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Regulatory protein families such as transcription factors (TFs) and RNA Binding 

Proteins (RBPs) are increasingly being appreciated for their role in regulating the 

respective targeted genomic/transcriptomic elements resulting in dynamic transcriptional 

(TRNs) and post-transcriptional regulatory networks (PTRNs) in higher eukaryotes. The 

mechanistic understanding of these two regulatory network types require a high 

resolution tissue-specific functional annotation of both the proteins as well as their target 

sites. This dissertation addresses the need to uncover the tissue-specific regulatory 
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post transcriptional levels. It also advances our ability to functionally annotate hundreds 
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CHAPTER 1 

BACKGROUND 

1.1 Basic gene regulation model  

Gene regulation is a multistep dynamic process that occurs through a highly 

controlled and concerted regulatory network (1, 2).  This mechanism occurs at all levels 

of biological processes including chromatin remodeling (3), transcriptional regulation (4), 

mRNA processing (5), modification (6), post transcriptional regulation (7), stability and 

degradation (8, 9), localization, translation and post-translational modification (10). 

Interestingly, several transcriptional and post transcriptional regulatory mechanisms are 

governed by special class of proteins (Figure 1). Genes are transcribed into RNAs under 

the transcriptional control by one or many transcription factors (TFs). TFs are the 

proteins that bind specifically to gene promoters at regulatory positions (binding motifs) 

and thus contribute to cell identity, physiology and development. The RNAs thus 

Figure 1: Overview of gene expression and regulation. Fundamental role of regulatory 
proteins at several steps concatenating to the functional phenotype. 

Image courtesy by 
Marianne Dobrovolny 
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produced, undergo several maturation processes, especially in eukaryotes that involves 

post-transcriptional regulation such as 5' capping, 3' polyadenylation, splicing and 

possibly RNA editing. These processes are mediated by RNA-binding proteins (RBPs). 

RBPs are another class of regulatory proteins that have a wide range of functions (such as 

post transcriptional regulation and metabolism of RNA) in eukaryotes, including splicing, 

poly-adenylation and capping as well as their localization, translation, stability and 

degradation (7). These proteins are implicated in several human diseases, including 

HIV/AIDS, cancer, and neurodegenerative disorders. 

1.2 High-throughput sequencing technology and data explode 

High-throughput sequencing technologies have rapidly evolved since the last few 

decades. With the advent of next generation sequencing technology (NGS, considered as 

2nd generation technology), the horizon of molecular biology research has been expanded 

from “epi” gene to “proteo-genomics” with reduced cost (11, 12). This technology has 

been widely used to deal with a variety of biological questions. It quantitatively helps in 

deciphering the fundamental challenges priming in expression, regulation and 

conformation studies. With this technology, researchers are able to pierce the dark matter 

of the genome, and set up a rationale to believe the ‘junk’ is no more junk (13-15). 

Such techniques have been utilized to generate tons of sequence data in the field of 

genetics, genomics, transcriptomics, regulomics and structuromics (16-20). It enables the 

researchers to establish a landmark in mentioned field including the temporal, condition 

specific, tissue specific or cell type specific incomprehensible dilemma. This technology 

has further evolved to third generation, i.e. long-read sequencing as introduced by Pacbio 

(21), and fourth generation with the invention of nanopore (22) based long read 
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sequencing technology. These upgrades have delimited the molecular approach to 

investigate the biological problems at the single-molecule scale (15, 23). 

1.3 Overview of the study 

Various in vitro, in vivo and in silico approaches have been developed so far to 

identify the functional motif of regulatory proteins genome wide, the tissue specific 

binding pattern of most of TFs and RBPs and their dynamic transcriptional (TRNs) and 

post-transcriptional regulatory networks (PTRNs) in higher eukaryotes is still illusive. 

This dissertation is committed to uncover the tissue-specific regulatory networks in 

development and disease. It aims to establish an integrative computational genomics 

based approaches to further enhance the current understanding on regulatory circuits and 

decipher the associated mechanism at several layers of biological processes.   

This dissertation work consists of five chapter, with Chapter 1 being the background of 

the study. Chapter 2 is aimed to study the compendium of transcription factors regulating 

the gene associated to disease phenotype. In this section, I established a gene centric 

intricate network of conserved DNA upstream motifs and associated transcription factors 

and investigated how these TRNs modulates the expression of targeting gene using an 

integrated computational and experimental approach. This chapter includes two gene 

centric case study, where an in silico phylogenetic foot printing approach was 

implemented for genes such as Uromodulin (highly expressed in kidney) and Sestrin3 

(functionally important gene in maintaining homeostasis in liver). The highly connected 

TRNs established in this chapter were further investigated to suggest their central role in 

controlling the gene expression. Several transcription factors regulating target gene were 
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further supported by known literature or verified by CRISPR-Cas9 knock out 

experiments. 

Chapter 3 is aimed to investigate the complete transcriptome architecture of 

developing mouse eye (at current lens and retina) and to develop a resource for easy 

navigation of transcriptome profiles encompassing known and novel transcripts across 

multiple development stages in eye tissues. In this chapter, a total of 35 RNA sequence 

data encompassing 7 developmental stages of lens and 11 developmental stages of retina 

from publicly available wild-type mouse datasets were included. These datasets were 

processed, aligned, quantified and analyzed with in-house RNA-Seq analysis pipeline and 

hosted a total of >81,000 transcripts in the lens and >178,000 transcripts in the retina 

across all the included developmental stages. This study revealed an abundance of novel 

transcripts and extensive splicing alterations (especially in lens) with significantly 

decreased extent of novelty (of expressed transcripts) in post-natal lens compared to 

embryonic stages. Several of the novel transcripts and splicing events are verified using 

RT-PCR and Sanger sequencing. 

Chapter 4 is aimed to develop a computational framework for systematic tissue-

specific annotation of protein-RNA interaction in the human genome to uncover disease 

associated binding events. In this section, I develop a tool for systematic identification 

and comparison of processes, phenotypes, and diseases associated with RNA-binding 

proteins from condition-specific CLIP-seq profiles. The study further aimed to develop a 

computational framework for systematic tissue-specific annotation of functional binding 

sites of RBPs in the human genome and to uncover disease associated binding events. 

The proposed computational framework employed a tissue-specific cross-species RNA-



5 

seq information from more than 100 samples encompassing 4 vital tissues (Kidney, 

Liver, Brain, Heart) and 10 species to prioritize and evolutionarily annotate the binding 

sites of RBPs across tissues. Several of these high confidence functional binding sites 

predicted to control the proximal exons in human cell lines were validated using 

Crispr/Cas9 screening.  

Chapter 5 discusses the significance of the study along with innovation, 

achievements and limitations of the project. It also discusses the projected future work of 

this study. 

1.4 Impact of the study 

This dissertation aims to investigate several genomic features such as 

conservation and chromatin accessibility that could help to identify novel regulatory 

motifs and associated TFs. It also investigates the temporal and evolutionary dynamics of 

transcriptome in developmental stages that could further expand the current 

understanding of the complete transcriptomic architecture and their regulation in 

developing mouse eye.  

The study deciphers a high resolution regulatory network of RBPs using multi-

OMIC datasets. It also investigates the positional binding of RBPs and their impact on 

proximal functional transcriptomic elements. This study will enhance the knowledge of 

RBPs and their target RNA in the context of disease phenotype, networks and pathways. 

Overall, this study could help accelerating the progress in molecular diagnostics and drug 

target identification. 
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CHAPTER 2 

TO STUDY THE COMPENDIUM OF TRANSCRIPTION FACTORS REGULATING 

THE GENE ASSOCIATED TO DISEASE PHENOTYPE 

2.1 An intricate network of conserved DNA upstream motifs and associated transcription 

factors regulate the expression of uromodulin gene 

2.1.1 Introduction 

Uromodulin, also called THP (Tamm–Horsfall protein), is the most abundant 

protein excreted in the urine under physiological conditions. It is highly produced in the 

kidney and secreted into the urine via proteolysis of its GPI 

(Glycosylphosphatidylinisotol) anchored domain (24).  It has also been reported in blood 

as a secretory product in circulation (25). Although the biological function of 

Uromodulin had been elusive for many years, the last decade witnessed significant 

advancements in understanding the function of this protein in health and disease (25, 26). 

In fact, uromodulin is now thought to facilitate electrolyte transport across thick 

ascending limb (27), modulate the inflammatory response during kidney injury (28), 

inhibit stone formation (29) and protect the bladder from invasive ascending infections 

(30). Interestingly, the correlation of rate of uromodulin excretion with disease models is 

not well established (26), although recent studies suggest that uromodulin expression and 

excretion increases in injury states and may serve as biomarker for developing chronic 

kidney disease (31). Because of its protective function in vivo during injury, several 

studies have previously suggested that this increase in excretion is reactive (26), but the 

factors that control uromodulin expression are not well studied. Indeed, understanding the 
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complex regulatory mechanisms that regulate the Uromodulin gene is essential to 

advancing this field. 

Several studies have reported that any variation or mutation occurring in this gene 

directly or indirectly is linked to kidney disorders like glomerulocystic kidney disease, 

medullary cystic kidney disease type 2 (ADMCKD2), familial juvenile hyperuricemic 

nephropathy disease (FJHN) etc. with the autosomal dominant tubulointerstitial kidney 

diseases collectively known as uromodulin-associated kidney diseases (UAKD) (32). 

Many SNPs on UMOD are linked to chronic kidney disease (CKD) by Genome-wide 

association studies in the general population (25). 

Transcription factors (TFs) are known to bind specifically to gene’s promoters at 

regulatory positions (binding motifs) and thus contribute to cell identity, physiology and 

cell development. Various in vitro (33), in vivo (34) and in silico (35) approaches have 

been developed so far for the regulatory motif discovery of genes. Typically, potential TF 

binds to its high affinity binding site however little is known about the tissue specific 

binding pattern (represented as a weight matrix) of most TFs in higher eukaryotes (36).  

In this study, I used the upstream regulatory regions of human UMOD orthologs from a 

diverse set of 8 primates and 7 rodents to perform phylogenetic foot-printing (37)  by 

employing the MEME-SUITE of tools (http://meme.nbcr.net/meme/intro.html), which 

allowed the identification of high confident conserved binding motifs and corresponding 

position specific weight matrices. I also tested the feasibility (i.e. TF binding tendency) of 

BMo in open chromatin region of mouse using DNAse Hypersensitive sites in UMOD 

upstream region. Further, the predicted binding motifs were analyzed by a motif 

comparison tool from MEME-SUITE, TOMTOM- which compares discovered motifs 

http://meme.nbcr.net/meme/intro.html


8 

with currently annotated motifs, to identify transcription factors, which have a high 

tendency and specificity to bind to these discovered motifs. Predicted TFs were 

integrated with existing protein-protein interaction databases like BioGRID 

(http://thebiogrid.org/) and tissue-specific protein expression information available for 

specific TFs (http://www.genecards.org) to delineate the important regulators and the 

network of interactors controlling the expression of UMOD in kidney. 

2.1.2 Materials and Methods 

I analyzed the RNA seq data for all available transcripts of uromodulin released in 

HBM to profile their expression across tissues. Human-UMOD orthologs and their 

upstream regulatory regions were extracted (fasta sequences) from ENSEMBL. These 

UMOD sequences from human and its orthologs (8 Primates, 7 Rodents) were taken and 

executed using MEME-SUITE (an open source hub of bioinformatics tools. Prediction of 

novel regulatory motifs was performed by using phylogenetic footprinting, an in silico 

method coupled with downstream computational analysis. Based on this, consensus 

sequences in upstream region were discovered by MEME analysis. These consensus 

sequences were further analyzed using TOMTOM tool which enables the comparison of 

predicted motifs with PWM’s of TFs for overlap. Further, protein interactions network 

was constructed between the potential TFs by utilizing the available physical interactions 

in BioGRID  and tissue-specific protein expression information available for specific TFs 

(http://www.genecards.org) to delineate the important regulators and the network of 

interactors controlling the expression of UMOD in kidney. Step wise methodology 

implemented in the study is described below. 

 

http://thebiogrid.org/
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2.1.2.1 UMOD transcripts and their expression profiles across tissues  

UMOD gene is located on chromosome 16. I obtained human UMOD gene 

(Ensembl ID ENSG00000169344) and its sequence from the ENSEMBL database. There 

are 15 transcripts reported in Ensembl database for human UMOD gene (in Ensembl 

genome build GRCh37.p7). Full length transcripts of this gene which had expression data 

available were used for expression profiling. RNA-seq data available for 16 different 

human tissues (viz. adipose, adrenal, brain, breast, colon, heart, kidney, liver, lung, 

lymph, muscle, ovary, prostate, testes, thyroid and white blood cells) from ArrayExpress 

(38) (Accession no. E-MTAB-513) as part of the Human Body Map (HBM) 2.0 project 

(http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-513/) (39), was obtained for 

expression profiling the transcripts of interest. Expression data from the HBM project is 

quantified per transcript using the current annotations of the human genome from the 

Ensembl and is available as Reads Per Kilobase per Millions of reads (RPKM) for each 

sample and hence can be compared across tissues. Expression profiles of UMOD 

transcripts were visualized using matrix2png (40). 

2.1.2.2 Identification of human-UMOD orthologs and their upstream regulatory regions 

for phylogenetic footprinting 

Phylogenetic foot printing is one of the classical methods applied for DNA 

binding motif discovery (37, 41). It involves using the upstream regulatory sequence of a 

gene of interest across possible orthologs to search for highly conserved consensus DNA 

binding sites. I selected 15 orthologs of human UMOD gene including eight primates and 

seven rodents using Ensembl Compara gene trees(42) which allowed the identification of 

orthologous sequences across species with high sequence resemblance shown in Table 1.  

http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-513/
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Cat. Species Type Location Target 
%id 

Query 
%id 

P Chimpanzee (Pan troglodytes) 1-to-1 16:20210632-20223731:-1 99 49 
P Orangutan (Pongo abelii) 1-to-1 16:19749545-19771699:-1 98 98 
P Gorilla (Gorilla gorilla) 1-to-1 16:20941424-20961082:-1 94 99 
P Macaque (Macaca mulatta) 1-to-1 20:19328933-19349164:-1 94 94 
P Gibbon (Nomascus leucogenys) 1-to-1 GL397283.1:7871691-7891404:1 93 98 
P Marmoset (Callithrix jacchus) 1-to-1 12:19917641-19961869:-1 89 94 
P Bushbaby (Otolemur Garnettii) 1-to-1 GL873563.1:1685537-1696599:1 85 81 

R Squirrel (Ictidomys 
tridecemlineatus) 1-to-1 JH393311.1:5833391-5846021:-1 84 84 

R Tree Shrew (Tupaia belangeri) 1-to-1 GeneScaffold_4852:239474-251289:-
1 82 83 

R Guinea Pig (Cavia porcellus) 1-to-1 scaffold_4:33749021-33758533:1 80 74 
R Rabbit (Oryctolagus cuniculus) 1-to-1 6:8027968-8041363:1 78 78 
R Rat (Rattus norvegicus) 1-to-1 1:177729221-177742566:-1 77 78 
R Mouse (Mus musculus) 1-to-1 7:119462866-119479255:-1 76 76 

P Mouse Lemur (Microcebus 
murinus) 1-to-1 GeneScaffold_865:812142-824452:-1 75 75 

R Kangaroo rat (Dipodomys 
ordii) 1-to-1 GeneScaffold_5176:37235-51592:-1 64 68 

Table 1: Human-UMOD orthologs and their upstream regulatory regions for phylogenetic 
footprinting. Category P=Primates, R=Rodents 

Gene expression is controlled by various cis-acting transcriptional regulatory 

factors by binding mostly in close proximity to the transcription start sites in the promoter 

regions of a gene (43). Based on previous computational studies from other groups (1, 

44) and my analysis (data not shown) I found that most functional TF binding sites occur 

with-in the 5kb upstream region of the gene starts. Initially, I focused on investigating the 

2kb upstream regions of UMOD for motif discovery and later extended to 5kb region. 

Upstream regulatory regions for human and its 15 listed (Table 1) UMOD orthologs were 

obtained from Ensembl database. 

2.1.2.3 MEME analysis for discovering DNA binding motifs 

DNA binding motif discovery using phylogenetic footprinting approach uses 

regulatory regions in the promoters of orthologous genes from multiple species under the 
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notion that regulatory elements would be conserved in the background of non-functional 

sequences and hence can be discriminated as footprints contributing to regulatory control. 

To facilitate the motif finding in these regions, MEME-suite of tools (45) was 

implemented. MEME is a tool for discovering motifs in a group of related DNA or 

protein sequences, which detects the frequently occurring conserved sequence across a 

group of related DNA sequences, using expectation maximization (46). These motifs are 

typically represented as position-dependent letter-probability matrices in logos which 

describe the probability of each possible letter at each position in the pattern to 

incorporate the variation in the detected motif instances across sequences. In this study, 

both 2kb and 5kb upstream sequences of human UMOD and its 15 orthologs (12 

orthologs for 5kb regions due to limitations on the total length of the sequences) were 

compiled as a fasta file and used as an input for MEME to identify significantly over-

represented motifs (p <1E-28).  

2.1.2.4 Prediction of TFs associated with discovered motifs 

Transcription Factors (TFs) are proteins which bind specifically to their 

corresponding binding motif and regulate the expression of a gene. DNA binding motifs 

were represented as PWM (Position-Specific Weight Matrix) based logos. Nucleotide 

constituent of each consensus motif has its own probability of occurrence within the site. 

Since PWMs for various TFs have already been reported in JASPAR (47), Uni-PROBE 

(48) and Jolma et al (4) public databases, based on a comparison of the similarity 

between the reported PWM of a TF to the footprinted PWM in the orthologous upstream 

regions, it is possible to predict the TFs which are most likely to bind to these predicted 

binding sites. Tomtom (49) is a tool in the MEME-suite which compares discovered 
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DNA motifs to known motifs of such databases.  PWMs of various discovered motifs 

were used as input file for Tomtom and compared with already reported PWMs of TFs 

from Jolma2013 (4), JASPAR_CORE_2009 (47) and Uniprobe_Mouse(48) databases to 

identify the potential TFs binding to the UMOD upstream regions. Only the TF 

associations which are identified at p ≤ 0.02 are considered significant for both the 2kb 

and 5kb regions. 

2.1.2.5 Analysis of DNase I hypersensitive site in UMOD upstream region 

DNase I hypersensitive sites are open chromatin region of DNA, sensitive to 

DNase I cleavage. After enzymatic cleavage, this site is accessible to binding of protein 

such as transcription factor. It is believed that, occurrence of DHS in a region, especially 

in promoter region (50) is an indicator of potential binding of transcription factor. The 

DHS data available for adult mouse kidney were extracted from ENCODE project (51) 

and visualized for upstream region of UMOD gene in UCSC genome browser 

(http://genome.ucsc.edu/cgi-bin/hgFileUi?db=mm9&g=wgEncodeUwDnase). The image 

generated from the browser was positioned according to the coordinate of UMOD 

upstream region of block diagram and studied for active BMo. 

2.1.2.6 Calculating motif abundance similarity across genomes 

To quantitatively compare the number of instances of a given motif across various 

genomes, a matrix comprising the number of instances of a motif across the genomes was 

constructed and then each value was divided by the maximum number of times it was 

identified in a genome.  Such a motif centric normalized matrix was used as input to the 

cluster algorithm (52) to hierarchically cluster the motifs using uncentered correlation as 

the distance metric and complete linkage as the clustering method. Resulting data matrix 

http://genome.ucsc.edu/cgi-bin/hgFileUi?db=mm9&g=wgEncodeUwDnase
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was used to generate a heatmap using the javatree view package (53). To have an identity 

for each motif, potential TF likely to bind the motif based on Tomtom analysis was used 

as a reference name, along with the motif ID. Similar approach was adopted to 

hierarchically cluster the protein-protein interaction network between TFs by 

constructing a matrix of physical interactions between all pairs of TFs. 

2.1.2.7 Mapping protein interactions between the potential TFs 

Eukaryotic TFs often regulate the expression of genes by forming protein 

complexes and several examples have been documented in the literature including that of 

SP1 interacting with SMAD3 (54), KLF4 (55) and GATA3 (56) in kidney/kidney cell 

line to modulate the transcription of target genes. To map the physical associations 

between the predicted TFs from the Tomtom analysis for the 5kb region, manually 

curated set of protein-protein interactions for the human genome were employed from the 

BioGRID database (57). This not only allowed the construction of a protein interaction 

network between the predicted TFs but allowed the dissection of the major TFs based on 

their number of protein interactions in the network. TFs which had high degree were 

analyzed for their protein expression across cell types available from gene cards (58). 

2.1.3 Results and Discussion 

Uromodulin is one of the most abundant proteins in urine. Although a total of 15 

transcripts are currently annotated for human UMOD gene in the Ensembl Database 

(GRCh37.p13), major transcript forms of UMOD are expressed exclusively in the kidney 

(Figure 2) and hence UMOD is likely to exhibit a specific cis-regulatory signature not 

prevalent in other non-kidney specific genes. 
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Figure 2: Transcript expression profile of UMOD. Heatmap showing the expression 
profile of all full length coding transcripts of UMOD gene across the 16 human tissues 
using the Illumina generated RNA-seq data from the Human Body Map 2.0 Project(38). 

Uromodulin is known to be involved in various biological processes like 

regulation of ion homeostasis, cellular defense response and kidney injury (25, 26). 

However, little is known about the factors and mechanisms controlling its expression at 

the transcriptional level. It is also unclear as to their contribution and involvement (i.e. 

direct or indirect) in kidney disorders (59, 60). This study attempts to identify the cis-

regulatory binding sites controlling UMOD and all possible regulatory proteins which 

may be involved in regulating the expression of UMOD gene at transcriptional level.   

2.1.3.1 Identification of potential binding motifs by phylogenetic footprinting the 

regulatory regions of UMOD across primates and rodents 

Since UMOD was found to be tissue-specifically expressed, I postulated that it’s 

cis-regulatory signature might be governed by an intricate interplay between TFs whose 

network might control its expression in a tissue-specific manner. Hence, to uncover the 

set of binding sites and the TFs controlling the UMOD gene, I implemented motif 

discovery based on phylogenetic alignments of orthologous sequences from a diverse set 

of eight primates and seven rodents using the human UMOD gene as a reference (see 

Materials and Methods, Table 1).  Phylogenetic footprinting is a method for the discovery 
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of regulatory elements in a set of orthologous regulatory regions from multiple species. It 

does so by identifying the best conserved motifs in those orthologous regions (37). It can 

be argued, this approach, may miss some of the binding motifs not conserved in UMOD 

upstream, however I believe this approach as the best fit because of little knowledge 

about transcription regulator for this gene and also to limit false discovery of motifs and 

associated TFs.  

Figure 3: Identification of potential binding motifs by phylogenetic footprinting of 
2kbupstream regulatory regions of UMOD gene. Ten phylogenetically conserved and 
statistically significant (indicated by e-value) novel motifs with the number of sites 
contributing to their identification were shown for UMOD 2kb upstream. These motifs 
were displayed as sequence LOGOs representing position weight matrices of each 
possible letter code occuring at particular position of motif and its height representing the 
probability of the letter at that position multiplied by the total information content of the 
stack in bits. 

Briefly, 2kb upstream sequence of UMOD gene for human and its orthologs 

(Table 1) were analyzed by MEME (http://meme.nbcr.net/meme/intro.html) that uses an 

expectation maximization-based motif-finding algorithm, to identify the potential binding 

http://meme.nbcr.net/meme/intro.html
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sites conserved across the species. Based on the alignments, position-specific weight 

matrices (PWMs) (61) representing each of the 10 most significant motifs enriched across 

the analyzed sequences were identified. Motif logos (62) corresponding to each of these 

10 significantly conserved ones along with the number of occurrences of the motifs 

across the 16 sequences are shown in Figure 3.  As evident from Figure 3, I found that all 

of these motifs exhibited a frequency of at least eight occurrences among the 16 

sequences analyzed, with Motifs 7, 9 and 10 exhibiting the highest number of instances. 

2.1.3.2. Distribution of binding motifs for UMOD across species 

In all cellular systems, DNA-binding transcription factors mediate the activation 

or repression of gene expression by binding specific regulatory sequences associated with 

a given target gene. Genes of many eukaryotes display a more complex architecture of 

associated regulatory elements, which include proximal promoter elements with binding 

sites for basal transcription factors, and several distal or upstream elements with binding 

sites for a host of specific transcription factors (63). Several elegant studies on  

developmentally regulated (64) and immune-response genes (65, 66) have revealed an 

important role for combinatorial interactions between different transcription factors (TFs) 

in establishing the complex temporal and spatial patterns of gene expression. Hence, 

increasing evidence now suggests the importance of not only knowing the binding 

location of a eukaryotic TF (67) but also the complex combinatorial interplay between 

them, dominant in eukaryotic transcriptional networks (68). Therefore, I first mapped the 

locations of the discovered conserved and novel motif sequences across multiple species. 

These binding motifs were found quite different from each (Pearson correlation 

coefficient). Relative positions of the discovered binding sites in the 2kb upstream 
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regulatory sequences across the species organized by phylogenetic distance along with 

the combined significance of motif co-occurrence is shown as a block diagram (Figure 

4A). I discovered a total of five binding motifs in Human-UMOD 2kb upstream sequence 

- most of them dispersed on the chromosome compared to other species (Figure 4A), 

possibly suggesting evolutionary divergence of the cis-regulatory signature in humans 

and other close relatives. In particular, I found that as the evolutionary distance of the 

species with respect to human increased, the extent of conservation and clustering of the 

binding sites increased, indicating either the gain of the binding site clusters or the lack of 

these signals in the 2kb region of some of these species. The results suggest the 

possibility of altered wiring of the transcriptional regulatory network controlling UMOD 

gene across primates and rodents either due to its altered functionality in kidney or due to 

increased complexity of the genome in some cases. To further address the functional 

importance of each of the motifs conserved in humans compared to those which were 

identified in other species but not in humans, the functional enrichment analysis of the 

genes (in the whole genome) containing each of these motifs were performed using 

GOMO (69) (Table 2).  

This analysis indicated that Motifs 2 and 6 associated with the functional theme 

G-protein coupled receptors and associated signaling were not found in humans while the 

Motifs 3, 9 and 10 discovered in humans and are well conserved were found to be 

enriched in genes annotated with signaling, translational control and immune response 

associated processes, suggesting that post-transcriptional regulatory control and immune 

response related binding motifs might be highly preserved across the species in UMOD 

upstream regions. 
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Figure 4: Block diagram showing occurrence of conserved motifs. (A) Location of ten 
motifs identified and their distribution in 2 kb upstream sequences across human-UMOD 
& its 15 other primate/rodent orthologous species are shown in the block diagram. The 
combined best matches of a sequence to a group of motifs were shown by combined p 
value.  Sequence strand specified as “+” (input sequence was read from left to right) and 
“-” (input sequence was read on its complementary strand from right to left) with respect 
to the occurrence of motifs. Coordinates of each motif across species is shown as a 
sequence scale below the diagram. (B) DNase I hypersensitive region was shown in 2kb 
upstream region of mouse UMOD using ENCODE project coupled with UCSC browser 
visualization tool. An overlap of DHS signal was found and shown as blue band over 
motif 1, 2, 6 and 8 near ~0.25 kb UMOD transcription start site (TSS) in the mouse block 
diagram.  
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Motif 
ID 

Top 5 specific predictions 

1 NA NA NA NA NA 
2 MF 

olfactory 
receptor 
activity 

BP sensory 
perception of 
smell 

BP G-protein coupled receptor 
protein signaling pathway 

CC 
extracellula
r region 

BP defense 
response to 
bacterium 

3 MF 
olfactory 
receptor 
activity 

BP sensory 
perception of 
smell 

BP G-protein coupled receptor 
protein signaling pathway 

BP immune 
response 

BP inflammatory 
response 

4 NA NA NA NA NA 
5 NA NA NA NA NA 
6 CC 

cytoplasm 
CC intracellular 
organelle 

BP heart contraction 

7 NA NA NA NA NA 
8 NA NA NA NA NA 
9 MF 

structural 
constituent 
of ribosome 

MF RNA 
binding 

CC cytosolic small ribosomal 
subunit 

BP translational elongation 

10 MF 
olfactory 
receptor 
activity 

BP sensory 
perception of 
smell 

BP G-protein coupled receptor 
protein signaling pathway 

BP immune response 

 
Table 2: GOMO analysis of discovered enriched motifs in 2 kb upstream region of 
UMOD gene showing the over-represented Gene Ontology annotations. MF- Molecular 
Function, BP- Biological Process and CC- Cellular Component.  
 

2.1.3.3 DHS profile confirming the feasibility of predicted binding motifs 

DNase I hypersensitive sites (DHSs) are DNAse I enzyme sensitive region of 

chromatin, where chromatin has lost its condensed structure due to cleavage and get 

accessible to binding proteins such as TFs (3). I used the DHS data available for adult 

mouse kidney, generated from University of Washington and consigned in ENCODE 

project (70). This analysis strongly suggested motif 1, 2, 6 and 8 in 2 kb upstream region 

of mouse-UMOD to be active and open for transcription factor binding as shown in 

Figure 4B. It might be noteworthy to promote the prediction of TF-TF combination likely 

to be feasible as the cluster of 4 motifs coupled with DHS signal. 
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2.1.3.4 Prediction of transcriptional regulatory apparatus targeting discovered motifs of 

UMOD upstream region 

In order to further dissect the regulatory factors that bind the discovered novel 

regulatory protein binding sites by phylogenetic foot-printing analysis, Tomtom 

(http://meme.nbcr.net/meme/cgi-bin/tomtom.cgi), a motif comparison tool was used, 

which aligns and compares the already reported PWMs for well-studied TFs available 

from motif databases with the discovered motifs (see Materials and Methods). All 

possible TFs predicted to significantly bind to the discovered motifs were shown in 

Figure 5A. Best predicted and highly aligned PWMs of TFs for all 10 motifs include 

GATA 3, HNF 1, SP1, SMAD3 and STAT3. In addition to these key TFs, several 

significant and reliable list of transcription factors were identified that could potentially 

bind to these 10 discovered motifs of UMOD (Figure 5A). Figure 5B shows a subset of 

those TFs which exhibited statistically significant alignment with the discovered motifs 

or those with literature evidence in support of their functional role in controlling 

biological processes that might be directly or indirectly associated to UMOD expression 

in normal/diseased state. Some of the listed TFs have no functional evidence in human 

but have been documented in other species.  

http://meme.nbcr.net/meme/cgi-bin/tomtom.cgi
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Figure 5: TOMTOM analysis results for conserved motifs. (A) Transcription factors 
predicted for 10 consensus sequences (as query motif) by TOMTOM analysis (B) 
Selected set of motif alignments for each of the 10 significant motifs with the matched 
TF’s PWM (top) and query motif (bottom). Binding specificity of TF (1st mammalian TF 
hit found) was shown for all 10 regulatory motifs.  
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2.1.3.5 An investigation of all possible regulatory motifs and associated TFs beyond 2 kb 

upstream sequence of UMOD 

Transcription factors’ binding specificity depends on the similarity of a target 

motif sequence to its consensus (61, 67).  However, the transcriptional regulatory region 

of a particular gene may not be restricted to the immediate 2kb upstream sequence but 

rather its cis-regulatory code might be embedded in regions much further upstream (3). 

Indeed, several genomic analysis suggests that majority of the TF binding sites occur 

beyond the 2kb region of the gene start (3, 71) with most of them acting as proximal 

binding sites with respect to TSS (Transcription Start Site) to define the assembly of 

transcription pre-initiation complex or some at distal site of TSS to define the rate of 

transcription (43). Despite, 2kb upstream region provides significant information and 

coverage about the regulatory motifs contributing to the transcriptional control, are not 

sufficient to encompass all possible motifs involved in regulation of UMOD gene 

expression.  Thus, the foot printing analysis was extended to include the 5 kb upstream 

sequence of UMOD gene from Human and its orthologs to discover an extended set of 20 

most significant novel regulatory binding motifs across the species and their 

corresponding TFs using the MEME suite of tools (See Materials and Methods). Further 

DHS signal analysis in this region was performed and identified active BMo (72) – 1, 2, 3 

and 9 (Figure 6A). It is important to note that the motif IDs for the 2kb region (Figures 3-

5) do not necessarily correlate with the motif IDs annotated for the 5kb region as the 

motif numbering is arbitrary. It is also worth mentioning that some of the motifs not 

detected in the 2kb region either due to the stringent thresholds or due to their occurrence 

in fewer species (with in 2kb) might be identified in this extended analysis. Block 
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diagram in Figure 6A shows the distribution of the 20 motifs across 12 different species 

analyzed. It is evident from the block diagram that the cluster of binding sites formed by 

the motifs 3, 1, 2, 9, 7, 12 and 4 which is prevalent in most species is nearly absent in the 

human genome. Several motif clusters such as those surrounded by motif 5 were found 

conserved and drifted across the region between species. 

TF and Transcription Factor Binding Site (TFBS) interaction exist in a co-

evolutionary relationship within the eukaryotes (73). So, I wanted to learn if the 

discovered motifs can be grouped based on their frequency of occurrence across species 

to identify potential co-regulatory relationships between motifs. Figure 6B shows 

hierarchical clustering of the normalized motif occurrence profiles by selecting a 

representative TF for each motif, identified based on the Tomtom analysis (see Materials 

and Methods). This analysis suggested that developmental factors like FOX family 

exhibited a similar abundance profile as the HNF family, while the binding sites of TFs, 

SMAD3 and Gata3 co-occurred across the studied genomes. Overall, this analysis 

provides higher order evolutionary relationships between motifs across the species based 

on their abundance, suggesting different motifs might be selectively enriched in various 

species. 

Based on Tomtom analysis, I identified a set of predicted TFs which can bind to 

these 20 discovered motifs. In order to prioritize these associated TFs and to know 

potential protein complexes that might be responsible for regulation, I integrated  the 

currently available human protein interaction network available from the BioGRID 

database (http://theBioGRID.org/)  to construct a network of physical associations 

between TFs predicted to be binding to the UMOD regulatory regions (see Materials and 

http://thebiogrid.org/
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Methods). This resulted in a network of 64 TFs with 112 associations, with TFs like SP1, 

SMAD3, TP53, SP3, RXRA, RARA and SPI1 exhibiting high degree of associations 

(Figure 6C). This TF-TF interaction network was analyzed and hierarchically clustered 

using Cluster 3.0 (http://bonsai.hgc.jp/~mdehoon/software/cluster/)  using uncentered 

correlation as distance metric  and complete linkage as clustering method to identify 

potential protein complexes (Materials and Methods). This resulted in 5 major group of 

physically associated TFs i.e. KLF4 (ESRRG, EGR1, ESRRA, ESRRB, GATA1, 

GATA3, NFYA, NR2E1, HNF4A, SMAD3), POU2F1 (CREB1, HOXB13, RARA), 

RUNX3 (RUNX2, STAT1), SP3 (SP1, ZBTB7B) and HNF1B (HNF1A, STAT3), 

strongly recommend to consider as functionally important TF complexes which help in 

deciphering  the mechanism of UMOD gene regulation. TFs with such higher degree of 

association with other TFs in the TF-TF protein interaction network were further 

investigated in Gene Cards (http://www.genecards.org) database to dissect their protein 

expression profile across reported tissue/fluid and cell lines (Figure 6D).  I found that 

majority of the TFs including SP1, SMAD3, SP3 and RXRA which had high degree of 

associations were expressed significantly higher in the HEK293 cells compared to other 

cell types or body fluids except TFs like STAT3 which were found to be higher 

expressed across a range of cell types including kidney suggesting that most of these 

identified TFs are not only active in kidney cells but are likely to form a dense network of 

physical associations with other TFs to regulate the expression of UMOD gene. For 

instance, some TFs like RUNX2, Pou2f1 (Oct1) which were not identified in the 2kb 

analysis, were discovered exclusively in this analysis. 

 

http://bonsai.hgc.jp/%7Emdehoon/software/cluster/
http://www.genecards.org/
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Figure 6: An investigation of all possible regulatory motifs and associated TFs beyond 2 
kb upstream sequence of UMOD. (A) Distribution of 20 binding motifs across human-
UMOD & its 15 primate, rodent orthologous species were shown as a block diagram for 
5 kb upstream region. (B) Occurrence of each motif across the species were grouped and 
represented as clustered heatmap. A representative TF name is shown for each of the 20 
motifs. (C) Protein interaction network between TFs constructed for all possible predicted 
transcription factors using BioGRID database with TFs belongs to DHS signaled BMo 
were shown in red asterisk “*”. (D) Protein expression profile of highly associated TFs in 
the protein interaction network. 
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2.1.4 Conclusion 

In this study, I used a cross-genomic approach to mine the conserved set of 

binding sites and predicted the associated TFs which are likely responsible for binding 

these locations to control the expression of UMOD. The current approach not only 

revealed several novel binding sites to provide insights into their evolutionary dynamics 

across primates and rodents but also provided a compendium of TFs expressed in the 

human kidney which are responsible for controlling UMOD’s expression thus providing 

a roadmap for characterizing the regulatory architecture of its promoter regions. 

I integrated the predicted list of TFs from the 5kb region of UMOD with publicly 

available curated set of protein-protein interactions to build a TF-TF protein interaction 

network responsible for controlling UMOD expression.  This study uncovers several 

highly connected TFs such as SP1, SP3, SMAD3, STAT3 and RARA as well as the 

likely protein complexes formed between them. The significant expression of these TFs 

in kidney cells compared to other tissues further suggested their central role in controlling 

UMOD expression. 
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2.2 Prediction and validation of transcription factors modulating the expression of 

sestrin3 gene using an integrated computational and experimental approach 

2.2.1 Introduction 

Sestrins belong to a small family of evolutionally conserved proteins. They are 

distinct from any other characterized eukaryotic protein families because they do not 

have any previously identified domain structures (74).  Mammals express three sestrin 

genes (SESN1/2/3), while most invertebrates contain only a single sestrin gene (75).  

Sestrins do not contain any known structural domains/catalytic motifs; only a partial 

homologous sequence to bacterial  oxidoreductases is identified, suggesting an 

antioxidant function of this protein (74).  Sestrins regulate multiple signaling pathways 

for metabolic and cellular homeostasis (76). First, sestrins reduce oxidative stress through 

either their intrinsic oxidoreductase activity or NRF2 (nuclear factor erythroid derived 2 

like 2)-regulated pathway (77, 78). Second, sestrins modulate glucose and lipid 

metabolism through AMPK (AMP-activated protein kinase) and mTORC1 (mechanistic 

target of rapamycin complex 1)(74).  Third, Sestrins regulate autophagy through 

activation of AMPK and inhibition of mTORC1 (75).  Deletion of a single SESN gene in 

fruit fly leads to triglyceride accumulation in its body (75), equivalent to the liver in 

mammals.  Several studies shows that ethanol suppresses SESN3 gene expression and 

function in hepatocytes and mouse livers.  For instance- over expression of SESN3 

dramatically reduces the ethanol-induced hepatic steatosis (79).  In addition, SESN2 and 

SESN3 have also been shown to regulate insulin sensitivity and glucose homeostasis (80, 

81).  However, to date, the factors that control SESN3 expression are not well studied.  
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To understand the complex regulatory mechanisms that regulate the SESN3 is of 

importance, as new therapeutic targets for metabolic diseases might be discovered.    

In this study, I used the upstream regulatory regions of human SESN3 orthologs from a 

diverse set of primates and rodents (with at least 85% sequence homology with human) to 

perform phylogenetic footprinting (37).  I employed the MEME-SUITE of tools (45),(82) 

which allowed the identification of high confidence conserved binding motifs and 

corresponding position specific weight matrices. The feasibility (i.e. TF binding 

tendency) of these binding motifs (BMo) were also tested in open chromatin region of 

human cell lines and mouse liver using DNase Hypersensitive Sites (DHS) in SESN3 

upstream region. Predicted binding motifs were further analyzed by Tomtom (a motif 

comparison tool from MEME-SUITE) to identify motif specific potential transcription 

factors. Predicted TFs were integrated with documented protein-protein interaction in 

BioGRID (83) to decipher the important regulators and the network of interactors 

controlling the expression of the SESN3 gene. 

2.2.2 Materials and Methods 

Human-SESN3 orthologs and their upstream regulatory regions were extracted 

(FASTA sequences) from ENSEMBL. These SESN3 sequences from human and its 10 

orthologs (Primates and Rodents) were taken and executed using MEME-SUITE, an open 

source hub of bioinformatics tools. Prediction of novel regulatory motifs was performed 

by using phylogenetic footprinting, an in silico method coupled with downstream 

computational analysis. Based on this, consensus sequences in upstream region were 

discovered by MEME analysis. These consensus sequences were further analyzed using 

the Tomtom tool which enables the comparison of predicted motifs with Position Weight 
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Matrices (PWM) of TFs for overlap. Further, protein-protein interaction network was 

constructed between the potential TFs by utilizing the available physical interactions in 

BioGRID to delineate the important regulators and the network of interactors controlling 

the expression of SESN3 gene.    

2.2.2.1 Sestrin3 transcripts and their expression profile 

Human SESN3 gene is located on chromosome 11. I obtained the DNA sequences 

for the human SESN3 gene (Ensembl ID ENSG00000149212) from ENSEMBL database. 

There are 5 transcripts reported for the human SESN3 gene, of which 4 have been 

reported to be protein coding. 

2.2.2.2 Identification of human SESN3 orthologs and their upstream regulatory regions 

for phylogenetic footprinting 

Phylogenetic footprinting is one of the classical methods applied for DNA 

binding motif discovery (37, 41, 72). It involves the upstream regulatory sequence of a 

gene of interest across possible orthologs to search for highly conserved consensus DNA 

binding sites. I selected orthologs of the human SESN3 gene from primates and rodents 

using Ensembl Compara gene trees (42).  These datasets allow the identification of 

orthologous sequences across species with high sequence resemblance as shown in Table 

1.  Gene expression is controlled by various cis-acting transcriptional regulatory factors 

by binding mostly in close proximity to the transcription start sites (TSS) in the promoter 

regions of a gene (43). Based on previous studies (1, 44, 72), I found that most functional 

TF binding sites occur within the 5kb upstream region of the gene TSS (data not shown). 

So, I focused mainly on 5kb upstream regions of the SESN3 gene for motif discovery. 
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2.2.2.3 MEME analysis for discovering DNA binding motifs 

DNA binding motif discovery using the in silico phylogenetic footprinting 

approach covered regulatory regions in the promoters of orthologous genes from multiple 

species (72).  This is under the notion that regulatory elements would be conserved in the 

background of non-functional sequences and hence could be discriminated as footprints 

contributing to regulatory control. In this study, I used 5kb upstream sequences of human 

SESN3 and its 11 orthologs compiled as a FASTA file and used as an input data for 

MEME(45) to identify significantly over-represented motifs (E-value < e-34).  Here I 

limited the width of discovered binding motifs in MEME analysis to reflect the widths of 

most established PWMs - which typically vary in length between 4bp to 30bp (47). 

2.2.2.4 Prediction of TFs associated with discovered motifs 

I used a set of 2201 DNA motifs ranging between 4bp and 30bp in length 

(average length 12.7) from TRANSFAC, 843 DNA motifs ranging between 7bp and 23bp 

in length (average length 12.7) in Jolma et al and 979 DNA motifs ranging between 5bp 

and 30bp in length (average length 13.0) in JASPAR CORE and UniPROBE Mouse. I 

rationalized that a motif length between 4bp to 30bp for the discovered motifs, would be 

able to capture most of these recognition sequences in the SESN3 upstream regions.  

PWMs of various discovered motifs were used as input file for Tomtom(49) and 

compared with already known PWMs of TFs in the above described databases to identify 

the potential TFs binding to the SESN3 upstream regions. Only the TF associations which 

are identified at p ≤ 1e-03 with E-value < 10 were considered as statistically significant for 

the 5kb upstream regions. 
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2.2.2.5 Analysis of DNase I hypersensitive site in SESN3 upstream region 

DNase I hypersensitive sites (DHS) are open chromatin region of DNA, sensitive 

to DNase I cleavage. It is believed that, the occurrence of DHS, notably in the promoter 

region (84) is an indicator of potential binding site for transcription factor. I extracted the 

available DHS data in various  human cell lines  and mouse (14.5 days and 8 week) liver 

from ENCODE project (51) and visualized them for upstream regions of SESN3 genes in 

UCSC genome browser (http://genome.ucsc.edu/cgi-

bin/hgFileUi?db=mm9&g=wgEncodeUwDnase). The images generated from the browser 

were positioned according to the coordinate of the SESN3 upstream region of block 

diagram and studied for active BMo. 

2.2.2.6 Experimental validation of potential transcription factors 

Human HEK293 cells were transfected with plasmid DNAs carrying coding 

sequences for control GFP (green fluorescent protein), human FOXO3 and SOX2 genes. 

The constructs also contained FLAG tag sequence on the N-terminus. After 48 hours of 

transfection, cells were processed for chromatin immunoprecipitation (ChIP) analysis for 

the predicted TF binding sequences as previously described (85). The sequences for the 

PCR primers are: FOXO3 ChIP forward primer 5’-ACAAATCCTGGTACGCTGGA-3’, 

reverse primer 5’– CAGGACTGTGCATTATGACATCA – 3’; SOX2 ChIP forward 

primer 5’– CCAGTAGGCGATGCAAGTTA – 3’, and reverse primer 5’–

CTAGACGCCCGCAACCTG – 3’. 

2.2.2.7 CRISPR/Cas9 gene knockout experiment 

Human FOXO3 and SOX2 CRISPR/Cas9 single guide RNA (sgRNA) sequences 

were designed using an online program at crispr.mit.edu (Dr. Feng Zhang lab) for gene 

http://genome.ucsc.edu/cgi-bin/hgFileUi?db=mm9&g=wgEncodeUwDnase
http://genome.ucsc.edu/cgi-bin/hgFileUi?db=mm9&g=wgEncodeUwDnase


32 

knockout. The selected two sgRNA sequences for the human FOXO3 and SOX2 genes 

are: 5’-CACTTCGAGCGGAGAGAGCG-3’ (FOXO3 sgRNA1), 5’-

TCCACTTCGAGCGGAGAGAG-3’ (FOXO3 sgRNA2), 5’-

TGGGCCGCTTGACGCGGTCC-3’ (SOX2 sgRNA1), and 5’-

ATGGGCCGCTTGACGCGGTC-3’ (SOX2 sgRNA2). The DNA oligonucleotides were 

cloned into a lentiCRISPRv2 vector (a gift from Dr. Feng Zhang, Addgene plasmid 

#52961) as described previously (86, 87). To generate gene knockout stable cell lines, 

HEK293T cells were transfected with control GFP, FOXO3, or SOX2 sgRNA plasmids. 

The transfected cells were selected using puromycin (1 μg/ml) for 7 days, and then 

maintained in the culture medium containing 0.5 μg/ml puromycin. 

DNA constructs preparation 

The coding sequences for GFP, human FOXO3, and SOX2 genes were cloned 

into a pcDNA3 vector using PCR amplification and restriction digestion. 

Cell culture and transfection 

Human HEK293T and HepG2 cells were cultured in DMEM/high glucose 

medium containing 10% FBS. HEK293T cells were transfected with plasmid DNA using 

polyethylenimine and HepG2 cells were transfected using TurboFect reagent (Thermo 

Fisher Scientific).    

mRNA analysis 

Total RNAs were isolated from cultured cells using TRI Reagent (Sigma). mRNA 

levels for selected genes were analyzed by real-time PCR. Peptidylprolyl isomerase A 

(PPIA) was chosen as an internal control gene. Primer sequences are listed as follows: 

human PPIA forward primer: 5’- AGGTCCCAAAGACAGCAGAA-3’, human PPIA 
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reverse primer: 5’-GAAGTCACCACCCTGACACA-3’, human SESN3 forward primer: 

5’-GTACCAACTGCCGGAAAGTG-3’, and human SESN3 reverse primer: 5’- 

CCACTGTGTTTGCTTGGACA.  

2.2.2.8 Mapping protein interactions between the potential TFs 

Eukaryotic TFs often regulate the expression of genes by forming protein 

complexes and several examples have been documented in the literature including that of 

FOXOs interacting with SMAD3 (88) , HNF4a (89) etc to modulate the transcription of 

their target genes. Manually curated set of protein-protein interactions from the BioGRID 

database (57) were employed to map the physical associations between the predicted TFs 

from the Tomtom analysis for the 5kb upstream region. This not only allowed the 

construction of a protein interaction network between the predicted TFs but allowed the 

dissection of the major TFs based on their number of protein interactions in the network.  

2.2.3 Results and Discussion 

SESN3 has similar pattern of expression (RNA seq based expression GeneCards 

(90)) across most of the body fluids like blood, liver secretome, and multiple tissue types, 

indicating the consistent and universal transcriptional regulation of this gene. However, 

little is known about the factors and mechanisms controlling its expression. This study 

attempts to identify the cis-regulatory binding sites controlling SESN3 and all possible 

regulatory proteins which may be involved in regulating the expression of SESN3 gene at 

transcriptional level.  

2.2.3.1 Identification of potential binding motifs by in silico phylogenetic footprinting in 

the regulatory regions of SESN3 across primates and rodents 
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Phylogenetic footprinting analysis facilitates the search for regions of conserved 

chromosomal fragments where the likelihood of transcription factor binding is high. 

These protein-binding sites, which are short fragments of DNA, often range from 6–30 

bp in length (72), (91). A robust set of binding sites and corresponding TFs controlling 

the SESN3 gene were identified by performing motif discovery based on phylogenetic 

alignments of orthologous sequences from a diverse set of primates and rodents using the 

human SESN3 gene as a reference (see Materials and Methods).  In silico phylogenetic 

footprinting (72), was applied for identifying the best conserved motifs in those 

orthologous regions (37).  Briefly, 5kb upstream sequences of SESN3 gene for human 

and its orthologs species (Figure 7) were analyzed by MEME(82), to identify the 

potential binding sites conserved across the species. I used the gene start as the reference 

to obtain the 5kb upstream. Based on the alignments, PWMs representing each of the 20 

most significant BMo enriched across the analyzed sequences were identified. It was 

observed that most of the established binding motif PWMs in publicly available 

databases ranges in length between 4 bp to 30 bp (See Materials and Methods) therefore, 

the discovered motifs in current study would be able to capture most of these recognition 

sequences, including large co-complex TF binding sites or palindrome motifs, if they are 

present in the SESN3 upstream. 

2.2.3.2 Distribution of binding motifs for SESN3 across species 

Genes of many eukaryotes display a more complex architecture of associated 

regulatory elements, including cis-promoter elements with binding sites for basal 

transcription factors, and distal /trans elements with host specific transcription factors 

binding sites (63). Several elegant studies suggests the importance of not only knowing 
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the binding location of a eukaryotic TF (67) but also the complex combinatorial interplay 

between them(65-68). Therefore, the identified conserved novel motif sites were firstly 

screened across multiple speciesas shown in Figure 7. These binding motifs were quite 

different from each other; as indicated by the Pearson correlation coefficient values (data 

not shown). Relative positions of the discovered binding sites in 5kb upstream sequences 

across the species, organized by phylogenetic distance along with the combined 

significance of motif co-occurrence were shown as a block diagram (Figure 7A). The 

conservation of motifs was observed high in the region between -1 and -2.5 kb of the 

SESN3 gene promoter. 

DNase I hypersensitive sites (DHSs) are DNase I enzyme sensitive regions of 

chromatin, where chromatin has less condensed structure due to chromatin remodeling 

for facilitating transcriptional activation and other downstream events (3). I used the DHS 

data available for human cell lines and mouse liver (14.5 days and 8 weeks), generated 

from University of Washington as part of the ENCODE project (92). This analysis 

strongly suggested several predicted motifs (Figure 7B-C) in 5 kb upstream region of the 

SESN3 genes to be active and open for transcription factor binding, especially within 1 kb 

of the gene promoter.  

2.2.3.3 Prediction and validation of transcriptional regulatory apparatus targeting 

discovered motifs of SESN3 upstream region  

I downloaded the motif databases viz. JASPAR CORE 2014, TRANSFAC, 

UniPROBE mouse and Jolma 2013 (See Materials and Methods) separately and then 

combined all together to perform the motif comparison analysis using Tomtom with 

proper filtering criteria (p-value ≤ 1e-03 and E-value <10). 



36 

Figure 7: Block diagram showing occurrence of conserved motifs. (A) Location of 
twenty motifs identified and their distribution in 5 kb upstream sequences across human-
SESN3 & its other primate/rodent orthologous species were shown in the block diagram. 
The combined best matches of a sequence to a group of motifs were shown by combined 
p value.  Sequence strand specified as “+” (input sequence was read from left to right) 
and “-” (input sequence was read on its complementary strand from right to left) with 
respect to the occurrence of motifs. Coordinates of each motif across species is shown as 
a sequence scale (from left to right, in blue) below the diagram. DNase I hypersensitive 
region was shown in 5kb upstream region of SESN3 in (B) human cell lines and (C) 
mouse liver (8 week adult and 14.5 days embryo) using ENCODE project, represented by 
UCSC browser visualization tool. An overlap of DHS signal was found and shown as 
dark band over respective motifs in block diagram. The two coordinates on x-axis 
represents the 5kb upstream regions as base distance (in blue) and genic distance (with 
respect to gene start site, in red) of SESN3 gene. 
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High confidence set of TFs predicted to regulate the expression of SESN3 via 

Tomtom (49) included FOXOs, SMADs, SOXs, HNF4A, and TCFs (Figure 8A). Binding 

motifs which corresponded to high confidence TFs overlapping with DHS signals viz. 

SOX2 and FOXO3 were validated using ChIP-PCR approach in HEK293 cells (See 

Materials and Methods). SOX2 and FOXO3 transcription factors were found to exhibit 

significantly enriched binding to the predicted location in the human SESN3 promoter 

region compared to a negative control GFP (Green Fluorescent Protein) (Figure 8E-F). 

Thus, this validation confirms the active BMos discovered for FOXO3 and SOX2 in the 

promoter region of the human SESN3 gene. To further verify the functional relevance of 

these TFs in the regulation of the SESN3 gene, overexpression and knockout of FOXO3 

and SOX2 were also performed in human cell lines. The overexpression of FOXO3 or 

SOX2 were found significantly activating the SESN3 gene in human HepG2 cells (Figure 

8G). However, they did not significantly affect the SESN3 gene expression in human 

HEK293 cells (93) suggesting that there might be cell-type-specific effects. Nevertheless, 

knockout of either FOXO3 or SOX2 downregulated the SESN3 gene expression (Figure 

8H). 

There are 5 different isoforms of SESN3. Therefore, it is possible to have 

alternative regulatory elements in the first intron of the gene. In addition to the previous 

analysis, an in silico phylogenetic foot printing with 3 kb upstream and 2 kb instream 

query sequence of the primates and rodents were also performed for motif discovery and 

potential TFs binding to these new motifs. The new analysis might not produce the same 

set of motifs similar to the previously identified consensus sequences because the 

sequence search spaces are different, however, the motifs which overlap fully or partially 
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with common DHS signals to the previous analysis were projected to produce 

reproducible results. A set of 20 overrepresented consensus motifs (E-value < e-44) were 

identified among which, motifs overlapping with the DHS signals, and their 

corresponding potential binding transcription factors were considered for downstream 

analysis (93). Nearly, 64% of the previously detected TFs (whose binding motifs were 

supported with DHS) were reproducibly detected in the new analysis including SOXs, 

FOXOs, SMADs, TCFs, HAP1, LEF1, GATA1, POU3F4, POU5F1, EKLF and TFAP4. 

Hence, inclusion of instream region increased the coverage of predicted TFs in this 

analysis corresponding to the newly identified motifs.  

Figure 8: Tomtom analysis results for conserved motifs and experimental validation. (A-
D) Transcription factors predicted for 20 consensus sequences (as query motif) by 
Tomtom analysis. Selected set of DHS overlapped motif aligning with their TF’s PWM 
(top) and query motif (bottom) with binding specificity mentioned by p-values. (E-F) 
Validation of FOXO3 and SOX2 binding to predicted BMo location in SESN3 upstream 
region by ChIP analysis. (G) Overexpression of FOXO3 and SOX2 activated the SESN3 
gene expression in human HepG2 hepatoma cells. (H) Knockout of FOXO3 or SOX2 
using CRISPR/Cas9 approach downregulated the SESN3 gene in human HEK293 cells. 
(* p<0.05). 
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Further, in order to prioritize these predicted TFs and to know potential protein 

complexes that might be responsible for regulation, I integrated  the currently available 

human protein interaction network from the BioGRID (83) to construct a network of 

physical associations between TFs predicted to be binding to the SESN3 gene regulatory 

regions (see Materials and Methods). This resulted in a network of 67 TFs with 125 

associations among them, with TFs like SMAD3, HDAC2, TCF3, SMAD2, CEBPA, 

SOX2, SMAD1 and TAL1 exhibiting high degree of associations. Such physically 

interacting TF-TF network could provide potential co-complex interactions contributing 

to the regulation of SESN3 gene. To identify high confidence list of TFs, this network 

was further dissected to include only the TFs which were predicted to bind the BMos 

with a high confidence (p<e-03) from Tomtom analysis and their corresponding motifs 

overlapping with DHS signals thereby resulting in a subset of TF-TF interactions which 

are likely to control SESN3 promoter. The resulting network of 30 nodes with 60 

interactions is shown in Figure 9. The hubs of this TF-TF interaction network included 

SMAD3, TCF3, SMAD2, HDAC2, SOX2, TAL1 and TCF12. FOXOs, which have been 

documented to regulate the SESN3 gene transcription (94).  For instance - Motif 4 

identified in this analysis was predicted to be bound by SMAD3 (Figure 8, p = 9.34e-04, E-

value = 3.76) and efficient controlled by forming a hub with most other high confident 

TFs as is evident from the interaction network analysis. 
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Figure 9: Interaction network of high confidence transcription factors. Protein interaction 
network between TFs constructed for high confident (p ≤ 0.001, E-value < 10) 
transcription factors using BioGRID database with TFs belongs to DHS signal 
overlapped BMo were shown. 

2.2.4 Conclusion 

This study was among the first efforts to identify transcription factor binding sites 

in the SESN3 gene promoter using an unbiased computational approach. A set of high 

confidence set of TFs correspond to novel BMos were identified and the hubs of TF-TF 

interaction network that include SMADs, SOXs and TCFs.  FOXOs were obtained. These 

TFs were documented to regulate the SESN3 gene transcription (94), also found to 

interact with SMAD3 in this study, suggesting their interplay to combinatorically control 

SESN3. Some of them including FOXO3 and SOX2 were experimentally validated for 

their binding affinity in identified BMos using ChIP-PCR technique. These findings can 

form a roadmap to further understand the regulation mechanism of the SESN3 gene.  
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CHAPTER 3 

TO INVESTIGATE THE COMPLETE TRANSCRIPTOME ARCHITECTURE OF 

DEVELOPING MOUSE EYE 

3.1 Express: A database of transcriptome profiles encompassing known and novel 

transcripts across multiple development stages in eye tissues 

3.1.1 Introduction 

The eye is a complex sensory organ that consists of an anterior segment that 

comprises of the cornea, iris, lens, ciliary body and anterior sclera, and a posterior 

segment that comprises of the retina, choroid and the optic nerve. Eye development is 

coordinated by a complex regulatory program that involves a myriad of signaling, 

transcriptional and post-transcriptional events (95-98). With the advancement of 

sequencing technologies (such as Next Generation Sequencing (NGS)) and its broad 

application on a genome wide scale (99-101), it is possible to explore the mechanisms 

governing the developmental “oculome” (96). Indeed, over the past decade, several 

studies have reported on the transcriptome of specific eye tissues at various development 

stages (96, 102-106). 

Transcriptome studies reported on the lens for various developmental stages (105, 

107) and retina (108-114) were mostly limited to comparative gene expression analysis, 

by restricting to known or annotated genes. However, the complete transcriptome and 

various isoforms in the context of developmental stages in tissues of eye are not fully 

characterized. In this study, a comprehensive and user-friendly platform termed 

“Express” was established, which enables the investigation of the transcriptomic profiles 

in mouse lens and retina tissues across various development stages. Express provides a 
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one-stop portal for investigating gene expression at the resolution of individual 

transcripts encoded by not just the annotated coding and non-coding genes, but 

importantly also many novel gene loci in the mouse genome. Express facilitates this by 

allowing users to view the transcript level expression profiles of a gene across multiple 

developmental stages as heatmaps and simultaneously enables the visualization of the 

genomic location of the transcripts in an embedded genome browser. Users can view and 

download the various visualizations as well as the underlying data to facilitate rational 

design of experiments to study transcript structure, expression and splicing alterations 

across different developmental stages. 

3.1.2 Materials and Methods 

To obtain a comprehensive understanding of the transcriptome during 

development in lens and retinal tissues in mouse eye, publicly available RNA-seq 

datasets corresponding to the raw RNA sequence reads of mouse eye subcomponents 

were collected from different developmental stages (Appendix 1 and 2). Briefly, these 

datasets were aligned to the mouse reference genome, quantified for expression levels of 

known and novel transcripts followed by the normalization of the expression levels 

across samples. Resulting raw and normalized expression levels were then organized into 

a database using My Structured Query Language (MySQL). PHP: Hypertext 

Preprocessor (PHP) backend Application Program Interface (API) helps to query the 

database and a user-friendly frontend enables the visualization of the query results as 

heatmap and browser views across development stages as shown in Figure 10. 
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Figure 10: Overview of the transcriptome profiling and database construction for 
Express. Transcriptomes of mouse lens and retina spanning several development stages 
(with biological replicates) were collected from published sources listed in Appendix 1 
and 2. Curated RNA sequence data was quality filtered using FASTX Toolkit. High 
quality raw sequence reads were processed and aligned to mouse reference genome 
mm10 using HISAT and outputs were collected as SAM files. Post-processing (i.e. 
conversion of SAM to sorted Binary Alignment Map (BAM)) of aligned reads was 
accomplished using SAMTools. Aligned and post-processed RNA-seq BAM files 
associated with each developmental stage were utilized for identifying and quantifying 
the expression levels of known and novel transcripts across respective development 
stages of tissue subtypes using StringTie. Quantile normalization was performed for 
samples per tissue type using preprocess R package. The novel transcripts reported by 
StringTie were categorized into unannotated (novelty score < 70) and completely novel 
transcripts (novelty score >= 70). These normalized expression levels of known, 
unannotated and completely novel transcripts were organized into a table. Gene 
information mapping gene names to gene IDs was downloaded from Ensembl BioMart 
following Hugo Gene Nomenclature Committee (HGNC). Sample information was 
manually curated for samples and NCBI BioProject ID, PubMed ID and study reference 
were obtained per sample. These collected data were then organized into a My Structured 
Query Language (MySQL) database.  
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3.1.2.1 Data collection and processing 

The raw RNA-seq reads of multiple development stages (each with its biological 

replicate) of mouse eye were collected from Gene Expression Omnibus (GEO) (115) and 

European Nucleotide Archive (ENA) (116). Appendix 1 and 2 show the relevant source 

of the RNA-seq datasets along with several metrics for lens and retina respectively, 

resulting from the alignment of the reads to the mouse reference genome (mm10). The 

single end datasets were downloaded in FASTQ format (A text-based format for storing 

both the nucleotide sequence and its corresponding quality scores) using the Sequence 

Read Archive (SRA) Toolkit (fastq-dump command), and the paired end datasets were 

directly downloaded from ENA (European Nucleotide Archive). The quality of the 

sequence reads were ensured using FASTX-Toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit/) with a minimum of Phred quality score 20 for 

each sample. 

An in-house NGS data analysis pipeline was employed for this study. Briefly, I 

used Hierarchical Indexing for Spliced Alignment of Transcripts (HISAT, version 0.1.6) 

(117) for aligning short reads from RNA-seq experiments onto reference genome. HISAT 

(with default parameters) can rapidly align the quality filtered reads collected from 

different sources (Appendix 1 and 2) against the mouse reference genome mm10. SAM 

(Sequence Alignment/Map) files obtained from HISAT were post-processed using 

SAMtools (version 0.1.19) (118, 119) for converting SAM to BAM (Binary 

Alignment/Map) followed by sorting the output BAM files, and finally these BAM files 

were indexed using SAMtools. The sorted BAM files obtained after post-processing were 

http://hannonlab.cshl.edu/fastx_toolkit/
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used to quantify the expression levels of known and novel transcripts across development 

stages. 

Transcript quantification and discovery from the aligned RNA-seq datasets was 

accomplished using StringTie (version 1.2.1) (120). StringTie is a novel network flow 

algorithm based on a fast and highly efficient assembler to quantify the transcripts of 

each genomic locus considering all possible multiple splice events. In addition to 

annotated transcripts, it can also provide the information of possible novel transcripts in 

each sample. The transcript level expression data for each sample quantified using 

StringTie were stored as GTFs (Gene Transfer Format files) providing expression levels 

for both known and novel transcripts. All the GTFs obtained for each sample were 

grouped and provided as an input for StringTie “merge” mode along with mouse 

reference genome (mm10) to obtain a reference annotation file (in GTF) including novel 

transcripts. Next, the reference merged GTF was used in re-running StringTie with the 

sorted BAM files for the corresponding samples, to obtain GTFs per sample having the 

same transcript identifier for a given novel transcript across all the samples.  

The known transcripts were defined as the transcripts that were annotated as reference 

mouse transcripts in the Ensembl database (121). In contrast, novel transcripts were 

defined as the transcripts that were exclusively predicted by StringTie with little or no 

overlap with existing mouse transcript annotations in mm10. The length of the discovered 

transcript were examined onto the annotated reference transcript coordinates and a 

novelty score for each novel transcript was calculated by using the below formula, 

Novelty Score = �1 −
length of overlapping region
full length of novel transcript

 �  ×  100 
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The novel transcripts having a novelty score (NS) ≥70 were considered as 

completely novel and the novel transcripts having novelty score <70 were considered as 

unannotated transcripts. Since sequencing or processing artifacts at various steps of the 

transcript quantification analysis could potentially contribute to high number of transcript 

isoforms, the transcripts were classified into three categories namely a) known transcripts 

annotated in Ensembl database (https://www.ensembl.org/Mus_musculus/Info/Index) b) 

completely novel transcripts i.e., transcripts which exhibit a novelty score of at least 70 

and c) the remaining transcripts were classified as unannotated transcripts and excluded 

from all the downstream analysis. A quantification matrix was generated for both the lens 

and retinal transcriptomes with respect to different development stages by extracting the 

TPM (Transcripts Per Million reads sequenced) values from StringTie outputs.  

3.1.2.2 Normalization of transcript expression levels across samples in a tissue 

Although RNA-seq samples originating from the same laboratory are unlikely to 

have significant technical variation among the replicates and developmental stages, there 

could still be variations arising due to factors like tissue preparation, RNA extraction and 

sequencing depth differences. In the analyzed datasets for both lens and retina, RNA 

sequencing datasets originating from multiple labs and protocols were analyzed. Hence, 

in addition to providing the default option of raw expression levels of a transcript across 

developmental stages, a widely adopted quantile normalization method was performed 

using the preprocessCore package (122) in R and the resulting normalized expression 

data was used for showing the expression heatmaps in Express. Quantile normalization is 

a global adjustment method that assumes the statistical distribution of each sample under 

study is the same (123). Normalization is achieved by forcing the observed distributions 

https://www.ensembl.org/Mus_musculus/Info/Index
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to be the same and the average distribution, obtained by taking the average of each 

quantile across samples, is used as the reference. Its application on both microarray and 

RNA sequencing data has consistently shown its superior performance compared to other 

competing methods (123, 124). Hence, this normalization on RNA-seq expression profile 

matrices was used across developmental stages in lens and retina respectively. Raw or 

normalized expression levels of replicates of a developmental stage were averaged for 

display purposes on Express. In addition to the quantile normalization, to exhibit only 

high quality relevant transcripts, the end user has the option to select only highly 

expressed transcripts for visualization. This is facilitated by including a selection filter 

which allows the visualization of the expression levels for only those transcripts of a gene 

which have at least a certain level of expression observed in at least one of the 

developmental stages shown. 

3.1.2.3 Database construction and implementation 

In order to build the Express database of transcriptome profiles encompassing 

known and novel transcripts across multiple development stages in eye tissues in mouse, 

several steps were employed. These steps are illustrated in Figure 10. Briefly, as 

described in the above sections, the aligned, quantified and then normalized datasets 

organized as final matrices for each tissue type were stored into an SQL table. Express 

stores both the raw as well as the quantile normalized expression levels of transcripts in 

Transcripts Per Million Reads (TPM) units. Moreover, the sample metadata information 

is manually curated with NCBI BioProject ID, PubMed ID and a reference for citing the 

corresponding dataset. Also, the table containing Ensembl gene ID, MGI (Mouse 

Genome Informatics) gene ID and chromosomal location for all genes in mouse genome 
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was downloaded from Ensembl BioMart and the table containing gene synonym, 

approved gene name and Ensembl gene ID was downloaded from HGNC (HUGO Gene 

Nomenclature Committee) for genes that are linked to an MGI gene ID. Similarly, the 

transcript ID - gene ID relationships table were obtained from Ensembl BioMart for 

linking gene information to the expression data. 

3.1.2.4 User interface and access 

Backend 

A PHP: Hypertext Preprocessor (PHP) Application Programming Interface (API) 

was developed for interacting with the database using a query (e.g. gene symbol, 

Ensembl gene ID, MGI gene ID, Ensembl transcript ID or chromosomal location) for the 

user given TPM cutoff and tissue type. Upon sending the query, TPM cutoff and tissue 

type to the API, the query type is identified, and the corresponding quantile normalized 

transcript level expression data is retrieved from the database. Next, the expression values 

are normalized between 0 and 1 per transcript and the final data is returned in JSON 

(JavaScript Object Notation) format to be visualized by the frontend. The backend PHP 

API can also be used programmatically to obtain expression data, which is documented 

on documentation page of Express (http://www.iupui.edu/~sysbio/express/docs.html). 

Frontend 

The frontend interacts with the user to accept input (a tissue type, a TPM cutoff, 

value type and a query) and a visualization of the retrieved data from the MySQL 

database is provided. The structure of queried transcripts in a genome browser developed 

using Biodalliance JavaScript library (http://www.biodalliance.org) was shown. The 

mouse transcript structures were obtained from GENCODE version M7 (GRCm38.p4) in 

http://www.iupui.edu/%7Esysbio/express/docs.html
http://www.biodalliance.org/
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BigBed format (A binary file format, created by conversion from a Browser Extensible 

Data format file) available on http://www.gencodegenes.org/mouse_biodalliance.html. 

To this BigBed file, the structures of novel transcripts discovered by StringTie were 

added from the analysis. The default identifiers obtained from StringTie were renamed to 

include corresponding tissue type in the identifier for easy understanding in the genome 

browser. To modify the GENCODE transcript annotation, firstly, the BigBed file was 

converted into BED file, the structures of novel transcripts were added and then 

converted back to BigBed format using UCSC utilities (125). Also, the expression data 

per transcript across multiple developmental stages is shown as a heatmap developed by 

using d3.js JavaScript library (https://d3js.org). The heatmap is sorted by transcript 

groups (as introduced in the section “Data collection and preprocessing”) as known 

transcripts, completely novel transcripts and unannotated transcripts. The transcripts in 

each group are also sorted by the averaged expression value for all developmental stages 

for keeping highly expressed transcripts at the top. The front end provides two select 

boxes for choosing an available TPM cutoff (0, 1, 2, and 5), and the tissue type and a 

textbox for entering the query. The frontend interface allows the user to choose a 

minimum expression cutoff for a transcript, which enables the display of only those 

transcripts resulting from search exhibiting this minimum expression level cutoff in at 

least one developmental stage. The default cutoff is set to 5 TPM. The value type select 

box can also be used to query for raw expression values or quantile normalized 

expression values. After search is performed, the results are shown as a heatmap along 

with a genome browser to view the transcript structure. The heatmap and browser view 

can be toggled using the button on the right-hand side of the navigation bar. Also, using 
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the Export dropdown menu, it is possible to export heatmap view and browser view in 

SVG (Scalable Vector Graphics) format and heatmap data in TSV (Tab Separated 

Values). 

3.1.2.5 Experimental validation of the RNA-seq identified transcripts for lens and retinal 

expressed genes 

The University of Delaware animal facility hosted all the mice used in these 

experiments, which were performed following the guidelines defined in the Association 

for Research in Vision and Ophthalmology (ARVO) statement for the use of animals in 

ophthalmic and vision research. C57Bl/6 mouse lenses were microdissected at three 

stages, namely, embryonic day (E) 15.5, post-natal day (P) 0 and P10. Retina was 

dissected from four stages, namely P10, P20, P30 and P48. The day of detection of 

vaginal plug was defined as E0.5. Each of three biological replicates at E15.5 comprised 

of six lenses, and at P0 and P10 comprised of two lenses. Each of the biological replicates 

for retinal expression comprised of 2 retinas from P10, P20, P30 and P48. Total RNA 

was extracted from lenses using RNeasy Mini kit (Qiagen Inc, Valencia, CA) and cDNA 

was synthesized using Bio-Rad iScriptTM cDNA Synthesis Kit (Bio-Rad Laboratories, 

Hercules, CA), for use as a template in quantitative PCR (RT-qPCR) analysis. Forward 

and reverse primers were designed on the longest isoform of the transcript on exonic 

sequence flanking an intronic region such that the product sizes were < 300 bp. RT-qPCR 

was performed using Power SYBR Green PCR Master Mix (Invitrogen life technology, 

Grand Island, NY).  Several house-keeping genes namely, Actb, B2m (Beta 2-

microglobulin), and Hprt were used for normalization (126-130). Fold-change 

differences between target gene expression compared to specific housekeeping gene 
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expression was estimated using the ΔΔCt method. The first comparison of gene 

expression in the ΔΔCt method was performed independently with several housekeeping 

genes. The second comparison was calculated based on expression at E15.5 (lens 

samples), and at P10 (retina samples). Statistical significance was calculated using two-

way ANOVA as described (131). 

3.1.3 Results and Discussion 

3.1.3.1 Overview of Express database 

Express is a database of transcriptome profiles encompassing known and novel 

transcripts across multiple development stages in mouse eye tissues. Several steps 

involved in preprocessing, post-processing, quantification and normalization of collected 

data followed by its organization in Express are illustrated in Figure 10 (see Materials 

and Methods). Express contains 81779 distinct transcripts for mouse lens and 178367 

distinct transcripts for mouse retinal samples. Novel transcripts are defined as those that 

are not annotated in the reference genome annotation (see Materials and Methods). The 

proportions of the known and completely novel transcripts for each developmental stage 

at 5 TPM threshold in lens and retina are shown in Figure 11A and 11B, respectively. In 

the following sections, the composition of the datasets and functionality of the database 

were illustrated as well as the validations of several genes in lens and retinal tissues were 

presented, to demonstrate the utility of Express for studying eye development.  

3.1.3.2 Analysis of lens and retinal RNA-seq data for building Express 
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Express contains gene and transcript level expression data obtained from 21 lens 

and 35 retinal RNA-seq mouse samples as shown in Appendix 1 and 2 respectively. Lens 

samples include developmental stages from E15 to P9 with alignment rates ranging from 

86% to 94% (See Appendix 1). The retinal samples include developmental stages from 

P2 to P90 with majority of them exhibiting a high overall alignment rate varying from 

80% to 97% (See Appendix 2). To control the technical variation in expression levels 

between samples, a quantile normalization of all the samples was performed in a given 

tissue type (See Materials and Methods). Both raw as well as normalized expression 

levels in Transcripts Per Million (TPM) reads sequenced units, are stored in the database 

and are available to download from the Express website. 

Figure 11: Histograms showing the proportion of known and completely novel transcripts 
across developmental stages at >5 TPM (A) for lens samples from E15 to P9 and (B) for 
retinal samples from P2 to P90. Multiple datasets associated with a given developmental 
stage are merged to facilitate the ease of comparison across stages. 

3.1.3.3 User guide for exploring Express database 

To retrieve gene expression data from Express, the following features have been 

added to the web interface. Step-by-step instructions for using Express are also available 
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as a User Manual (see Figure 12 and the web interface of Express following the webpage 

-http://www.iupui.edu/~sysbio/express/user-guide.html).  

The parameters to investigate the expression of a gene are (a) tissue type, namely 

lens, retina and lens cell subtype; (b) expression level, namely gene or transcript (splice 

isoform) level; (c) TPM (transcripts per million) cutoff of 0, 1, 2 and 5 and tpm values 

which could be raw or values after quantile normalization.  

User can query a gene name, ENSEMBL ID or chromosome location to 

investigate gene expression in selected tissue type. The output can be viewed in (a) 

heatmap or (b) browser view using toggle buttons on the top right side of the web 

interface. Heatmap view shows gene expression at different developmental stages with 

color index as gradations of blue color intensity, denoting higher intensity for high gene 

expression compared to other developmental stages investigated in this study. The 

browser view shows all the genes and transcripts expressed in lens and retina in the query 

chromosomal location. Unannotated genes are displayed as MSTRG.XXXX.XXXXX.X. 

The chromosomal window on the browser view can be increased or decreased using the 

magnification slider provided on the top right of the browser view panel. The heatmap 

view and the browser view can be downloaded as high-resolution images using a 

dropdown export menu provided on the top right-hand side of the web interface. Further 

sources for the RNA seq-data used for the analysis in this study are provided at the 

bottom of the web interface. 
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Figure 12: User guide for employing Express to investigate eye gene expression is 
highlighted in panel 3A.  1) User selects parameters, 2) Enters query gene or 
chromosomal region, 3) Selects view options, 3a. with heatmap view can visualize gene 
expression in various developmental stages, 3b. with Browser view can visualizes 
different transcripts, 4) Uses magnification slider to controls chromosomal range, 5) Can 
use the Export dropdown menu to download heatmap view, raw or normalized gene 
expression data or browser view. 

rajne
Text Box
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As shown in Figure 12, for instance – on investigating the gene expression profile 

of Bfsp1 in the lens at the gene level, at a threshold of 5 TPM for raw expression level, an 

output is generated with both heatmap and browser view. In the browser view, all genes 

expressed in the lens and retina at the chromosomal location as Bfsp1 can be visualized. 

In the heatmap view, relative expression of Bfsp1 at various developmental stages is 

shown. The expression of splice forms of Bfsp1 can be compared at different 

developmental stages using the transcript level option i.e. while the expression of isoform 

ENSMUST00000099296 increases with development, the expression of 

ENSMUST00000028907 is highest at P0.  

3.1.3.4 Development of Express as a user-friendly tool 

Express provides transcript level expression data for mouse lens and retina across 

different developmental stages for known and novel transcripts as identified by StringTie. 

The mouse developmental stages are expressed as embryonic (E) or post-natal (P) 

followed by a number that indicates the number of days after fertilization or birth, 

respectively (e.g. E18 corresponds to an embryo dissected 18 days after the vaginal plug 

was observed, while P0 corresponds to the day of birth). A summary of eye 

developmental stages for ready comparison of ocular morphological changes with 

Express data stages is shown in Figure 13. 
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Figure 13: Overview of the mouse eye development and user interface. In the initial 
stages of eye development, the optic vesicle interacts with the overlying non-neural 
surface ectoderm at embryonic day (E) 9.5 in mouse and induces its thickening to form 
the lens placode. Subsequently at E10.5 the optic vesicle and the lens placode interact to 
develop into the optic cup and the lens pit, respectively. The lens pit closes to the form 
the lens vesicle and the overlying ectoderm contributes to the corneal epithelium. The 
posterior cells of the lens vesicle differentiate to form the primary lens fiber cells while 
cells of the anterior epithelium of the lens divide to form new epithelial cells that migrate 
towards the transition zone. Cells at the transition zone exit the cell cycle and terminally 
differentiate to form the secondary fiber cells.  Further, the fiber cells migrate towards the 
center of the lens, and as they terminally differentiate, undergo organelle degradation, 
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resulting in an organelle free zone in the center of the lens by E18.5. Further development 
and differentiation events lead to the formation of the adult eye where the anterior region 
consists of the cornea, iris, cilliary body and cilliary zonules. The posterior of the lens 
consists of the retina, retinal pigment epithelium, choroid and sclera. A more detailed 
diagram of the retina shows that it is composed of several distinct cell types, including 
the retinal ganglion cells, amacrine cells, bipolar cells, horizontal cells and the rod and 
cone photoreceptors. Retinal ganglion cells and cone cells are differentiated and 
functional by E18.5 and by postnatal day (P) 5, amacrine cells, bipolar cells, horizontal 
cells and rod cells are formed. By P10, all the neuronal cells in the retina have completely 
connected synaptic junctions. Rod and cone cells synapse with horizontal cells for 
communicating with other photoreceptors and with bipolar cells, which further synapse 
with amacrine cells. The amacrine cells in turn synapse with the retinal ganglion cells.   
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Processed RNA-seq data is available for 7 developmental stages of the lens (E15, 

E15.5, E18, P0, P3, P6, and P9) and 11 development stages of the retina (P2, P10, P11, 

P21, P28, P30 P40, P48, P50, P60 and P90). In express, users can also search for cell-

type specific expression profiles where available. For instance, a representation for lens 

dataset such as P0:E and P0:F stands for the epithelial and fiber compartments in lens. 

The fraction of transcripts for each developmental stage for lens and retinal samples is 

shown in Figure 11. Although majority of the lens developmental stages exhibit ~17% of 

completely novel transcripts, the proportion of completely novel transcripts in retina were 

found to be significantly higher and varying with expression threshold. Observed fraction 

of completely novel transcripts was found to be <25% across majority of the retina stages 

when transcripts were filtered to include only those expressed greater than 5 TPM in 

retinal samples (see Figure 11). The number of retina-expressed transcripts that are 

identified to be novel in this study is comparable to that previously reported in the human 

retina (132), and therefore supports the finding that retinal cells potentially express a 

large number of uncharacterized transcripts. In Express, users can filter to view only 

those transcripts resulting from a search that satisfy one of the four levels of confidence 

in expression levels – 1) transcripts exhibiting a non-zero expression level in TPM in at 

least one developmental stage, 2) transcripts with at least 1 TPM in at least one 

developmental stage 3) transcripts with at least 2 TPM in at least one developmental 

stage and 4) transcripts expressed with at least 5 TPM in at least one developmental stage 

(default threshold).  

At 5 TPM cut-off, the lens samples were found to exhibit ~16% completely novel 

transcripts across stages. In contrast, the retinal samples were found to comprise of ~22% 
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completely novel transcripts. When lower expression thresholds were used the fraction of 

completely novel transcripts significantly increased in retinal samples. It is speculated 

that the high number of novel transcripts in retinal samples is likely due to the several 

distinct types of cells in the retina. Indeed, the total number of transcripts identified in 

mouse retina in this study are very similar to the numbers reported in human retinal 

samples (132).  

3.1.3.5 Validation of transcript-expression in lens and retina 

Several genes and their corresponding transcripts that were found to significantly 

altered across the developmental stages in lens and retina were identified. The expression 

pattern of these genes as well as other established genes were verified as a representative 

set of very significantly altering transcripts across stages to evaluate expression levels 

reported in Express. In particular, the expression profile of the selected transcripts (in the 

form of a heatmap) were downloaded from Express for each tissue subtype and their 

levels were experimentally validated for multiple development stages using RT-qPCR 

(see Materials and Methods). In lens, the expression of Pax6, Elavl4 and Rbm5 was 

validated (Figure 14A). Pax6 (Paired box 6) is a transcription factor essential for eye 

development in mice and humans. Mutations in Pax6 have been linked to congenital 

cataract, aniridia and anophthalmia in humans (133) and haplo-insuffciency of Pax6 in 

mice results in small eyes (Sey) in mice (134, 135). RT-qPCR shows that Pax6 

expression is elevated in early postnatal stages in agreement with Express (Figure 14A). 

Elavl4 (ELAV (Embryonic Lethal, Abnormal Vision, Drosophila)-like 4 (Hu antigen D) 

belongs to ELAV protein family and is expressed in the mouse lens and frog retina (136, 

137). Elevated expression of Elavl4 in the mouse lens increases the expression level of its 
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targets (GAP43 and CamKIIα), which is a similar outcome to its overexpression in brain 

tissue (137). The expression of Elavl4 in mouse lens was found high during embryonic 

stages and gradually reduced in postnatal stages (Figure 14A), as predicted by the 

transcriptome datasets in Express. Rbm5 (RNA binding motif protein 5) belongs to the 

Rbm protein family and is associated with lung cancer (138-141). Rbm5 is observed to be 

highly expressed at embryonic stages and repressed during early postnatal stages (Figure 

14A). While this is the first report of Rbm5 expression in the lens, another member of the 

Rbm family, Rbm24 is expressed in the vertebrate eye and its deficiency in zebrafish 

causes microphthalmia (106, 142). 

Further, the expression of Lhx2, Pabpc1, Tia1 and Tubb2b were also validated in 

the retina (Figure 14B). Lhx2 (LIM homeobox 2) encodes an eye field transcription factor 

that is expressed from the earliest stages of optic development. LHX2 mutations in human 

as well as its knockout in mice causes anophthalmia (143, 144). As indicated by Express, 

RT-qPCR show that Lhx2 expression reduces in the retina in late postnatal stages (Figure 

14B). 



61 

Figure 14: Heatmaps showing the expression profiles of selected transcripts in multiple 
development stages of mouse eye tissues. Expression data were normalized by the 
maximum expression level of a given transcript across stages and visualized as heatmap 
in Express. Expression profile of selected transcripts for (A) lens and (B) retina were 
downloaded from Express and shown in form of heatmap. In retina datasets some 
development stages are marked as “C” for cone and “R” for rod cells and unmarked 
development stages represent whole tissue. The marked datasets are derived from the 
given cell type. Their expression profile was also verified for multiple development 
stages using qPCR with B2M as housekeeping control and shown as additional panels. 
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Pabpc1 (Poly A-binding protein, cytoplasmic 1) binds to the poly A tail of mRNA 

and modulates its susceptibility to cap-mediated mRNA decay (145). RT-qPCR shows 

that Pabpc1 is expressed highly at early postnatal stages and its expression reduces 

significantly at later developmental stages (Figure 14B) until P30 when its expression 

increases again. Tia1 (T-Cell-Restricted Intracellular Antigen-1) promotes the 

recruitment of U1 snRNP to splice sites and is implicated in lymphoma and leukemia 

(146-148), which is also expressed in the mouse lens (149). Tia1 expression was found 

gradually decreased in the retina with age (Figure 14B). Tubb2b (Tubulin, Beta 2B Class 

IIb) is a component of microtubules. Tubb2b mutations result in congenital fibrosis of 

extraocular muscles (CFOEM), which leads to ptosis (drooping eyelids) and restricted 

eye movements in humans (150). RT-qPCR confirms that Tubb2b expression is high at 

P10 and reduces sharply at P30 before increasing again at P48 (Figure 14B) as predicted 

by Express. The levels of the control genes were also verified and compared across time 

points for reference. 

Express was investigated to compare with the established expression pattern for 

the gamma-Crystallin family of genes. A previous study describes the expression of 

different Cryg family transcripts at the mouse stages E16.5, P1, P10, P20, P30, P40, P80, 

P120, and P180 (Goring et al. 1992). Cryg gene expression was compared for the stages 

in Express that are closest in developmental time to the stages in the Goring et al. study. 

Specifically, Cryg expression in Express for E15, P0 and P9 that are close to the stages 

E16.5, P1 and P10 in the Goring et al. study, was compared. Using raw expression and 

TPM cut-off of 5, a good agreement between the Express and previous findings for the 

general trends of the Cryg genes was observed, namely for Cryge, Crygf, Crygb, Crygc 
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and Crygd (Figure 15). Cryga showed a slight deviation from the Goring et al. study in 

that it did not exhibit a slight reduction at P0 prior to being high at P10 (although it 

exhibits general agreement with the previous study in that the expression of Cryga was 

higher at P9 compared to E15). Therefore, these findings offer further support that gene 

expression data in Express reflects the experimentally validated and established gene 

expression patterns in the lens. 

Figure 15: Gene expression analysis of Cryg family of genes. Raw Expression profiles of 
Cryg genes in mouse lens were downloaded from the Express database to investigate if 
they are in agreement with previously described patterns (reference: Goring et al.,1992). 
Expression values for specific Cryg genes in the stages closest to the developmental time 
points in the previous study are plotted (E15 in Express in lieu of E16.5 in Goring et al. 
1992, P0 in lieu of P1, P9 in lieu of P10). The general expression patterns for the Cryg 
genes correlate well between Express and the previous findings. Specifically, Crygb, 
Crygc, Crygd and Crygf expression increases as development progresses and is highest at 
P9, while Cryge expression elevates at P0 and beyond. The only minor deviation is 
exhibited by Cryga whose expression increases from E15.5 through P9 in Express, 
instead of the slight decrease at P1 prior to increasing again at P10 as previously 
described. 

3.1.4 Conclusion 

A number of studies in the past have focused on studying the expression 

landscape of genes using microarrays across developmental stages (151-153) in mouse 

eye development and specialized databases (106, 154) have been built. However, the 
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current understanding of the transcript structure, expression and their splicing alterations 

is incomplete. Here, Express is presented as the first large-scale transcriptomic resource 

based on eye tissue RNA-seq data to provide a user-friendly portal for studying and 

visualizing the expression levels of both the known and novel transcript isoforms across 

developmental stages in mouse eye tissues. Further, several transcripts were validated 

using RT-qPCR across multiple developmental stages in mouse lens and retinal tissues to 

confirm that the Express-quantified levels of transcripts are in agreement with the 

detected expression levels from RNA-seq quantification pipeline employed in this study. 

Several transcripts encoding RNA-binding proteins were found to be highly expressed in 

embryonic development and down-regulated in post-natal stages suggesting a complex 

post-transcriptional control of gene expression in early eye development. 

The analysis suggests that retinal samples exhibit a significant number of novel 

transcripts comparable to a recent analysis of human retinal transcriptomes (132). It can 

be speculated that these novel RNA transcripts may reflect cell type specific functions. 

Hence resources like Express can not only further elaborate the understanding of tissue-

specific developmental transcriptome but can also serve to improve gene annotations in 

mouse. 

Express can be a useful resource for prioritization of candidate genes from exome 

sequencing analysis for patients with ocular defects as well as for providing a functional 

and developmental context to investigate the significance of differentially expressed 

genes in mouse mutants with eye defects. 
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3.2 Transcriptome analysis of developing lens reveals abundance of novel transcripts and 

extensive splicing alterations 

3.2.1 Introduction 

The past decade has seen a surge in transcriptome-level studies for specific 

developmental stages of the eye and its tissue sub-types (102, 155). The development of 

the eye involves a complex and highly orchestrated regulatory program with several 

specification and differentiation processes (96, 97). The lens is a transparent tissue that 

focuses light on the retina (156). It originates from the surface ectoderm early in 

embryogenesis and is composed of two cell types, namely the anteriorly located epithelial 

cells and the posteriorly located fiber cells (98, 157). During development and throughout 

the life of the animal, epithelial cells differentiate into fiber cells that elongate and 

migrate towards the center of the lens, while degrading their organelles, including 

nucleus.  

Greater than 94% of multi-exonic genes in the human genome are alternatively 

spliced (158). Further, alternative splicing is an essential and highly controlled post-

transcriptional regulatory mechanism which provides transcriptomic and proteomic 

diversity in eukaryotic organisms (159). Due to the extensive prevalence of splicing 

events in higher eukaryotes, various transcriptomic datasets across developmental stages 

have been previously explored in multiple model organisms to study the structure and 

composition of protein-coding and non-coding genes (160-163). These RNA-Seq based 

studies revealed more accurate and comprehensive set of known and novel genes for 

downstream functional and comparative analysis. 
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Previous studies report that ocular tissues such as the retina can exhibit highly 

diverse transcript profiles with hundreds of novel transcripts, likely contributed by the 

ensemble of multiple cell types abundant in retina (102, 132). However, few RNA-Seq 

based studies have been conducted so far for investigating the lens transcriptome (164, 

165) especially over different developmental stages (105, 107).  Further, these studies 

have used only known or annotated genes in their analysis. Thus, to date the complete 

lens transcriptome and the various isoforms expressed in the developing lens has not been 

fully characterized. In this study, I investigated the transcriptomic alterations and splicing 

events from publicly available lens RNA-Seq data and have constructed a comprehensive 

molecular portrait of known as well as novel transcript isoforms in the mouse lens across 

developmental stages. 

3.2.2 Materials and Methods 

To obtain a comprehensive understanding of the transcriptome and splicing 

alterations across various stages of lens development, I re-investigated the processed 

RNA-seq datasets of mouse lens from different developmental stages documented in 

Appendix 1. This study utilized the processed dataset resulted from previous study (166) 

where in house NGS data processing pipeline was used as illustrated in the workflow 

(Figure 16). The sorted binary alignment files (sorted-BAM) obtained after post-

processing were employed for further data processing i.e. quantification of expression 

levels of transcripts and splicing analysis. 
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Figure 16: Overview of the transcriptome analysis across developmental stages in mouse 
lens. Transcriptomes of mouse lens spanning seven developmental stages (three 
embryonic; E15, E15.5, E18 and four postnatal; P0, P3, P6, P9 stages with biological 
replicates) were collected from published sources. Curated RNA sequence data was 
quality filtered using FASTX toolkit. High quality raw sequence reads were further 
processed using in house NGS data processing pipeline (as described previously) 
Processed dataset were utilized for two purposes. Firstly, for identifying and quantifying 
the expression levels of known and novel transcripts across seven developmental stages 
using StringTie, followed by an evolutionary and functional analysis to uncover high 
confident completely novel transcripts in developing lens. Secondly, the processed bam 
files were also employed for the identification of alternative splicing events using rMATS 
(replicate Multivariate Analysis of Transcript Splicing) (167)  followed by functional 
analysis of genes belonging to the enriched splice events. Finally, the results of the most 
prominent splicing events namely skipped exon and retained intron events are also made 
available through Eye splicer, a web based splicing browser showing developmentally 
altered splicing events in mouse lens.  
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3.2.2.1 Transcript identification and quantification from the aligned RNA-seq datasets 

StringTie (version 1.2.1) (120) was used for identification and quantification of 

transcripts from the aligned RNA-Seq reads (BAM files). StringTie uses a novel network 

flow algorithm for fast and highly efficient assembly and quantitate the transcripts of 

each genomic locus considering all possible multiple splice events. In addition to 

annotated transcripts, it can also provide the information of possible novel transcripts in 

each sample. Transcript level expression data quantified using StringTie were stored in 

GTF (Gene Transfer Format) providing expression levels for both known as well as novel 

transcripts against mouse reference genome (mm10 - Mus_musculus.GRCm38.84.gtf). 

All the GTFs previously obtained for each sample were grouped and provided as an input 

for stringtie “merge” mode along with mouse reference genome (mm10 - 

Mus_musculus.GRCm38.84.gtf). The merged GTF thus obtained was then utilized as 

reference annotation file in re-running StringTie with the sorted-BAM for the 

corresponding samples. As a result, I obtained a matrix of expression levels for 90689 

transcripts (68166 annotated and 22523 novel transcripts) in the mouse genome. Known 

transcripts are defined as the transcripts whose genomic co-ordinates and annotations 

completely overlapped with those reported in Ensembl database (121) for the mouse 

genome. In contrast, novel transcripts were defined as the transcripts that were 

exclusively predicted by StringTie and hence could overlap partially with already 

annotated exonic regions in the mouse genome. A quantification matrix was generated 

for lens transcriptome with respect to different developmental stages extracting the TPM 

(transcripts per million) values from StringTie outputs. This matrix was utilized for 

downstream analysis. 
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3.2.2.2 Defining and investigating the novel transcripts across developmental stages 

I calculated the proportion of known and novel transcripts for each RNA-seq 

sample with an expression threshold of TPM > 1.0 and averaged the values for 

corresponding replicates from each developmental stage.  The obtained proportions were 

represented as a bar graph for each developmental stage. Similarly, the proportion of 

known and novel transcripts with varying expression thresholds (TPM > 0.5, > 2 and > 5) 

was calculated and represented as bar graphs to study the reproducibility of the observed 

trends. 

To investigate the discovered novel transcripts for their extent of novelty with 

respect to the known transcript architectures documented in the mouse reference genome 

mm10, I mapped the length of the discovered transcript to annotated reference transcript 

coordinates and calculated a novelty score for each novel transcript by using the below 

formula, 

 Novelty Score = �1 −
length overlapping region

full length of novel transcript
 �  ×  100 

The distribution of novelty score of novel transcripts in each developmental stage 

was examined and represented it as a density plot. I performed K–S (Kolmogorov–

Smirnov) test to investigate for statistically significant differences in the novelty score 

distributions between any pair of developmental stages. Based on prior calculations and 

distribution of novelty scores, the novel transcripts were characterized into two groups; 

partially novel transcripts (PNTs, novelty score < 70%) and completely novel transcripts 

(CNTs, novelty score ≥ 70%). I analyzed the expression levels of transcripts across all 

stages for each transcript group - known, partially annotated novel and completely novel 

transcripts and performed Wilcoxon rank sum test to study the distribution of expression 
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levels between transcript groups for each developmental stage separately. These results 

were represented as box plots in supplementary material.  

This study also investigates the distribution of the number of exons and length of 

the transcripts for known, partially novel and completely novel transcripts. K–S 

(Kolmogorov-Smirnov) test was performed to evaluate whether length distributions of 

transcripts significantly differ. Likewise, exon counts were also compared for these three 

categories of transcripts. 

3.2.2.3 RT-PCR analysis of CNTs 

To validate the expression levels of novel transcripts discovered from RNA-Seq 

analysis, total RNA was extracted using a RNeasy Mini kit (Qiagen Inc, Valencia, CA) 

from microdissected C57Bl/6 mouse lenses at three stages, namely, embryonic day (E) 

15.5, and post-natal day (P)0 and P10. Each of the three biological replicates at E15.5 

comprised of six lenses, and at P0 and P10 comprised of two lenses. RNA was treated 

with RNase free DNase (Qiagen Inc #79254, Valencia, CA). cDNA was synthesized 

from 200 ng of total RNA, representing three biological replicates at each developmental 

stage using Bio-Rad iScriptTM cDNA Synthesis Kit (Bio-Rad Laboratories, Hercules, 

CA), and was used as a template in PCR analysis. Primers were designed for the exonic 

regions of these four CNTs.  The PCR products were run on 1% agarose gel. Presence of 

specific bands at the expected size were indicative of transcript expression in the lens. 

3.2.2.4 Phylogenetic conservation of mouse lens transcriptome 

Although some reports indicate that mouse lens is likely to have a diverse 

transcriptome, the evolutionary significance of the transcriptome is poorly understood. 

Hence to address this, I investigated the evolutionary conservation of the identified 
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transcripts. Multiple sequence alignment of genomic loci across several genomes 

provides a comprehensive snapshot of the evolutionary conservation, which can act as a 

proxy for functional preservation of a selected region (168). For instance, protein coding 

genomic loci were documented to be highly conserved across the genome than non-

functional genomic loci (169). I applied this technique to conjecture and identify novel 

transcripts which could be functionality active across large phylogenetic distances. I 

downloaded the phastCons scores (170) from the UCSC Genome Browser for the 

complete mouse genome. PhastCons score employed in this study provides an estimate of 

the individual nucleotide level conservation, calculated based on multiple sequence 

alignment of 46 vertebrate genomes with respect to mouse reference genome mm10. It 

ranges from 0-1 with higher the score higher is the conservation of the individual 

nucleotide across the genomes. For this study, I utilized the available nucleotide 

resolution conservation score data for mm10 and calculated the phastCons score for each 

exon of the novel transcripts by averaging the per-base scores and then computed a 

representative conservation score for each transcript as the mean phastCons score of the 

exons representing the novel transcript. Final scores were analyzed for known (annotated) 

transcripts, PNTs and CNTs to compare their relative extents of conservation. 

Since Gene Ontology (GO) based functional enrichment analysis can provide important 

clues about the functions and molecular processes predominantly associated with novel 

transcripts, I analyzed the Partially Novel Transcripts (PNTs) that shared majority 

(>70%) of their genomic region with known/annotated transcript containing genes to 

understand the likely functions associated with them. This involved filtering the PNTs 

with phastCons score (> 0.8) to first identify highly conserved transcripts and using the 
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resulting set of genes associated with these PNTs for downstream functional analysis. 

Functional enrichment analysis was performed with p-value threshold < 10-10 for 

collected genes using Cytoscape (171)-ClueGO (172) plugin and was represented as a 

clustered GO network. Significant clustering of genes, color coded by annotation group, 

based on enriched GO biological processes were highlighted in these representations.  

Transcripts belonging to the completely novel class share less than 30% of their genomic 

region with known transcripts. This study is based on the hypothesis that completely 

novel transcripts with high conservation and expressed in at least one developmental 

stage could be active with uncharacterized function. Hence, I filtered the transcripts based 

on phastCons score (> 0.8) and analyzed their expression pattern. Expression profiles 

normalized by their maximum expression level across stages for these highly conserved 

completely novel transcripts were hierarchically clustered using Cluster 3.0 (52) and 

visualized as a heatmap using Java Treeview (53). Representative hierarchically clustered 

panels of transcripts expressed in only one specific developmental stage and in all 

developmental stages were shown separately. Novelty Score (NS) and phastCons Score 

(PS) indices for transcripts were shown as an additional scale bar in each heatmap. A 

subset of broadly expressed, highly conserved and 100% novel transcripts were selected 

for experimental validation and discussed in the results section. 

3.2.2.5 Analysis of differential alternative splicing 

RNA-Seq data provides an opportunity to detect differential alternative splicing 

events across conditions. The two replicates of RNA-seq for each developmental stage of 

mouse lens tissue were merged and investigated with rMATS (replicate Multivariate 

Analysis of Transcript Splicing) (167) to identify differential alternative splicing (AS) 
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events. rMATS provides a computational framework to identify all possible splicing 

events which are altered between two samples, by inspecting the status of exons/introns 

as they are included or excluded resulting from alternative splicing. I used sorted BAM 

(Binary Alignment/Map) files, obtained from aligning the raw RNA-seq datasets against 

the mouse reference genome using HISAT as discussed above, as input to rMATS by 

pairing with their corresponding replicates from each developmental stage. This allowed 

the pair-wise comparison of developmental stages for alterations in various splicing 

events. Since rMATS requires all input datasets to have the same read length, the dataset 

from E15.5 which had a different read length compared to others was excluded. Also, the 

GFF (General Feature Format) file downloaded from Ensembl (version 82, September 

2015) (173) were provided as input to rMATS and the default thresholds were used for 

remaining options. Briefly, rMATS enabled the analysis of  the inclusion/exclusion of 

target exons/introns contributing to different types of alternative splicing events, namely 

skipped exon (SE), alternative 5’ splice site (A5SS), alternative 3’ splice site (A3SS), 

mutually exclusive exons (MXE) and retained intron (RI), across any pair of 

developmental stages with replicates. An AS event is quantified based on the difference 

in the level of inclusion of an exon which is defined as the splice index or Percentage 

Splicing Index (𝜓𝜓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) between two samples or conditions and ranges between 0 and 

1. PSI represents the inclusion/exclusion of an exon for a transcript isoform considering 

all alternate possible isoforms. Reads aligning to the alternative exon or to its junctions 

with adjacent constitutive exons provide support for the inclusion isoform, whereas reads 

aligning to the junction between the adjacent constitutive exons support the exclusion 

isoform; the relative read density of these two sets forms the standard estimate of 𝜓𝜓. 
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Significant differences in the values of 𝜓𝜓 for an exon, between a pair of conditions 

compared to a null distribution indicate its differential abundance. rMATS code was 

executed for all pairs of six developmental stages (E15, E18, P0, P3, P6 and P9) and 

generated a summary table with the number of different alternative splicing events that 

were detected below 1% FDR threshold (Table 3). Since skipped exon and retained intron 

events were the most abundant, I collected these events from raw rMATS outputs 

specifically those which are supported by reads that span splicing junctions and reads on 

target below 1% FDR. Functional enrichment analysis of genes belonging to these 

splicing events was performed using ClueGO (172). 

Summary of the number of high confident Alternative Splicing (AS) events detected 
using rMATS pipeline (FDR <0.01) across developmental stages with replicates. 

AS 
Event 

E15
vs 
E18 

E1
5 
vs 
P0 

E1
5 
vs 
P3 

E1
5 
vs 
P6 

E1
5 
vs 
P9 

E1
8 
vs 
P0 

E18 
vs 
P3 

E1
8 
vs 
P6 

E18 
vs 
P9 

P0 
vs 
P3 

P0 
vs 
P6 

P0 
vs 
P9 

P3 
vs 
P6 

P3 
vs 
P9 

P6 
vs 
P9 

SE 7 52 40 55 55 12
0 

75 123 87 10 9 14 3 5 0 

MXE 3 6 18 8 12 6 16 4 10 14 2 3 10 14 0 

RI 62 46 25 26 37 73 29 31 34 6 2 9 0 1 2 

A5SS 1 9 0 4 0 7 0 2 0 1 1 2 0 0 0 

A3SS 3 4 3 3 3 12 5 7 5 1 2 0 1 0 1 

 
Table 3:  Identification of alternative splicing events using rMATS. Abbreviations used 
in the table stand for the following types of splicing events and definitions: SE- Skipped 
Exon, MXE- Mutually Exclusive Exon, RI- Retained Intron, A5SS- Alternative 5’ Splice 
Site, A3SS- Alternative 3’ Splice Site, PSI- Percent Spliced Index, FDR- False Discovery 
Rate. 
 

3.2.2.6 Experimental validation of the skipped exons 

To confirm splicing events during lens development, genes were selected based 

on their potential relevance to lens biology and which were predicted with less than 5% 

FDR in splicing analysis. For alternative splicing analysis, primers were designed on 

exons flanking the alternatively spliced exon (skipped exon) on either side. Total RNA 
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from E15.5, P0 and P10 C57Bl/6 mouse lens was collected as described above. RNA was 

treated with RNase free DNase (Qiagen Inc #79254, Valencia, CA). 200ng of lens total 

RNA was used as template for cDNA synthesis using in vitro reverse transcription kit as 

described earlier and cDNA was used as a template for PCR reactions. The different 

splice isoforms were identified based on size differences of PCR products separated by 

1% agarose gel electrophoresis. Further, the PCR products obtained using RNA from P0 

lens were analyzed by Sanger sequencing.  The different splice isoform DNA bands from 

the P0 lens samples were excised from the gel and subjected to DNA purification using 

Wizard® SV Gel and PCR Clean-Up System (Promega #A9281, Madison, WI).  DNA 

isolated from specific splice isoforms was sequenced by Sanger sequencing method.  

3.2.2.7 Development of a splicing browser for studying splicing alterations across 

developmental stages 

  The abundant AS events that were detected in this study namely skipped exons 

and retained introns, were made available for visualization via Eye Splicer 

(http://www.iupui.edu/~sysbio/eye-splicer/), an interactive web-based splicing browser 

for studying splicing alterations in mouse lens. Eye Splicer is built using the JavaScript 

library from Biodalliance (http://www.biodalliance.org). As Biodalliance requires BED 

(Browser Extensible Data) or BigBed formatted input files, these tables were 

preprocessed into BED formatted text files and generated the corresponding BigBed files, 

which are the compressed version of BED files and hence suitable for the web using the 

UCSC tools(125). Eye Splicer has a simple interface with the lists of genes that have 

exons alternatively spliced below 1% FDR for skipped exons and retained introns, shown 

on the left menu and an interactive genome browser on the right which allows the 
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visualization of the exons of interest upon selection from the gene lists or upon search 

using its text field that supports coordinate based search or gene name / Ensembl ID 

based search. Any viewable section of the splicing browser can be exported using the 

Export button as SVG (scalable vector graphics). Eye Splicer is freely available on 

http://www.iupui.edu/~sysbio/eye-splicer/ and can be accessed without any login 

requirement. 

3.2.3 Results and Discussion 

Although mouse lens transcriptome profiling has been the focus of few studies in 

recent years (105, 107, 164, 165), an understanding of the complete repertoire of 

expressed transcripts and their splicing alterations during lens development is far from 

complete. In this study, the transcriptomic alterations and alternative splicing events were 

investigated in mouse lens across developmental stages. Overview of the analysis 

pipeline is illustrated in Figure 16. In brief, the available RNA-Seq data for mouse lens 

across varying developmental stages were collected and the raw sequence reads were 

processed using HISAT (117) and StringTie (120). The processed and quantified data 

were formatted into expression matrices and were utilized for investigation of complete 

transcriptomic architecture, extent of transcript novelty, and their evolutionary 

conservation (see Materials and Methods). Additionally, I investigated the alternative 

splicing events using rMATS (167) followed by an extensive functional analysis of the 

genes associated with enriched splicing event types. The most prominent splicing event 

types namely skipped exon and retained intron events were made available through Eye 

splicer (http://www.iupui.edu/~sysbio/eye-splicer/), a web based splicing browser 

showing developmentally altered splicing events in mouse lens. 
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3.2.3.1 Overview of the dataset and construction of the developmental transcriptomes in 

lens 

The processed RNA sequencing data was collected to facilitate downstream 

analysis (See Materials and Methods, Figure 16 and Appendix 1). Overall, datasets 

exhibited a good read quality (Phred score > 20) and a high fraction of read alignment to 

the reference genome (alignment score ≥ 93%) using HISAT. 

Since previous reports studying the eye transcriptomes indicated diverse transcriptomic 

architecture (96), the goal was to investigate whether such diversity exists in different 

developmental stages of lens.  For this purpose, the expression of transcripts and 

corresponding exons were quantified using StringTie and a matrix of expression levels 

for 90689 transcripts (68166 annotated and 22523 novel transcripts) were constructed. 

The analysis indicated the existence of ~25% novel transcripts in the developmental 

mouse lens transcriptome. In order to further investigate the extent of the novel 

transcripts in each developmental stage, the proportion of known and novel transcripts 

(with TPM > 1.0) was analyzed across different developmental stages (Figure 17A). The 

results show that in each of the developmental stages of mouse lens there are about ~ 35 - 

50% of novel transcripts. Such variations in the distribution of known versus novel 

transcripts with respect to different developmental stages was found to be consistent 

despite filtering for different TPM thresholds (i.e. > 0.5, > 2.0, and > 5.0). These 

observations support the presence of a diverse transcriptome with thousands of novel 

transcripts being expressed in various lens developmental stages as well as the 

predominance of complex transcriptional and post-transcriptional regulatory mechanisms 

in embryonic and post-natal stages during mouse lens formation. 
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3.2.3.2 Embryonic stages exhibit the highest extent of novelty for the newly discovered 

transcripts with a significant decrease in post-natal stages 

To further investigate whether the expression of these novel transcripts differs 

between stages, novelty score of a transcript was calculated to measure the differences in 

the extent of novelty across stages using KS (Kolmogorov–Smirnov) test. Novelty score 

of a transcript is defined as the percentage of non-overlapping novel transcript length to 

the reference annotated transcriptome (Figure 17B). In the embryonic stages, each pair of 

neighboring developmental stages were found to be significantly different in their 

distribution of novelty scores for the novel transcripts (p-value ≤ 0.005) and this pattern 

was observed until birth (P0). In general, the novelty score distributions of the novel 

transcripts for embryonic stages were observed to be significantly higher compared 

to those seen in post-natal stages (median novelty score: 10.89 vs 9.04, p=1.06e-12, KS-

test, Figure 17B). 
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Figure 17: (A) Histogram showing the proportion of known and novel transcripts 
identified across various lens developmental stages in mouse. Only transcripts exhibiting 
an expression higher than 1 TPM (Transcripts Per Million reads sequenced) are 
considered in this plot. (B) Violin plot showing the distributions of novelty scores of 
identified transcripts, expressed in embryonic and postnatal stages. Novelty score of the 
transcripts expressed (with TPM > 5.0) at least in one stage were employed to generate 
two violin plots corresponding to the embryonic (E15, E15.5, E18) and postnatal (P0, P3, 
P6, P9) stages respectively. Differences in the distribution of novelty scores between 
embryonic and post-natal stages were compared using Kolmogorov–Smirnov test. 
Median novelty score for E and P were 10.89 and 9.043 respectively. (C) This panel 
shows the distribution of PhastCons scores (nucleotide level conservation), reflecting the 
extent of conservation for known, partially novel (novelty score <70%) and completely 
novel (novelty score > 70%) transcripts identified across developmental stages in lens. 
Each pair of these transcript classes were found to be significantly different in their extent 
of conservation (p < 2.2e-16, Wilcoxon rank sum test) with median conservation scores 
0.67, 0.76, and 0.13 for known, partially novel and completely novel transcript groups 
respectively. (D) Gene ontology enrichment analysis for genes corresponding to the high 
confidence partially novel transcripts (PS >0.76). Functional grouping of the GO-terms 
based on GO hierarchy was represented as clustered GO-network using the 
Cytoscape(171)-ClueGO(172) plugin. Significant clustering (p < 1e-10) of genes (color 
coded by functional annotation group they belong to) based on enriched GO-biological 
processes, with size of the nodes indicating the level of significant association of genes 
per GO-term, were shown. 
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3.2.3.3 Significant fraction of the partially novel transcripts in lens were found to be 

highly conserved across vertebrates and associated with neural system development, 

structural morphogenesis, protein localization, cell division and differentiation processes 

In this study, a total of 22523 novel transcripts (~25% of total transcripts) were 

identified in mouse lens (18) along with their novelty score and expression levels. As 

discussed above, differences were observed in the distribution of novelty scores of 

transcripts between embryonic and postnatal developmental stages. Hence, the novel 

transcripts were further classified based on their novelty score (See Materials and 

Methods). The novel transcripts were categorized into two groups; Partially Novel 

Transcripts (PNTs, novelty score < 70%, 13207 transcripts) and Completely Novel 

Transcripts (CNTs, novelty score ≥ 70%, 9316 transcripts).  

To investigate and compare the extent of conservation of known and novel 

transcripts, phastCons scores was used from UCSC Genome Browser, which provide a 

nucleotide level conservation score across 46 vertebrate genomes, facilitating a measure 

to quantify conservation for mouse genomic loci (see Materials and Methods). I 

calculated the phastCons score distributions for each group of transcripts; known 

transcripts, PNTs and CNTs (Materials and Methods section, Figure 17C). A significant 

difference in phastCons score distributions was observed among these groups (median for 

known transcripts = 0.67, median for PNTs = 0.76, and median for CNTs = 0.13; 

Wilcoxon rank sum test, p-value < 2.2e-16). The score distribution indicates that PNTs 

exhibit higher conservation patterns than already known transcripts while their patterns 

were less comparable to CNTs. These observations suggest that since lens tissue and 

corresponding cell line transcriptomes have been poorly or rarely studied by genome 
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annotation consortiums like ENCODE (92) or FANTOM (174), it is possible that 

hundreds of transcripts specific to lens may have been rarely documented in 

genomic/transcriptomic resources. However, integrative analyses and databases based on 

next generation RNA-sequencing datasets specific to such overlooked tissues, would be 

able to capture such missing transcript isoforms or poorly annotated genes, suggesting the 

need for such focused studies. In contrast, most of the CNTs were found to be poorly 

conserved based on phastCons score profiles. Interestingly, a few of the CNTs were 

found as outliers in the box plot exhibiting extremely high conservation (Figure 17C, 

CNTs, above third quartile), which met the median phastCons threshold of both known 

and CNTs, and hence are likely to be active but functionally uncharacterized for 

biological processes. 

To understand whether particular functions and processes are over-represented as 

gene ontology (GO) categories for these novel transcripts, I performed functional 

enrichment analysis of the PNTs by using the annotations of the corresponding mouse 

genes with which they overlap partially. To generate a high confident set of evolutionary 

conserved novel transcripts with annotated information, I filtered the PNTs with 

phastCons score > 0.8 and obtained a set of 3982 genes satisfying these criteria. I 

performed functional enrichment analysis of these genes with corrected p-value 

(Bonferroni correction) threshold < 10-10 using ClueGO (172). ClueGO is a Cytoscape 

plugin which enables the functional grouping of GO terms or gene sets to represent the 

enriched functional themes as networks. There was significant clustering of genes into 26 

thematic groups based on enriched GO terms using ClueGO (172). Specific biological 

processes and associated modules are highlighted in Figure 17D. Results from this study 
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demonstrate that ‘alternative mRNA splicing via spliceosome’, ‘mRNA metabolism 

process’, ‘ubiquitin mediated proteolysis’, ‘nervous system development’, ‘neurological 

system process’, ‘organelle organization’, ‘cell cycle’, ‘protein localization’ etc were 

over-represented in PNTs (Figure 17D).  For instance, group 19 (i.e. nervous system 

development) was found to be significantly enriched (adjusted p-value = 9.93e-32) with 

841 genes i.e. ~30% of the genes annotated with neurogenesis, neuron differentiation and 

nervous system developmental processes. These observations clearly reveal the role of 

several poorly characterized transcripts associated with nervous system development, 

RNA metabolism, cell cycle, organelle and chromatin organization, regulation of 

anatomical structure morphogenesis and cell differentiation, during lens development. 

3.2.3.4 Majority of the complete novel transcripts are widely expressed across 

developmental stages albeit exhibiting significantly lower expression, conservation and 

length compared to partially novel transcripts 

The expression level of a transcript across biological replicates was averaged in 

each developmental stage in order to compare the distribution of expression levels for 

known transcripts, PNTs and CNTs. I included the subset of transcripts in each class 

which were found to be expressed in all seven stages which resulted in 23121 

known transcripts, 4531 PNTs and 4027 CNTs. Interestingly, all the three transcript 

classes was observed to exhibit significantly different expression profiles for each 

developmental stage (Wilcoxon rank sum test, p-value < 0.001), with known and PNTs 

exhibiting significantly higher expression compared to CNTs. This analysis also revealed 

that PNTs are highly expressed than known transcripts (Wilcoxon rank sum test, p-value 

< 0.001). These observations are similar to the conservation pattern of PNTs being higher 
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than other transcript groups. These results indicate that PNTs are significantly more 

expressed than CNTs across all developmental stages and are often more expressed than 

even annotated transcripts suggesting that these PNTs are likely functional in lens 

development. 

I also investigated the transcript structure of different transcript classes by 

comparing the number of exons and length distributions. Significant difference were 

observed in the distribution of exonic composition for PNTs and known transcripts (p< 

2.2e-16, Kolmogorov–Smirnov test), with majority of the PNTs being multiexonic (>3 

exons). In particular, about 20% of the PNTs were found to have more than 20 exons and 

were enriched in genes associated with several processes including ‘microtubule 

cytoskeleton organization’, ‘cell cycle’, ‘nervous system development’, ‘cell projection 

morphogenesis’, ‘embryo development’, ‘focal adhesion’ and ‘chromatin remodeling’.  

In contrast, I observed that ~ 90% of CNTs were single or bi-exonic with a small fraction 

of them exhibiting multiexonic structure (Appendix 3A). I also investigated the length for 

the three groups of transcripts and found significantly (p-value < 2.2e-16) varying 

distribution of lengths (Appendix 3B). The known transcripts exhibited an expected 

distribution of transcript length as previously described (175) with an abundance of 

transcripts having length between ~102 bp and ~104 bp. However, among the novel 

transcript groups; PNTs exhibited a distribution more similar to that of known transcripts 

when compared to CNTs. In particular, most of the PNTs had length ranging from 102 – 

107 bp with abundance of transcripts having length in the range of 105-106 bp. In contrast, 

majority of the CNTs ranging in length from 102 to 105 bp dominated by relatively 

shorter length (100-1000 bp) transcripts. Indeed, studies from GENCODE consortium 
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(39) observed that human long noncoding RNAs (lncRNAs) are typically encoded as 

single or biexonic transcripts with significantly lower exome lengths compared to 

annotated protein coding transcripts, suggesting that several of the CNTs detected in this 

study are likely to be noncoding RNAs. 

Although transcripts belonging to the CNT class were generally poorly conserved 

compared to the other two groups (Figure 17C), nevertheless a small fraction (~8.6%) of 

CNTs exhibited high conservation with phastCons scores greater than 0.76.  In order to 

further interrogate the activity of these ~8.6% completely novel transcripts, I analyzed 

their expression profile across developmental stages. Further they were filtered to obtain 

a set of CNTs with a phastCons score > 0.8 and expressed in at least one developmental 

stage, after excluding RNA-seq samples from E15.5 which originate from a different 

study in order to avoid any potential batch effect. I found a total of 647 CNTs that 

exhibited varying levels of expression across developmental stages (18). Figure 18A 

shows a clustering snapshot of the distribution of these expression profiles across stages 

with expression levels of a transcript normalized by its maximum level across 

developmental stages (Materials and Methods). I analyzed the expression profiles of 

CNTs based on hierarchical clustering to identify representative panels of transcripts 

expressed in only one specific developmental stage (Figure 18B) and in all 

developmental stages analyzed (Figure 18C). The results indicate that ~10% of the CNTs 

(phastCons score > 0.8) were expressed in specific developmental stages as shown in 

Figure 18B.  
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Figure 18: Completely novel transcripts (CNTs) with high conservation score (phastCons Score > 0.8) and expressed in atleast one 
developmental stage are shown across the panels. Expression profiles are normalized by the maximum expression level of a given 
transcript across stages and hierarchically clustered using Cluster 3.0 and visualized as a heatmap using Java Treeview. Samples from 
E15.5 that came from a different study than the rest of the samples were excluded from this expression analysis in order to avoid the 
batch effect. Heat maps showing the expression profiles of (A) 647 completely novel (novelty score ≥ 70%) transcripts hierarchically 
clustered with representative transcript groups expressed (B) in only one specific developmental stage and (C) in all the developmental 
stages. Novelty score (NS) and phastCons score (PS) indices for transcripts are also shown in as an additional scale bar in each heat 
map. 
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In contrast, ~47% of the transcripts were found to be expressed across all 

developmental stages, with a selected set of hierarchically clustered CNTs following this 

trend shown in Figure 18C. This suggests that a small fraction of CNTs with 

uncharacterized function could be potentially regulating stage specific developmental 

processes while majority of the CNTs could have broader functional roles across stages 

albeit uncharacterized. 

Figure 19: RT-PCR analysis validates expression of two CNTs with a predicted ORF 
(MSTRG.8249.1 and MSTRG.18685.1) and two CNTs with no known ORF 
(MSTRG.17446.1 and MSTRG.21639.1) in E15.5, P0 and P10 lenses. Note that 
MSTRG.17446.1 is undetected in this analysis at stage E15.5. Hprt represents a loading 
control. Negative control is included for all CNTs tested where the RT-PCR reaction was 
performed using the same primers as for the CNTs but without any cDNA. 

For these 647 CNTs, that were 100% novel and exhibited a phastCons score > 

0.8, ORF prediction analysis was performed using an ad hoc Python script that detects 

both canonical and non-canonical start codons in six open reading frames. It was 

observed that 202 of them encode for ORFs with 121 of them exhibiting at least one hit 

using HMMSCAN(176) against Pfam, suggesting that at least 18% of the CNTs are 

likely to encode for functional domains. Further, four of the CNTs (shown in Figure 19) 
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were validated by RT-PCR in three different developmental stages of lens, among which 

two transcripts were predicted to encode for ORFs (Figure 19). All the four completely 

novel transcripts were found to be expressed in P0 and P10 stages. As predicted from the 

transcriptomic analysis, the MSTRG.17446.1 transcript was not detected at E15.5. These 

results further validate the stage-specific expression of CNTs shown in Figure 19. 

3.2.3.5 Splicing analysis reveals abundance of skipped exons and retained intron events 

across developmental stages 

Alternative splicing is an important molecular mechanism which contributes to 

the transcriptomic diversity in higher eukaryotes (177). Increasing evidence supports the 

role of splicing and post-transcriptional regulatory alterations in development (178) and 

disease (179-182), in addition to their prominent role in generating multiple transcripts 

and protein isoforms in normal cells. 

Since significant differences in the distribution of novelty scores was observed for novel 

transcripts between the embryonic and post-natal stages in mouse lens, it was speculated 

that alternative splicing could contribute to these differences. In addition to contributing 

to transcript isoforms, splicing events can also contribute to differential regulation of the 

gene products across developmental stages by controlling the abundance of the required 

isoform. Hence, I employed rMATS (167), a framework for detecting splicing alterations 

from next generation RNA-sequencing datasets, to investigate such key events for 

molecular diversity across developmental stages (see Materials and Methods). Table 3 

shows the number of high confident Alternative Splicing (AS) events detected using 

rMATS pipeline (FDR <0.01) across every pair of developmental stages with replicates. 

Table 3 includes the number of detected AS events reported to be significant by rMATS, 
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for the five types of events namely skipped exon (SE), alternative 5’ splice site (A5SS), 

alternative 3’ splice site (A3SS), mutually exclusive exons (MXE) and retained intron 

(RI). These results clearly indicate an abundance of SE and RI events compared to the 

other types during lens development. 

3.2.3.6 Skipped exon events are the most abundant splicing events during lens 

development and are associated with differentiation, development and cytoskeletal 

regulatory pathways 

Skipped exons are one of the most prevalent alternative splicing events in higher 

eukaryotes (183). In these events, the splicing machinery can ‘skip over’ an exon by 

splicing it, thereby masking its contribution in the final RNA or protein product. I 

obtained 418 significant (FDR < 1%) exon skipping events corresponding to 266 exons 

observed in 399 transcripts from 213 genes across various developmental stages 

(Appendix 4). Functional enrichment analysis of the genes associated with skipped 

exonic events was conducted using ClueGO (172) (Materials and Methods). Several 

significant (adjusted p-value < 2.05e-04, Figure 20A) groups of functional processes 

were found to be enriched including ‘mRNA processing’, ‘microtubule-based process’, 

‘splicing factor NOVA regulated synpatic proteins’, ‘regulation of intrinsic apoptotic 

signaling pathway’, ‘lens development in camera-type eye’, ‘protein polymerization’, 

‘tight junction’, ‘positive regulation of developmental growth’ and ‘striated muscle cell 

differentiation’. These observations indicate the prevalence of skipped exonic events in 

several differentiation and developmental processes via post-transcriptional regulation. 

For instance, 6 genes significantly (adjusted p-value = 8.30e-05) associated with the term 

‘lens development were found in camera-type eye’. The genes that belong to this 
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functional theme include Cdk4 (Cyclin-Dependent Kinase 4), Cryba1 (Crystallin, Beta 

A1), Lim2 (Lens Intrinsic Membrane Protein 2), Meis1 (Meis Homeobox 1), Pax6 

(Paired Box 6), and Smarca4 (SWI/SNF Related, Matrix Associated, Actin Dependent 

Regulator of Chromatin, Subfamily A, Member 4), which contributes to ~8% of genes 

annotated with lens developmental processes. 

Paired Box 6 (Pax6) is a transcription factor encoded by 14 exonic gene Pax6. 

This gene has previously been documented as a key regulator for sensory developmental 

processes (184, 185) and lens regeneration (186). The result indicate that a particular 

exon, ENSMUSE00001311933 (Pax6) was included in all developmental stages except 

P9 with high Percent Splicing Index (PSI) values ranging between 0.93 and 0.99. 

Similarly, I found that ENSMUSE00000736151 (Cyclin-Dependent Kinase 4, Cdk4) is 

differentially included in E18 (PSI value = 0.964) versus P0 (PSI value = 0.8025) (FDR < 

1%) and ENSMUSE00000691476 (Crystallin, Beta A4, Cryba4) is included all 

developmental stages except P0 with high PSI values ranging between 0.97 and 0.99, 

suggesting its importance in lens development (FDR < 1%).  

3.2.3.7 Several skipped exonic events during lens development could be verified by RT-

PCR and Sanger sequencing 

The expression of alternate isoforms of Pax6 and Cdk4 was validated by RT-PCR 

and Sanger sequencing across developmental stages. Both Pax6 and Cdk4 follow the 

predicted trend (Figure 20B). For example, the ENSMUSE00001311933 exon of Pax6 is 

expressed at stages E15.5 and P0, while its expression is undetected at P10. Cdk4 exon 

ENSMUSE00000736151 is expressed at all three stages, E15.5, P0 and P10. Further, the 

skipped exonic events detected in four other genes (Banf1, Cryaa, Eif4g2, Rbm5) were 
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validated, that have been detected at an FDR <5% (Figure 20B). Additional validation of 

these splicing events in P0 lens using Sanger sequencing independently confirmed the 

findings (Materials and Methods). Mutations in Cryaa have been previously shown to 

cause cataracts in humans and mice (187, 188). Eif4g2 and Rbm5 encode for RNA 

binding proteins and Banf1 encodes a DNA binding protein. While the function of these 

genes has not been characterized in the lens, they exhibit high expression in the lens 

tissue. Interestingly, another Rbm family protein, Rbm24, is expressed highly in 

vertebrate lens development (106) and its deficiency in Zebrafish causes microphthalmia 

(142). Taken together, all these five genes have alternatively spliced isoforms that were 

differentially expressed across lens developmental stages. For example, the 

ENSMUSE00000145472 exon of Banf1 is skipped at P10. Further, the 

ENSMUSE00000352893 exon of Cryaa is not highly expressed at any of the lens 

developmental stages tested, suggesting no potential function of the 

ENSMUST00000019192 transcript during late embryonic and early postnatal stages of 

mouse lens development. The isoform of Eif4g2 containing exon 

ENSMUSE00000203223 is expressed in all developmental stages, while the alternate 

isoform without the exon is not as highly expressed. Rbm5 has a distinct expression 

pattern during lens development. While the Rbm5 isoform including the 

ENSMUSE00001225318 exon is expressed at all stages, the isoform with skipped 

ENSMUSE00001225318 exon is expressed highly only at P0. This suggests a potential 

function for the ENSMUSE00001225318 exon at early perinatal stages. Together, the 

RT-PCR validation analysis suggests that alternatively spliced isoforms of genes 

expressed in the lens are also differentially expressed at different developmental stages. 
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This indicates that certain isoforms of genes function specifically during embryonic or 

postnatal development, indicating the significant contribution of post-transcriptional 

regulation to the functional diversity of the isoforms. 

Figure 20: Functional analysis and validation of the high confident exon skipping events 
discovered across lens developmental states. (A) Functional enrichment analysis of genes 
associated with high confidence (FDR 1%) skipped exon events identified using 
rMATS(167) pipeline in atleast one pairwise comparison of developmental stages. For 
each biological process per group (color coded), the % genes per GO term with number 
of query genes (** in red) in the analysis is shown in histogram (B) Experimental 
validation by RT-PCR analysis of a selected set of high confident skipped exonic events 
reveals that selected mRNA isoforms with skipped events are more abundant during 
embryonic and perinatal stages. The schematic of the expected products are shown next 
to the gene. For validation, primers (arrows) were designed on the exons (black box) 
flanking the alternatively spliced exon (grey box). For all the genes, band with higher 
molecular weight is the isoform including the alternatively spliced exon and band with 
lower molecular weight is the isoform with the skipped exon. Hprt represents a loading 
control. Negative control is included for all isoforms tested where the RT-PCR reaction 
was performed using the same primers as for the isoforms but without any cDNA.   
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3.2.3.8 Genes associated with retained intronic events are enriched for developmental 

check point, cellular response to stress and RNA-splicing regulators 

Retained intron (RI) is an important but less characterized AS mechanism. It 

causes retention of intronic region that may or may not also include some exonic regions 

during splicing. It is commonly suggested that, most of the transcripts exhibiting RI, 

could open a new targeting motif for small interfering RNA (siRNA) at RI loci, thus are 

degraded by nonsense-mediated decay (9). However, recent studies indicate that intron-

retaining mRNAs are likely to have a more conserved role in development and numerous 

diseases (189). The splicing analysis indicated that retained intron events are the second 

most abundant alternative splicing events after skipped exon events (Table 3). I obtained 

193 significant (FDR < 1%) intron retention events corresponding to 178 exons observed 

in 192 transcripts from 168 genes across various developmental stages (Appendix 4). 

Functional enrichment analysis of the genes which exhibited retained intronic events at 

1% FDR threshold clearly revealed an enrichment for genes annotated with significant 

groups (p-value < 2.25e-04) such as ‘RNA splicing’, ‘M Phase’, ‘cellular responses to 

stress’, ‘autodegradation of Cdh1 by Cdh1:APC/C’, ‘regulation of RNA splicing’, 

‘snRNP assembly’, ‘response to epidermal growth factor’ and ‘mitophagy’ suggesting 

that the genes whose regulation is controlled by intron retention appear to be associated 

with developmental check points or stress related. For instance, several genes (Anapc2, 

Anapc5, Cdk4, Ehmt2, Ensa, H3f3b, Id1, Mcm7, Ncapg, Nup35, Pole, Ppp1cc, Psmc4, 

Psmd11, Psmd4, Rps27a, Tpr and Trp53) were found to be associated with cell cycle [M-

Phase], which were found to be exhibiting retained introns in various developmental 

stages. Similarly, genes associated with ‘autodegradation of Cdh1 by Cdh1: APC/C’ were 
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significantly enriched (p-value = 1.87e-07) with 15 genes (Anapc2, Anapc5, Atg4b, 

Becn1, Cdk4, Ehmt2, H3f3b, Id1, Map1lc3b, Psmc4, Psmd11, Psmd4, Rps27a, Trp53, 

Wipi2) contributing to 6% of the genes associated with Cdh1 mediated proteolysis/ 

degradation of mitotic proteins. Cdh1 (epithelial cadherin) is an important protein which 

controls the mitotic arrest with G1-phase elongation in neurogenesis(190). 

3.2.3.9 Eye Splicer: an interactive web-based genome browser for visualizing alternative 

splicing events across lens developmental stages 

To facilitate easy access to the discovered splicing events across lens 

developmental stages, an interactive web-based genome browser Eye Splicer (accessible 

via http://www.iupui.edu/~sysbio/eye-splicer/) was set up,  powered by Biodalliance 

JavaScript library that enables visualizing skipped exon and retained intron events across 

developmental stages as tracks. After collecting the inclusion levels from rMATS, I 

converted these into BED formatted text files, which were further converted into BigBed 

files to make them suitable for loading into Eye Splicer (see Methods). 

3.2.4 Conclusion 

In this study, transcriptomic alterations and splicing events were investigated 

during lens formation (i.e. across different developmental stages; E15, E15.5, E18, P0, 

P3, P6 and P9), and constructed a molecular portrait of known and novel transcript 

isoforms in the mouse lens. Approximately 25% of the total transcripts were classified 

into partially and completely novel transcript types (PNTs and CNTs) based on their 

extent of overlap with current annotations, that uncovered the properties of these 

transcript sub-types. I found that the extent of novelty of transcripts decreased 

significantly in post-natal lens stages compared to embryonic stages, suggesting the 

http://www.iupui.edu/%7Esysbio/eye-splicer/
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presence of several uncharacterized novel transcript forms expressed during early lens 

development. PNTs were found to exhibit significantly higher conservation as well as 

expression levels compared to both completely novel and known transcripts, across the 

developmental stages studied here. Functional analysis of PNTs suggested the prominent 

role of several processes such as neural system development, structural morphogenesis, 

protein localization, cell division and differentiation, important for lens development. 

Notably, majority of the CNTs were widely expressed across developmental stages albeit 

exhibiting significantly lower expression, conservation and length compared to partially 

novel transcripts. The expression of several of these CNTs across lens developmental 

stages was also confirmed.  

Functional analysis of the genes exhibiting the most abundant alternative splicing 

events, namely skipped exon and retained intron events. Several genes such as Banf1, 

Cdk4, Cryaa, Eif4g2, Pax6 and Rbm5 that are associated with lens development were 

found to exhibit skipped exonic events. The expression of different isoforms as well as 

novel genes in developing mouse lens were validated by qRT-PCR. Further, a splicing 

browser ‘Eye Splicer’ was developed to access and view developmentally altered splicing 

events in mouse lens. Together, this in-depth analysis provides a high-resolution 

architecture of the mouse lens transcriptome and provides a one-stop portal for furthering 

the understanding of splicing alterations during lens development.  
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CHAPTER 4 

SYSTEMATIC TISSUE-SPECIFIC ANNOTATION OF FUNCTIONAL BINDING 

SITES OF RBPS IN THE HUMAN GENOME 

4.1 Seten: a tool for systematic identification and comparison of processes, phenotypes, 

and diseases associated with RNA-binding proteins from condition-specific CLIP-seq 

profiles 

4.1.1 Introduction 

Genes are transcribed into RNAs and get matured through several layers of post-

transcriptional regulation processes. These processes as well as transport, degradation and 

translation of the RNAs are mediated by RNA-binding proteins (RBPs) (191, 192). In 

cells, RNA is found to be assembled with RBPs and other proteins forming 

ribonucleoprotein complexes (RNPs) (193). For example, the SR protein SF2/ASF acts 

from alternative splicing to translation of an RNA (194). Moreover, some heterogeneous 

nuclear ribonucleoproteins (hnRNPs) are known to participate in RNA splicing, 3'-end 

processing, transcriptional regulation, and immunoglobulin gene recombination (195). 

Understanding these dynamic post-transcriptional regulatory networks requires the study 

of interactions between RNAs and RBPs. For this purpose, crosslinking and 

immunoprecipitation (CLIP) and related experimental protocols have been devised. All 

CLIP protocols involve RNA-RBP ultraviolet (UV) crosslinking followed by 

immunoprecipitation against an RBP of interest (196). There are several CLIP protocols: 

CLIP-seq, PAR-CLIP, HITS-CLIP, and iCLIP. CLIP-seq protocol involves sequencing 

the cDNA library created from the RNA which is previously purified by proteinase 

digestion after UV crosslinking and immunoprecipitation (197). For instance, PAR-CLIP 
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(photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation) is a 

modified CLIP-seq technology that involves the use of photoreactive ribonucleoside 

analogs. These analogs can be ultraviolet crosslinked to interacting RBPs and are 

modified upon crosslinking. Hence, they can be used to separate RNAs bound by the 

RBP of interest from the background unbound RNAs (198). HITS-CLIP (high throughput 

sequencing of RNA isolated by crosslinking and immunoprecipitation) is another CLIP 

protocol that overcomes the limitation in the low number of tags by yielding more 

number of tags for the same cost (199). iCLIP (individual-nucleotide resolution UV 

crosslinking and immunoprecipitation) is yet another CLIP protocol that provides 

genome scale, high resolution and specificity method to enable analysis of cDNAs that 

are truncated at the RNA-RBP crosslink sites (200). Several computational methods have 

been developed for peak detection indicating the extent of binding from the data 

produced by these protocols. A common first step in all these frameworks before the peak 

detection is to map all the reads to the genome/transcriptome using algorithms such as 

Bowtie, RMAP, Novoalign (http://www.novocraft.com/products/novoalign/) and TopHat 

(201-204). After mapping, cluster detection is performed, where a read belongs to a 

cluster if it overlaps with at least one nucleotide with another read from the cluster. At 

this step in order to filter noise, reads with a length greater than a determined threshold 

and clusters with a minimum number of unique reads can be selected for peak detection. 

The most common approach for peak detection is to analyze clusters distribution profiles 

by improving the signal to noise ratio, and hence removing background and false 

positives. The softwares that use this strategy include WavClusteR, PARalyzer, Piranha, 

PIPE-CLIP, and dCLIP (205-210). 
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Although these tools are available for post-processing CLIP-seq data, there is no 

specific tool to either perform an enrichment analysis on such datasets nor to compare 

them for functional or phenotypic differences. Perhaps, the only tool which can perform 

gene set enrichment analysis for ChIP-seq datasets and could be configured for CLIP-seq 

datasets is ChIP-Enrich (211). Although, ChIP-seq and CLIP-seq protocols are 

fundamentally different at several levels including approaches used for cross-linking, 

reagents used for sequencing library preparation, efficiency of crosslinking as well as the 

peak calling algorithms employed, ChIP-Enrich provides an option to perform 

enrichment analysis of CLIP-seq processed outputs. The principle of an enrichment 

analysis is to associate gene sets (i.e. groups of relevant genes; e.g. processes, phenotypes 

or diseases) with a given study by using the fact that the co-functioning genes should 

have a higher potential to be detected by the high-throughput technologies (e.g. CLIP 

protocols). Such an approach can make the analysis of large gene lists move from an 

individual gene-oriented view to a relevant gene group-based analysis (212). Huang et al. 

(212) categorize the available enrichment analysis methods into three groups. First, 

singular enrichment analysis (SEA) group, enrichment p-value in these methods is 

calculated on each gene set from the pre-selected interesting gene list utilizing Fisher's 

exact, Chi-square, or binomial statistical methods. In the second group, gene set 

enrichment analysis (GSEA) methods, complete set of genes (without pre-selection) and 

corresponding experimental values are given, and they utilize Kolmogorov–Smirnov-like, 

t-Test, permutation, or z-score statistical methods. The last group is modular enrichment 

methods, which are similar to SEA but hierarchy among gene sets or genes are 

considered into enrichment p-value calculation by utilizing Kappa statistics and 
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Czekanowski-Dice Pearson's correlation (212). While these methods are available for 

functional analysis or functional enrichment of genes from microarray and RNA-seq with 

some efforts specific to RIP-chip data (213), no methods are available which can consider 

the binding affinity or scores of an RBPs binding potential on an RNA from CLIP-seq 

protocols to identify/perform an enrichment analysis using both functional and gene set 

enrichment approaches. Since it is increasingly being appreciated and an array of new 

technologies such as RBP Bind-n-Seq (214, 215) and DO-RIP-seq (216) are being 

developed to study the binding affinities of RBPs on target sites, it becomes important to 

leverage the signal strength of binding from CLIP-seq profiles for downstream functional 

analysis. Seten can do so by assuming that the binding score resulting from a peak calling 

method is a proxy for the extent of regulatory control of the RBP on the target transcript. 

The primary foundation of Seten (http://www.iupui.edu/~sysbio/seten/) is to identify and 

compare processes, phenotypes and diseases associated with RNA-binding proteins from 

condition-specific CLIP-seq profiles, given binding profile datasets provided as BED 

(Browser Extensible Data) files. Seten comes with a web interface (WI) developed in 

JavaScript and a command line interface (CLI) developed in Python. Seten WI provides 

an easy to use frontend without the need for installation and a better visualization and 

comparison of the enrichment results. Seten CLI can analyze multiple datasets in a single 

command and both the interfaces can be configured with multiple options. 

4.1.2 Materials and Methods 

4.1.2.1 CLIP-seq datasets 

To test Seten and construct a database of precomputed functional and gene set 

enrichment results, peak-detected datasets from CLIPdb and ENCODE projects (217, 
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218) were used. Human RBP datasets were downloaded along with peak calling scores 

from CLIPdb and multiple samples of an RBP were merged for a cell line, which resulted 

in 68 unique RBP-cell line pairs. Similarly, human RBP datasets along with their 

detected peaks were also downloaded from the ENCODE project in BigBed format and 

converted to BED format using UCSC BigBed tools (125). There are 138 unique RBP-

cell line pairs after merging biological replicates of RBPs within a cell line in this dataset. 

Additionally, an iCLIP-based peak-detected dataset for a noncanonical RBP FASTKD2, 

including three replicates which were merged and analyzed as a single dataset (219). 

Biological replicates or the datasets were merged for the same RBP-cell line pairs by 

concatenating their corresponding BED files using Unix cat command in order to 

maximize the number of binding data available per RBP-cell line. In this study, the scores 

associated with a detected peak from a CLIP-seq experiment are also referred to as 

binding affinity scores of an RBP on the target RNA because they represent a proxy 

measure for the extent of binding on the transcript. 

4.1.2.2 Gene set collections 

Gene sets are groups of relevant genes that share the same pathway, function or 

phenotype. Gene set collections for fruit fly, human, mouse, rat, worm and yeast were 

manually downloaded and organized. The gene set collections obtained are pathway 

annotations (BioCarta, KEGG and Reactome), Gene Ontology annotations (biological 

process, molecular function, cellular compartment), Human Phenotype Ontology (HPO – 

human only) and MalaCards Disease Ontology (human only) (220-226). The number of 

gene sets in gene set collections and the availability of organisms are given in Table 4. 
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Gene set collection Fruit fly Human Mouse Rat Worm Yeast 

BioCarta NA 314 276 NA NA NA 
KEGG 135 302 298 298 134 113 
Reactome 1171 1972 1477 1441 1024 822 
GO Biological Process 4104 11176 11014 11325 2867 2886 
GO Molecular Function 2174 3944 4453 3803 1714 1909 
GO Cellular Compartment 841 1508 1473 1465 737 757 
Human Phenotype Ontology NA 7268 NA NA NA NA 
Malacards Disease Ontology NA 9815 NA NA NA NA 

 
Table 4: The number of gene sets in gene set collections and the availability of 
organisms. NA entries represent that the corresponding gene set collection is not 
available for that organism. 
 

4.1.2.3 Obtaining distinct gene scores list 

Binding sites from the input BED file are mapped onto their corresponding gene 

symbols using a mapping table downloaded from Ensembl for each available organism 

(121). After mapping is complete, in the case where multiple scores are available for a 

gene, multiple methods were provided to obtain a single score to represent that gene, 

which results in distinct set of genes and their corresponding scores representing the 

extent of binding by an RBP. The available methods are maximum, minimum, mean, 

median, and sum. Therefore, for instance, if the selected method is sum, then the final 

score given to the corresponding gene will be sum of all scores available for that gene. 

The default method selected is ‘maximum’. 

4.1.2.4 Gene set association analysis 

To apply gene set association analysis, a previously reported competitive method 

was applied to transcription factor binding datasets in order to test if an RBP 

preferentially targets to genes in a given gene set (227). This method finds the common 

genes between given RBP targets and genes in given gene set and compares the scores of 

common genes to the scores of randomly permutated genes from RBP targets by a 
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competitive test where Mann Whitney U test is used to test if the median score of the 

common genes is significantly higher than that of randomly permutated genes (228). 

Options to set thresholds for maximum number of genes in a given gene set to allow 

more specific gene sets to be used (defaults to < 350) and minimum number of common 

genes between RBP targets and genes in given gene set (defaults to > 5) were provided. 

Additional option to control the number of permutations to perform (defaults to 1000) 

was also provided. At each permutation, the method checks if the p-value from Mann 

Whitney U test is significant using another option (defaults to < 0.05) and counts the 

significant tests. At the end, the final corrected p-value is computed as 

𝑚𝑚𝑚𝑚𝑚𝑚 (1 −  # 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.  𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠
# 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠

, 1
# 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠

). 

Such corrected p-values resulting from gene set enrichment analysis are referred 

to as p-values for brevity. 

4.1.2.5 Functional association analysis 

Further, a functional association analysis was implemented using a two-sided 

Fisher’s exact test (FET) for traditional functional enrichment (229). A correction method 

is used to correct the p-values obtained from functional enrichment analysis (Fisher's 

exact test or FET). Currently, Seten's web interface has only one method, which is false 

discovery rate (FDR) or Benjamini-Hochberg(230). Seten's command line interface 

includes several other methods or correcting the resulting p-values. Note that such 

correction methods are only available for functional enrichment analysis as the gene set 

enrichment method employs a different correction approach as described above. 
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4.1.2.6 Processing CRISPR RNA-seq datasets of RBPs 

Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 is a 

recently developed system for engineering genomes, which has transformed the ability to 

manipulate genes in cell lines and animal models (231). In ENCODE project multiple 

RBPs have been screened using the CRISPR/Cas9 system followed by RNA-sequencing 

to better understand the downstream pathways impacted by the loss of function of an 

RBP. Hence, in order to generate a reference gold standard set of functional annotations 

which are effected by an individual RBP and as a means of benchmarking the quality of 

the annotations predicted by Seten and ChIP-Enrich (C-E) from CLIP-seq data, I 

obtained RNA-sequencing data from non-specific CRISPR control and those treated with 

gRNAs against three different RBPs, namely IGF2BP1, SRSF7 and PTBP1 in K562 cells 

(232). Since these RBPs had both eCLIP and CRISPR RNA-seq datasets available, they 

were ideal for performing a benchmarking analysis. This dataset comprised of eight non-

specific CRISPR control RNA-seq datasets representing wildtype K562 cells and two 

replicate RNA-seq datasets each for the RBPs IGF2BP1, SRSF7 and PTBP1 where in 

gRNAs were used to deplete the functional form of RBPs. This enabled a quantitative 

differential expression analysis followed by gene set enrichment for various gene set 

collections using Seten, to develop a gold standard.  In brief, all the available RNA-seq 

data for CRISPR control and knock-out data for multiple RBPs in K562 cell line was 

collected and processed the raw quality filtered (Phred Score > 30) sequence reads using 

HISAT (117) and StringTie (120) pipeline with default parameters, to generate gene 

expression levels in Transcripts Per Million (TPM) reads for all human annotated 

Ensembl genic features (121). The processed and gene expression quantified data were 
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formatted into expression matrices and utilized for generating a reference set of 

functional annotations impacted by the respective RBPs as described below. 

4.1.2.7 Generation of gold standard set of functional annotations using CRISPR RNA-seq 

datasets of RBPs 

Gene expression matrices comprising of CRISPR control and knock-out for each 

RBP were used to compute a relative change in expression for each gene. Relative 

change in expression is defined as the ratio of the absolute change in the expression 

difference between the mean of replicates of control and knock-out respectively, divided 

by the mean expression level of the gene in the control RNA-seq datasets. By utilizing 

such a normalized relative change in expression of each gene across the entire genome 

for each combination of control and CRISPR knock-out datasets of an RBP, gene set 

enrichment analysis was performed using Seten for both reactome and GOBP gene set 

collections. This enabled the identification of gene sets enriched due to the loss of an 

RBP at a corrected p-value of 0.05 using the Seten’s GSEA approach. Such gene sets 

have been defined in this study as the gold standard annotations for the RBP for the 

corresponding gene set collections. By utilizing these annotations, precision and recall 

values were computed for Seten and C-E to assess the performance of the tools. Precision 

was defined as the fraction of enriched gene sets from GSEA on the control vs CRISPR 

RNA-seq data for the respective RBPs, which overlapped with the gene sets from Seten’s 

or C-E’s GSEA on CLIP-seq data at the same corrected p-values threshold of 0.05. 

Likewise, recall was defined as the fraction of gene sets identified by Seten’s or C-E’s 

GSEA on CLIP-seq data which overlapped with the enriched gene sets from GSEA on 

the control vs CRISPR RNA-seq data for the respective RBPs, at the same corrected p-
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value thresholds. Similarly, precision and recall were also computed for the negative 

control bed files described below for Seten’s gene set or functional enrichment methods, 

which enabled the calculation of F1-scores to assess the relative performance of the 

methods and options.  

4.1.2.8 Evaluation of Seten’s performance against negative control 

In order to evaluate the performance of the tool, random bed files referred to as 

negative controls were generated, corresponding to each RBP’s eCLIP dataset separately. 

I utilized bed tools (233) shuffle function with –chrom (to ensure that each chromosome 

is equally  represented in random bed files), ‘– incl’ (that keeps genomic features and 

assigns shuffled scores for peaks) and separately ‘– excl’ (that excludes the genomic 

features and assigns random genome wide coordinates for each peak) parameters to 

generate two sets of arbitrary bed files.  These two sets of negative control bed files were 

referred as ‘Test Peaks with randomized peak score’ and ‘Test Peaks with randomized 

peak coordinates’. Next, the F1 score was computed as the harmonic mean of precision 

and recall, to measure the performance of Seten against gold standard functional 

annotations described in the previous section, for three types of bed files namely original 

eCLIP Peaks, Test Peaks with randomized peak score and Test Peaks with randomized 

peak coordinates. This enabled the assess to the relative impact on the performance, for 

different options and to benchmark the annotations predicted by Seten for each of these 

types of bed files against the GSEA results obtained from CRISPR RNA seq gold 

standard described above. The analysis was repeated for three different RBPs which had 

both eCLIP and CRISPR RNA seq data, namely IGF2BP1, PTBP1 and SRSF7 in K562 
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cell line. For test peak data, the analysis was repeated against 5 random bed files for each 

RBP and reported the average F1 scores. 

4.1.2.9 Availability 

Seten WI (Web Interface)  

Seten WI server is accessible on http://www.iupui.edu/~sysbio/seten/. Its source 

code which can be used for initiating a local instance of Seten WI is available via the 

GitHub repository: https://github.com/gungorbudak/seten. 

Seten CLI (Command Line Interface)  

Seten CLI is a Python package and can be installed via the package manager or 

can be built from its source. Its GitHub repository has detailed information about 

installing and using Seten CLI: https://github.com/gungorbudak/seten-cli. 

4.1.3 Results and Discussion 

4.1.3.1 Overview of Seten 

In Seten, for each input BED file which has at least the 5 columns namely 

chromosome, chromosome start, chromosome end, feature name and score associated 

with the binding of an RBP resulting from running a peak calling algorithm on a genome 

aligned CLIP-seq dataset, a Gene Set Enrichment Analysis (GSEA) is performed against 

the gene set collections selected by the user (Figure 21, see Materials and Methods). Both 

the web interface (WI) and command line interface (CLI) versions of Seten currently 

support the gene sets from BioCarta, KEGG, Reactome, Gene Ontology (GO) biological 

process, GO molecular function, GO cellular compartment, Human Phenotype Ontology 

(HPO) and MalaCards Disease Ontology for organisms including fruit fly, human, 

mouse, rat, worm and yeast with the CLI allowing the user to include additional gene set 
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collections and organisms (Table 4). To facilitate easy access and navigation of existing 

CLIP-seq datasets, Seten WI includes results from precomputed functional analysis of 68 

human RBPs obtained from CLIPdb as well as 138 human RBPs profiled in the 

ENCODE project. In addition to providing precomputed integrated functional analysis of 

dozens of CLIP-seq experiments, Seten WI also provides user friendly interface to 

compare the resulting annotations across experiments and RBPs as exportable bubble 

charts. 

4.1.3.2 Seten's gene set enrichment outperforms functional enrichment, with peak scores 

contributing to the discovery of true annotations 

In order to evaluate the performance of Seten, the gene set and functional 

enrichment implementations were employed in Seten and compared their performance 

against ‘negative control’ bed files generated using bedtools (233) for eCLiP peaks of 

RBPs (IGF2BP1, PTBP1, SRSF7 in K562 cell line) (See Materials and Methods). For 

each eCLIP dataset and their corresponding negative controls, the performance of the 

gene set and functional enrichment implementations were benchmarked against the 

annotations identified using CRISPR RNA-seq gold standard for the corresponding RBPs 

in K562 cell line (See Materials and Methods). Seten was run using default parameters 

(i.e. corrected p-value (< 0.01), gene set size (< 350), number of gene set hits per RBP (> 

10)) for both the eCLIP and each negative beds separately. F1 score, which is the 

harmonic mean of precision and recall, was computed for respective Seten runs against 

CRISPR gold standard annotations (Materials and Methods). For random data, the 

process was repeated for five random negative controls for each RBP and report the 

average F1 score for each RBP, as shown in Figure 22.   



107 

Figure 21: Overview of Seten. Peak-detected datasets (in bed format) from RBP-specific 
CLIP-seq studies, CLIPdb and ENCODE projects (217, 218) are obtained as bed files to 
provide input to Seten. Several gene set collections were organized for multiple genomes 
including fruit fly, human, mouse, rat, worm and yeast. Currently included gene set 
collections comprise of pathway annotations (BioCarta, KEGG and Reactome), Gene 
Ontology annotations (biological process, molecular function, cellular compartment), 
Human Phenotype Ontology (HPO – human only) and MalaCards Disease Ontology 
(human only) (220-226). Scores associated with each gene from a BED file are employed 
for gene set enrichment analysis by organizing the scores according to the chosen scoring 
method. Scores mapped onto the genes are used to compute an enrichment using a 
competitive permutation test and corrected p-values from multiple testing are reported. In 
contrast, functional enrichment method only uses the associated genes and not the scores 
from BED files, for enrichment analysis using fisher’s exact test and computes a false 
discovery rate. 
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The results show that gene set enrichment exhibits relatively higher performance 

than functional enrichment for both the Reactome and GO Biological Process annotations 

(Figure 22). F1-scores were also found to be significantly higher for eCLIP data 

compared to the negative controls resulting from randomized scores or genomic co-

ordinates, for gene set enrichment method (Figure 22). In contrast, for functional 

enrichment, although results compared to randomized co-ordinates were higher, there 

was no significant difference in F1-scores compared to the randomized peak scores 

suggesting that while functional enrichment is not impacted by the scores, gene set 

enrichment implementation has a significant improvement due to the use of scores 

(Figure 22).  Overall, although the maximum score was employed for each gene as the 

scoring method, the analysis demonstrates that Seten’s gene set enrichment 

implementation is likely to outperform functional enrichment for inference of annotations 

from eCLIP profiles, by exploiting the scores which can act as proxy for the extent of 

binding. 

4.1.3.3 Cell type-specific gene set associations can be identified by Seten 

The results (Figure 22) also suggest that it is possible to not only identify the gene 

set associations of an RBP but RBPs profiled in different cell lines and conditions can be 

compared for one or more gene set collections. Such a feature is available in Seten WI for 

both precomputed CLIP-seq datasets as well as for user uploaded BED formatted CLIP 

results.  

Seten can compare one or multiple gene set collections across conditions/cell 

lines of one or more RBPs to dynamically generate bubble charts for easy comparison of 

differences in the significance of associated gene sets. In both CLIPdb and ENCODE 
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Figure 22: Comparison of Seten’s gene set and functional enrichment methods against 
negative control. Histograms showing the performance comparison of Seten’s Gene Set 
Enrichment Analysis (GSEA) and Functional Enrichment (FE) options along with their 
corresponding random bed files for each RBP, benchmarked against their CRISPR RNA-
seq gold standard. F1 score, harmonic mean of precision and recall, represented on y-axis  
for each dataset/option was computed against CRISPR gold standard separately for (A) 
Reactome and (B) GO Biological Processes by running Seten using eCLiP peaks (in red) 
and ‘negative control’ peaks (Test Peaks with randomized peak score shown in orange, 
Test Peaks with randomized peak coordinates shown in grey). Negative control bed files 
for each RBP were generated using bed tools, as described in Materials and Methods.  
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datasets, some RBPs have CLIP data from different cell lines which allowed the usage of 

Seten for comparing these cell type-specific datasets. 

The two FASTKD2 datasets discussed in the previous section also exhibit cell 

line specific differences as shown in Figure 23A. While the FASTKD2 / K562 (human 

bone marrow cell line having chronic myelogenous leukemia) gene set enrichment results 

show pure red-cell aplasia (p-value = 0.001) and diamond-blackfan anemia (p-value = 

0.001), the other FASTKD2 / HEK293 does not exhibit these disease annotations. 

Figure 23: (A) The dynamically generated bubble chart from Seten WI, showing the 
comparison of significantly enriched MalaCards Disease Ontology terms for FASTKD2 
in HEK293 and K562 cell lines. (B) The inset of a dynamically generated bubble chart 
from Seten WI, showing the comparison of significantly enriched MalaCards Disease 
Ontology terms for DDX6 in K562 and HepG2 cell lines. Only gene sets which had more 
than 5% of the total genes and exhibited a minimal p-value of 0.05 in one of the cell lines 
are included in this comparison. The radius of bubbles is computed as negative 
Log10(corresponding p-value). 

DEAD-box helicase 6 (DDX6) is an RNA helicase found in P-bodies and stress granules 

and it functions in mRNA degradation and translation suppression (8). It has been shown 

to be contributing to lymphoma genesis by deregulation of BCL6 (B-Cell 

CLL/Lymphoma 6) in nodal marginal zone lymphoma (234). It has also been shown to 
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be required for efficient hepatitis C virus replication (235). Figure 23B (a subset) shows a 

bubble chart comparing the significance scores for MalaCards Disease Ontology term 

associations for DDX6 / K562 (chronic myelogenous leukemia cell line) and DDX6 / 

HepG2 (hepatocellular carcinoma cell line). As is evident from the chart, while 

monocytic leukemia (p-value = 0.0110) is specific to K562 sample, fatty liver disease (p-

value = 0.0140), liver cirrhosis (p-value = 0.001), and hepatoblastoma (p-value = 0.001) 

are specific to HepG2 sample. However, acute promyelocytic leukemia was also 

observed to be significant (p-value = 0.008) for DDX6 / HepG2. This might be seen 

because DDX6 activation has been observed in acute leukemia (236). Additionally, 

mantle cell lymphoma (p-value = 0.001 for DDX6 / K562) and anaplastic large cell 

lymphoma (p-value = 0.005 for DDX6 / K562 and 0.001 for DDX6 / HepG2) appear as 

significant hits. Moreover, viral hepatitis is one of the significant hits for DDX6 / HepG2 

(p-value = 0.0150). These results suggest that Seten can be employed to study and 

navigate condition, cell line as well as tissue-specific variations in the gene set 

associations for RBPs, starting from CLIP-seq data. 

4.1.3.4 Seten’s GO Biological Process and Reactome results agree with ChIP-Enrich 

gene set enrichment tool results 

Since there are no existing tools to perform a gene set enrichment analysis on 

CLIP-seq datasets, in order to compare the results, ChIP-Enrich (C-E) gene set 

enrichment tool originally developed for ChIP-seq datasets was used by configuring its 

options to make it suitable for CLIP-seq datasets (211). Locus definition option was set to 

“Nearest gene” to assign all peaks to the nearest gene which is similar to implemented 

approach. The comparison was limited to GO Biological Process (GOBP) from Gene 
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Ontology and Reactome from pathway databases. The gene sets having more than 350 

genes to be consistent with the default threshold in Seten were filtered out. Both tools for 

several datasets from ENCODE project were run. To compare the results, enriched gene 

sets using p-value threshold (corrected p-value < 0.05 in the respective tools) were 

filtered and then ranked them separately. Finally, the overlapping gene sets were taken 

between them and did a hypergeometric test to determine the significance of the overlap 

between the two approaches. First, the Alanyl-tRNA Synthetase (AARS – K562) GOBP 

and Reactome results were compared, which yielded a GOBP p-value of 6.15e-14 and a 

Reactome p-value of 5.44e-27 (Hypergeometric test) indicating a significant agreement 

of the discovered processes and pathways between the two methods (Figure 24A).  

Figure 24: (A) The comparison of Seten and ChIP-Enrich using AARS – K562 dataset 
for GO Biological Process and Reactome gene set enrichment analysis results. (B) The 
comparison of Seten and ChIP-Enrich using RBM15 – K562 dataset for GO Biological 
Process and Reactome gene set enrichment analysis results. (C) The comparison of Seten 
and ChIP-Enrich using FMR1 – K562 dataset for GO Biological Process and Reactome 
gene set enrichment analysis results. 

Next, the Putative RNA-binding protein 15 (RBM15 – K562) results for GOBP 

and Reactome gene set collections were compared to obtained a GOBP p-value of 6.42e-

25 and a Reactome p-value of 2.70e-49 suggesting a significant overlap (Figure 24B). 
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Finally Fragile X Mental Retardation 1 (FMR1 – K562) GOBP and Reactome results 

were compared, which yielded a GOBP p-value of 2.59e-24 and a Reactome p-value of 

6.90e-35 indicating the reproducibility of the enriched processes/pathways between the 

methods (Figure 24C). 

4.1.3.5 Benchmarking of Seten and ChIP-Enrich against CRISPR RNA-seq reveals 

superior performance of Seten 

Recent progress in utilizing CRISPR/Cas9 technologies for genome editing has 

enabled rapid sequencing-based profiling of genomic phenotypes (231).  Although 

majority of the RBPs are known to be encoding for essential genes (237), ENCODE 

project has been successful in generating RNA-sequencing data of CRISPR/Cas9 based 

knock-outs of several RBPs including IGF2BP1, SRSF7 and PTBP1 in human K562 cell 

line (238). Hence, to generate a gold standard set of functional annotations impacted by 

these RBPs and to benchmark both Seten and ChIP-Enrich tools against this common 

reference set for which both eCLIP and CRISPR data are available, the CRISPR RNA-

seq data was processed and organized as described in Materials and Methods. By 

utilizing the functional annotations obtained from gene set enrichment analysis of the 

relative gene expression changes from CRISPR control vs knock-out for each of these 

RBPs, as gold standard, the performance of both the tools was compared against this 

reference by computing precision and recall (see Materials and Methods). As shown in 

Figure 25, for each of these three RBPs, Seten was found to exhibit significantly higher 

precision for both Reactome and GO Biological Process annotations compared to that 

observed for ChIP-Enrich (C-E). Seten exhibited an average precision of 72% and 58% 

for Reactome and GOBP gene sets. In contrast, C-E was found to show an average 
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precision of 42% and 8% respectively, indicating that Seten is more suitable for 

functional annotation of CLIP-seq data (Figure 25). Comparison of the average recall 

values between the tools indicated that, while Seten exhibited higher recall than C-E for 

Reactome (51% vs 47%), inverse trend was seen for GOBP annotations (32% vs 45%).  

A major contributor to the lower average recall of Seten is PTBP1, which was found to 

exhibit a relatively lower recall for both Reactome and GOBP annotations. In this 

context, it must be reminded that not all RBP’s loss of binding events might result in 

corresponding changes in RNA expression levels of their targets - a major assumption in 

the calculation of recall. This could be due to a number of reasons such as A) redundancy 

in the functionality of RBPs where a paralogous RBP might complement the function of 

the mutated RBP, B) RNA levels might not be impacted but protein levels might be 

impacted C) quality of the binding site might be low or functional impact of the binding 

site might be minimal. Nevertheless, although the number of RBPs with both eCLIP and 

CRISPR data is currently limited, it is possible to conclude from this data that Seten 

achieves significantly higher precision and comparable recall as that of C-E.  

It is important to note that currently there are very few high-resolution CRISPR datasets 

which stand orthogonal to CLIP-seq profiles. Also, since CRISPR screens are still in their 

infancy, it is unclear to what extent do they strictly identify only the direct effects of 

regulatory molecules like RBPs and not secondary off-target effects (231). Hence, 

additional orthogonal approaches to probe and measure the genome-wide impact due to 

the loss/gain of function of an RBP are needed to comprehensively understand, model 

and improve the functional annotations of RBPs using CLIP-seq profiles.  
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Figure 25: Benchmarking of predicted functional annotations from Seten and ChIP-
Enrich against those identified from CRISPR based RNA-seq datasets of RNA-binding 
proteins in K562 cell line. Precision and recall plots for IGF2BP1, SRSF7 and PTBP1 
using Seten and ChIP-Enrich for the gene set collections (A) Reactome and (B) GO 
Biological Process. In both cases, gene set enrichment approach as implemented in the 
respective tools was utilized to generate functional annotations from eCLIP-based 
profiles, to compare their relative performance. Seten was found to exhibit a significantly 
higher precision and comparable recall to that observed for ChIP-Enrich.  

4.1.4 Conclusion 

Seten is a computational framework that performs an enrichment analysis using the 

scores resulting from peak calling algorithms on CLIP-seq datasets. This tool can also 

perform a comparison of the identified processes and phenotypes across a set of profiled 

RBPs both within and across conditions or tissue types being studied. Thus, this study 

fills the gap in current understanding of the downstream biological context resulting from 

extensive rewiring in post-transcriptional networks. Seten is implemented as a web 

interface (WI) using JavaScript and a command line interface (CLI) using Python 

(http://www.iupui.edu/~sysbio/seten/). Seten WI provides exportable visualizations of 

results as bar charts and bubble charts (in SVG format) and requires no installation or 

dependency except for an up-to-date browser. Using Seten CLI, multiple datasets can be 

analyzed using a single command. 
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4.2 SliceIt: A genome-wide resource and visualization tool to design CRISPR/Cas9 

screens for editing protein-RNA interaction sites in the human genome 

4.2.1 Introduction 

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is 

identified as a defense system that protects bacteria and archaea from mobile genetic 

elements (239-241). This RNA guided interference mechanism has been successfully 

employed in eukaryotic cells (both in vitro and in vivo) by Zhang (242) and Charpentier 

(243) groups. It is now established that sgRNAs (single guide RNAs) can be engineered 

to target a 17-20 bp stretch of DNA sequence preceding a protospacer adjacent motif 

(PAM) (244). CRISPR/Cas9 system has been crucial in multiple disciplines but is 

especially useful for understanding the gene function by manipulating precise genomic 

locations (244-246). This emerging technology enables the re-investigation of 

multilayered functional dependency of regulating molecules such as kinases, transcription 

factors (TFs), long non-coding RNAs (lncRNAs), and other protein coding gene groups, 

to provide specific perturbations and to study their comprehensive genome wide effects 

(245, 247-250). 

RNA binding proteins (RBPs) post-transcriptionally regulate a variety of 

biological processes as described previously (192, 193, 251-253). Several crosslinking 

and immunoprecipitation (CLIP)-seq protocols have been developed over the years (254-

256) to delineate the molecular interaction of RNA binding proteins (RBPs) and their 

target RNAs at single-nucleotide resolution in a cell. However, most of the millions of 

binding sites identified from these high throughout CLIP-seq studies do not have 

functional evidence for their contribution to the fate of the RNA molecule, except 
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perhaps binding the RNA target, creating an ambiguity with little or no functional 

relevance of these interactions in cellular context (257, 258). It has also been argued that 

various CLIP-seq protocols don’t agree with each other in recovering binding sites and 

often produce noisy signals resulting in a number of false positive binding sites (259). 

With the advent of genome modification via CRISPR/Cas9 systems (244-246), it is 

possible to investigate the functional connectivity between RBPs and RNAs, specifically 

with high resolution. CRISPR/Cas9 system can potentially be employed to investigate the 

functional aspect of localized RBP-RNA interactions in cells (Figure 26). This system, 

though originally developed to directly target and edit DNA, recent studies also report the 

use of variants of Cas9 for tracking RNA (260, 261). However, the system’s efficiency to 

access/edit RNA is highly compromised with low signal to noise ratio and accuracy. In 

addition, editing RNA (which can’t be repaired by cellular pathways) will not enable the 

use of expression of the target RNA molecule as a proxy to measure the functionality of 

the binding site. CRISPR/Cas9 system is precise and cheaper compared to other gene 

editing techniques. Apart from single target site perturbation, it can also be used to target 

multiple loci simultaneously with different sgRNAs and using a single Cas9 variant. The 

ability of using single Cas9 protein with multiple sgRNAs opens the doors for high 

throughput editing of target loci. Therefore, to understand the impact of RBP binding 

sites perturbation in human cells, CRISPR/Cas9 system is proposed to edit the DNA 

locations where RBP binds to RNA. 

SliceIt (7) is the first comprehensive database of in silico sgRNA library to edit 

the currently known millions of protein-RNA interaction sites in the human genome. It 

stands as a one-stop portal for designing CRISPR/Cas9 screens for functional dissection 
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of post-transcriptional regulatory networks. SliceIt enables the designing of multiple 

sgRNAs for each binding site based on user's desired location for editing the genome by 

defining specificity and efficiency thresholds, to facilitate uncovering their functional 

role in modulating post-transcriptional regulation of a transcript. Predicted sgRNAs are 

available to be visualized in a genome browser with additional layers of information such 

as SNPs and cis-exon expression across human tissue types. SliceIt also provides an 

option to download data for every search query in CSV or Excel file format. SliceIt uses 

Flask micro framework in the backend to efficiently parse results and to communicate 

with user interface and the databases. In order to handle multiple queries efficiently, 

dynamic implementation of multiprocessing is used to parallelize querying process from 

Elasticsearch cluster to effectively reduce query search time by several fold. 

4.2.2 Materials and Methods 

4.2.2.1 Data collection and processing 

eCLIP (262) based binding profiles of scores of RBPs in (hepatocellular 

carcinoma (HepG2) and chronic myelogenous leukemia (K562) cell lines was obtained 

from the ENCODE project (70). In total, the included dataset comprised of 2.23 million 

unique binding sites for 68 RBPs in HepG2 and 2.38 million unique binding sites for 86 

RBPs in K562 cell line. The genomic coordinates of these RBPs’ eCLIP profiles (in .bed 

file format) was downloaded, parsed and used for prediction of sgRNAs localized to each 

binding site of RBPs. In addition to CLIP profiles, dbSNPs was also downloaded (263), 

GWAS catalog (16) and exon expression profiles for 53 human tissues from the GTEx 

project (264)  (GTEx data was extracted by using recount workflow (265, 266)) and 
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integrated with SliceIt, to provide comprehensive information for a genomic region of 

interest. 

4.2.2.2 Prediction of sgRNAs around RBPs’ binding sites 

A typical sgRNA comprises of a 19-20 base long oligonucleotide that could be 

designed to target user defined homologous sequence on the host genome. In this study, 

CRISPR-DO was used (244) to design sgRNAs targeting all possible RBP binding sites 

from various CLIP experiments (262) in HepG2 and K562 cell lines from ENCODE (70). 

CRISPR-DO requires an input genomic region in bed format along with other essential 

metrics such as genome assembly and spacer length. The RBP binding site was 

customized coordinates obtained from the ENCODE project for human reference genome 

(hg38) and employed a flanking distance of ±50bp from the mid-point of the binding site 

(if BS length is <100 bp) and automated the standalone CRISPR-DO software 

(http://cistrome.org/crispr/source) to predict potential sgRNAs per binding site using ad-

hoc scripts. This enabled the development of an in-house pipeline for sgRNA design to 

millions of RBP binding sites on a compute cluster.  

4.2.2.3 Processing of CRISPR DO outputs 

CRISPR-DO provides genomic location, 30 bp sequence (i.e. 20 bp sgRNA 

sequence + PAM + 7 bp flank sequence), sgRNA strand orientation, specificity score, 

efficiency score and other flagged annotations for all possible sgRNA predictions per 

genomic region of interest.  Predicted sgRNAs and other information for each binding 

site were tagged with respective queried binding site (BS) coordinates and corresponding 

cell line as well as RBP information. These predictions were concatenated into a single 

http://cistrome.org/crispr/source
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file. The distance between the mid-point of the BS and PAM site was also computed, to 

include it as an additional column in the processed outputs. 

4.2.2.4 Database construction and implementation 

SliceIt is a database implemented in elasticsearch with a web interface that was 

developed using Bootstrap 4.0 software. The database is hosted at 

https://sliceit.soic.iupui.edu/. SliceIt currently allows users to search by gene name or 

Ensembl ID, coordinates and by RNA binding protein name at various efficiency and 

specificity thresholds.  

Data Interface 

SliceIt interface comprises of three different search options to query the data and 

the search result of all of these primary functions include (i) Retrieval of information on 

guide RNAs corresponding to the binding sites (ii) Retrieval of SNPs and GWAS 

information that fall within the region of interest (iii) exon expression levels across 

tissues that are in 500 bp proximity to region of interest and are defined as cis-exons in 

this study (iv) Visualization of data in IGV JS genome browser. When a user queries for 

a gene, SliceIt provides a list of various genes and their corresponding Ensembl IDs in 

the form of an auto suggest dropdown box. For each search the recommended and default 

cut-off for efficiency and specificity scores for selection of sgRNAs are 0.3 and 50 

respectively. These numbers are recommended for selection of optimal guide RNA 

design by CRISPR-DO tool. Results retrieved in SliceIt are organized into the following 

sections 

Annotations 

https://sliceit.soic.iupui.edu/
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The output page displays annotation information obtained from Ensembl for 

search based on gene name or coordinate range within a chromosome. These annotations 

cover the gene name, description, location coordinates, strand information along with a 

link to Ensembl database to access more information. 

Genome Browser 

SliceIt helps visualize the locations of binding sites and sgRNAs with the help of 

IGV JS genome browser embedded in the output page. By default, the tracks that are 

displayed include (i) hg38 reference genome (ii) GWAS (iii) SNP from dbSNP (iv) 

Binding sites in HepG2 cell line (v) Binding sites in K562 cell line (vi) Predicted 

sgRNAs. The users have an option to remove and add any of these tracks, change track 

color, name and height. Apart from the default tracks that are loaded for every search 

query, users can also load various other tracks by using drop down menus. These options 

for additional tracks include exon expression tracks for various tissues, HepG2 and K562 

binding sites tracks for individual RBPs. SliceIt also has an additional functionality that 

allows users to add their own data in the form of a track in genome browser by using the 

“Add custom track from URL” section on the results page. This allows users to add 

indexed BED, BAM, Wig, Bigwig and BedGraph file formats that are hosted on an 

external server.  

Data Tables 

The retrieved raw data is displayed in “Data View” tab in a tabular form with 

various options such as CSV and Excel export, search filter by coordinates, efficiency or 

specificity and column sorting. For each binding site, SliceIt provides 5 different sgRNAs 
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that are filtered based on the highest efficiency and specificity scores. The data view also 

has 3 other sub-tabs that provide data regarding SNPs, GWAS and Cis-exon expression. 

Backend 

In the backend, SliceIt runs on Python’s Flask micro web framework to efficiently 

process the query, parse the data and return output. Predicted sgRNAs, dbSNPs, GWAS 

and Exon expression data is stored in elasticsearch (https://www.elastic.co/) that is hosted 

on an external cluster. For each search, the query input is passed to the backend via flask 

framework and SliceIt automatically designs various queries to efficiently retrieve data 

from elasticsearch and Ensembl.  

4.2.2.5 sgRNA design for experimental validation 

SliceIt serves as the first comprehensive predictive engine for designing sgRNAs 

to edit the currently known millions of protein-RNA interaction sites in the human 

genome that augment to conduct high-resolution binding site block/silencing 

experiments. Two sgRNAs (5’-TGAATCTCGCTCTGTTGCCC-3’ for BS 

chr2:99157353-99157403 and 5’- GGTTGATCCCGAACACAGGA-3’ for BS 

chr2:99159478-99159514) in LIPT1 (Lipoyltransferase 1) gene locus from SliceIt were 

designed.  

Establishing the CRISPR Cas9 system 

Lentiviral vector digestion, oligo annealing and cloning into digested vector: 

Lentiviral CRISPR v2 plasmid (a gift from Feng Zhang (Addgene plasmid # 52961 ; 

http://n2t.net/addgene:52961 ; RRID:Addgene_52961) was digested with BsmBI and 

dephosphorylated with alkaline phosphatae for 2 hrs at 37°C. Digested plasmid was 

purified from gel using QIAquick gel extraction kit as per manufacturer’s instructions. 

https://www.elastic.co/
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Oligos were phosphorylated and annealed using T4 PNK (NEB M0201S) enzyme and 

T4ligation buffer (ATP added) in a thermocycler using following parameters: 37°C for 

30min, 95°C for 5 min and ramp down to 25°C at 5°C/min. Annealed oligos are diluted 

at 1:200 dilution into sterile water. Diluted oligos were ligated with digested plasmid 

using T4DNA ligase, incubated over night at 16°C.  Lentiviral plasmid was transfected 

into Stbl3 bacteria (Invitrogen C7373-03) using heat shock transfection method. For each 

oligo, three clones were selected for plasmid isolation. Plasmids were isolated using 

GeneJET Plasmid Miniprep Kit (K0503) and sent for sanger sequencing. 

Lentiviral packaging  

One day before transfection 2.5x105 HEK293T cells were plated (6 well plate) in 

DMEM supplemented with 10% heat-inactivated fetal bovine serum (FBS). Cells were 

incubated at 37°C overnight to get a confluency of 70%. Transfection was carried out 

using polyethyleneimine (PEI) method with the ratio of PEI:pTarget:pVSVg:RRE:REV; 

16:3:1: 2:2. In a sterile tube, total 3ug of DNA following the ratios was diluted to 200ul 

of serum-free DMEM. PEI (2ug/ul) based on a 2:1 ratio of PEI(ug): total DNA(ug) was 

added to diluted DNA. Mix was incubated for 15 min at room temperature.  For each 

binding site, one oligo was transfected individually into the cells, to purturb the binding 

site. After 72 hrs, lentiviral particles were harvested and concentrated at 3,000g for 5min 

at 4°C. The supernatant is filtered through a 0.45um filtration on ice using synringe filter. 

HepG2 cells were freshly cultured in 6 well plate for 24hrs, followed by transduction 

using lentiviral concentrate. Cells were incubated for one week followed by which 

puromycin treatment was given for positive selection of transduced cells. GFP and 

plasmid insert was used as positive control. Fluorescence microscope was used to check 
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transfection and transduction efficiency. After 1 week puromycin concentration was 

reduced, since the cell number was low. Cells were split after 50% confluency of wells. 

After 1 week of incubation, cells were harvested in two tubes. From one aliquot, RNA 

was isolated using Tri-reagent, cDNA generated and real-time PCR was run for analyzing 

the expression level of proximal exons. In order to validate gene modifications, DNA was 

isolated from the second aliquot and sent for sanger sequencing. 

4.2.3 Results and Discussion 

RBP driven post-transcriptional regulation likely depends on its binding 

efficiency to its target location (237, 267) (Figure 26A). This phenomenon is highly 

crucial for several key biological processes including in development (18, 95, 268, 269) 

and differentiation (251, 270-275). It can be studied by measuring the expression level of 

the target RNA or proximal/neighboring exon to that of the binding site of interest. I 

hypothesize that the perturbation of the RBPs’ binding sites or its equivalent position on 

DNA can potentially promote dysregulated function of the post-transcriptional target 

RNA molecule, enabling the functional dissection of  the millions of  binding sites of  

RBPs  being  discovered  by  CLIP (276) and related technologies (254-256). Cas9 

system has been extensively utilized to edit the genomic loci of interest (244, 277). 

However, it has not been used to systematically understand the impact of RBP binding 

site perturbation in human cell types. Thus, this “cause” and “effect” model of regulation 

was employed by perturbing equivalent binding site on DNA using Cas9 system, where 

dysregulation phenotype can be measured by expression analysis of the target RNA 

feature, such as inclusion or exclusion of exon. Briefly, the BS profiles for available 

RBPs from the ENCODE project was downloaded and preformatted the BS regions by 
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flanking them up to 100 bp. CRISPR-DO was employed to design sgRNAs for each 

binding site. All predicted sgRNAs were deposited into a database called SliceIt (see 

Figure 26B and Materials and Methods)  

SliceIt facilitates designing CRISPR/Cas9 screens in both low (as illustrated in 

Figure 26C) and high throughput modes, by enabling parametric flexibility for designing 

sgRNAs along with the ability to filter the binding sites for the presence of SNPs, GWAS 

hits and exon expression alterations across a wide range of human tissue types.  

Figure 26: Strategy for validation of RBPs’ binding sites. (A) A hypothesis driven 
CRISPR/Cas9 model for determining the effect of sgRNA on an exon proximal to 
targeted binding site (B) Construction of SliceIt, an in-silico guide RNA library for 
RBPs’ binding sites (C) Proposed approach for designing CRISPR/Cas9 screening 
experiments based on the compendium of sgRNAs from SliceIt, for perturbation of 
binding sites. 

4.2.3.1 Overview of SliceIt 

This study presents SliceIt (https://sliceit.soic.iupui.edu/), a database and 

visualization tool providing a comprehensive summary of in silico sgRNA (single guide 

https://sliceit.soic.iupui.edu/
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RNA) library, to facilitate rational design of CRISPR/Cas9 experiments in both low and 

high throughput fashion to perturb the protein-RNA interaction sites. CRISPR-DO (244) 

was used to design ~4.9 million unique sgRNAs targeting all possible RBP binding sites 

resulting from eCLIP experiments of scores of RBPs in HepG2 and K562 cell lines (from 

ENCODE) (see Materials and Methods). SliceIt provides a user-friendly environment, 

developed in highly advanced search engine framework called Elasticsearch. It is 

available in both table and genome browser views facilitating the easy navigation of RBP 

binding sites, sgRNAs, SNPs and GWAS hits, while querying for a gene, RBP or region 

of interest. It also provides exon expression profiles across 53 human tissues from the 

GTEx project (https://gtexportal.org/home/) (264), to examine locus specific expression 

changes proximal to the binding sites, to enable rational design of experiments in specific 

tissue/cell types. Users can also upload custom tracks in various file formats (in browser) 

to navigate additional genomic features in hg38 human genomic build. This custom track 

upload and navigation feature, in addition to the datasets already integrated into SliceIt, 

provide a functional context for user-generated datasets. All the binding site centric 

information is dynamically accessible via “search by gene”, “search by coordinate” and 

“search by RBP” and readily available to download. SliceIt is the first comprehensive 

predictive engine for designing sgRNAs to edit the currently known millions of protein-

RNA interaction sites in the human genome. It is a one-stop repertoire of guide RNA 

library and RBP binding sites along with several layers of functional information, to 

design high throughput CRISPR cas9 screens for studying the phenotypes and diseases 

associated with the binding sites of RBPs and to functionally dissect the post 

transcriptional regulatory networks. 

https://gtexportal.org/home/
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4.2.3.2 Characteristics of sgRNA repertoire available in SliceIt 

Approximately 4.6 million binding sites corresponding to 108 RBPs across the 

two cell lines (2.23 million unique sites in HepG2 and 2.38 million unique sites in K562) 

were downloaded from the ENCODE project (218) (Figure 27A). These binding sites 

were flanked to 100 bp (if <100 bp) and queried for sgRNA prediction using CRISPR-

DO (see Materials and Methods). This resulted in a repository of ~4.9 million unique 

sgRNAs (3.73 million and 3.04 million unique sgRNAs for HepG2 and K562 cell lines 

respectively) predicted for ~4.6 million binding sites. Binding sites for each RBP and 

corresponding unique sgRNAs were log10 transformed and illustrated as a heatmap in 

Figure 27A. The ratio of number of sgRNAs and binding sites for each RBP were also 

calculated, representing an estimate of the average number of sgRNAs designed per 

binding site for each RBP in both the cell lines (Figure 27A). SliceIt comprises of a 

relatively unbiased collection of sgRNAs (2-8 sgRNAs per binding site) for the RBPs 

included in the database, making it an easily accessible and user-friendly web interface 

for designing the targeted post-transcriptional dysregulation experiments using Cas9 

system. Additionally, it was observed that the total distribution of designed sgRNAs 

decreased with increasing efficiency as well as specificity (Figure 27B). Several CRISPR 

based experiments have shown that Cas9 directed double strand breaks occur mostly in 

close proximity to PAM region of targeted genomic loci (244). Thus, the positional 

occurrence of designed sgRNAs was investigated by calculating the distance of binding 

site from PAM. Most of the designed sgRNAs were proximal to the midpoint of the 

binding sites with an exponential decline as distance increased from the center of the 

binding site (Figure 27C). It is noteworthy to mention that the total number of designed 
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sgRNAs and made available via SliceIt varied between chromosomes and were generally 

correlated with the size of the chromosome (Figure 27D). 

Figure 27: (A) Heatmap showing the number of unique binding sites (log10 transformed -
red) and sgRNAs (log10 transformed-blue) and the ratio of the number of sgRNAs and 
binding sites (green) for each RBP, representing an estimated average sgRNAs designed 
per binding site for each RBP in both the cell lines (H-HepG2 and K-K562). RBPs for 
which currently no binding site information is available from ENCODE project for either 
cell line are greyed out. (B) Distribution of the total number of designed sgRNAs 
available from SliceIt as a function of the predicted efficiency and specificity scores. (C) 
Density plot showing the distribution of distances between sgRNA’s PAM location and 
the mid-point of the targeted binding site, for all the sgRNAs available from SliceIt. (D) 
Distribution of the absolute number of sgRNAs across human chromosomes present in 
SliceIt. 

4.2.3.3 SliceIt database construction, visualization and accessibility 

SliceIt is an efficient search engine, consisting of several layers of omics data 

including RBP binding site profiles, SNPs, GWAS and tissue-specific exon expression 

levels (GTEx) under the niche of Flask server module. The complete pipeline as 

illustrated in Figure 28A, details on how the flask server interacts with front-end, 

retrieves and parses data from elasticsearch for providing an output. Basically, this 

pipeline takes only a few seconds to search the query, process and render an output. 
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While most other alternative tools run an algorithm in the cloud to generate guide RNA 

predictions, SliceIt takes advantage of precomputed data to achieve a speed that is several 

fold faster than other comparable tools.  

Figure 28: (A) Search processing pipeline showing the functionality of SliceIt’s 
communication with frontend and elasticsearch cluster to parse and display query output. 

SliceIt enables searching a transcribed region with RBP binding sites in the 

genome for designed sgRNAs. This is facilitated by allowing the user to search for gene 

region, genomic co-ordinates and for targets of an RBP (Figure 28B). For instance, a user 

could search for the sgRNAs that can be designed to edit the binding sites of a member of 

the RBFOX family of RBPs or search for a specific genomic region defined by 

chromosomal co-ordinates. Alternatively, a user can visualize the target binding sites of a 

selected RBP for which sgRNAs satisfy specific design thresholds. For each search 

query, SliceIt outputs query annotations, data visualization with IGV JS genome browser, 

SNPs in the region, GWAS SNPs in the region, predicted sgRNA and cis-exon 

expression information in tabular form as shown in Figure 28C. 



130 

Figure 28: (B) Screenshot of SliceIt showing three different search options currently 
available in the database i.e. Search by gene name or Ensembl ID, Search by coordinates 
and Search by RBP name at various efficiency and specificity thresholds. (C) Figure 
describing various components of a typical search result page from SliceIt. Highlighted 
sections include Annotations, Data View, Exon expression with color coding and 
Genome browser view. 
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Cis-exon expression information across human tissues obtained from the GTEx 

project is displayed in Fragments Per Kilobase of transcript per Million mapped reads 

(FPKM) units and is color coded to indicate various ranges of expression levels (see 

Materials and Methods). An expression level of less than 1 FPKM is displayed in dark 

red, greater than 1 and less than 10 FPKMs in yellow, greater than 10 and less than 100 

FPKMs in orange and an expression level higher than 100 FPKMs is displayed in green.   

4.2.3.4 SliceIt aids in functional validation of RBP binding sites using CRISPR/Cas9 

experiments 

SliceIt is an integrative omics resource that facilitates systematic experimental designs 

for editing RNA binding sites and their functional dissection across human tissues. It 

provides a robust set of sgRNAs that could be used for systematic perturbation of RBP’ 

binding sites occurring in a genomic loci or gene of interest. Several other omics datasets 

were also integrated into SliceIt that can potentially help the users to define their criteria 

for RBP binding site centric Cas9 experiments.  

In order to validate the designed sgRNAs reported in SliceIt, the “cause” and 

“effect” model of regulation was employed by perturbing equivalent binding site on DNA 

using Cas9 genome editing system and study the impact of the perturbation on proximal 

exon expression levels (Figure 29A). SliceIt was used to extract the list of sgRNAs 

targeting each binding site under consideration (with ± 50 bp flank sequence). sgRNAs 

which have efficiency > 0.70 and specificity > 70 % with minimal distance between on-

site PAM (Protospacer Adjacent Motif) and center of the binding site were selected. The 

binding sites in ‘Browser View’ of SliceIt were also navigated to verify if the sites are 

accompanied by at least one GWAS or dbSNP annotations. SliceIt also enables the exon 
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level expression profiles. Hence, it was also confirmed if the exon proximal to the 

binding site is expressed > 1 FPKM in primary tissue samples from GTEx project, 

corresponding to the cell line model being used. For this particular study, SliceIt was 

used to design potential sgRNAs for perturbing the binding sites and selected two 

sgRNAs for editing two different binding sites on LIPT1 (Lipoyltransferase 1). LIPT1 

encodes for an acyl group transferase, involved in lipoic acid metabolism (278, 279) and 

glycine degradation (280). LIPT1 genomic loci was navigated and queried for two RBPs 

independently for respective binding sites (and predicted sgRNAs) as shown in Figure 

29B (see Materials and Methods). The second exon of LIPT1 was focused and 

investigated the impact of RBP binding sites (BS1 and BS2) targeted by respective 

sgRNAs (Lg1 and Lg2) designed by SliceIt (Figure 29B). LIPT1 was confirmed to be 

significantly expressed in primary liver tissue samples, since the cell line model is HepG2 

cell line. The main objective was to validate if these sgRNAs are likely to perturb the 

binding sites in HepG2 cells, with a high efficiency as predicted by SliceIt. Perturbation 

can result in increase or decrease in proximal exon expression levels, since it depends on 

whether the binding site can enhance or repress the activity of the exon i.e, binding site 

can be a splicing enhancer or repressor.  SgRNA plasmid library constructs were 

confirmed using Sanger sequencing (Appendix 5). Plasmid transfection and lentiviral 

transduction efficiency was measured as GFP signals on fluorescence microscopy. GFP 

signals detected, confirmed 80-100% transfection efficiency in HEK293T cells and 75-

90% transduction efficiency in HepG2 cells. For gene LIPT1, primers were designed to 

estimate the abundance of the second exon to validate the effect of two proximal binding 

sites’ upon perturbation, using two different sgRNAs (labeled as Lg1 and Lg2 in Figure 
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29B). Upon normalizing with housekeeping gene PPIA, qPCR results showed significant 

(p<0.001) decrease in the exon expression levels compared to wild type HepG2 exon 

expression levels once transduced with Lg1 and Lg2 lentiviruses, respectively (Figure 

29C). Hence, qPCR results confirmed that the designed sgRNAs targeted the binding 

sites, resulting in significant reduction of the proximal exon expression levels as a result 

of the perturbation of the binding sites. Interestingly, sgRNA - Lg2, designed to target the 

distal binding site of exon 2 exhibited higher reduction of the exon level than the sgRNA 

– Lg1 designed to perturb the proximal binding site.

Figure 29: Functional validation of RBP binding sites using CRISPR/Cas9 experiments 
in human cell lines. (A) A hypothesis driven CRISPR/Cas9 model for determining the 
effect of sgRNA on an exon proximal to targeted binding site (B) A genome browser 
view of SliceIt illustrating the genomic loci of LIPT1 gene, the second exon, RBP centric 
query for binding sites (BS1 and BS2 color coded boxes) targeted by respective sgRNAs 
(Lg1 and Lg2, color coded boxes) designed by SliceIt (C) Binding site perturbation 
experiments using sgRNAs; Lg1 and Lg2. Exon expression levels (normalized) proximal 
to binding sites were quantified by qPCR (*** = p<0.001). 
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4.2.4 Conclusion 

SliceIt is a comprehensive resource and visualization platform that enables the 

users to systematically design experiments to study the impact of a binding site of RBP 

on a particular RNA target. Hence, it can help the users in dissecting the role of binding 

sites in A) modulating splicing, stability and localization of RNA B) controlling the 

protein isoform levels, across a multitude of tissue types and cell lines by facilitating the 

generation of high quality custom set of sgRNAs for the well-established CRIPSR/Cas9 

genome editing system. It is a one-stop repertoire that enables the design of small scale 

experiments to study a specific binding site's role in modulating post-transcriptional 

regulation or medium range studies such as RBP centric functional screens or genome-

scale CRISPR/Cas9 screens to edit the protein-RNA interaction networks. SliceIt also 

enhances the applicability of CRISPR/Cas9 system by focusing on binding sites on 

lncRNAs that can be perturbed for studying their contribution in downstream post-

transcriptional control. Additionally, the “custom track” feature of SliceIt enables the 

users to re-purpose the compendium of SliceIt according to their choice. For instance, 

users can modulate the regulome for a novel RBP of interest and study the results in the 

context of existing protein-RNA interaction maps and expression profiles across tissue 

types. 
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4.3 PEEK: Prioritization of RBP-Binding sites using Expression and Evolutionary 

Constraints 

4.3.1 Introduction 

Eukaryotic cells encode for thousands of RNA-binding proteins (RBPs) that 

associate physically with a unique set of RNA targets (281). They bind to RNA at 

specific recognition sites (282), and play a crucial role in post-transcriptional regulation 

of the gene products (191). RBPs have been implicated in various genetic diseases in 

humans, such as cancers, neurological diseases and metabolic disorders (283).  

Identification of RBP binding sites (BS) on mRNA clarifies the molecular function of 

RBPs. Various CLIP (Cross-linking Immunoprecipitation) protocols have been 

developed to uncover the targets of RBPs. Such protocols predominantly involve 

irradiation of cells using ultraviolet light for crosslinking RNAs to the interacting RBPs 

(284), followed by immunoprecipitation of the protein of interest bound to RNAs, 

purification of RNA by proteinase digestion and generation of a cDNA library for the 

purified RNA (285). 

Several variants of CLIP protocols have been established so far (198-200, 286) 

and documented millions of binding sites (BS) on RNA (70, 217, 287). Although several 

studies have investigated hundreds of RBPs and their reported BS (288-292), however, 

little or no evidence is available for their functional impact on post-transcriptional targets 

(193, 259, 288). Also, there are existing CLIP-seq peak calling algorithms such as 

CLIPper (https://github.com/YeoLab/clipper), PARalyzer (206) and Piranha (207) that 

delineate the regions in the transcriptome that are significantly associated with RBP-

binding. However, these methods rely on identification of statistically significant BS 

https://github.com/YeoLab/clipper
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based on the enrichment of reads aligned to the reference genome. To date, 

computational methods to identify the biologically functional binding sites in a tissue 

specific manner have had limited success. Hence, elucidating the functionally relevant 

RBP binding sites across various tissues is critically important for unraveling the role of 

RBP in physiology and disease.  

RNA-binding proteins are known to be conserved across a wide range of species 

(192, 293), therefore, investigating the extent of conservation of BS provides a significant 

insight into the targets which exhibit high or low conservation across species. 

Canonically, genomic elements with higher extent of conservation across species 

contribute to more significantly converged biological function (294-297). Genomic 

elements such as genes, transcripts or exons demonstrate their functionality based on 

their level of expression in a tissue specific manner (100, 298, 299). Therefore, extent of 

conservation of BS combined with expression level of proximal exons was inferred to be 

a powerful method to annotate the BS with their biological relevance across tissues.  

Hence, it is imperative to develop a robust algorithm to dissect the functional protein 

RNA interactions that could elucidate the molecular mechanism involved in maintaining 

the functional diversity in transcriptome. In this study, first the documented BS (70, 217, 

287) was characterized and decoded its impact on exome. Further, an algorithm was 

developed that integrates the exon expression and evolution constrains of genomic 

elements across multiple species around these BS. 

4.3.2 Materials and Methods 

4.3.2.1 Data collection 
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The BS profile of several RBPs was downloaded from ENCODE (99) and 

CLIPdb (217), originally in bed (Browser Extensible Data) format. These downloaded 

files were parsed and pre-formatted for downstream integrative analysis. Similarly, Gene 

Expression Omnibus (115) platform was used to download the unprocessed RNA 

sequencing data (fastq files) of different tissues across 10 species from multiple studies 

(298, 300-302) (Appendix 6). The RNA seq data (raw fastq) was also downloaded for 

369 Liver Hepatocellular Carcinoma (LIHC) patients, 448 Kidney Renal Clear Cell 

Carcinoma (KIRC) patients and 154 Glioblastoma (GBM) patients from The Cancer 

Genome Atlas (TCGA) (303). In addition to that, the MAF blocks in MAF [Multiple 

Alignment File]  files were also downloaded from UCSC genome browser (304). These 

MAFs provide the information of whether a particular region (‘block’) of the human 

genome is conserved across 46 species. 

4.3.2.2 Alignment and Quantification of RNA-Seq data 

Raw RNA sequence files (in fastq format) downloaded from multiple resources 

(as described previously) were first examined for quality assurance using FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and preprocessed for high 

quality reads using FASTx toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). High quality 

sequence reads (Phred score≥20) were aligned onto respective reference genome 

(Appendix 7) using HISAT (117) with default parameters. These aligned reads were 

carried out for post processing steps using samtools and converted into sorted.bam 

format. These sorted bam files were processed for transcript assembly and quantification 

using StringTie (120). Obtained expression profiles were formatted into separate matrices 

for each data type. 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://hannonlab.cshl.edu/fastx_toolkit/
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4.3.2.3 Annotation of binding sites and expression profiling of proximal exons in LIHC 

The eCLIP (286) based BS profile of 56 RBPs (in HepG2 cell line obtained from 

ENCODE project) was downloaded. For this study, binding sites having p<0.001 as 

documented in ENCODE were considered (99). Bedtools (233) were used to annotate 

these binding sites onto genomic elements obtained from Ensembl (305) biomart. Based 

on their locus specific genomic positioning, the BS were characterized into three bins; 

“exonic”, “intronic” and “junctional” binding. Certainly, if a binding site is occupied 

entirely by an exonic region, it was referred to as exonic; otherwise, the binding site was 

referred to as intronic. In case, a genomic locus was annotated with multiple exons, the 

longest exon was considered for downstream analysis. If certain regions of the binding 

site were occupied in both exon and intron, the binding was referred to as junctional 

binding. 

The exon expression profile was extracted from constructed matrix of 369 LIHC 

patients (TCGA) as described previously. Next, the impact of annotated binding sites on 

expression of local exon (i.e. binding site on exon locus or closest to) was investigated by 

comparing with neighbor or random exons within the gene boundary. 

4.3.2.4 Construction of BCM (Binary Conservation Matrix) and EEM (Exon Expression 

Matrix) matrices using MAF blocks  

MAF blocks downloaded from UCSC genome browser (https://genome.ucsc.edu/) 

contains the conservation profile of genomic elements across 46 species.  RBPs’ BS 

profile (hg19 build) obtained from ENCODE and CLIPdb were parsed from the MAFs 

using ad hoc python script. For each BS, the equivalent conservation block coordinates 

were extracted and annotated in binary format as “0” for its absence and “1” for its 

https://genome.ucsc.edu/
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presence in 10 species. This step is repeated for all the BS included in current analysis. 

The binary format records for all the binding sites of an RBP across 10 species were 

concatenated into Binary Conservation Matrix (BCM).  

Similarly, genomic coordinates of human (hg19) exons were obtained from 

Ensembl (305) and inspected in MAF blocks using ad hoc python script to estimate the 

equivalent exonic coordinates for 10 species. Human exonic coordinates and its 

equivalent conserved exons for these species (genomic positions) were concatenated to 

generate Exon Conservation Matrix (ECM). Each genomic element in ECM was parsed 

to obtain the expression profile of a given tissue for respective species (generated 

previously). This step was repeated to obtain the expression profile of human exons and 

its equivalent exon in 10 species per tissue type. Finally, the cross species expression 

profile was converted into Exon Expression Matrix (EEM) for a given tissue type. Same 

step was followed for all other tissues. Please note, CrossMap (306) was employed to 

liftover the MAFs, and other genomic coordinates to Ensembl build (hg38) wherever 

applicable. 

4.3.2.5 Prioritization of RBP-Binding sites using Expression and Evolutionary 

Constraints (PEEK) 

This study proposes to model the relationship between exon levels and the 

evolutionary conservation pattern of BS that elucidate the impact of BS on the expression 

levels of associated exons in a tissue-specific manner. To do so, a modified version of 

matrix eQTL engine (307) was implemented. In a typical eQTL analysis, which involves 

millions of association tests, it is common to treat each genotype variable as categorical 

and model its effect on gene expression with ANOVA (Analysis of Variance). It is 
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known that ANOVA model can be viewed as linear regression and F-test can be 

employed as a statistical test to significantly speed up the association calculations when 

large matrices are involved (307). Hence, matrix eQTL engine was modified for matlab 

due to its efficient Basic Linear Algebra Subroutine (BLAS), to facilitate rapid binding 

site exon expression level association calculations and to identify functional binding sites. 

Here F-test statistic is defined as (𝑠𝑠−𝑘𝑘−1)𝑟𝑟2

𝑘𝑘(1−𝑟𝑟2)
 where k is the number of regressors, n the 

vector size and r the sample correlation. 

Thus, ANOVA based Prioritization of RBP-Binding sites using Expression and 

Evolutionary Constraints (PEEK) was accomplished by correlating the EEM and BCM 

using the modified version of  R package Matrixeqtl (307). A binding site was considered 

to control an exon if the distance between them was ≤ 5kb, equivalent to the cis-eQTL 

analysis commonly employed in association studies. Hence, a list of BS was obtained and 

exons that were significantly associated to each other and referred them as ‘prioritized’ or 

‘functional’ BS and associated exons. 

4.3.2.6 Annotation of PEEK binding sites and expression profiling of proximal exons in 

cancer 

AnnotatePeaks.pl script from Homer (308) was used to annotate the PEEK 

prioritized binding sites in genomic boundary of the known genes. The expression profile 

of associated neighbor exons were extracted from exon expression matrices of 369 Liver 

Hepatocellular Carcinoma (LIHC), 154 Glioblastoma (GBM) and 448 Kidney Renal 

Clear Cell Carcinoma (KIRC) patients from TCGA project (8) (as described previously). 

Expression profile of associated exon was compared with genomic locus specific random 

exons to measure the impact of PEEK binding sites in cancer. 
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4.3.2.7 Validation of peek prioritized binding sites using Crispr cas9 system 

SliceIt was developed (7) as a part of this thesis, that consist of a massive 

collection of sgRNAs designed around protein-RNA interaction sites in human to 

conduct high-resolution binding site perturbation experiments. SliceIt was used to design 

the sgRNAs targeting the genomic loci in close proximity to selected PEEK prioritized 

binding sites in FUS (FUS RNA Binding Protein), RBCK1 (RANBP2-Type and C3HC4-

Type Zinc Finger Containing 1) and RNPEPL1 (Arginyl Aminopeptidase Like 1) genes. 

Further, Crispr Cas9 system in HepG2 cells was established as described previously (7). 

Briefly, Lentiviral transfection method was used to perturb RBP binding sites. Lentiviral 

CRISPR plasmids (Addgene plasmid # 52961) were cloned with oligos and enriched in 

Hek293T cells for transducing HepG2 cells. This tool was utilized for genomic 

perturbation experiments using selected sgRNAs targeting equivalent genomic loci of 

BS. The expression level of proximal exon(s) was estimated using qPCR to verify the 

impact of functional BS. 

4.3.3 Results and discussion 

RNA-binding proteins (RBPs) are involved in a variety of post transcription 

regulation processes by directly interact with a diverse set of RNA species to designate 

their function (7). Several databases such as ENCODE provides millions of binding sites 

(BS) of ~100 RBPs based on UV cross-linking and immunoprecipitation (CLIP) 

experiments. Indeed, CLIP and its variant high throughput protocols(254-256) have 

established a peer platform to understand the RBP driven post transcriptional regulation 

(7), the data generated often compromises with signal noise and functional ambiguity 

(257, 258). Also, these protocols provide little or no relevance on tissue specific post 
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transcriptional regulatory circuits. A robust algorithm was developed to dissect the 

functional protein RNA interactions that could elucidate the molecular mechanism 

involved in maintaining the functional diversity in transcriptome. First, the RBPs’ 

binding sites obtained from ENCODE were characterized and decoded its impact on 

exome. PEEK, an integrated approach was developed which facilitates tissue-specific 

evolutionary annotation of binding sites of RBPs by mining hundreds of RNA-Seq 

datasets spanning 10 vertebrate species and 4 tissues (298, 300-302, 309). Several of 

functional binding sites obtained from PEEK were verified by Crispr/ Cas9 system. 

4.3.3.1 Majority of the binding sites of RBPs influence the proximal exons 

To investigate the relationship between the occurrence of RBP-binding site and 

the expression of a nearby exon, eCLIP profiles of 56 RBPs from HepG2 cell line 

(ENCODE) were employed. The binding event were classified as exonic, intronic or 

junctional binding as shown in Figure 30A. To match the cell type, RNA-Seq data for 

372 Liver Hepatocellular Carcinoma (LIHC) patients was obtained from TCGA project 

(8) and the expression levels of all annotated exons in the human genome (305) were 

obtained using HISAT (117) and StringTie (120) pipeline (see Materials and Methods). 

Upon considering all binding events of RBP falling on the annotated intronic, exonic or 

junctional regions of the human genome, it was observed that a majority (62%) of the 

binding sites were found to occur on exonic features, while 10% were found to occur on 

junctions (Figure 30B). Exons on which exonic binding occurred on ‘Itself’, exhibited a 

higher expression compared to preceding and subsequent exons (i.e. “Before” and 

“After”) as shown in Figure 30D. Likewise, RBP binding events at the ‘junction’ of 

exons exhibited higher expression than the neighboring exons (Figure 30C and 30F). In 
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contrast, the intronic binding was found to result in lower expression of the proximal 

exons compared to distal random exons from the same gene (Figure 30E). In general, the 

analysis demonstrated that full or partial exonic binding of an RBP results in its increased 

expression while intronic binding contributes to lowering the expression of neighboring 

exons. Therefore, this data represents a relationship between binding site occurrence and 

the expression of proximal exons. Further, the study emphasized that irrespective of the 

directionality of exon levels, binding sites confer an impact on proximal exon.  This 

could be identified by determining the association between binding site and exon 

expression across species in an evolutionary context. 

4.3.3.2 Overview of PEEK framework 

The BS profile of 135 RBPs was obtained from ENCODE (99) and CLIPdb (217), and 

annotated the genomic coordinates with the human genome annotation file.  Similarly, 

coordinates of human exons were obtained from Ensembl (305) biomart (Figure 31A). 

Each binding site and exon was mapped to the corresponding MAF block (obtained from 

UCSC genome browser (304)) that could explain its conservation across 46 species 

(Materials and Methods). Eventually, a list of binding sites and exons, each mapped to 

their corresponding MAF blocks were generated. A Binary Conservation Matrix (BCM) 

was generated using the list of binding sites mapped to their corresponding MAF blocks, 

where the binding site coordinates, along with its presence (“1”) or absence (“0”) across 

the 10 species were documented. Similarly, the exon conservation matrix (ECM) was 

constructed using human exon coordinates and its equivalent genomic coordinates with 

70% overlap of MAF blocks in other species. Therefore, ECM documented the human 
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Figure 30: Analysis to demonstrate the relationship between binding site occurrence and 
expression of proximal exons. (A) The flowchart presents an overview of the steps 
carried out for processing the datasets employed in the analysis. All binding events of 
RBPs were classified into exonic, intronic and junction binding. (B) Pie chart 
representing the distribution of binding sites from eCLIP profile of 56 RBPs on intronic, 
exonic and junction regions. Box plots in (C) and (F) show a comparison of expression 
levels between junction bound (marked as ‘Itself’) and neighboring exons. (D) Boxplots 
showing expression levels of bound exon (marked as ‘Itself’) and neighboring exons. (E) 
Boxplots showing expression of neighborhood exons (marked as ‘Affected’) and random 
distal exons from the same gene for intronic binding events. This preliminary analysis 
confirmed that RBP binding sites can significantly influence the expression of only 
nearby exons, suggesting that functional binding sites can be identified using an 
association between binding site and exon expression across species in an evolutionary 
context.  
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exon ID, coordinates of the exons in humans and predicted the coordinates of exons in 

other species using the MAF blocks. 

Following the construction of ECM and BCM, all coordinates belonging to an 

older genome version were updated to the Ensembl 84 version for all species using 

CrossMap (306). ECM was utilized in the construction of Exon Expression Matrix 

(EEM). To construct the exon for which the expression values of exons were required 

across 10 species and 4 vital tissues (brain, kidney, liver and heart). To obtain the 

expression values, a total of 134 RNA-Seq samples were processed for 10 species (Figure 

31A). Quality filtered RNA-seq reads were aligned to the reference genomes using 

HISAT(117). SAMtools (118) was utilized to convert SAM files to sorted BAM files, 

and exon level expression quantification was performed using StringTie (120) (see 

Materials and Methods). Using the expression levels of exons across 10 species and 4 

tissues, the Exon Expression Matrix (EEM) was constructed. 

Lastly, ANOVA based prioritization of binding sites of RBPs was accomplished 

by correlating the EEM and BCM using the R package Matrixeqtl (307). A binding site 

was considered to control an exon if the distance between them was ≤ 5kb, analogous to 

the cis-eQTL analysis commonly employed in association studies (Figure 31B). A list of 

binding sites and exons that were significantly associated to each other were obtained. 

For this study, these binding sites and exons would henceforth be referred as ‘prioritized’ 

or ‘functional’ binding sites and exons. 
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Figure 31: Overview of PEEK (A) A computational framework for prioritization of RBP 
binding sites using expression and evolutionary constraints (See methods). 
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(B) Influence of prioritized binding site over associated exon expression. Using the
PEEK method, the prioritization of RBPs’ binding sites in multiple tissues was carried
out. The figure imitates the influence of prioritized binding site over the associated
nearby (≤ 5000 bp) exon expression level in available tissue types across multiple
species.

4.3.3.3 PEEK illustrates only a small fraction of binding sites of RBPs are functional 

across tissues 

PEEK prioritized binding sites were investigated across the 4 body sites; brain, 

liver, kidney and heart. It was observed that about 2.4% (~184,000 binding sites for each 

tissue type) of the experimentally determined RBP binding sites obtained from CLIPdb 

and ENCODE were prioritized at FDR (310) ≤ 0.05 (Figure 32A). These functional 

binding sites were used in the subsequent downstream analyses. The percentage of 

binding sites that were prioritized, dropped to 0.5 percent at FDR< 0.01, implying that 

only a small fraction of the experimentally discovered sites is likely to have a ‘functional’ 

impact in a tissue specific manner at the post-transcriptional level. Interestingly, the brain 

harbored the highest number of prioritized binding sites at FDR ≤ 0.05, followed by 

kidney, liver and then heart. The fraction of prioritized binding sites observed in PEEK, 
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further concorded with the level of structural and functional complexity of these vital 

organs with brain being the most complex organ (311). 

4.3.3.4 Significant fraction of functional binding sites is tissue specific 

This study indicated that among the total 339,576 prioritized binding sites 

identified across all the four tissues, about 10% are unique to each tissue and ~55% of 

them were prioritized in more than one tissue. This observation further indicate that 

majority of the functional binding sites could be active across multiple tissues (Figure 

32B). Brain was found to have the highest number of uniquely prioritized binding sites 

among all tissues, suggesting a higher activity of RBPs in the brain as opposed to other 

tissues. 

4.3.3.5 Majority of the functional binding sites are intronic 

Introns are highly variable but evolutionary conserved genomic elements with relatively 

higher level of conservation near exons (295). These genomic elements have been 

extensively implicated in a variety of gene regulation mechanism (312-314). For instance 

- it contain several tissue-specific branch point sequence (BPS) at splice site that 

determine the fate of intron exclusion during RNA splicing in human (315). Recently, 

Sun L et al, have experimentally demonstrated that introns are highly structured than 

exons in vivo (316) and that significantly impacts the regulation of pre-mRNA splicing 

(317) and several other post transcriptional processes. This urges for an extensive 

investigation of highly orchestral regulatory mechanism in context to RBPs binding site 

and the neighboring exons. The study demonstrated that the genomic features associated 

with the functional binding sites as illustrated in Figure 32B clearly revealed an 
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Figure 32: (A) Percentage of binding sites detected as functional at various FDR 
thresholds. 2.56% (224,000) out of a total of 8 million binding sites were found to be 
functional at FDR < 0.05. The percentage decreases to 0.5% and 0.25% as the FDR 
thresholds are lowered to 0.01 and 0.001 respectively. (B) Tissue wise segregation of 
functional binding sites. The Venn diagram depicts the number and percentage of binding 
sites that are functional across each tissue (FDR < 0.05), and those that are common 
among all tissues. 14% of the total prioritized binding sites are unique to brain and about 
22% of the binding sites are common among all tissues. (C) A majority of the functional 
binding sites are intronic. The location of prioritize binding sites at the gene level was 
uncovered using HOMER (308). (D) Percentage of prioritized binding sites vs number of 
exons associated. The figure shows the percentage of prioritized binding sites that have 
been associated to exons. 60% of the prioritized binding sites are associated to 1 exon 
(FDR < 0.05), and about 20% of the binding sites are associated to 2 exons. Overall, 80% 
of the binding sites are associated to at most 2 exons. 
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enrichment for intronic regions (Odds Ratio = 2.38, p < 2.2e-16, Fisher’s test) (Figure 

32C). Likewise, an under-representation of functional binding sites was found in the 

exonic regions (Odds Ratio = 0.4, p < 2.2e-16, Fisher’s test) suggesting that majority of 

functional binding sites are unlikely to be identified by traditional methods that employ 

coding sequence or structural information.  

4.3.3.6 Most binding sites influence at most 2 proximal exons 

The percentage of prioritized binding sites associated with number of prioritized 

exons identified using PEEK framework were calculated. Upon segregating these 

prioritized exons based on the number of binding sites they were associated with; it was 

revealed that about 80% of the prioritized binding sites influenced the expression of at 

most 2 exons across all four tissues (Figure 32D). Although the threshold of distance 

used in the association analysis could contribute to these fractions, it is possible to 

speculate that majority of the functional binding sites are likely to control at most two 

nearby exons. It was also observed that the distance between the functional binding site 

and its associated exon is fairly uniform within the 5kb threshold employed in the 

analysis (Appendix 8). 

4.3.3.7 PEEK identified functional binding site influences the expression of proximal 

exons 

Next, the influence of functional binding sites on prioritized exons was 

investigated in gene centric and transcriptome wide case studies. Firstly, SF3B1 (Splicing 

Factor 3b Subunit 1) was selected that plays an important role in regulation of several 

genes involved in cell cycle, RNA processing and telomere maintenance (318, 319). 

Canonically, SF3B1 has been characterized as a crucial splicing co-factor of SF3B 
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complex, mainly involved in BPS (branchpoint sequence) recognition and modelling of 

the transcriptome (320). Several driver mutations in this gene have been implicated for 

anomalous RNA splicing in multiple cancers (321, 322). In this study, I investigated all 

the functional binding sites and associated exons in SF3B1 (chr2: 197388515-

197435091:-1) identified by PEEK as shown in Figure 33A, where exons are color coded 

(intensity) as per the proportion of associated functional binding sites from PEEK in a 

tissue specific manner. This study identified a functional binding site targeted by 

TROVE2, which was found significantly associated (adjusted p-value<10-4) with the 

expression of proximal exon, ENSE00000964873 (Figure 33B) in all four tissues. 

Interestingly, it was observed that, this exon showed ~200 folds decreased expression in 

human and ~20 fold decreased expression in mouse with respect to that in Platypus. The 

study speculates that the absence of associated regulatory site contributes to such 

atypically higher expression of this exon in Platypus (Figure 33B). 

For transcriptome-wide case study, it was investigated whether prioritized exons 

associated to functional binding sites showed a different expression profile than that of 

random exons. The exon level expression was extracted from cancer patients of three 

types; Glioblastoma, Liver Hepatocellular Carcinoma and Kidney Renal clear cell 

carcinoma for brain, liver and kidney respectively (see Materials and Methods). The data 

of cancer patients showed that the expression level of prioritized exons was significantly 

higher than the expression level of random exons for each tissue type (Appendix 9). To 

confirm whether prioritized exons indeed exhibited variation in expression than random 

exons, the Median Absolute Deviation (MAD) values were computed for each prioritized 

exon across patients (Figure 33C). The variability in the expression levels of prioritized 
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exons was significantly higher than the variability in the expression levels of random 

exons across cancer patients, and this observation was consistent across all tissues. 

Figure 33: PEEK identified functional binding site influences the expression of proximal 
exons.  (A) Genomic tracks showing the genomic boundary of SF3B1 where functionally 
important exons identified by PEEK were color coded (intensity) as per the proportion of 
associated functional binding sites in a tissue specific manner. (B) A functional binding 
site (in yellow color) targeted by TROVE2, was identified which was found significantly 
associated (adjusted p-value <10-4) with the expression of proximal exon 
(ENSE00000964873) in human and equivalent in other species across all four tissues. 
Expression profile of associated exon is shown as heatmap. (C) The influence of 
functional binding sites on prioritized exons was investigated across cancer patients. 
Expression levels of exons in each tissue were obtained from cancer patients; 
Glioblastoma, Liver Hepatocellular Carcinoma and Kidney Renal clear cell carcinoma 
for brain, liver and kidney respectively. The box plots represent the distribution of 
median absolute deviation (MAD) values (i.e. variability in the expression level of each 
exon across different patients) of the prioritized exons vs. the random exons in different 
cancers. 
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4.3.3.8 Crispr cas9 system verifies PEEK prioritized binding sites 

I employed Crispr Cas9 system for verification of functional binding sites 

identified by PEEK in HepG2 cell line. The experiment was strategically designed to 

validate the functional impact of prioritized binding sites by estimating the expression 

change of proximal exons upon perturbation of (a) single binding site (b) distance 

measured binding sites and (c) locus specific regulatory binding sites in respective 

genomic loci. For this analysis, I selected PEEK prioritized BS and associated proximal 

exons (at distance < 1.5 kb) in the genomic loci of three genes; RNPEPL1, FUS and 

RBCK1.  

These genes were selected based on their association to a diverse functional 

mechanism in liver metabolism and diseases. For instance - RNPEPL1 encodes for an 

aminopeptidase which preferentially hydrolyzes an N-terminal methionine, citrulline or 

glutamine(323). I observed that high expression of RNPEPL1 could be prognostic 

(p<0.00001) for liver cancer in TCGA cohort 

(https://www.proteinatlas.org/ENSG00000142327-RNPEPL1/pathology/liver+cancer). 

Fus is an important sub-component of the heterogeneous nuclear ribonucleoprotein 

(hnRNP) complex (324). It plays a vital regulatory role in RNA metabolism (325) and 

other cellular processes such as DNA repair mechanism (326). This gene, in association 

with LATS1/2 activates Hippo pathway and hence inhibits the progression of 

hepatocellular carcinoma (HCC) (327). Similarly, RBCK1 encodes for E3 ubiquitin-

protein ligase protein that transfers ubiquitin from E2-complex to its substrates (328). 

RBCK1 negatively regulates tumor necrosis factor(329) and has been  associated with the 

pathogenesis of liver cancer (330).  

https://www.proteinatlas.org/ENSG00000142327-RNPEPL1/pathology/liver+cancer
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Figure 34: Validation of PEEK prioritized binding using Crispr cas9 system. Crispr Cas9 
system was employed (see Materials and Methods) to validate the functional impact of 
PEEK prioritized binding sites by estimating the expression change of proximal exons (at 
distance < 1.5 kb) upon perturbation of (A) single binding site in RNPEPL1 (B) distance 
measured binding sites in FUS and (C) locus specific regulatory binding sites in RBCK1. 
For each gene, primers were designed to estimate the abundance of the exon associated to 
PEEK BS in respective genomic loci. The exon expression was measured (normalizing 
with housekeeping gene PPIA) in wild type and CRISPR edited cells through qRT-PCR.  

I used SliceIt (7) to extract potential sgRNAs (efficiency > 0.70 and specificity > 

70%) designed to target these PEEK BS with minimal distance between on-site PAM 

(Protospacer Adjacent Motif) and center of the BS. sgRNA guided CrisprCas9 system 

was established to perturb these selected RBP binding sites in HepG2 cells (Figure 34, 
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Materials and Methods). For each gene, primers were designed to estimate the abundance 

of the exon associated to PEEK BS.  

The exon expression (normalizing with housekeeping gene PPIA) was measured 

and analyzed in wild type and CRISPR edited cells through qRT-PCR. A significant 

increase (p<0.001) in expression of (a) RNPEPL1-Exon2 was observed upon perturbation 

of single binding site (Figure 34A) and (b) FUS-Exon1 upon perturbation of distance 

measured binding sites, with minimal increase in distant binding site (Figure 34B) with 

respect to wild type. In RBCK1, I found that the selected prioritized BS1 and BS2 upon 

perturbation, independently contributes to significant increase and decrease in expression 

of proximal exons respectively (Figure 34C) and hence confirms the (c) locus specific 

regulatory binding site associated to cellular process. Nonetheless, the qPCR results 

confirmed that PEEK prioritized binding sites, significantly affect the change in exon 

expression levels as a result of the perturbation of the binding sites. Interestingly, this 

study demonstrated several instances to further confirm the functional efficacy of PEEK 

prioritized binding sites where RBP binds and regulates in site specific manner (Figure 

34). 

4.3.4 Conclusion 

Existing databases such as ENCODE and CLIPDB have documented millions of 

binding sites of more than 135 RBPs, a method for prioritizing binding sites of RBPs 

based on their biological significance is still lacking. PEEK was developed as a semi-

automated and scalable computational framework, that prioritize the documented RBP-

binding sites based on their biological importance in a tissue specific manner. This study 

identified that majority of the binding sites of RBPs influence the proximal exons. 
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Interestingly, only a small fraction i.e. 2.4% (184,000) of all binding sites of RBPs are 

functional across tissues (at 5% FDR) and significantly contribute to tissue specific 

binding. Majority of the functional binding sites were found to be intronic and could 

influence at most 2 proximal exons. The PEEK identified functional binding sites were 

annotated in multiple cancers and observed that the expression of exon proximal to these 

binding sites was significantly higher than random exons. Hence, this study presents a 

novel approach which facilitates a detailed insight of the functional binding site and 

proximal exon to dissect the regulatory mechanism underlying in multiple cancers.  
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CHAPTER 5 

SUMMARY 

Regulatory proteins such as TFs and RBPs are highly appreciated for complex 

interplay with the respective targeted genomic/transcriptomic elements via TRNs and 

PTRNs. The mechanistic understanding of these two regulation types require high 

resolution tissue-specific functional annotation of both the proteins as well as their target 

sites.  

I reconstructed a high resolution roadmap of gene centric transcriptional 

regulation of two genes; Uromodulin in kidney (72) and Sestrin3 in liver cells (93) by 

implementing a novel in silico phylogenetic foot printing approach (37) on the upstream 

regulatory regions of a diverse set of individual gene orthologs.  This analysis allowed 

the identification of a reliable set of binding motifs in the upstream regulatory regions 

and constructed a high confidence compendium of transcription factors involved in gene 

regulation processes. (Chapter 2) 

This study elaborates the understanding of transcriptome profiling and temporal 

post transcriptional switching of isoform in developing mouse eye. For instance - 

Express(166) unifies various mouse lens and retina RNA-seq data and provides user-

friendly visualization of the transcriptome to facilitate gene discovery in the eye. It serves 

as an effective portal for analyzing the pruned RNA-seq expression datasets presently 

collected for the lens and retina. It also allows a wild-type context for the detailed 

analysis of targeted gene-knockout mouse ocular defect models and facilitate the 

prioritization of candidate genes from RNA-seq data of eye disease patients.  
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Transcriptomic alterations and splicing events were also investigated during 

mouse lens formation using RNA-seq data from multiple developmental stages and 

constructed a molecular portrait of known and novel transcripts. This study elucidates 

that the extent of novelty of expressed transcripts decreases significantly in post-natal 

lens compared to embryonic stages. Also, examination of the splice isoforms revealed 

skipped exon and retained intron to be the most abundant alternative splicing events 

during lens development. Further, a splicing browser, Eye Splicer was developed 

(http://www.iupui.edu/~sysbio/eye-splicer/) to facilitate exploration of developmentally 

altered splicing events. This study improves the current knowledge of post-transcriptional 

regulatory networks during mouse lens development. (Chapter 3)  

In this study, a computational framework for systematic tissue-specific annotation 

of functional binding sites of RBPs was developed in the human genome to uncover 

disease associated binding events and the PTRNs. Several tools such as Seten (253) and 

SliceIt (7) were also developed, that enables  the user to annotate the condition-specific 

CLIP-seq profiles with relevant biological processes, phenotypes, and diseases associated 

with RBPs. In particular, SliceIt efficiently provide a multi-omics resource for designing 

Crispr Cas9 experiments to verify the functionality of these RBP binding profiles. 

(Chapter 4) 

A computational framework, PEEK was developed that employ tissue-specific 

cross-species RNA-seq information from more than 100 samples encompassing 4 tissue 

(Kidney, Liver, Brain, Heart) and 10 species, to prioritize and evolutionarily annotate the 

binding sites of RBPs across tissues and validate several of these high confidence 

http://www.iupui.edu/%7Esysbio/eye-splicer/
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functional binding sites predicted to control the proximal exons in human cell lines. 

(Chapter 4) 

5.1 Significance and Innovation 

My thesis potentially contributes to the research community by providing 

methods, web interface and software which transforms the ability to build high-quality 

regulatory binding maps of RBPs and TF’s in a tissue specific manner using RNA-seq 

datasets. For instance- the novel method ‘in silico phylogenetic foot printing’ developed 

in this study illustrates a genome wide application to scrutinize the conserved TF binding 

motifs and delimits the identification of functionally important cis regulatory genomic 

loci and enhancers.  This method could also help to understand the diaspora of regulatory 

genomic elements departed due to evolution. The method is scalable and could be used 

for deriving the novel potential therapeutic targets to synchronize the expression of 

causative genes in several disorders. 

My thesis provides a broad spectrum of temporal and evolutionary dynamics of 

transcriptome and their regulation at transcriptional and post transcriptional level. The 

approach employed in identification and characterization of transcripts, including novel 

transcripts across developmental stages of mouse eye, made an appeal on improving the 

genomic annotations to further understand the complete transcriptomic architecture, 

especially in stage specific disorders, but not limited to eye. 

My thesis provides several methods and web interfaces that further advance the 

ability to functionally annotate hundreds of RBPs and their RNA binding sites across 

tissues in the human genome. For instance – the novel method “PEEK” developed in this 

study, provides a semi-automated and scalable computational framework to annotate and 
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identify functional binding sites of RBP in multiple tissue type across species and can 

efficiently delineate the functionally relevant binding sites from millions of CLIP binding 

sites. It enables the systematic annotation of these functional sites in vertebrate genomes. 

It provides the fundamental knowledge about the roles of RBPs in the context of disease 

phenotype, networks and pathways. Overall, this study is a significant piece of work 

which can accelerate the progress in molecular diagnostics and drug target identification. 

5.2 Future work 

In future, I aim to conduct a large scale pooled Crispr/Cas9 based screening 

experiment for system level verification of functional binding sites bound by RBPs. I will 

be designing ~20000 top ranked guide-RNAs (sgRNAs) using SliceIt (7) that specifically 

targets these binding sites. I will further develop a computational pipeline to analyze the 

Crispr/Cas9 perturbed RNA-seq readouts to observe any locus specific expression 

changes proximal to binding sites.  

Taken together, this study offers a wide range of applications to the biomedical 

researchers by aiding the identification of crucial therapeutic targets that are significantly 

regulated by RBP’s in physiological as well as pathological conditions. 



161 

# SRA ID PMID Development 
Stage 

Read 
Type 

Read 
Length 

Read 
Count 

Base Count Overall 
Alignment 
Rate (%) 

1 SRR2039769 26225632 E15 PE 100 13772390 2754478000 94 
2 SRR2039770 26225632 E15 PE 100 13542500 2708500000 95 
3 SRR953395 24161570 E15.5 SE 52 48552190 2524713880 94 
4 SRR953394 24161570 E15.5 SE 52 47574424 2473870048 94 
5 SRR953393 24161570 E15.5 SE 52 42525381 2211319812 94 
6 SRR2039771 26225632 E18 PE 100 17810970 3562194000 93 
7 SRR2039772 26225632 E18 PE 100 18019388 3603877600 93 
8 SRR1222595 25489224 P0 SE 51 33174286 1691888586 88 
9 SRR1222596 25489224 P0 SE 51 29919226 1525880526 87 

10 SRR1222672 25489224 P0 SE 51 29965660 1528248660 89 
11 SRR1222673 25489224 P0 SE 51 28652759 1461290709 86 
12 SRR1222674 25489224 P0 SE 51 30661663 1563744813 89 
13 SRR1222675 25489224 P0 SE 51 24833352 1266500952 89 
14 SRR2039773 26225632 P0 PE 100 17766309 3553261800 93 
15 SRR2039774 26225632 P0 PE 100 14533000 2906600000 93 
16 SRR2039775 26225632 P3 PE 100 15495833 3099166600 93 
17 SRR2039776 26225632 P3 PE 100 13072393 2614478600 93 
18 SRR2039777 26225632 P6 PE 100 16965754 3393150800 93 
19 SRR2039778 26225632 P6 PE 100 17658286 3531657200 93 
20 SRR2039779 26225632 P9 PE 100 18874309 3774861800 93 
21 SRR2039780 26225632 P9 PE 100 13563853 2712770600 93 

Appendix 1: RNA-seq samples for mouse lens.  
The table shows SRA ID (Sequence Read Archive) for the sample, PMID (PubMed) for 
the study, developmental stage, read type, read length, read count, base count, and overall 
alignment rate using HISAT (Hierarchical Indexing for Spliced Alignment of 
Transcripts). 

APPENDICES
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# SRA ID PMID Development 
Stage 

Read 
Type 

Read 
Length 

Read 
Count 

Base Count Overall 
Alignment 
Rate (%) 

1 SRR1023063 24382353 P2 SE 76 29939891 2275431716 93 
2 SRR1023064 24382353 P2 SE 76 36280541 2757321116 94 
3 SRR1784052 26324254 P10 SE 50 27028041 1351402050 94 
4 SRR1784053 26324254 P10 SE 50 24267068 1213353400 94 
5 SRR1784054 26324254 P10 SE 50 28777255 1438862750 94 
6 SRR1574329 25801704 P11 PE 90 108113500 19460430000 96 
7 SRR1574330 25801704 P11 PE 90 106003809 19080685620 97 
8 SRR1574333 25801704 P11 SE 90 176162120 8631943880 87 
9 SRR1574334 25801704 P11 SE 90 176206610 8634123890 87 

10 SRR1023073 24382353 P21 SE 76 39574659 3007674084 94 
11 SRR1023074 24382353 P21 SE 76 38855951 2953052276 94 
12 SRR1784070 26324254 P21 SE 50 34792825 1739641250 95 
13 SRR1784071 26324254 P21 SE 50 31461693 1573084650 95 
14 SRR1784072 26324254 P21 SE 50 37264811 1863240550 95 
15 SRR1176996 24812086 P28 SE 50 45056397 2252819850 92 
16 SRR1176997 24812086 P28 SE 50 51508183 2575409150 91 
17 SRR1176998 24812086 P28 SE 50 52339450 2616972500 92 
18 SRR1687694 25712131 P30 PE 100 16507045 3334423090 84 
19 SRR1687695 25712131 P30 PE 100 16384187 3309605774 84 
20 SRR1687696 25712131 P30 PE 100 14348324 2898361448 81 
21 SRR1687697 25712131 P30 PE 100 14251738 2878851076 81 
22 SRR1687698 25712131 P30 PE 100 25674252 5186198904 83 
23 SRR1427139 25002228 P30 SE 51 44636149 2276443599 68 
24 SRR1427140 25002228 P30 SE 51 40396217 2060207067 66 
25 SRR1427141 25002228 P40 SE 51 52430453 2673953103 74 
26 SRR1427142 25002228 P40 SE 51 46344921 2363590971 75 
27 SRR1213798 25489233 P48 PE 90 6779886 1220379480 96 
28 SRR1213799 25489233 P48 PE 90 6803332 1224599760 97 
29 SRR1213800 25489233 P48 PE 90 6826280 1228730400 96 
30 SRR1427143 25002228 P50 SE 51 42904725 2188140975 70 
31 SRR1427144 25002228 P50 SE 51 41243569 2103422019 68 
32 SRR1427145 25002228 P60 SE 51 56910039 2902411989 48 
33 SRR1427146 25002228 P60 SE 51 46737505 2383612755 56 
34 SRR1427147 25002228 P90 SE 51 40366735 2058703485 76 
35 SRR1427148 25002228 P90 SE 51 45096977 2299945827 71 

Appendix 2: RNA-seq samples for mouse retina.  
The table shows SRA ID (Sequence Read Archive) for the sample, PMID (PubMed) for 
the study, developmental stage, read type, read length, read count, base count, and overall 
alignment rate using HISAT (Hierarchical Indexing for Spliced Alignment of 
Transcripts). 
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Appendix 3: Analysis of the genomic structure of identified transcripts. 
(A) Histogram showing the distribution of the number of exons for known, partially
novel and completely novel transcripts. (B) Kernel density distribution of transcript
lengths (log10 transformed) for known, partially novel and completely novel. Statistical
differences in the distributions of lengths were computed using the non-parametric
Kolmogorov–Smirnov test on every pair of transcript types. Completely novel transcripts
as a group were found to be significantly shorter than both partially novel and known
transcripts. In contrast, partially novel transcripts were found to be longer than even the
known transcripts.
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(A) Selected high confident exon skipping events detected using rMATS pipeline (FDR
<0.01) across developmental stages with replicates. Values across stages correspond to
PSI values of the exons.

Exon ID Coordinates 
(mm10) 

strand Gene 
Name 

E15 E18 P0 P3 P6 P9 

ENSMUSE00000334942 19:57051130
-57051234

- Ablim1 NA 0.13 0.61 0.729 0.6
6 

0.61
2 

ENSMUSE00000668725 3:148849766
-148849804

- Adgrl2 0.202 0.24 0.61 NA 0.5
7 

0.61
1 

ENSMUSE00001324776 1:82891460-
82891507 

+ Agfg1 0.232 0.18 0.41 0.532 0.4
8 

0.48
9 

ENSMUSE00001039657 18:6057517-
6057591 

- Arhgap1
2 

0.289 0.32 0.82 NA NA NA 

ENSMUSE00000700987 2:10056770-
10056806 

- Atp5c1 0.822 0.76 0.55 0.55 0.6
2 

0.57
4 

ENSMUSE00000230008 18:32426224
-32426352

+ Bin1 NA 0.68 0.18 NA NA NA 

ENSMUSE00000217920 9:70004306-
70004341 

+ Bnip2 NA 0.5 0.9 0.806 NA 0.84
5 

ENSMUSE00000736151 10:12706420
2-

127064453 

+ Cdk4 0.959 0.96 0.8 NA NA NA 

ENSMUSE00000691476 5:112251747
-112251797

- Cryba4 0.974 0.98 NA 0.994 0.9
9 

0.99 

ENSMUSE00000311733 14:47726471
-47726554

+ Ktn1 NA 0.24 0.5 0.476 NA 0.51
7 

ENSMUSE00000440236 6:93680789-
93680877 

- Magi1 0.118 0.09 NA NA 0.4
8 

0.65
5 

ENSMUSE00000667965 7:143518850
-143518885

- Nap1l4 0.477 0.42 0.29 0.228 0.2
5 

0.24
5 

ENSMUSE00001311933 2:105695306
-105695456

+ Pax6 0.995 1 0.94 0.993 1 NA 

ENSMUSE00000317905 15:93452117
-93452173

+ Pphln1 0.151 0.07 0.57 0.356 0.5 0.63
9 

ENSMUSE00000635082 9:86790056-
86790139 

- Snap91 NA 0.85 0.27 0.248 0.2 NA 

ENSMUSE00001196118 11:80393084
-80393176

+ Zfp207 0.368 NA 0.67 NA 0.6
1 

0.59
3 
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(B) Selected high confident intron retention events detected using rMATS pipeline (FDR
<0.01) across developmental stages with replicates. Values across stages correspond to
PSI values of the exons.

Exon ID Coordinates 
(mm10) 

stran
d 

Gene 
Name 

E15 E18 P0 P3 P6 P9 

ENSMUSE00000784872 3:103174340-
103177419 

+ Bcas2 0.03
9 

0.068
5 

0.02
6 

0.03
5 

0.02
25 

0.03
1 

ENSMUSE00000787504 11:101295534
-101296316

- Becn1 NA 0.118
5 

0.06
35 

0.06
2 

0.05
1 

0.04
4 

ENSMUSE00000643467 2:91013238-
91019497 

+ Celf1 0.37
55 

0.709 0.61
2 

0.83
95 

0.85
65 

0.84
6 

ENSMUSE00001342001 1:165338188-
165340023 

- Dcaf6 0.08
2 

0.155
5 

0.05
85 

0.06
35 

0.05
2 

0.05
35 

ENSMUSE00000842895 11:106782469
-106784018

- Ddx5 0.13
75 

0.183
5 

0.22
65 

0.31
85 

0.30
2 

0.36
25 

ENSMUSE00000492954 3:95628541-
95632102 

+ Ensa 0.45
8 

0.661
5 

0.45
15 

0.43
35 

0.41
95 

NA 

ENSMUSE00001357022 3:152213977-
152215630 

+ Fubp1 0.00
95 

0.053
5 

0.05
8 

0.05
85 

0.03
2 

0.05
15 

ENSMUSE00000857219 1:161038225-
161038539 

+ Gas5 0.22
65 

0.289 0.04
85 

0.06
8 

0.11
95 

0.09
9 

ENSMUSE00001326780 7:31134414-
31135739 

- Gramd1
a 

0.44
65 

0.726
5 

0.28 0.41
75 

0.31
9 

0.30
7 

ENSMUSE00000765273 11:50379468-
50379964 

+ Hnrnph1 0.09
3 

NA 0.27
75 

0.15
75 

0.18
1 

0.16
5 

ENSMUSE00000756514 X:95947770-
95950446 

- Las1l 0.01
35 

0.034 0.05
45 

0.04
1 

0.04
3 

0.05
75 

ENSMUSE00000764755 X:94537676-
94538065 

- Maged1 0.06
4 

0.1 0.04
55 

0.05
25 

0.04
5 

0.05
45 

ENSMUSE00000777868 5:21743379-
21746090 

+ Pmpcb 0.01
05 

0.026 0.08
65 

0.03
3 

0.04
85 

0.06
65 

ENSMUSE00000740654 X:8143848-
8144679 

- Rbm3 0.06
75 

0.098
5 

0.01
95 

0.04
05 

0.04
4 

0.06
95 

ENSMUSE00001332031 1:55014483-
55016490 

- Sf3b1 0.13
65 

0.178 0.22
65 

0.26
4 

0.28
4 

0.28
2 

Appendix 4:  Identification of alternative splicing events using rMATS (replicate 
Multivariate Analysis of Transcript Splicing).  
Abbreviations used in the table stand for the following types of splicing events and 
definitions: SE- Skipped Exon, MXE- Mutually Exclusive Exon, RI- Retained Intron, 
A5SS- Alternative 5’ Splice Site, A3SS- Alternative 3’ Splice Site, PSI- Percent Spliced 
Index, FDR- False Discovery Rate. 
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>Lg1
CGGATTTTTCTTGGCTTTATATATCTTGTGGAAGGACGAAACACCGCTGGTAGGGGAGTCAAGAGAGTTTTAGAGCTAGA 
AATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTGAATTCGCTAGC 
TAGGTCTTGAAAGGAGTGGGAATTGGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGTT 
GGGGGGAGGGGTCGGCAATTGATCCGGTGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGC 
TCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTT 
GCCGCCAGAACACAGGACCGGTTCTAGAGCGCTGCCACCATGGACAAGAAGTACAGCATCGGCCTGGACATCGGCACCAA 
CTCTGTGGGCTGGGCCGTGATCACCGACGAGTACAAGGTGCCCAGCAAGAAATTCAAGGTGCTGGGCAACACCGACCGGC 
ACAGCATCAAGAAGAACCTGATCGGAGCCCTGCTGTTCGACAGCGGCGAAACAGCCGAGGCCACCCGGCTGAAGAGAACC 
GCCAGAAGAAGATACACCAGACGGAAGAACCGGATCTGCTATCTGCAAGAGATCTTCAGCAACGAGATGGCCAAGGTGGA 
CGACAGCTTCTTCCACAGACTGGAAGAGTCCTTCCTGGTGGAAGAGGATAAGAAGCACGAGCGGCACCCCATCTTCGGCA 
ACATCGTGGACGAGTGGCCTACCACGAGAAGTACCCCACCATCTACCACCTGAGAAAGAAACTGGTGGACAGCACCGACA 
GGCCGACCTGCGGCTGATCTATCTGGCCCTGGCCCACATGATCAAGTTCCGGGGCCACTTCCTGATCGAGGGCGACCTGA 
ACCCCGACAACAGCGACGTGGACAGCTGTTCATCCAGCTGGTGCAGACCTACAACCAGCTGTTCGAGGAAAACCCCATCA 
ACGCAGCGGCGTGGACGCCAGCCATCCTGTCTGCAGACTGAGCAGAGCAGACGCTGAAATCTGATCGCCAGCTGCCGGCG 
AGAAAAAAAATGGGCCTGTTCGG 

>Lg2
TTCCGAATTTCCTGGCTTTATATATCTTGTGGAAGGACGAAACACCGAGTATGGATTAAATAAAGGAGTTTTAGAGCTAG 
AAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTGAATTCGCTAG 
CTAGGTCTTGAAAGGAGTGGGAATTGGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGT 
TGGGGGGAGGGGTCGGCAATTGATCCGGTGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGG 
CTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTT 
TGCCGCCAGAACACAGGACCGGTTCTAGAGCGCTGCCACCATGGACAAGAAGTACAGCATCGGCCTGGACATCGGCACCA 
ACTCTGTGGGCTGGGCCGTGATCACCGACGAGTACAAGGTGCCCAGCAAGAAATTCAAGGTGCTGGGCAACACCGACCGG 
CACAGCATCAAGAAGAACCTGATCGGAGCCCTGCTGTTCGACAGCGGCGAAACAGCCGAGGCCACCCGGCTGAAGAGAAC 
CGCCAGAAGAAGATACACCAGACGGAAGAACCGGATCTGCTATCTGCAAGAGATCTTCAGCAACGAGATGGCCAAGGTGG 
ACGACAGCTTCTTCCACAGACTGGAAGAGTCCTTCCTGGTGGAAGAGGATAAGAAGCACGAGCGGCACCCCATCTTCGGC 
AACATCGTGGACGAGTGGCCTACCACGAGAAGTACCCCACCATCTACCACCTGAGAAAGAAACTGGTGGACAGCACCGAC 
AAGCCGACCTGCGGCTGATCTATCTGGCCCTGGCCCACATGATCAAGTTCCGGGGCCACTTCCTGATCGAGGGCGACCTG 
AACCCCGACAACAGCGACGTGGACAAGCTGTTCATCCAGCTGGTGCAGACCTACAACCAGCTGTTCGAGAAAACCCCATC 
ACGCAGCGCGTGACGCAAGCATCCTGTCTGCAGACTGAGCAAGAGCAGACGCTGGAAAATTCTGATCGCCCAGCTGCCGG 
CCGAGAG 

List of sgRNAs (yellow highlighted) 
Lg1 CTGGTAGGGGAGTCAAGAGA 
Lg2 AGTATGGATTAAATAAAGGA 

Appendix 5: Sanger sequencing data confirming the sgRNA plasmid library constructs 
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Sno SRA_ID Tissue Species Read_Type reads overall alignment rate 
1 SRR306838 Brain Human SE 24513415 72.56% 
2 SRR306839 Brain Human SE 18850030 60.39% 
3 SRR306841 Brain Human SE 24325223 65.94% 
4 SRR306847 Heart Human SE 24128204 68.50% 
5 SRR306848 Heart Human SE 12451849 49.80% 
6 SRR306849 Heart Human SE 18444502 68.33% 
7 SRR306850 Heart Human SE 25197713 61.81% 
8 SRR306851 Kidney Human SE 22493518 71.56% 
9 SRR306852 Kidney Human SE 20684752 69.08% 

10 SRR306853 Kidney Human SE 31386619 61.33% 
11 SRR306854 Liver Human SE 16391552 52.98% 
12 SRR306855 Liver Human SE 26755509 75.26% 
13 SRR306856 Liver Human SE 23866499 73.16% 
14 SRR649360 Brain Human SE 19508676 62.00% 
15 SRR649361 Brain Human SE 38402147 85.80% 
16 SRR594475 Heart Cow PE 117554231 89.96% 
17 SRR594476 Kidney Cow PE 115720336 92.87% 
18 SRR594477 Liver Cow PE 103019718 92.36% 
19 SRR594482 Brain Cow PE 28445194 95.12% 
20 SRR594484 Heart Cow PE 21185451 95.24% 
21 SRR594485 Kidney Cow PE 27567792 95.64% 
22 SRR594486 Liver Cow PE 26021524 96.59% 
23 SRR594491 Brain Cow PE 33628113 93.42% 
24 SRR594493 Heart Cow PE 37897106 94.26% 
25 SRR594494 Kidney Cow PE 22535945 96.00% 
26 SRR594495 Liver Cow PE 29192793 95.67% 
27 SRR306711 Brain Chicken SE 17557038 52.07% 
28 SRR306714 Heart Chicken SE 23004385 59.95% 
29 SRR306715 Heart Chicken SE 21117498 56.12% 
30 SRR306716 Kidney Chicken SE 23021153 64.21% 
31 SRR306717 Kidney Chicken SE 22796688 52.18% 
32 SRR306718 Liver Chicken SE 30245926 62.10% 
33 SRR306719 Liver Chicken SE 8595446 58.15% 
34 SRR306720 Liver Chicken SE 22542615 64.52% 
35 SRR594500 Brain Chicken PE 117728780 88.40% 
36 SRR594502 Heart Chicken PE 107873185 81.63% 
37 SRR594503 Kidney Chicken PE 117005256 87.92% 
38 SRR594504 Liver Chicken PE 111950293 86.33% 
39 SRR594509 Brain Chicken PE 32266164 88.49% 
40 SRR594511 Heart Chicken PE 45037438 92.10% 
41 SRR594513 Liver Chicken PE 25468656 93.84% 
42 SRR594520 Heart Chicken PE 27260601 91.57% 
43 SRR594521 Kidney Chicken PE 34660070 85.96% 
44 SRR594522 Liver Chicken PE 18978066 44.47% 
45 SRR649385 Brain Chicken SE 35609107 81.63% 
46 SRR306778 Brain Rhesus_Monkey SE 22554234 61.07% 
47 SRR306779 Brain Rhesus_Monkey PE 21461283 62.27% 
48 SRR306783 Heart Rhesus_Monkey SE 20815484 62.38% 
49 SRR306785 Kidney Rhesus_Monkey SE 24115366 49.15% 
50 SRR306786 Liver Rhesus_Monkey SE 21711196 64.22% 
51 SRR306787 Liver Rhesus_Monkey SE 9393115 65.77% 
52 SRR306788 Liver Rhesus_Monkey SE 22831536 70.62% 
53 SRR594446 Brain Rhesus_Monkey PE 35066763 92.30% 
54 SRR594448 Heart Rhesus_Monkey PE 35248042 93.95% 
55 SRR594449 Kidney Rhesus_Monkey PE 31891747 92.23% 
56 SRR594450 Liver Rhesus_Monkey PE 28555788 93.49% 
57 SRR594455 Brain Rhesus_Monkey PE 107669551 89.74% 
58 SRR594457 Heart Rhesus_Monkey PE 109193093 89.73% 
59 SRR594458 Kidney Rhesus_Monkey PE 108637672 90.04% 
60 SRR594459 Liver Rhesus_Monkey PE 113094939 90.75% 
61 SRR594464 Brain Rhesus_Monkey PE 26487487 91.83% 
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62 SRR594466 Heart Rhesus_Monkey PE 36101619 93.98% 
63 SRR594467 Kidney Rhesus_Monkey PE 40389069 93.78% 
64 SRR594468 Liver Rhesus_Monkey PE 26700682 93.91% 
65 SRR649368 Brain Rhesus_Monkey SE 31270389 86.38% 
66 SRR306743 Brain Monodelphis SE 47574556 57.88% 
67 SRR306744 Brain Monodelphis SE 22273667 40.64% 
68 SRR306748 Heart Monodelphis SE 17738032 53.39% 
69 SRR306749 Heart Monodelphis SE 16630475 46.84% 
70 SRR306750 Heart Monodelphis SE 32689495 58.92% 
71 SRR306751 Kidney Monodelphis SE 21754688 56.60% 
72 SRR306752 Kidney Monodelphis SE 14679277 54.69% 
73 SRR306753 Liver Monodelphis SE 20729602 53.03% 
74 SRR306754 Liver Monodelphis SE 19002730 43.46% 
75 SRR649376 Brain Monodelphis SE 40483416 69.32% 
76 SRR306758 Brain Mouse SE 18882745 74.76% 
77 SRR306759 Brain Mouse SE 20757817 60.46% 
78 SRR306760 Brain Mouse SE 17770683 77.14% 
79 SRR306761 Brain Mouse SE 18759557 72.08% 
80 SRR306762 Brain Mouse SE 19726026 51.82% 
81 SRR306766 Heart Mouse SE 44668984 53.46% 
82 SRR306767 Heart Mouse SE 24493681 63.84% 
83 SRR306768 Heart Mouse SE 25903961 66.68% 
84 SRR306770 Kidney Mouse SE 23639764 67.74% 
85 SRR306771 Kidney Mouse SE 29158234 61.12% 
86 SRR306772 Liver Mouse SE 48306727 40.84% 
87 SRR306773 Liver Mouse SE 18444416 71.24% 
88 SRR306774 Liver Mouse SE 34010208 57.28% 
89 SRR594393 Brain Mouse PE 87264604 95.15% 
90 SRR594395 Heart Mouse PE 35175982 95.88% 
91 SRR594396 Kidney Mouse PE 119274786 95.77% 
92 SRR594397 Liver Mouse PE 116292478 86.80% 
93 SRR594402 Brain Mouse PE 118824353 91.56% 
94 SRR594404 Kidney Mouse PE 118885190 95.62% 
95 SRR594405 Liver Mouse PE 134045721 89.94% 
96 SRR594410 Brain Mouse PE 32511234 93.98% 
97 SRR594412 Heart Mouse PE 15968605 94.06% 
98 SRR594413 Kidney Mouse PE 29821800 95.43% 
99 SRR594414 Liver Mouse PE 34824609 91.64% 
100 SRR649371 Brain Mouse SE 40407034 87.72% 
101 SRR306725 Brain Platypus SE 24343340 54.26% 
102 SRR306726 Brain Platypus SE 9306487 53.58% 
103 SRR306727 Brain Platypus SE 13655446 55.80% 
104 SRR306730 Heart Platypus SE 18807127 46.58% 
105 SRR306731 Heart Platypus SE 16876055 45.19% 
106 SRR306732 Kidney Platypus SE 17863241 43.08% 
107 SRR306734 Kidney Platypus SE 16081270 40.75% 
108 SRR306736 Liver Platypus SE 21513648 44.41% 
109 SRR649381 Brain Platypus SE 30611890 73.37% 
110 SRR306793 Heart Orangutan SE 20807820 66.71% 
111 SRR306794 Kidney Orangutan SE 36798263 63.06% 
112 SRR306795 Liver Orangutan SE 31482282 54.31% 
113 SRR306796 Brain Orangutan SE 30547227 57.35% 
114 SRR306797 Heart Orangutan SE 30043284 61.77% 
115 SRR306798 Kidney Orangutan SE 21355541 74.67% 
116 SRR306799 Liver Orangutan SE 35683453 69.25% 
117 SRR594421 Heart Brown_Rat PE 35802852 91.96% 
118 SRR594422 Kidney Brown_Rat PE 114089612 95.77% 
119 SRR594423 Liver Brown_Rat PE 26181362 95.00% 
120 SRR594428 Brain Brown_Rat PE 96368839 86.26% 
121 SRR594430 Heart Brown_Rat PE 67008998 91.04% 
122 SRR594431 Kidney Brown_Rat PE 116656722 94.12% 
123 SRR594432 Liver Brown_Rat PE 131658529 93.98% 
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124 SRR594437 Brain Brown_Rat PE 32262802 94.05% 
125 SRR594439 Heart Brown_Rat PE 25869367 91.99% 
126 SRR594440 Kidney Brown_Rat PE 40114787 94.45% 
127 SRR594441 Liver Brown_Rat PE 42043440 93.95% 
128 SRR649392 Brain Xenopus SE 36987876 77.80% 
129 SRR649393 Heart Xenopus SE 36468389 78.89% 
130 SRR649394 Heart Xenopus SE 34826248 84.87% 
131 SRR649395 Kidney Xenopus SE 36696254 78.81% 
132 SRR649396 Kidney Xenopus SE 38280443 83.55% 
133 SRR649397 Liver Xenopus SE 36658397 81.81% 
134 SRR649398 Liver Xenopus SE 37331954 83.21% 

Appendix 6: List of samples used in this study and related metadata 

Species Biological name Reference [Ensembl database] 
Brown Rat Rattus norvegicus REFERENCE/Brown_Rat/Rnor_6.0.84/Rnor_6.0.84 
Chicken Gallus gallus REFERENCE/Chicken/Galga14.84/Galga14.84 
Cow Bos taurus REFERENCE/Cow/Bos_taurus.UMD3.1.84/Bos_taurus.UMD3.1.84 
Human Homo sapiens REFERENCE/Human/h38.84/h38.84 
Opossum Monodelphis domestica REFERENCE/Monodelphis/BROADO5.84/BROADO5.84 
Mouse Mus musculus REFERENCE/Mouse/m38.84/m38.84 
Orangutan Pongo pygmaeus abelii REFERENCE/Orangutan/PPYG2.84/PPYG2.84 
Platypus Ornithorhynchus 

anatinus 
REFERENCE/Platypus/OANA5.84/OANA5.84 

Rhesus 
Monkey 

Macaca mulatta REFERENCE/Rhesus_Monkey/MMUL_1.84/MMUL_1.84 

Xenopus Xenopus tropicalis REFERENCE/Xenopus/JGI_4.2.84/JGI_4.2.84 

Appendix 7: List of species and reference genomes used for alignment and downstream 
data analysis. 
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Appendix 8: Distance between binding site and associated exon - after setting a distance 
threshold of 5000 bp between binding sites of RBPs and the associated exons (FDR < 
0.05), the distance is less than or equal to 3000 bp in most of the exon-binding site 
associations. 

Appendix 9: Expression of prioritized exons vs. random exons. 
The box plots represent the distribution of expression of prioritized exons from the PEEK 
pipeline vs. the expression of equal number of random exons for the tissues brain, liver 
and kidney. The expression levels of exons in each tissue were obtained from cancer 
patients, the cancer types being Glioblastoma, Liver Hepatocellular Carcinoma and 
Kidney Renal clear cell carcinoma for brain, liver and kidney respectively. Using the data 
for ~400 patients of each cancer type, the expression level of prioritized exons was found 
significantly higher than the expression level of random exons for each tissue type. 
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	Figure 8: Tomtom analysis results for conserved motifs and experimental validation. (A-D) Transcription factors predicted for 20 consensus sequences (as query motif) by Tomtom analysis. Selected set of DHS overlapped motif aligning with their TF’s PWM...
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	Figure 22: Comparison of Seten’s gene set and functional enrichment methods against negative control. Histograms showing the performance comparison of Seten’s Gene Set Enrichment Analysis (GSEA) and Functional Enrichment (FE) options along with their ...
	Figure 23: (A) The dynamically generated bubble chart from Seten WI, showing the comparison of significantly enriched MalaCards Disease Ontology terms for FASTKD2 in HEK293 and K562 cell lines. (B) The inset of a dynamically generated bubble chart fro...
	Figure 24: (A) The comparison of Seten and ChIP-Enrich using AARS – K562 dataset for GO Biological Process and Reactome gene set enrichment analysis results. (B) The comparison of Seten and ChIP-Enrich using RBM15 – K562 dataset for GO Biological Proc...
	Figure 25: Benchmarking of predicted functional annotations from Seten and ChIP-Enrich against those identified from CRISPR based RNA-seq datasets of RNA-binding proteins in K562 cell line. Precision and recall plots for IGF2BP1, SRSF7 and PTBP1 using...
	Figure 26: Strategy for validation of RBPs’ binding sites. (A) A hypothesis driven CRISPR/Cas9 model for determining the effect of sgRNA on an exon proximal to targeted binding site (B) Construction of SliceIt, an in-silico guide RNA library for RBPs’...
	Figure 27: (A) Heatmap showing the number of unique binding sites (log10 transformed -red) and sgRNAs (log10 transformed-blue) and the ratio of the number of sgRNAs and binding sites (green) for each RBP, representing an estimated average sgRNAs desig...
	Figure 28: (A) Search processing pipeline showing the functionality of SliceIt’s communication with frontend and elasticsearch cluster to parse and display query output. (B) Screenshot of SliceIt showing three different search options currently availa...
	Figure 29: Functional validation of RBP binding sites using CRISPR/Cas9 experiments in human cell lines. (A) A hypothesis driven CRISPR/Cas9 model for determining the effect of sgRNA on an exon proximal to targeted binding site (B) A genome browser vi...
	Figure 30: Analysis to demonstrate the relationship between binding site occurrence and expression of proximal exons. (A) The flowchart presents an overview of the steps carried out for processing the datasets employed in the analysis. All binding eve...
	Figure 31: Overview of PEEK. (A) A computational framework for prioritization of RBP binding sites using expression and evolutionary constraints (See methods). (B) Influence of prioritized binding site over associated exon expression. Using the PEEK m...
	Figure 32: (A) Percentage of binding sites detected as functional at various FDR thresholds. 2.56% (224,000) out of a total of 8 million binding sites were found to be functional at FDR < 0.05. The percentage decreases to 0.5% and 0.25% as the FDR thr...
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	Figure 34: Validation of PEEK prioritized binding using Crispr cas9 system. Crispr Cas9 system was employed (see Materials and Methods) to validate the functional impact of PEEK prioritized binding sites by estimating the expression change of proximal...
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