1’. The above explanation gives

enough reasons to exchange an XOR gate with any other gate which at least has one

blocking state.

Considering a 4-bit multiplier shown in Figure 3.12 which has 12 full-adders of 2

XOR gates each (as evident from Figure 3.13). Therefore, if just a 4-bit multiplier

takes 24 XOR gates, a 64-bit multiplier has at least 192 XOR gates that produce

transitions for any change in their input, which causes a large dynamic power dissi-

pation in execution unit. Thus, to curb this power requirement, the need to use a

multiplier is reduced by introducing shifters. It is known that, multiplying a number

by 2 is just shifting the number to left by one position and this property follows for
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Fig. 3.8. OR-type clock gating with latch to avoid pulse clipping [10].

all numbers in the sequence 2, 4, 8, . . . etc. Hence, if a number is multiplied by a

number in the sequence 2, 4, 8, . . . it means that the multiplicand must be shifted

to left, by the log of multiplier to the base 2 number of positions. This action can be

captured by a shifter that is made of NAND gates as shown in Figure 3.14, implying

lesser dynamic power than XOR-based multiplier.

However, not all multiplications can be done with help of shifter. The multipli-

cations for which the multiplier is not in the mentioned sequence, the operation is

carried out with a conventional multiplier only. Therefore, there is a need for com-

parator which segregates the multiplicative operations which has and does not have

a multiplier in the sequence 2, 4, 8, . . . and then the operation is carried out by a

shifter or a multiplier, respectively. This technique is not only used for multipliers,

but it can also be used for dividers as well. Division by any number in the mentioned
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Fig. 3.9. Truth table of XOR gate [11].

Fig. 3.10. Truth table of AND gate [11].

Fig. 3.11. Truth table of OR gate [11].
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sequence is just shifting the dividend right, by the log of divisor to the base 2 number

of positions. It must be noted that the dynamic power reduction by this technique

is dependent on the application that it processes. Higher the percentage of multipli-

cands within the sequence, higher will be the power saved. As the module consists

of both shifter and parallel multiplier, area is increased compared to the previous

design.

3.1.3 Sequential Comparator

Similar to multipliers and divider, comparators also have a large number of XOR

gates as shown in Figure 3.15. It is known that comparators need XOR gates to

perform their task, but there are a few situations involving unnecessary transitions

going on inside the comparator which may not change the already computed output of

the comparator. One such situation is when comparing two operands each of 32 bits;

output of the comparator is going to be “not equal” in either case if just the MSBs

of operands are not equal or if all 32 bits of the operands are not equal. However,

when the operands are not equal in all its bits, there incur unnecessary transitions

going on inside the comparator, which increases the power consumption.

As these transitions do not contribute to the result, power consumption during

this transition is totally wasteful. The objective of this technique is to eliminate

unwanted switching activity, thereby reducing the mentioned wasteful power con-

sumption. Typically, the result for many comparisons can be determined just by

comparing the MSBs of both the operands. Hence, the next least significant bit

should be involved in the comparison only if its preceding bit comparison was non-

diagnostic. Figure 3.16 shows the modified implementation of comparator where the

MSB comparison is done first.

If comparing just the MSBs of both operands are enough for arriving at a result,

other least significant bits are prevented from comparison. For example, if the MSBs

are not equal, the output of XOR gate would be high which in turn is given to OR
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Fig. 3.12. Block diagram of 4-bit multiplier [12].

gates of LSBs. Now since there is a high signal in input of OR gates, the output

of them would be just be high irrespective of other LSBs of operands. However, the

circuit does not prevent the LSBs from reaching the XOR gates when the XOR output

of MSBs is initially in low. This problem can be solved by adding an FF before LSBs

and enabling them only after the MSBs are compared.
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Fig. 3.13. Logic diagram of full adder.

Fig. 3.14. 3-bit shifter [13].
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3.2 Power Optimization Technique

3.2.1 Operand Isolation

As the reduction of dynamic power dissipation can be done through reduction of

switching activity, this section deals with another method used to reduce unnecessary

switching activity. Figure 3.17 shows the line diagram of a 32-bit adder.

Every bit of A and B does not reach the input at the same time. Different bits

arrive at the adder’s input after passing through different paths. As the value of

each bit at the inputs of the adder changes, the adder reevaluates and presents the

output for every change. However, not all outputs are considered as the result. The

output which is obtained after the last bit changed of all 64 bits is the result that

is valid. This action causes unnecessary switching activity that does not contribute

to the outcome of the design which in turn causes dynamic power dissipation. When

considering multipliers and dividers that have a large number of XOR gates, this

power requirement grows much more and contributes to a high percentage of the

total power dissipation.

In order to eliminate this unwanted switching activity, there is a need to employ

a mechanism that just feeds the correct and final values of operand into the inputs of

any functional unit, in this case, adder. To achieve this, a memory element such as

latch or an FF can be employed to remember the bits of operands until all bits arrive

and then synchronously give them to inputs of the adder when an enable signal

is asserted. Figure 3.18 shows the block diagram of operand isolation mechanism.

Increased area and increased latency are two factors that are to be considered while

adopting this technique.

3.3 Implementation of Power Optimization Modules and Techniques

This section describes how the above discussed power optimization techniques

were integrated into the ASIC implementation of SCU’s execution engine. Initially,
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Fig. 3.15. 32-bit comparator [14].

the ASIC converted code of EU was uploaded to Design Compiler [8] software to

analyze the code as well as the schematic of it to identify the places where clock

gating was needed. After identification, they were divided into two categories based

on the source modules of their controlling signal. Then the Verilog codes for ACG

and OCG were written and synthesized. The ACG/OCG modules were designed and

synthesized separately before integrating into the system to reduce delay.

The ACG and OCG modules were then placed in the identified places where they

should belong and the whole system is again compiled. The design of D-word mul-

tiplier / divider was first written as separate modules with 64-bit input and output.

The module was checked for functional correctness and then it was instantiated inside

the EU. For sequential comparator, the ASIC code was first examined for identifying

normal comparator and the newly designed sequential comparator was then replaced

in the code. The code was then analyzed for input ports of the functional unit and

the Verilog code for adding FFs before these ports which drive the functional units

was written. Once all modules were simulated and instantiated, the whole system

was synthesized, and reports were obtained.
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Fig. 3.16. 32-bit comparator with sequential MSB comparison [14].

Fig. 3.17. Line diagram of 32-bit adder [14].

3.4 Time Optimization Techniques

This section discusses about the timing optimization techniques that are incor-

porated in the system. To perform an optimization process, the circuit needs to be

analyzed first. The analysis process of a circuit is named as Static Timing Analysis

(STA). This process is done using an EDA tool named Synopsys PrimeTime [9]. Data
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Fig. 3.18. Line diagram of 32-bit adder with latch for operand isolation [14].

are supposed to move in lockstep inside a synchronous digital logic circuit, passing

one register to another register design part on each triggering edge of the clock sig-

nal. FFs and latches are memory elements that capture this functionality of copying

their input to output only at certain values or transitions of clock and remember the

previous value at all other times. Two types of timing violations are possible in such

systems:

• Setup time violation. Setup time is the minimum time before the active edge

of clock signal that the data should be present at the input terminals in order

to copy it without any error. There is a setup violation when data arrives after

setup time requirement.

• Hold time violation. Hold time is the minimum amount of time after the active

edge of clock signal that the data needs to be present at the input in order to

copy it without any error. There is a hold time violation if the data changes

before this time is reached.

There are many reasons such as input variation, variation in operations performed,

variations in manufacturing, variations in temperature, and variations in voltage that

cause a signal to arrive at a node in varying time delays. Static Timing Analysis

(STA) is an analysis procedure that verifies if all signals arrive at their corresponding
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nodes at required time interval, and hence correct circuit operation can be guaranteed

at specified frequency. In order to correct the violations, few techniques such as

buffer/inverter insertion, cell resizing, and cell swapping were adopted into the circuit.

The following subsections discuss these ideas in detail.

3.4.1 Buffer Insertion

As the size of MOSFETs used in chip shrinks, cell propagation delay and intercon-

nect propagation delay change in opposite directions. As the size of wires decreases,

there exist increased wire capacitance and resistance. According to Elmore’s delay

model, the increase in wire resistance and distributed capacitance along the wire cause

the overall load capacitance to increase, and hence, the interconnect propagation de-

lay is increased. The characteristics of gate delay and interconnect delay are shown

in Figure 3.19.

Therefore, interconnect propagation delay limits the further down scaling of VLSI

technology. Buffer (or repeater) insertion is an effective one among other techniques

addressing this limitation. The other reason behind increased wire propagation delay

is the reduction of signal strength along the wires. If, however, a buffer is inserted,

the signal strength can be restored and hence the delay is reduced. Figure 3.20

shows buffer insertion in an interconnect wire. Buffers can be viewed as a shield for

capacitive load in the path of a signal.

The metric that is used to measure the buffer requirement of an interconnect is

known as critical buffer length. Critical buffer length is defined as the maximum

length between two optimally sized and placed buffers in a wire such that the prop-

agation delay in the wire is smaller than when buffers are not inserted.

According to repeater scaling and its impact on CAD [16], when the VLSI technol-

ogy migrates from 90nm to 45nm, the critical buffer length decreases by 68 percent.

Presently in a VLSI chip, there is a need for a large number of buffers which makes
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Fig. 3.19. Delay vs process technology graph [15].

buffer insertion a very important process. Therefore, buffer insertion tools need to

satisfy various requirements such as:

• High quality of path analysis

• Speed

• Need for accurate delay model

• Ability to multi-task

• Interaction with other back-end tools

EDA tools provide histograms and reports, which makes it easy to identify the

interconnects with timing violations. In addition, such tools provide commands and

options for searching the right buffer from the technology library to fit corresponding

parts of the design.

3.4.2 Cell Resizing

Any chip in electronic design can be assumed as a resistor–capacitor circuit for

analysis purposes. This method of analyzing a circuit is known as Elmore model of

delay analysis. According to this model, each switching activity of a transistor is
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considered to be charging and discharging of a capacitor. In other words, when a

transistor is in “ON” position, it is same as charging a load capacitor, and when a

transistor is in “OFF” position, it is same as discharging of a load capacitor. Contin-

uing in the same perspective, the delay of a cell is given as the time it takes to charge

or discharge a capacitor. The rate at which this charging or discharging takes place

is directly proportional to the amount of current that flows through the transistor.

From the above explanation, the increase in current through transistor will decrease

the delay. A simple MOSFET switch inside a chip looks as shown in Figure 3.21. It

is seen from the figure that, to increase current through the transistor, width of the

channel under the oxide must be increased. Thus, the delay of a cell can be increased

or decreased by varying the channel width of MOSFETs used. Whenever a design

part that does not meet the timing requirement is identified, the cells in that part

are up-sized to increase the rate at which it charges / discharges and thus reducing

the delay. This is shown in Figure 3.22.

The design part of an ASIC consists of combinational circuits sandwiched between

registers that are clocked. Propagation delay through the combinational data path

with maximum number of logics should be such that valid signals reach the FF input

before the setup time of the FF and still satisfy the hold time requirement. The

technique of increasing or decreasing the area is also alternatively known as increasing

or decreasing the drive strength of a cell. Whenever a cell with larger area is inserted,

it can drive a larger load capacitor and vice versa.

A typical standard cell library provided by a vendor has several versions of any

given logic gate, each of which has a different gate size and drive strength. EDA tools

provide commands and options to search among a list of cells in a library which are

of same functionality but have different drive strengths among which a suitable cell

can be selected and inserted into the system.
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Fig. 3.20. Buffer insertion in an interconnect wire [17].

3.4.3 Cell Swapping

Transistors are switches that are turned on when they are applied appropriate

gate-to-source voltages at their gate terminals. Threshold voltage is defined as the

minimum gate-to-source voltage that is required to turn “ON” the MOSFET switch.

According to threshold voltages, the cells in a library can be divided into two cate-

gories namely, high voltage threshold (HVT) cells and low voltage threshold (LVT)

cells.

High voltage threshold cell are the cells which have higher fractions of the supply

voltage as their gate-to-source threshold voltage. Low threshold cells are the cells that

have very low fraction of supply voltage as their gate-to-source threshold voltage. The

characteristics of high and low threshold voltage cells are given below:

• Cells with high threshold voltages have low leakage currents. However, the

delay of these cells is high. Therefore, HVT cells are used in portions of the

chip where high performance is not a priority and the parts that are idle for
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Fig. 3.21. Side View of P-channel MOSFET [18].

most of the times. As leakage component of power dissipation is high in these

places, HVT cells are perfect to be placed here.

• Cells with low threshold voltage have higher sub-threshold leakage current.

However, delay of these cells is low. The portions of chip which are time critical

and require high performance, are designed with this type of cells. These cells

have higher leakage power but lower dynamic power than HVT cells.

Table 3.1 shows the correspondence between threshold voltage, leakage power,

and dynamic power. The dependencies between the output voltages of HVT/LVT

cells and their delays are also depicted in Figure 3.23. It can be seen from the figure

that, the LVT cells have higher slope for the same output voltage than the HVT cells,

which explains the higher delay of HVT cells. Therefore, it is known that using low

threshold voltage cells in place of high threshold voltage cells improves the timing of



37

Fig. 3.22. Decrease in cell resistance with increase in area.

the circuit, which is one of the objectives of this work. Using appropriate cells from

library to replace the cells in areas where there are setup and hold violations can

be done with help of EDA tool’s GUI mode or through scripts. There are exclusive

commands to search for cells and to swap them with respective cells in the design.

3.5 Implementation of Time Optimization Techniques

This section describes the implementation process of integrating time optimization

techniques into the system. After the power optimization modules were instantiated

Table 3.1.
Cell types and their respective power consumption

Cells Time Leakage power Dynamic power

HVT More Less More

LVT Less More Less

and synthesized, the Verilog code of the system was sourced to Synopsys Prime-

Time [9] software for timing analysis. The design was analyzed for the data paths

that violate worst-case and best-case delay constraints through timing reports and
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Fig. 3.23. Depiction of relationship between delay and threshold voltages [19].

histograms. The starting and ending nodes of all these paths were listed. These paths

were iteratively inserted with buffers one at a time to fit in the interconnects so that

the delay requirements are met. In places were the delay needs to be increased to

meet the hold time requirements, two inverters were connected one after the other so

that the propagation delay is increased but still maintaining the drive strength.

After the buffers were inserted, the synthesized gate level netlist was analyzed for

the cells that need to be resized and swapped. Once these cells were identified, the

standard cell library was searched for cells with different drive strength and for the

cells with different threshold voltage. Each cell was replaced and resized one after

the other and timing check was done for each replacement. After completion of cell

resizing and cell swapping, the timing reports were obtained. The reports satisfied the

objective of reducing the minimum possible clock cycle for the system. The results

of power and time optimization is given in the following chapter.
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4. EXPERIMENTATION AND RESULT

This chapter discusses the experimental setup and results of the study. In order to

understand the setup, it is required to know about the tool command language. The

electronic automation tools such as Mentor Graphics ModelSim [6], Synopsys Design

Compiler [8], and Synopsys PrimeTime [9] are designed in such a way that they are

used with commands from the user. These commands are derived from a language

named as Tool Command Language (TCL). All the commands needed to control the

tools are put into a file and are sourced by the tools; these files are known as scripts.

The tools read and execute the scripts line by line. Once the analysis and changes

are done, the tools can be directed to write the output files, and the reports of power

and timing are generated. The following sections explain in detail the process of

experimentation and show the results of this work.

4.1 Tool Setup and Experimentation

As explained earlier, the EDA tools are controlled by TCL scripts. This section

explains the script similar to the ones used for Design Compiler [8] and PrimeTime [9]

in this thesis work. Considering the basic script of Design Compiler [8], it can be

divided into sections such as:

• Setting library variables

• Reading design files

• Setting environmental constraints

• Setting design rule constraints

• Setting design optimization constraints

• Compiling the design

• Obtaining reports and writing hardware file of synthesized design
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Initially, the technology libraries and link libraries must be mentioned in the script.

Technology library is the file that has the information of actual gates and flip-flops

that are mapped to the modules in the input Verilog file. Link library is the file

that has information of the hardware that is exclusive to this design such as a PLL

and is used to resolve the references in the modules of the design. After mentioning

the variables for technology and link libraries, the design is read into the tool. The

reading process is executed in two steps. First, the design is copied into the memory

of the tool and checked for syntax errors. Second, the design is elaborated, and all

references are resolved.

After above step is completed, the user can specify constraints for the design. This

step has three parts in it. First, the environment constraints are specified. They are

the commands that tell the tool about the operating conditions, input load, output

load, driving cells, and wire load model of the design under consideration. Second, the

design rule constraints are specified that tell the tool about the maximal transition

time (low-high and high-low) for a port or a design, maximum fanout value, and

maximum capacitance value of the design or any specific part of the design. The

standard cell library defines the voltage ranges within which the cells are to be in

transition (i.e., 0.1v – 0.9v, 0.2v – 0.8v). Delay of library cells, output transition,

and setup / hold times of sequential cells are dependent on these values. In all

libraries, a cell input has a fan-out load value. In most cases, it is 1, but can be a

different value. The maximum capacitance command limits the allowed capacitance

on input, output, or bidirectional ports and/or designs. Third, design optimization

constraints are specified. These are the constraints specifying the information of the

clock, latency of the clock, uncertainty of the clock, transition of the clock, maximum

area of the design, multi cycle paths, and false paths.

The tool tries to optimize the design only after it has achieved the specified design

rule constraints. After giving the constrains, the design is compiled. This is the

process that maps the design with actual gates and flip-flops from the technology

file. The tool maps and optimizes for the constrains in this step. The compile
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command is very flexible as it has many variants. Each variant of this command

serves different purposes such as power-optimized compiling, clock-gated compiling,

iterative compiling, and others. After compiling the design, the reports are generated.

The commands for generating reports tell the tool to give a report of power, time,

area, constraints, gated clocks, and more. From the reports, the user can analyze the

results of the present design and its constraints. Then, the output files are written in

any one of the formats among Verilog, system Verilog, and VHDL. Figure 4.1 gives

an example of the script used for Design Compiler [8]. Now, to get the idea of script

used for Synopsis PrimeTime [9], it can be categorized as follows:

• Read the design data

• Constrain the design

• Specify the environment and analysis conditions

• Check the design and analysis setup

• Perform a full analysis and examine the results

Figure 4.2 shows the flow and commands used in PrimeTime [9]. The commands

and their meanings of Design Compiler [8] and PrimeTime [9] are almost similar

except for a few of them. Additionally, there are commands for swapping the cells,

up-sizing/down-sizing the cells, and for adding buffer/inverters into the design, which

were used in this work to optimize the design for timing.

4.2 Experimentation Results

This section presents the results of changes made in the hardware of SCU to

reduce power consumption and clock period. The first improvement made to the

hardware is integration of ACG/OCG modules. Figure 4.3 shows the screen shot of

Design Compiler-generated report of clock gating modules. After clock gating was

implemented, multipliers were replaced with Double-word multiplier/divider modules

that are capable of doing shift operations and also arbitrary multiplication/division

operations. The power analysis report of this hardware is given in Table 4.1. The
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module was synthesized with saed28rvt-ss0p7v25c library file, ss0p7v25c operating

condition, low analysis effort, and with enclosed wire load model. Then, the sequential

comparators were added to the circuit, for which the power report is given in Table

4.2. This module was synthesized with the same library file and operating conditions

as before. The wire load model of the MSB comparator is chosen to be segmented

type for better delay and power calculation. After the sequential comparator, operand

isolation is integrated into the system and overall power optimization is concluded.

The total power consumption and reduction due to these techniques as given by

synthesis tool are given in Table 4.3. It must be noted that the dynamic power

consumption value could reduce further when the module processes applications with

higher percentage of multiplicands in the sequence of 2n and comparison operations

that are diagnostic with just MSBs.

It can be seen from the table that leakage power consumption has been increased

slightly; the reason behind this is the use of low threshold voltage cells for reducing

delay. As explained earlier, there is always a trade-off between power and speed. It

is the design-point which decides whether power or speed should be given priority. In

this case, the design under consideration is an execution unit, and therefore, speed

gets the priority. Therefore, swapping a few HVT cells with LVT cells compromises

leakage power, which is reflected in the table. The timing optimization techniques

were integrated, and the resulting overall timing report is shown in Table 4.4. It can

be seen that the clock period for the path with maximum data path delay is reduced

significantly as aimed.
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Fig. 4.1. Snippet of TCL script for Design Compiler [8].

Table 4.1.
Power report of D-word shifter

Power type Value

Cell Internal Power 14.1845 µW

Net Switching Power 1.7982 µW

Total Dynamic Power 15.9827 µW

Cell Leakage Power 26.8152 µW
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Fig. 4.2. Example and flow of TCL script for PrimeTime [9].
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Fig. 4.3. Screen shot of clock gating report.

Table 4.2.
Power report of sequential comparator

Power type Value

Cell Internal Power 27.3736 µW

Net Switching Power 2.1084 µW

Total Dynamic Power 29.482 µW

Cell Leakage Power 32.8137 µW
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Table 4.3.
Power report of execution unit before and after optimization

Power type Before Optimization After Optimization

Cell Internal Power 66.0203 µW 62.7846 µW

Net Switching Power 7.9809 µW 5.1589 µW

Total Dynamic Power 74.0012 µW 67.9435 µW

Cell Leakage Power 1.3758e+08 pW 2.1906e+08 pW

Table 4.4.
Timing report of execution unit before and after optimization

Clock Period before Optimization Clock Period after Optimization

55.26 ns 39.47 ns
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5. SUMMARY

5.1 Thesis Conclusion

Symbiote Coprocessor Unit is an FPGA-based data stream coprocessor with high

performance when compared with other software-based data stream processing meth-

ods. The objectives of this thesis study are (i) to pioneer SCU’s ASIC implementation

and (ii) to improve its timing and power requirements by adopting various optimiza-

tion methodologies into the design. The following is a list of all implementations and

modifications that are applied in this thesis work.

• Application specific integrated circuit implementation of arithmetic and logic

unit of SCU. This is to accomplish the objective of pioneering the ASIC imple-

mentation of SCU.

• Integration of ACG and OCG modules. Standard cell library has enable FFs

which are more efficient than these modules. However, the ACG and OCG

modules were developed specifically considering that in the future they could

be instantiated in a full custom design where the library used may not have

enable FFs.

• Design and integration of double-word shifters instead of multipliers and di-

viders. Binary multiplication or division by a number in the sequence of 2, 4,

8, . . . is just a left or right shift of the other operand by respective number

of times. This process does not need multipliers and dividers that have power

hungry XOR gates. Therefore, shifters were introduced into the circuit to carry

out these processes.

• Design and addition of sequential comparators. Comparators are the modules

that have a large number of XOR gates. However, many comparison results can

be obtained with just comparing the MSBs of the operands.
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• Integration of operand isolation. The signals to ALU do not arrive at the same

time, which causes unwanted switching of ALU and provide temporary results

that are not of interest. This unwanted switching of input pins of ALU is

prevented if the operands are latched and synchronized before they reach the

ALU inputs.

• Buffer insertion. Buffers or inverters are added into the interconnects to reduce

the propagation delay.

• Alteration of cell sizes. This method decreases cell delay by choosing cells with

higher driving strengths.

• Swapping of cells. Cells with low threshold voltage in non-critical paths are

being swapped with high threshold voltage cells and vice versa to reduce delay.

The above-listed modifications were performed and analyzed iteratively. As a

result, the new design attains 67.9435 µW of dynamic power as compared to 74.0012

µW before power optimization along with a small increase in static power, and 39.47

ns of clock period as opposed to 52.26 ns before time optimization.

The reason that the system could not achieve a very high reduction in power

consumption is that, the modifications done in this work do not consider whether

the tuples that would be entering the system are of temperature or of pressure or of

any other data. If the system is chosen to be operated in a particular environment

and expects a particular set of operations and tuples, then, it can be optimized

exclusively to that environment and operations may get higher reduction in power

consumption. The results of the optimization techniques used in this work were

satisfying the objectives of study.

5.2 Future Work

This work is successful in implementing the VLIW execution unit of symbiote

coprocessor unit in an application specific integrated circuit hardware. The ASIC

perspective of SCU opens door for many future works such as:
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• ASIC implementation of whole SCU with an FSM replacing MicroBlaze.

• Incorporation of more optimization techniques to reduce delay, power consump-

tion, and area.

• Integration of Design For Test (DFT) elements such as scan FFs into SCU and

testing.

• Placement and routing, clock-tree synthesis, and tape-out of SCU.

Note that the standard cell library used in this study was 28 nm technology.

However, in the future, implementing SCU with this library may become obsolete as

the current trend in industries is in the levels of 5 and 7 nm technologies. It must

be noted that the results for the same modifications would change as the technology

scales down. There are possibly many changes for this trend, among which a few are

listed below. As the technology scales down:

• Channel length under the oxide layer of MOSFET decreases.

• Gate oxide thickness decreases, due to which, tunneling current increases which

in turn increases overall leakage current.

• The width of depletion region between source/drain and the substrate decreases.

• Supply voltage decreases, which helps in decreasing delay of gate.

• Package density of integrated circuit increases.

• Frequency response improves.

• Driving current from sources to drain increases, which helps in decreasing delay.

• The saturation current also increases.

As a result of above-mentioned trends and other physical characteristics of scaled-

down technology, the gate delay is expected to be reduced. However, the leakage

power and dynamic power may not show a similar trend. Leakage power density

increases as the gate is down scaled due to the increase in leakage current in smaller

gates. Dynamic power would show a slight increase in its power density as tech-

nology is scaled down. These trends must be noted when the same design is being

implemented with a different technology library in the future.
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