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ABSTRACT

Phillips, Tyler S. M.S., Purdue University, May 2020. Privacy-Preserving Facial
Recognition Using Biometric-Capsules. Major Professor: Xukai Zou.

In recent years, developers have used the proliferation of biometric sensors in

smart devices, along with recent advances in deep learning, to implement an array of

biometrics-based recognition systems. Though these systems demonstrate remarkable

performance and have seen wide acceptance, they present unique and pressing security

and privacy concerns. One proposed method which addresses these concerns is the

elegant, fusion-based Biometric-Capsule (BC) scheme. The BC scheme is provably

secure, privacy-preserving, cancellable and interoperable in its secure feature fusion

design.

In this work, we demonstrate that the BC scheme is uniquely fit to secure state-

of-the-art facial verification, authentication and identification systems. We compare

the performance of unsecured, underlying biometrics systems to the performance of

the BC-embedded systems in order to directly demonstrate the minimal effects of

the privacy-preserving BC scheme on underlying system performance. Notably, we

demonstrate that, when seamlessly embedded into a state-of-the-art FaceNet and

ArcFace verification systems which achieve accuracies of 97.18% and 99.75% on the

benchmark LFW dataset, the BC-embedded systems are able to achieve accuracies

of 95.13% and 99.13% respectively. Furthermore, we also demonstrate that the BC

scheme outperforms or performs as well as several other proposed secure biometric

methods.
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1. INTRODUCTION

Through the use of biometric systems, users are able to utilize their intrinsic physiolog-

ical (face, iris, fingerprint, etc.) and behavioral (speech, gait, mobile swiping patterns,

etc.) biological traits in order to be recognized [1]. This grants the user the conve-

nience of not needing to carry with them a traditional knowledge-based or physical

object-based credentials (i.e. passwords or smart cards). Though biometrics-based

systems offer this convenience, they also present their own set of pressing security

and privacy concerns [2]. If an attacker is able to steal the biometric template of a

victim, the victim’s biometrics are forever lost to the attacker. The victim cannot

reasonably revoke and reset their physiological or behavioral traits, as they could for

a stolen password or smart card. Furthermore, through analysis of a stolen biometric

template, an attacker may be able to derive private, personal information about the

victim user, such as ethnicity, age, gender, health condition [3–5].

In paper [6], the authors propose the Biometric-Capsule (BC) scheme in order to

address these pressing security and privacy concerns. This fusion-based cancellable

biometric scheme involves the introduction of a reference subject (RS). Each user

chooses (or is assigned) an RS during enrollment. Then, in order to carry out any

biometric recognition task, a user’s sampled biometrics are securely fused with the

biometrics of their corresponding RS in order to yield a resulting BC. Through the BC

scheme’s secure fusion process, the contributions of the user and RS features toward

the resulting BC are masked. Therefore, analysis of the resulting BC does not reveal

the user or RS biometric features, even in the case most favorable to an adversary.

In this work, we embed the BC scheme into state-of-the-art facial recognition

systems which leverage recently proposed deep learning-based techniques. This allows

us to demonstrate several highly advantageous properties of the BC scheme and make

several novel contributions:
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(1) The BC scheme is interoperable in design and requires no fixed biometric sam-

pling, detection, alignment, segmentation, feature extraction, feature representation

or classification techniques in order to accommodate it. Therefore, the BC scheme

can be seamlessly embedded into existing systems which use the most current and

robust techniques as they are developed. This use of state-of-the-art techniques in

conjunction with the BC scheme addresses several performance and flexibility issues

challenging other proposed secure biometrics methods [7, 8].

(2) Through comparison of underlying systems and BC-embedded systems, we are

able to directly demonstrate the performance effects of embedding the BC scheme

into an underlying system. This minimal effect (and sometimes improvement) upon

underlying performance provides strong motivation for the use of the BC scheme to

secure state-of-the-art systems.

(3) As the BC scheme is both provably privacy-preserving and uniquely fit to

secure state-of-the-art systems, it is able to effectively address emerging user concerns

surrounding biometric technologies [9–12].
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2. RELATED WORKS

In recent years, many methods have been proposed and investigated in hopes of ro-

bustly securing biometric templates. According to Jain et. al. [13], an ideal secure

biometric system should possess many attributes including: biometric template secu-

rity, cross-matching resistance, privacy-preservation and minimal negative effects on

classification performance. Two broad classes of approaches for securing biometric

templates have emerged: biometric cryptosystems (BCS) and cancellable biometrics

(CB).

2.1 Biometric Cryptosystems

BCS approaches either bind information with biometric templates or use biomet-

ric templates directly to generate keys which are then used in place of biometric

templates. Both types of approaches yield biometric-dependant public data known

as helper data. This helper data is stored by the system during enrollment and, as

a result, must preserve user privacy. Based on how this helper data is used within

the system, BCS can be split into two sub-classes of approaches: key binding and

key generation schemes. In key binding schemes, a user must provide secret infor-

mation which is combined with their biometric template in order to generate helper

data. Keys can then be derived from the resulting helper data. Fuzzy vault and

fuzzy commitment schemes, such as [14–16], are examples of key binding schemes.

In key generation schemes, helper data is derived directly from the original biomet-

ric template. As in key binding schemes, keys are derived from the resulting helper

data. Fuzzy extractor and secure sketch schemes, such as [17–19], are examples of

key generating schemes.
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2.2 Cancellable Biometrics

CB approaches involve applying transformations directly to a biometric template

such that retrieving the original biometric template is computationally costly. The

altered biometric templates are then used for recognition. Then, if such a cancellable

template is stolen, the attacker cannot derive the personal information of the user.

In addition, the user can revoke, or cancel, the cancellable biometric template and

alter their biometrics differently for future recognition tasks. CB approaches can be

divided into two sub-classes: salting schemes and noninvertible transformations. In

salting schemes, users provide secret information such as a password or PIN. Their

biometric template is then transformed by an invertible function with respect to the

provided secret information. Since these transformations are typically invertible to

some extent, the secure storage of each user’s corresponding secret information be-

comes of the utmost importance. Examples of salting schemes include [20–22]. In

noninvertible transformations schemes, a biometric template is transformed using a

noninvertible (or one-way) function. Unfortunately, many noninvertible transforma-

tions systems are not provably secure, and are indeed invertible under certain condi-

tions [7]. Along with the BC scheme [6], examples of noninvertible transformations

systems include [23,24]. For both salting and noninvertible transformations schemes,

the transformations applied to biometric templates must be chosen with care. On

one hand, the transformations must conceal user biometrics if transformed templates

are compromised. Furthermore, the transformations must preserve user privacy. On

the other hand, if these transformations raise inter-class similarity or raise intra-class

variability, the performance of the biometric recognition system will suffer [1, 8].

For an extensive overview of proposed BCS and CB, their respective vulnerabilities

and benchmark results please see [7, 8, 13,25].
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3. BIOMETRIC-CAPSULE SCHEME

3.1 Biometric-Capsule Generation

The BC scheme is an elegant feature fusion-based CB method. Its secure fusion

process involves three main steps which take place after feature extraction/representation

and before classification within a biometric recognition work-flow. As shown in

Fig. 3.1, the BC scheme takes two feature vectors as input, one belonging to a user

and the second belonging to the user’s corresponding RS. Using the two input feature

vectors, three steps are carried out in order to generate a BC: (1) signature extraction,

(2) key generation and (3) secure fusion. The overall BC generation workflow can be

seen in Fig. 3.1. Furthermore, the Python pseudo-code for each BC generation step

can be seen in Algo. 1. Here, we discuss each of these BC generation steps in detail.

User Facial 

Features

RS Facial

Features

Signature 

Extraction

𝑠(𝑥)

Key

Generation

𝑘(𝑥)

𝑠: 𝑥 ∈ ℝ512 → 𝑠(𝑥) ∈ ℤ32 𝑘: 𝑥 ∈ ℤ32 → 𝑘(𝑥) ∈ {±1}512

User Signature

RS Signature

User Key

RS Key

Secure

Fusion

𝑣(𝑤, 𝑥, 𝑦, 𝑧)

𝑣:𝑤, 𝑥 ∈ ℝ512 𝑦, 𝑧 ∈ {±1}512

→ 𝑣(𝑤, 𝑥, 𝑦, 𝑧) ∈ ℝ512

Privacy-Preserving

Biometric-Capsule

Biometric-Capsule Generation

Fig. 3.1. Biometric-Capsule (BC) generation involving signature ex-
traction, key generation and secure fusion
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3.1.1 Signature Extraction

The first step in the BC generation process is signature extraction. This step

involves extracting a lower-dimensional, representative signature from a facial feature

vector. To perform signature extraction, we use a three-level averaging method similar

to the one proposed by [26], although a different signature extraction method could

be used if the system designer wishes. In our experiments, the chosen method first

involves the reshaping of input feature vector from shape IR512 to IR32x16. Next, a

IR5x5 kernel is used to perform a padded averaging convolution. This means that an

average value of the area covered by the kernel is found and the feature matrix is

padded such that the result of the convolution is the same size as the input. Next,

the difference between the original feature matrix and the resulting convolved matrix

is found. Then, a row-wise average of the resulting matrix is obtained. Finally, the

resulting vector values are multiplied by 103, rounded to integer values and mapped

to values positive integer values through an absolute value operation to obtain the

input feature’s Z32 signature vector.

It can be seen that this signature extraction step represents a one-way function

as, given an input feature vector, x ∈ IR512, it easy to compute (as shown in Algo. 1)

a signature vector, s(x) ∈ Z32, but, given a resulting signature vector, s(x) ∈ Z32,

it is impossible to determine the feature vector, x ∈ IR512, from which the signature

vector was derived.

3.1.2 Key Generation

The second step of the BC generation process is key generation. The key gener-

ation process utilizes a feature’s extracted signature, x ∈ Z32, as input. Each of a

signature’s 32 integer values are used as seeds in a random number generator (RNG)

to generate 16 uniformly random values (for a total of 512 random values) between 0

and 1. These randomly generated values are placed into a key vector 512 (the same

shape as the initial FaceNet feature embedding). Finally, all values within the key
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are rounded and all resulting 0 values are changed to -1. As shown in Fig. 3.1 and

Algo. 1, the key generation process will finally result in a key vector of 512 values of

1 or -1, i.e. k(x) ∈ {±1}512.

It can be seen that this key extraction process does not reveal information regard-

ing the original input feature vector. This key extraction process represents another

one-way function. Given signature value seeds, x ∈ Z32, and a RNG, it is easy to

generate a set of randomly uniform values and then map them to a vector of 1 or -1,

k(x) ∈ {±1}512, but, given a set of randomly uniform values mapped to values of 1

or -1, k(x) ∈ {±1}512, it is impossible to deterministically derive the signature value

seeds, x ∈ Z32, used by the RNG to generate the set.

3.1.3 Secure Fusion

The final step of the BC generation process is the secure fusion step. From this

secure fusion step, a resulting Biometric-Capsule is obtained. Secure fusion takes

two feature vectors as input, one belonging to a user and the other belonging to the

user’s corresponding RS. The two keys generated using the two features are also used

as inputs. The user key is used to transform the RS feature through element-wise

multiplication. Likewise, the RS key is used to transform the user feature through

element-wise multiplication. Through these transformations, the contribution of the

features to the final resulting BC is masked. Finally, the altered biometrics are fused

through an unweighted addition operation to obtain a BC (as shown in Fig. 3.1 and

Algo. 1).

This Secure Fusion step can be simply represented using the following equation:

v(w, x, y, z) = w ∗ z + x ∗ y (3.1)

where w ∈ IR512 and x ∈ IR512 are the user and RS features respectively, y ∈ {±1}512

and z ∈ {±1}512 are the user and RS keys respectively, ∗ is an element-wise mul-

tiplication, + is a simple vector addition and v(w, x, y, z) ∈ IR512 is the resulting

BC.
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A few points of this secure fusion process should be noted. First, no feature

information is lost when a feature is altered through the element-wise multiplication

with a key. Since the keys used for feature alteration only contain values of 1 or -1,

feature values can only possibly be unaffected or negated. Second, no weight is given

to the user or RS features when fusion occurs. This means the altered user and RS

features contribute equally to the final, resulting BC. After a BC is generated it can

be used for any biometric recognition task.

3.2 Notable Attributes of the Biometric-Capsule Scheme

In a BC-embedded biometric recognition system, the BC scheme is used to al-

ter all biometrics sampled by the system. A BC-embedded system performs BC

fusion between feature extraction/representation and classification steps (as shown

in Fig. 4.1). Therefore, each time the user’s biometrics are sampled by the system,

the user’s biometric features are fused with the biometric features of the user’s cor-

responding RS. As a result, BCs, rather than the original user biometric features,

are used for recognition tasks. Then, if an attacker infiltrates the BC-embedded

system, BCs are compromised rather than unsecured and sensitive information di-

vulging biometric templates. Furthermore, if any security concern exists, users can

revoke compromised BCs and can use a different RS for BC generation in the future.

In previous works, [6] indicated that the BC approach has minor negative affects on

underlying iris authentication system accuracy. Furthermore, [27, 28] demonstrated

that the BC scheme could be used to secure facial authentication systems and be used

alongside deep learning techniques.

The elegant, simple design of the BC scheme yields highly advantageous prop-

erties. Rather than dictating which biometric sampling, segmentation, alignment,

feature extraction, feature representation or classification steps occur within a bio-

metric system in order to accommodate it, the BC scheme’s flexible design allows

it to instead be embedded within existing systems. This gives system designers the
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Algorithm 1: Biometric-Capsule Generation Python Pseudo-Code

1 import numpy as np

2 from scipy.signal import convolve2d

3 signature extraction (feature ∈ IR512)

4 lvl1 = convolve2d(

feature.reshape(32, 16), np.ones((5, 5))/25.,

mode =′ same′, boundary =′ wrap′)

5 lvl2 = feature.reshape(32, 16) − lvl1

6 lvl2 = np.average(lvl2, axis = 1) ∗ 1000.

7 signature = np.around(lvl2).astype(int)

8 signature = np.abs(signature)

9 return signature ∈ Z32

1 key generation (signature ∈ Z32)

2 key = np.empty((0, ))

3 for s in signature do

4 np.random.seed(s)

5 key = np.append(

key, np.random.choice(2, 16))

6 end

7 key = (key ∗ 2)− 1

8 return key ∈ {±1}512

1 secure fusion

(u feature ∈ IR512, u key ∈ {±1}512, rs feature ∈ IR512, rs key ∈ {±1}512)

2 bio capsule = u feature ∗ rs key + rs feature ∗ u key

3 return bio capsule ∈ IR512

flexibility to design an underlying biometric system how they wish, with no direct

consideration for the BC scheme. After designing an underlying system, the system



10

designer can then embed the BC scheme within their system’s pipeline between fea-

ture extraction/representation and classification steps in order to secure it and to

protect the privacy of its users.

This advantageous property differs from many other secure biometric methods

which make explicit or implicit constraints upon the work-flow of an underlying sys-

tem in order to accommodate them. In principle, the BC scheme can be embedded

into any existing biometric system and utilize the system’s current biometric tech-

niques. As shown in Fig. 3.1, only the BC scheme’s secure fusion process, involving

signature extraction, key generation and feature fusion steps (which themselves are

flexible), must be embedded into the existing system. This allows for the BC scheme

to be embedded into underlying biometric systems which use the most current and

robust biometric techniques as they are developed. This is quite advantageous indeed,

as many recently proposed deep learning-based biometric techniques have been shown

to be extremely robust and accurate [29,30]. Therefore, the BC scheme can leverage

the highly discriminative features of underlying state-of-the-art systems, while pro-

viding robust security and privacy benefits, and only degrading underlying system

performance slightly. In Fig. 3.2, we illustrate the t-SNE projection [31] of FaceNet

features [32] (the most widely accepted deep learning facial feature representation

method), ArcFace features [33] (the current state-of-the-art facial feature representa-

tion method) and corresponding BCs (all generated using a single RS) of 6 similar

subjects with a few hundred images each. Note that, while a human may find it hard

to discern inter-class differences between the classes, the FaceNet and ArcFace feature

representations are able to be easily separated into distinct classes with few errors.

Furthermore, for the most part, the BC versions of the underlying features preserve

the clear separability of the classes while rearranging their relative positions. Due

to its elegant design, the BC scheme is uniquely fit to secure biometric recognition

systems which utilize these techniques.

Though the BC scheme introduces no constraints upon a system’s preprocessing,

feature extraction, or classification steps, the BC scheme does require the introduction
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of RSs. Anytime a biometric template must be generated by the system, an RS must

be retrieved by (or provided to) the system. This is because, without an RS, BC

fusion is not possible.

Fortunately, how RSs are incorporated within a BC-embedded system is quite

flexible. During enrollment, a new user is assigned (or chooses) a corresponding

RS. The RS can be made public or kept private (with no loss in privacy benefits as

shown later in this section). All users can be assigned (or choose) a unique RS, or

sets of users can be assigned (or choose) the same RS. Since user and RS biometrics

contribute equally in BC fusion, multiple users having the same RS introduces no

security concerns as we will show later in this section. Later, when presenting their

biometrics to the system in order to carry out a recognition task, the user could

provide their RS to the system in a variety of different ways. A few examples are:

• In high security scenarios, an RS could be a physical object kept by the user

and provided at recognition time. In this type of system, only a database of

registered BCs would need to be maintained by the system. Storing RSs and

information about which user(s) each RS corresponds to would not be necessary.

• A set of RSs could also be provided by the system for the user to choose from

at recognition time. In this type of system, a database of registered BCs and

RSs would need to be maintained by the system. Storing information about

which user(s) each RS corresponds to would again not be necessary.

• The system could store and automatically use the user’s corresponding RS at

recognition time. This method would provide the most convenience to the user

as they would not need to keep track of their RS. As a result, the BC scheme

would be fully-transparent to users. Despite this transparency, users would still

be protected by the BC scheme’s robust security and privacy benefits. In this

type of system, a database of registered BCs, RSs and information about which

user(s) each RS corresponds to would need to be maintained.
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Fig. 3.2. t-SNE visualization of FaceNet, ArcFace and correspond-
ing BC templates (using a single RS for BC generation) of 6 similar
looking subjects

It should be noted that the user biometric features (which are fused with cor-

responding RS features to form BCs) are not stored by any of the aforementioned

systems. Ultimately, how RSs are incorporated in a BC-embedded system is the sys-

tem designer’s choice and should reflect and enhance the use case of the underlying

biometric system.
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3.3 Security and Privacy of the Biometric-Capsule Scheme

In this work, we will consider a secure biometric template to be privacy-preserving

if it can robustly secure and mask the user biometrics which were leveraged to gen-

erate the secure biometric template. Therefore, in this context, privacy refers to the

confidentiality of unsecured biometric templates and the sensitive biometric traits

that can be derived from such unsecured templates.

In addition to being flexible in design, the BC scheme also offers robust, provably

secure and privacy-preserving benefits. Since the signature extraction, key generation

and fusion steps of the BC scheme each have one-way properties, the resulting BC

scheme can be shown to be essentially a one-way function. In paper [6], authors

formally proved many security and privacy benefits of the BC scheme. These benefits

include that the BC scheme is robust in defending against the following four types of

attacks. (1) The first type of attack is the case in which a BC is stolen and the attacker

then attempts to derive the user’s biometric features, which is impossible due to that

it will be equivalent to solving an underdetermined equation (as shown in Eq. 3.1).

(2) The next type of attack is the case in which the attacker has stolen a user’s

BC and the user’s corresponding RS. This will result in the attacker deriving two

possibilities for each value of the user’s feature vector (as they will need to guess 1 or

-1 for each value within the user’s key). This means that the number of possible user

feature vectors will grow exponentially with respect to size of the user feature vector.

In our proposed system O(2512) ≈ O(10154) possible feature vectors can be derived,

making obtaining the user’s true feature vector computationally infeasible. (3) The

third type of attack is the case in which the attacker attempts to derive the RS from

multiple stolen BCs of one or multiple users, which is to solve an underdetermined

system of equations and, thus, is impossible. (4) The final type of attack is the case

the attacker has stolen multiple BCs (where the BCs belong to several or one user)

and their corresponding RSs, which is results in many sub-cases of (2), which are

computationally infeasible. The detailed, formal proofs can be found in [6].
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4. DESIGN OF STATE-OF-THE-ART FACE

RECOGNITION SYSTEMS

In this section we propose state-of-the-art biometric recognition systems to carry out

facial verification, authentication and identification. As previously noted in Sec. 3,

the BC scheme can be seamlessly embedded within these underlying systems. Since

the BC scheme is flexible in design, we aimed only at using the most popular and

state-of-the-art techniques (particularly involving recent deep learning techniques)

while designing these underlying systems. While designing the systems, we made

no direct considerations about how the chosen techniques would work in conjunction

with the BC scheme.

The underlying verification, authentication and identification systems are quite

similar. In fact, they perform the same steps and only differ at the classification

step, as verification, authentication and identification are fundamentally different

classification problems. Biometric verification is a binary classification problem in

which one must determine if two biometric templates belong to the same person.

Biometric authentication is a binary classification problem where one must decide

if a query biometric template belongs to the enrolled subject whom it claims to

be. Biometric identification is a multi-class classification problem in which one must

determine the identity of a query biometric template given a group of enrolled users.

The enrollment and recognition work-flows used by the proposed BC-embedded

authentication systems can be seen in Fig. 4.1. Each of the proposed systems work

using three main steps: (1) preprocessing (including biometric detection, alignment

and segmentation), (2) feature extraction and representation and (3) classification.
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Fig. 4.1. Work-flow of the BC-embedded facial authentication system
used in our experiments.

4.1 Preprocessing

The first step of each of the systems is to perform preprocessing tasks including

biometric detection, alignment and segmentation. Biometric detection is the process

of detecting a region of interest within a biometric signal from which features can

be extracted and, in turn, can be used for recognition tasks. Alignment is then the

process of normalizing the captured biometric region of interest. Finally, segmentation

is the process of segmenting (in this case cropping) the relevant, aligned parts of the

biometric signal for later feature extraction and recognition tasks. These tasks were

accomplished through the use of detected facial bounding boxes and landmark points.

We chose to utilize the popular Multi-Task (Cascaded) Convolutional Neural Net-

work (MTCNN) method [34] within our biometric recognition systems. This widely-

accepted deep learning-based method is quite robust and out-performed other prepro-

cessing methods which we tried. This method uses a cascade of three convolutional

neural networks (CNNs) to perform detection of faces and facial landmarks. The first

CNN in the cascade, the Proposal Network (P-Net), is used to generate candidate

bounding boxes which potentially contain faces. The second CNN in the cascade, the

Refinement Network (R-Net), takes the P-Net candidate bounding boxes as input and

attempts to reject false candidates. The final CNN in the cascade, the Output Net-
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work (O-Net), takes the refined R-Net candidate bounding boxes as input, attempts

to reject more false candidates and finally outputs each remaining candidate detec-

tion along with five corresponding fitted facial landmark points (left/right eyes, tip

of the nose, left/right sides of the mouth). We were able to find and utilize an open

source implementation of MTCNN given by [35] which was trained on the WIDER

FACE [36] and CelebA [37] datasets.

We leveraged information about our experimental datasets in order to decide what

to do in the cases of multiple or no facial detections. In the case of multiple facial

detections, we decided to select the center-most face in the image as the only face

to consider in further steps within the systems’ work-flows. Any other facial detec-

tions were then ignored and not considered further. In the case where no faces were

detected, we decided to skip alignment and segmentation steps and directly forward

the entire image to the feature extraction step. These ad-hoc heuristics worked well

for our experimental setting as each image in all the experimental datasets contained

a face (typically the center-most face) to be used for recognition or verification tasks.

In other non-experimental settings, particularly in high security scenarios, it may be

more suitable to reject images which contain no or multiple detected faces.

After we retrieved the (center-most) facial detection bounding box and five cor-

responding facial landmark points, we performed alignment and segmentation. To

perform alignment, we performed an Affine transformation such that the two eye fa-

cial landmarks would be appear at a fixed location. We chose to include a 42-pixel

margin around the bounding box in order to capture additional facial features such

as chin shape, hair line, color and style, ears, etc.

4.2 Feature Extraction and Representation

The second step of the biometric recognition systems is feature extraction and rep-

resentation. We decided to implement two versions of each system, each of which uses
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a popular facial feature representation method, to demonstrate the interoperability

of the BC scheme.

4.2.1 FaceNet Feature Representation

The first version of the systems utilizes the very popular and most widely adopted

2015 FaceNet method [32]. The system first extracts facial features from a prepro-

cessed facial image using a deep Inception-ResNet-v1 architecture CNN [38]. Next,

using the FaceNet Triplet Loss [32], extracted features are then embedded into a com-

pact 512-dimensional space in which Euclidean distance directly corresponds to facial

dissimilarty (i.e. a larger distance between feature vectors directly denotes larger

facial dissimilarity).

We were able to find and utilize an open source FaceNet model given by [39] which

was trained on the CASIA WebFace dataset [40].

4.2.2 ArcFace Feature Representation

The second version of the systems utilizes the current state-of-the-art feature

representation method, the 2019 ArcFace method [33]. This version of the system

extracts facial features from a preprocessed facial image using an extremely deep 100-

layer ResNet model [41]. Next, using the ArcFace Additive Angular Margin Loss [33],

features are then embedded onto a sphere where angular distance directly corresponds

to facial dissimilarty.

The Additive Angular Margin Loss (AAML) gives the ArcFace method several

notable advantages over the FaceNet method’s Triplet Loss (TL). AAML is derived

by performing slight modifications to plain Cross-Entropy and Softmax Loss, making

it much more computationally efficient than TL which requires building triplets of

feature embeddings before TL can be computed. Furthermore, AAML contains a

margin penalty term which penalizes the correct classifications when training a model

using AAML. Through the use of this margin penalty term, AAML is able to yield
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discriminative features vectors in which the features of different subjects are separated

by easily-interpretable linear margins. For additional details regarding the two feature

representation methods please see the original papers, [32,33], or deep face recognition

survey [30].

We were able to find and utilize an open source ArcFace model given by the

ArcFace authors [35] which was trained on the MS-Celeb-1M dataset [42].

It should be noted that both the FaceNet or ArcFace feature extraction and rep-

resentation models yield 512-dimensional feature vectors. These feature vectors can

be used in BC generation as shown in Sec. 3 in a BC-embedded facial recognition

system or directly for recognition tasks in an unsecured, underlying system.

It should also be noted that the inversion of facial feature vectors, such as the

feature vectors produced by the FaceNet and ArcFace method, to their correspond-

ing facial images is an active area of research. In recent works [43, 44], researchers

have proposed effective methods which transform facial feature embeddings to fa-

cial images that visually reveal the private personal information (ethnicity, gender,

age, etc.) of users. Such inversions would not be applicable to fused BC templates.

Therefore, BC fusion is able to preserve user privacy while, at the same time, make

use of effective deep learning feature embedding techniques, such as the FaceNet and

ArcFace methods.

4.3 Classification

After extracting features from a preprocessed image, the BC-embedded system will

then carry out BC generation using the steps outlined in Sec. 3. After BC generation,

the BC-embedded system is ready to perform classification and carry out recognition

tasks. An unsecured underlying system, on the other hand, will be ready to perform

classification directly after performing feature extraction and representation. In either

case, classification will work exactly the same as the unsecured feature templates and

secured BC templates are 512-dimensional vectors.
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To perform verification, we simply compare the extracted features/BCs of two

facial images. We obtain the Euclidean distance between the features/BCs. If this

distance is greater than a predefined threshold (obtained through analysis of training

comparisons), the images are predicted as belonging to different subjects. Likewise, if

the distance between the features/BCs is equal to or below the predefined threshold,

the images are predicted as belonging to the same subject.

To perform authentication, a binary Logistic Regression (LR) classifier is trained

for each subject during enrollment. Each subject’s LR is trained with using all en-

rolled features/BCs. The features/BCs of the LR’s corresponding subject are used as

positive samples. Every other subject’s enrolled features/BCs are then used as nega-

tive samples. Given a query feature/BC and a subject the query feature/BC claims

to be, the authentication system classifies the query feature/BC using the claimed

subject’s binary LR. This results in a binary classification decision indicating whether

the query feature/BC is predicted to be the subject whom they claim to be. If the

classifier indicates the test feature/BC is the subject, the feature/BC is authenticated

by the system (or rejected otherwise).

To perform identification, a single multiclass LR model is used. All registered

features/BCs in the biometric identification system are given to the multiclass LR

for training. Query features/BCs are classified by the multiclass LR as the subject

whose registered features/BCs most closely match the query feature/BC.
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5. EXPERIMENT

We begin our experiment by comparing the performance of the proposed underlying

authentication, identification and verification systems with the performance of the

BC-embedded systems. These comparisons directly reveal how embedding the BC

scheme into an existing biometric system will affect the underlying system’s perfor-

mance. Then, we also compare the BC scheme to many popular cancellable biomet-

rics (CB) and biometric cryptosystem (BCS) approaches. These comparisons further

demonstrate the novel, advantageous attributes of the BC scheme. Overall statistics

regarding each of the experimental datasets can be seen in Table 5.1.

For the BC-embedded version of each system, we generate BC templates by fusing

any extracted user feature with a single, shared RS. Use of a single, shared RS allows

the system to automatically generate BCs without any additional input from a users

(i.e. only their sampled biometrics are still needed for recognition tasks). Therefore,

the BC scheme is highly usable and fully transparent to users. As the usability of the

single RS BC-embedded systems is equivalent to the underlying systems, comparisons

of system performances only gauge the relative effectiveness of using features verses

BCs in recognition tasks. As previously stated in Sec. 3, use of a single, shared RS

does not compromise the privacy of sensitive user information. It should be noted

though, if a unique RS is assigned to each user, kept secret by the user and presented

to the system at recognition time, the BC scheme performance is likely to outperform

the underlying system at the cost of reduced usability [28].

Before analyzing the relative performance of the BC-embedded system, the over-

head of the BC scheme should be noted. Using a Dell laptop’s 2-core Intel Core

i7-6500u CPU, generating each BC takes ˜0.012 seconds. It should be noted that

the BC generation time is substantially faster than preprocessing and feature extrac-

tion/representation steps which take ˜0.2 and ˜0.185 seconds respectively using the
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same Intel Core i7-6500u CPU. Therefore, the inclusion of the BC scheme does not

greatly affect the scalability of an underlying biometric system in terms of efficiency.

This is particularly true if the BC scheme is embedded into systems in which RS fea-

tures and keys are pre-computed. Furthermore, in terms of storage, a BC is equivalent

to an underlying feature embedding.

For each test, we report several metrics commonly used to evaluate biometric

recognition systems [1], such as: total false positive classifications (Total FP), to-

tal fall negative classifications (Total FN), total misclassifications (ERR), accuracy

(ACC), precision (PRE), recall (REC), F1-score (F1), false acceptance rate (FAR),

false rejection rate (FRR), equal error rate (EER) and area under the receiver oper-

ating characteristic curve (AUC).

Table 5.1.
Experimental Datasets Overall Statistics

Dataset Number of Subjects Number of Images

ORL [45] 10 400

Yale Faces [46] 15 165

Yale Faces B [47] 28 16,128

IMM [48] 40 240

Caltech Faces [49] 28 445

GTDB [50] 50 750

FEI [51] 200 2,800

FERET Color [52] 994 11,338

CMU (Pose) [53] 68 12,240

CMU (Illumination) [53] 68 21,216

CMU (Expression) [53] 68 3,016

LFW [54] 13,233 5,749

LFW (Subset) [54] 423 5,985
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Table 5.2.
Verification Experiment Results

Dataset Method Total FP Total FN ACC (%) PRE (%) REC (%) F1 (%)

LFW [54]

FaceNet 38 131 97.1833 98.7071 95.6333 97.1344

FaceNet+BC 118 174 95.1333 96.0076 94.2000 95.0837

ArcFace 0 15 99.7500 100 99.5000 99.7484

ArcFace+BC 12 40 99.1333 99.5988 98.6667 99.1256

5.1 Facial Verification

For our verification experiment, we utilize the highly unconstrained, benchmark

Labeled Faces in the Wild (LFW) dataset [54]. This dataset contains 13,233 im-

ages of 5,479 subjects. We compare the performance of the underlying system and

the BC-embedded system under the View 2 testing method defined for the LFW

dataset [55]. The View 2 testing method provides a predefined 10-fold cross valida-

tion split of the dataset. Each testing fold contains 300 matching and 300 mismatching

biometric template comparisons. Each training fold contains approximately 575 sub-

jects and their corresponding images. These training images can be used to generate

biometric templates which can then be used to generate pair-wise training compar-

isons. Based on the training comparisons, later test comparisons can be predicted

as matching/mismatching subject template comparisons. Therefore, this verification

experiment directly evaluates the discriminative power of the FaceNet, ArcFace and

corresponding BC templates. For reference, DeepFace authors [56], have reported the

human accuracy in LFW verification as 97.53%. The macro-average results of the

10-fold cross validation experiment can be seen in Table 5.2.

As seen in Table 5.2, the underlying FaceNet system achieves an accuracy of

97.1833%. It should be noted that this result is significantly lesser than the 99.63%

accuracy reported by the FaceNet authors as they trained their model with a private

dataset of over 200 million images [32], whereas our FaceNet model was trained using
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a dataset of 450 thousand images [40]. The underlying ArcFace system, on the other

hand, achieves an accuracy of 99.13%, surpassing human accuracy by a significant

margin [56]. This accuracy is much more similar to the current state-of-the-art result,

99.82%, reported by the ArcFace authors [33].

The effect of the BC scheme on the underlying systems can also been seen in Ta-

ble 5.2. As one would suspect, the BC-embedded system has lesser performance than

their underlying system counterparts. One interesting observation (which the reader

may notice in the following experiments as well) is that the BC-embedded ArcFace

system is able to outperform the BC-embedded FaceNet system. Furthermore, the

BC scheme decrements the accuracy of the underlying FaceNet system more than the

underlying ArcFace system. This is likely due to the nature of the BC generation

process. As shown in Algo. 1, the BC generation process derives representative keys

from input user and RS feature vectors. As we use a fixed RS in all experiments, the

RS feature and key used in BC generation will always be constant. This will likely

lower inter-class variability and partially account for for the lesser performance of

BC-embedded systems. The use of user features and keys in BC generation must also

be considered. If the underlying user feature representation is able to produce better

intra-class compactness and inter-class variability, more discriminative user keys will

be generated during the BC generation process. Likewise, the if the underlying user

feature representation produces lesser intra-class compactness and inter-class variabil-

ity, less discriminative user keys will be generated during the BC generation process

and, as a result, further degrade the performance of the BC-embedded system. Fol-

lowing this logic, it reasonable to assume the BC scheme will have a lesser negative

impact on underlying systems if they use superior state-of-the-art biometrics tech-

niques. If lesser techniques are used, the BC scheme can be assumed to have a more

adverse effect on underlying performance.
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Table 5.3.
Authentication Experiment Results

Dataset Method Total FP Total FN ACC (%) FAR (%) FRR (%) EER (%) AUC

ORL [45]

FaceNet 1 0 99.9938 0.0064 0 0 1

FaceNet+BC 1 1 99.9875 0.0064 0.2500 0 1

ArcFace 0 0 100 0 0 0 1

ArcFace+BC 0 0 100 0 0 0 1

Yale Faces [46]

FaceNet 1 0 99.9596 0.0433 0 0 1

FaceNet+BC 0 1 99.9596 0 0.6061 0.1299 0.9999

ArcFace 0 1 99.9596 0 0.6061 0 1

ArcFace+BC 0 1 99.9596 0 0.6061 0.3030 0.9999

IMM [48]

FaceNet 11 0 99.8854 0.1175 0.0000 0.0107 0.9999

FaceNet+BC 2 11 99.8646 0.0214 4.5833 0.2350 0.9999

ArcFace 0 0 100 0 0 0 1

ArcFace+BC 0 0 100 0 0 0 1

Caltech Faces [49]

FaceNet 8 1 99.9222 0.0719 0.2247 0.2337 0.9996

FaceNet+BC 4 3 99.9395 0.0360 0.6742 0.2337 0.9999

ArcFace 1 1 99.9827 0.0090 0.2247 0.2247 0.9998

ArcFace+BC 0 2 99.9827 0 0.4494 0.2247 0.9999

GTDB [50]

FaceNet 33 0 99.9120 0.0898 0 0.0027 1

FaceNet+BC 10 5 99.9600 0.0272 0.6667 0.0599 0.9999

ArcFace 0 0 100 0 0 0 1

ArcFace+BC 0 0 100 0 0 0 1

FEI [51]

FaceNet 528 35 99.8995 0.0948 1.2500 0.8710 0.9965

FaceNet+BC 160 88 99.9557 0.0287 3.1429 1.0606 0.9965

ArcFace 223 26 99.9555 0.0400 0.9285 0.9549 0.9962

ArcFace+BC 117 37 99.9725 0.0210 1.3214 0.9508 0.9954

FERET Color [52]

FaceNet 9220 501 99.9137 0.0819 4.4188 1.6111 0.9964

FaceNet+BC 2036 1592 99.9678 0.0181 14.0414 2.0082 0.9961

ArcFace 781 491 99.9887 0.0069 4.3306 1.6671 0.9950

ArcFace+BC 74 1152 99.9891 0.0007 10.1607 2.1131 0.9939

LFW (Subset) [54]

FaceNet 2779 76 99.8872 0.1100 1.2698 0.4486 0.9997

FaceNet+BC 857 607 99.9422 0.0339 10.1420 0.9943 0.9995

ArcFace 18 8 99.9990 0.0007 0.1337 0.0671 0.9999

ArcFace+BC 2 78 99.9968 0.0001 1.3033 0.0854 0.9998



25

5.2 Facial Authentication

For our authentication experiment, we performed a 5-fold cross validation experi-

ment for several datasets. As authentication is a binary classification task performed

with respect to a single enrolled subject, each query template was classified by each

subject’s binary classifier (trained using all training templates with respect to the

given subject). Therefore, the number of total classifications for each dataset was

equal to the total number of subjects times the total number of images. Furthermore,

the number of genuine authentication attempts for a dataset is then equal to the total

number of images contained in that dataset, while the number of false authentication

attempts is equal to the total number of subjects minus one times the total number of

images. The results of the authentication experiment are shown in Table 5.3. The re-

sults shown were acquired by taking the micro-average of each subject’s classification

results for a given fold and finally macro-averaging the results of the five folds.

As shown in the results, the observations made in the previous verification experi-

ment hold true. Across all experiments, the underlying ArcFace system out performs

the underlying FaceNet system in terms of equal error rate. The BC-embedded sys-

tems then raise the equal error rate of the underlying version of the systems. In

general, the FaceNet system accuracy is more adversely affected by the inclusion of

the BC scheme than the ArcFace system.

A few interesting observations should be noted. In all cases in which the ArcFace

system achieves perfect performance, the BC-embedded ArcFace system is also able

to achieve perfect accuracy. Furthermore, in many cases, the BC-embedded systems

make less total false positive classifications than their underlying system counterparts,

despite the BC-embedded systems having a greater equal error rate. This is quite

noteworthy as in most real-world scenarios false positive classifications are much more

concerning from a security and privacy standpoint than false rejections. Also, a higher

false rejection rate is a problem which can be easily remedied in a facial authentication

system as fast re-authentication attempts can automatically be made.
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Table 5.4.
Identification Experiment Results

Dataset Method Total ERR ACC (%) PRE (%) REC (%) F1 (%)

Yale Faces B [47]

FaceNet 2908 81.9693 82.6303 81.9704 82.0075

FaceNet+BC 3364 79.1419 79.5990 79.1424 79.1773

ArcFace 1519 90.5816 90.9412 90.5812 90.5755

ArcFace+BC 2069 87.1714 87.4307 87.1719 87.1496

FEI [51]

FaceNet 33 98.8214 99.1879 98.8333 98.8190

FaceNet+BC 47 98.3214 98.7429 98.3667 98.3005

ArcFace 26 99.0714 99.4690 99.0833 99.0998

ArcFace+BC 29 98.9643 99.2700 98.9667 98.9462

FERET Color [52]

FaceNet 997 91.2065 83.7165 86.2266 83.8239

FaceNet+BC 1461 87.1141 75.7137 79.4425 76.1193

ArcFace 423 96.2691 93.7746 94.5567 93.5721

ArcFace+BC 603 94.6816 90.1699 91.7753 90.1506

CMU (Pose) [53]

FaceNet 8 99.9346 99.9366 99.9346 99.9346

FaceNet+BC 11 99.9101 99.9146 99.9101 99.9102

ArcFace 4 99.9673 99.9682 99.9673 99.9672

ArcFace+BC 5 99.9592 99.9603 99.9591 99.9590

CMU (Illumination) [53]

FaceNet 7422 65.0170 71.7019 65.0158 66.6511

FaceNet+BC 7651 63.9376 66.8468 63.9350 64.6440

ArcFace 6323 70.1971 82.1605 70.1973 73.8058

ArcFace+BC 6816 67.8733 71.9017 67.8732 68.9093

CMU (Expression) [53]

FaceNet 21 99.3037 99.3956 99.3317 99.3195

FaceNet+BC 33 98.9057 99.0388 98.9300 98.9143

ArcFace 7 99.7679 99.8436 99.8048 99.8115

ArcFace+BC 6 99.8011 99.8419 99.8316 99.8277

LFW (Subset) [54]

FaceNet 151 97.4770 95.0998 96.3447 95.1583

FaceNet+BC 316 94.7201 88.2921 90.2411 88.4626

ArcFace 4 99.9332 99.9492 99.9632 99.9482

ArcFace+BC 6 99.8997 99.8872 99.8923 99.8784
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5.3 Facial Identification

For our identification experiment, we also performed a 5-fold cross validation

experiment. As facial identification involves a single multi-class classifier used for all

classification tasks, the total number of classifications performed for each dataset is

simply equal to the number of total images in the dataset. To report the experimental

results in Table 5.4, we micro-average the classification results with respect to each

subject using a one-vs-all approach and finally macro-average results of each of the 5

cross-validation folds.

The identification results follow the same overall trends as verification and authen-

tication experiments. The underlying ArcFace system is always able to outperform

the underlying FaceNet system. In general, the BC-embedded systems diminish un-

derlying system performance in such a way that is proportional to underlying system

performance. In the case CMU (Expression) dataset [53], the BC-embedded ArcFace

system actually outperforms the underlying ArcFace system, albeit by only a single

less misclassification.

5.4 Comparison with Existing Methods

We also compared the BC scheme with many popular biometric cryptosystem

(BCS) and cancellable biometrics (CB) methods. We test the proposed ArcFace BC-

embedded system using the same dataset and testing method of several popular secure

biometric methods. This allows us to compare the BC scheme’s performance against

other proposed secure biometric schemes. The results of each of these comparisons

can be seen in Table 5.5. We report our results in terms of the metric(s) used in the

original paper of the technique which we compare the BC scheme with.

The first method CB method we compared the BC scheme to was the minimum

average correlation energy (MACE) cancellable filtering based method [20]. This

method requires users to provides both their facial biometrics and a secret PIN dur-

ing enrollment. The provided PIN is used as a seed in order to generate a random
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filter. The random filter is then used to filter and encrypt the user’s sampled facial

images. Finally, the resulting encrypted facial images are is transformed into a cor-

responding MACE filter and stored by the system. At authentication time, the user

again provides their facial biometrics and secret PIN. The PIN is again used to gener-

ate a random filter which is applied to the user’s query facial image. Finally, the user’s

stored MACE filter is applied to the user’s filtered facial image. Following the appli-

cation of the MACE filter, the authors examine the resulting peak-to-sidelobe ratio

(PSR) in order to make an authentication decision. In their paper [20], the authors

perform a verification experiment using the CMU (Illumination) dataset [53]. They

report an EER of 0% which we were also able to achieve using both the BC-embedded

ArcFace system.

The second CB method we compared the BC scheme with was the Cancellable

2DPCA method proposed by [24]. The authors use of polynomial functions and co-

occurrence matrices in order to modify facial images. They then use principal com-

ponent analysis (PCA) for feature extraction. The authors use the Olivetti Research

Laboratory (ORL) dataset [45] (also known as the AT&T dataset) for their exper-

iment, and report an authentication accuracy of 96%. The BC-embedded ArcFace

system was able to achieve an accuracy of 100%.

The next method we compared the BC scheme to was the BCS key binding Fuzzy

Vault based method for faces [16]. This method fuses the biometric template of a

user with a key the user must also provide. The authors perform an authentication

experiment and report a best FAR of 5.26% and a best FRR of 26%. The BC-

embedded ArcFace system was able to achieve a FAR of 0% with a FRR of 0%.

Next, we compared the BC scheme to the CB Mixing Biometrics method [23].

In many respects, this method is more similar to the BC scheme than any other

method which we compared the BC method with. The Mixing Biometrics method

uses the facial landmarks of a user facial image and the facial landmarks of a RS-

like image in order to fuse the two faces. Classification is then performed using the

fused face. Though this method is similar to the BC method in some respects, the
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BC method has clear advantages. The Mixing Biometrics method requires certain

predefined alignment steps to take place for later facial fusing. The BC requires no

fixed alignment steps. The BC approach also preserves user privacy. From a stolen

BC, an attacker cannot derive personal information (such as gender, ethnicity, age,

etc.) about the victim, even when the RS image is also stolen. Unfortunately, with

Mixing Biometrics fused faces, it would not be difficult for attackers to derive per-

sonal information of the user. The personal information (such as gender, ethnicity,

age, etc.) of the user is clearly visible in the Mixing Biometrics fused face template.

Furthermore, if the attacker obtained the fused face and the RS-like image used for

facial fusion in the Mixing Biometrics method, the attacker would certainly be able

to derive the personal information of the victim user by reversing the facial fusion

process. The Mixing Biometrics authors use the IMM face dataset [48] for an iden-

tification experiment, as the IMM face dataset has pre-annotated facial landmarks.

The authors report an EER of 6%. The BC-embedded ArcFace system was able to

achieve an EER of 0%.

The final method we compared the BC scheme to was the CB Secure Computation

of Face Identification method (SCiFI) [57]. This method uses a secure multi-party

computation of Eigenfaces [58] in order to identify faces. Authors perform an identifi-

cation on the CMU (Pose) dataset [53]. The authors report a (rank one) true positive

rate of 80%. The BC-embedded ArcFace system was able to achieve (rank one) true

positive rates of 100%.

Each of these comparisons demonstrates that the BC is able to perform as well or

outperform other proposed secure biometric methods. It should be noted that many of

the compared schemes use very constrained datasets for their experiments. Had these

methods reported results using an unconstrained dataset, like the LFW dataset [54],

these methods’ performances would likely be very poor in comparison with the BC

scheme’s performance. In addition to the BC’s superior performance, the BC pro-

vides many additional advantages over the compared methods. For instance, the BC

scheme is flexible in design unlike most of the compared methods which assume fixed
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preprocessing, feature extraction and/or classification techniques. This prevents the

compared methods from using state-of-the-art deep learning-based methods. The BC

is also provably secure and privacy preserving unlike some of the compared methods.

Table 5.5.
Comparison of the Biometric-Capsule Scheme with Popular Methods

Method Dataset Domain Metric Result

MACE [20]
CMU PIE (Subset) [53] Verification EER

0%

ArcFace+BC 0%

Cancellable 2DPCA [24]
ORL [45] Authentication ACC

96%

ArcFace+BC 100%

Fuzzy Vault [16]
ORL [45] Authentication FAR, FRR

5.26%, 23%

ArcFace+BC 0%, 0%

Mixing Biometrics [23]
IMM [48] Identification EER

6%

ArcFace+BC 0%

SCiFI [57]
CMU PIE (Subset) [53] Identification TPR

80%

ArcFace+BC 100%
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6. FUTURE WORK

One future work direction is investigating the intraclass and interclass similarity and

variation of BCs formed by a composition of a user’s biometrics fused with the biomet-

rics of multiple RSs. In the proposed BC scheme, if the BC database is compromised,

users are able to securely revoke their compromised BCs and register new ones. If

users could instead fuse their compromised BCs with an additional, secondary RSs,

the new BCs could then be used for future recognition tasks. In the future, users

would simply need to form BCs using their biometrics and their first RS and then

fuse the resulting BC with the new, secondary RS. We need to investigate the perfor-

mances of systems which use such multi-RS BC compositions in order to determine

their usability.

One other future work direction is to investigate the use of dynamic RSs. In the

currently proposed scheme, an RS is a fixed facial image. It may, in fact, be possible

to use a subject RS rather than an image as a RS. For example, rather than using a

fixed image of George Washington as an RS, George Washington the subject could be

used as an RS and any image of George Washington could be used for BC fusion. The

usability of dynamic RSs would most likely depend on the intra-class compactness of

the feature vectors extracted from the RS subject’s images.
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7. SUMMARY

We have shown that the BC method can be used to effectively secure biometrics

systems used for for facial verification, authentication and identification. In each of

these domains, the BC scheme can be embedded into existing biometric recognition

systems with virtually no constraint on how the underlying system operates. This

flexible design of the BC scheme allowed us to embed the BC scheme in recognition

schemes which used state-of-the-art deep learning techniques. The BC scheme offers

the underlying system robust security and privacy benefits while, at the same time,

affecting the underlying system’s performance in a predictable manner. Furthermore,

we have shown that the BC system performs as well as or outperforms many popular

secure biometric techniques.
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In this section, a complete list of my publications at the time of writing is given (in

chronological order):

1. T. Phillips, X. Zou, and F. Li, ”A Cancellable and Privacy-Preserving Facial

Biometric Authentication Scheme”, IEEE 14th International Conference on Mo-

bile Ad Hoc and Sensor Systems (MASS), Orlando, FL, 2017, pp. 545-549.

2. T. Phillips, K. Byrd, and X. Zou, ”A New Look at Old Abe’s Color Guard:

Researchers Combine Classic and Cutting-Edge Techniques to Reexamine the

Identities of Soldiers in an Iconic Image”, Military Images Magazine, Spring

Issue 2019, pp. 60-64

3. T. Phillips, X. Zou, F. Li and N. Li ”Enhancing Biometric-Capsule-based Au-

thentication and Facial Recognition via Deep Learning”, In Proceedings of the

24th ACM Symposium on Access Control Models and Technologies (SACMAT

’19). ACM, New York, NY, USA, 141-146

4. T. Phillips, X. Yu, B. Haakenson and X. Zou, ”Design and Implementation of

Privacy-Preserving, Flexible and Scalable Role-Based Hierarchical Access Con-

trol,” 2019 First IEEE International Conference on Trust, Privacy and Security

in Intelligent Systems and Applications (TPS-ISA), Los Angeles, CA, USA,
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