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Abstract1

The overall objective of this study was to introduce knee joint power as a potential measure to2

investigate knee joint stability following total knee arthroplasty (TKA). Specific aims were to investigate3

whether weakened knee joint stabilizers cause abnormal kinematics and how it influences the knee joint4

kinetic (i.e., power) in response to perturbation.5

Patient-specific musculoskeletal models were simulated with experimental gait data from six TKA6

patients (baseline models). Muscle strength and ligament force parameter were reduced by up to 30% to7

simulate weak knee joint stabilizers (weak models). Two different muscle recruitment criteria were tested8

to examine whether altered muscle recruitment pattern can mask the influence of weakened stabilizers on9

the knee joint kinematics and kinetics. Level-walking knee joint kinematics and kinetics were calculated10

though force-dependent kinematic and inverse dynamic analyses. Bode analysis was then recruited to11

estimate the knee joint power in response to a simulated perturbation.12

Weak models resulted in larger anterior-posterior (A-P) displacement and internal-external (I-E)13

rotation compared to baseline (I-E: 18.4±8.5 vs. 11.6±5.7 (deg), A-P: 9.7±5.6 vs. 5.5±4.1 (mm)). Changes14

in muscle recruitment criterion however altered the results such that A-P and I-E were not notably different15

from baseline models. In response to the simulated perturbation, weak models versus baseline models16

generated a delayed power response with unbounded magnitudes. Perturbed power behavior of the knee17

remained unaltered regardless of the muscle recruitment criteria.18

In conclusion, impairment at the knee joint stabilizers may or may not lead to excessive joint19

motions but it notably affects the knee joint power in response to a perturbation. Whether perturbed knee20

joint power is associated with the patient-reported outcome requires further investigation.21

22
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1. Introduction25

Instability of total knee arthroplasty (TKA) causes 20-30% of the implanted knees to be revised26

annually (Parratte and Pagnano, 2008; Rodriguez-Merchan, 2011). Accurate diagnosis is therefore27

crucial to plan the revision surgery (Kanamiya et al., 2002; Matsuda and Ito, 2015). However, the28

diagnosis can be challenging; e.g., 8-20% of TKA patients complain about persistent instability in29

the absence of any immediate symptoms (Azzam et al., 2011; Sharkey et al., 2014; Song et al.,30

2014). Persistent, yet asymptomatic, knee instability is often attributed to insufficiency of the knee31

joint stabilizers; i.e., lax ligaments and/or weak muscles. Impaired knee joint stabilizers can cause32

abnormal, often unbounded kinematics and/or kinetics in response to a bounded perturbation33

(Bergmark, 1989).34

Hypermobility, i.e., excessive anterior-posterior (A-P) displacement (Fantozzi et al., 2006;35

Stoddard et al., 2013) and/or internal-external (I-E) rotation (Wautier and Thienpont, 2017;36

Zaffagnini et al., 2014) is a familiar manifest of the unbounded kinematic response of an unstable37

knee. Yet, whether the diagnosis of instability should be excluded when hypermobility is not38

observed during clinical assessments is a matter of debate (Martín-Hernández et al., 2014;39

Nakahara et al., 2015).40

Classic clinical assessments of hypermobility such as anterior drawer test, Lachman evaluation41

and pivot shift test apply subjective perturbations (Athwal et al., 2014). Recent studies42

recommended alternative evaluations of the knee joint kinematics under a more dynamic condition43

such as level walking or stair navigation to evoke hypermobility (Denney et al., 2014; Joglekar et44

al., 2012; Soeno et al., 2018). Nonetheless, human neuro-musculoskeletal system is capable of45

adopting a compensatory muscle recruitment strategy (i.e., redundancy) such that kinematic and46

kinetic behavior, especially in a low-demanding task such as level-walking, remains unaltered47
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(Bonnefoy-Mazure et al., 2017; Liebensteiner et al., 2008; Soeno et al., 2018). Our recent study48

showed that TKA patients with sub-optimal knee function may still demonstrate asymptomatic49

knee kinematics, owing to compensatory muscle recruitment patterns (Ardestani et al., 2017).50

Abnormal kinetic behavior in response to perturbation, e.g., unbounded joint power can be51

another manifest of instability (Levin et al., 2015; Vera-Garcia et al., 2007). This concept however52

is overlooked in TKA studies. One explanation can be that any perturbation may damage the53

prosthetic knee and thus may not be applied due to ethical considerations. Besides, the54

perturbation, required to evoke the unbounded behavior, might be patient-specific. Bode analysis55

is a well-documented technique in control engineering (Ogata and Yang, 2002) capable of56

simulating a perturbation and then qualitatively estimating the perturbed behavior of a system to57

determine its stability margins, often referred as “Bode margins” . Bode analysis estimates the58

perturbed behavior of a system based on its unperturbed dynamic(Dorf and Bishop, 2011), and59

thus relaxes the necessity of applying an actual perturbation to the system (i.e., the knee joint).60

Additionally, Bode analysis often simplifies a complex system to a linear function with few inputs61

and outputs. For instance, the knee joint can be modeled as a linear function with the knee joint62

kinematics and kinetics as inputs and the knee joint power as output facilitating the estimation of63

the perturbed knee joint power. Bode analysis was recently used to estimate the perturbed64

kinematic behavior of unstable knees following anterior-cruciate ligament injury (Morgan et al.,65

2016).66

The overall objective of this study was to investigate the applicability of Bode analysis to67

estimate the perturbed knee joint power in TKA patients. We aimed to investigate whether68

weakened knee joint stabilizers cause abnormal kinematics during walking (hypermobility) and69
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how it can influence the knee joint kinetics (power) in response to larger perturbations beyond70

level-walking.71

2. Materials and Methods72

Six TKA patients were obtained from a published repository (Section 2.1). Our previously73

published musculoskeletal (MSK) model of a typical TKA patient was scaled to each patient74

(Section 2.2). Two separate versions of MSK models were developed: (i) baseline (BSL) models75

with intact joint stabilizers (muscles and ligaments) and (ii) weakened (WEAK) models for which76

the knee muscle strength and ligament force parameter were reduced. For each patient, BSL and77

WEAK models were simulated with the averaged level-walking gait profile (ground reaction force78

and marker trajectories) of that patient. Inverse dynamic and Force-dependent kinematic (FDK)79

analyses were conducted to calculate knee joint kinetics and the secondary knee joint kinematics80

(A-P displacement and I-E rotation) respectively. This was performed to investigate whether81

weakened knee joint stabilizers immediately lead to abnormal pattern in the secondary knee joint82

kinematics (hypermobility). The knee joint kinematics and kinetics from BSL and WEAK models83

were then imported to Bode analysis to estimate the knee joint power in response to the simulated84

perturbation (Section 2.3). This was performed to investigate whether weakened joint stabilizers85

can impact stability margins of the knee joint in response to the perturbation. Figure 1 demonstrates86

the workflow of the present study.87
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2.1. Experimental Gait Data88

Gait data including ground reaction forces (GRF) and marker trajectories from six TKA89

patients (5 M/ 1F, Height: 170.8±5.2 cm; Weight: 69.7±4.4 kg) were obtained from a published90

repository (https://simtk.org/home/kneeloads, accessed Sept 2015). TKA patients were implanted91

with cruciate-retaining sensor-based knee prostheses which measures in vivo knee forces. GRFs92

were recorded at a frequency of 1000 Hz (Force plate, AMTI Corp., Watertown, MA, USA) and93

marker trajectory data were recorded at a frequency of 200 Hz (10-camera motion capture system,94

Motion Analysis Corp., Santa Rosa, CA, USA) using a modified Cleveland Clinic marker set with95

extra markers on the feet and trunk. For a complete description of this database see (Fregly et al.,96

2012; Kinney et al., 2013).97

2.2. Musculoskeletal Model98

We previously modified a 3D musculoskeletal model, i.e., Twente Lower Extremity Model99

(TLEM) model (Horsman, 2007), from AnyBody software repository (version 6.0; AnyBody100

Technology, Aalborg, Denmark) to represent a TKA patient(Chen et al., 2016a; Chen et al., 2015;101

Chen et al., 2014; Chen et al., 2016b). TLEM, with 160 muscle-tendon actuators, spherical hip102

and revolute knee and ankle joints were modified as follows: The generic geometry of the knee103

(femoral and tibial components) was replaced with the geometry of the knee implant (Figure 2).104

Two deformable contact models were defined between the tibial insert and femoral component105

bearing surfaces and between the patellar button and the femoral component. A friction coefficient106

of 0.04 was considered between the two components (Hashemi et al., 2000). Details of these107

contact models are discussed in the Appendix. This model solves the equilibrium equations in108

three dimensions(Damsgaard et al., 2006). The model showed acceptable accuracy in predicting109

muscle activations and the knee joint contact forces when compared versus in-vivo measurements110
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(Chen et al., 2014; Peng et al., 2018). This model was also used for a series of parametric and111

probabilistic studies (Ardestani and Moazen, 2016; Chen et al., 2015). Here, this model was used112

to simulate muscle weakness (strength decline) and ligament laxity (decline in ligament force113

parameter) and calculate the resultant knee joint kinematics and kinetics.114

The MSK model was scaled to each patient as follows: model was scaled to each patient’s115

weight and height using Length–Mass–Fat scaling law(Lund et al., 2015). Body segment lengths116

and the relative positions of joints were determined such that the model’s markers closely tracked117

the experimental marker trajectories. Maximum isometric voluntary contractions of muscles (F0)118

were also scaled using Height-Squared law(Rasmussen et al., 2005). Muscle attachment and119

geometries were scaled based on linear geometry scaling law (Worsley et al., 2011). Muscle120

strength was represented using a bilinear model (Lloyd and Besier, 2003):121

0
0
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(1)122

Where F0 is the strength of the muscle at neutral fiber length (Lf ) and contraction velocity (Lˈm)123

equals to zero. Lm is the current length of the contractile element and V0 is the contraction velocity124

at maximum voluntary contraction. F0 is related to muscle isometric strength and has been125

estimated from cadaveric studies (Horsman, 2007) Muscle weakness was simulated by reducing126

the strength parameter, F0 for the following muscles : semimembranosus, semitendinosus, biceps127

femoris, rectus femoris, vastus, tibialis anterior , medial gastrocnemius and soleus.128

Ligaments, including posterior cruciate ligament (PCL), medial collateral ligament (MCL), lateral129

collateral ligament (LCL), posteromedial capsule (PMC), medial PF ligament (MPFL), and lateral130

PF ligament (LPFL), were modeled as non-linear spring elements with the piecewise force–131
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displacement relationship (Blankevoort, 2001) (Note: anterior cruciate ligament (ACL) was not132

modeled considering the surgical removal of this ligament):133

݂= ൞
ܵ × ቀ

ɛమ

ସɛ
ቁ                    0 < ε < ߝ2

ܵ × (ε − (ߝ <ߝ ߝ2
0                                             ε < 0

(2)134

=ߝ
ିబ

బ
, ܮ =

ೝ

ఌೝାଵ
(3)135

where f is the ligament force and S0 is the ligament force parameter, expressed in newton, ɛl is a136

constant non-linear strain parameter of 0.03, ɛ is the strain in the ligaments, L is the ligament137

length, and L0 is the zero-load length of the ligament (determined from the ligament’s initial length138

Lr and the reference strain ɛr). Ligament laxity was simulated by reducing ligament force139

parameter, S0, in equation (2).140

From each patient-specific model, 400 versions were generated including (i) 100 BSL141

models, for which muscle strength and ligament force parameter were chosen from a normal142

distribution of the nominal values for that subject ±5% (Amiri and Wilson, 2012) , (ii) 100 WEAK143

models where F0 was chosen from a normal distribution of nominal strength reduced by 30%(Silva144

et al., 2003). Note our previous study showed reduction beyond 40% can alter the normal gait145

pattern (Ardestani and Moazen, 2016); (iii) 100 WEAK models with lax ligaments where S0 was146

chosen from normal distribution of nominal values reduced by 30%. This is consistent with147

previous literature reporting up to 30% of variation in ligament stiffness amongst TKA subjects148

with unstable knees (Reinders et al., 2014) which may in turn lead to 2 standard deviation in149

secondary knee joint kinematics from the average (Kang et al., 2017). Note previous studies150

showed that reduction beyond 50% can alter the joint load (Li et al., 2002; Orozco et al., 2018),151
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(vi) 100 WEAK models with both weak muscles and lax ligaments. For BSL models, F0 and S0152

values were consistent with reported values for stable knees (Anderson and Pandy, 1999; Lin et153

al., 2010) - Table 1). For each patient, both BSL and WEAK models were simulated with the154

average marker trajectory and GRF profile of the same patient. Inverse dynamic analysis was155

conducted to calculate the joint moments and muscle forces from GRF and primary joint156

kinematics. Furthermore, force-dependent kinematic (FDK) analysis was conducted to calculate157

the secondary knee joint kinematics and internal joint contact forces. For FDK analysis, please see158

(Andersen et al., 2011). In brief, FDK analysis was conducted by introducing an additional159

kinematic driver to a standard inverse dynamic analysis. The kinematic driver was the function of160

joint coordination and time. This was added to represent the fact that in a nonconforming joint161

such as knee, internal forces influence joint secondary kinematics. The time-derivate of this162

kinematic drive was assumed to be zero so that the equilibrium equations become quasi-static. The163

underlying assumption of FDK analysis was that the secondary knee motions were not influenced164

by the global model dynamics and therefore, can be solved assuming quasi-static equilibrium165

between ligament, muscle, contact forces, and external loads.166

Two different muscle recruitment criteria were implemented: (1) the conventional Min-Max167

optimization which activates the muscles such that minimizes the maximum muscle168

activation(Marra et al., 2015); (2) a recently proposed synergy optimization which activates169

muscles to minimize synergy activations (instead of muscle activation) where synergy is defined170

as phase-specific groups of agonist muscles (Aoi and Funato, 2016; Sartori et al., 2013). Presented171

by new evidence and confirmed by our recent study (Ardestani et al., 2017), synergistic172

recruitment of muscles enables the MSK system to accommodate certain levels of muscle173

weakness and maintain asymptomatic joint kinematics. Therefore, the latter optimization was174
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implemented to investigate whether changes in muscle recruitment pattern can mask muscle175

weakness and prevent the manifest of abnormal knee kinematics during level-walking.176

2.3. Bode Analysis177

For the purpose of Bode analysis, knee joint was represented as a linear model with sagittal178

knee angular velocity and sagittal knee joint moment as inputs and knee joint power as output.179

Two-thirds of the BSL simulations were used to construct this model and the remaining one-third180

of BSL simulations were used to validate it. At least 85% accuracy (R2≥ 0.85) between the knee 181

joint power (output) calculated from the linear model and MSK model was required to deem the182

linear model of knee as acceptable. This process was conducted using System Identification183

Toolbox (MATLAB software. 2014b, Chicago, USA).184

Once the knee joint was formulated, the inputs (motion and moment) were perturbed and the185

model was recruited to predict the knee joint power (output) in response to the perturbed inputs.186

Perturbation was modeled as a sudden change in the knee joint motion and/or moment. The ratio187

of the resultant knee joint power in response to the perturbed knee flexion angle and/or moment188

was calculated and referred as “amplitude response”. The temporal delay between when the189

perturbation occurred in the input and when the knee joint responded, was also calculated and190

referred as “phase response”.191

Amplitude and phase responses of the knee joint was calculated across a range of different192

perturbations (frequencies) and was considered as “frequency response” of the knee joint. Bode193

plot displays the amplitude response vs. frequency and the phase response vs. frequency of the194

knee joint (Figure 3). Stability margins were obtained from the Bode plot, namely (1) gain margin195

and (2) phase margin (Figure 3):196
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Gain Margin = 0 - G (4)197

where G is the amplitude response of the knee joint in decibel (dB) at a perturbation for which198

the phase response of knee joint equals to -180 deg indicating that knee generated the power with199

half a cycle delay in response to perturbation.200

Phase Margin = +P + 180 degrees (5)201

where P is the phase response of the knee joint (in degrees) at a perturbation for which its amplitude202

response equals to 0 dB indicating that the output and input amplitudes of the knee joint are equal.203

As suggested in control engineering, negative amplitude margin and/or negative phase margin204

indicate an unstable system (Dorf and Bishop, 2011; Ogata and Yang, 2002).205

3. Results206

3.1.Secondary Knee Joint Motions in BSL vs. WEAK models207

FDK analyses of BSL models, with nominal muscle strength and ligament force parameter,208

led to an average I-E rotation of 11.6±5.7 (deg) and A-P displacement of 5.5±4.1 (mm). FDK209

analyses of models with weak muscles (Figure 4) led to slightly higher I-E rotation (15.7±8.4210

(deg)) and A-P displacement (8.3±5.8 (mm)). Models with lax ligaments also led to larger knee211

joint motions (I-E: 15.3±5.4(deg), A-P:6.7±5.7(mm)). Models with simultaneous muscle212

weakness and ligament laxity resulted in even larger ranges of knee motions (I-E: 18.4±8.5(deg),213

A-P:9.7±5.6 (mm)). Switching the cost function from Min-Max to synergy optimization changed214

the muscle recruitment patterns and thus the secondary motions of the knee joint such that results215

were not notably different from BSL MSK models (Figure 4 and Table 2).216

Note, WEAK models compared to BSL models led to large standard deviations in the knee217

joint motion. Subset analyses of models showed that only models with the reduction in muscle218
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strength by 30%, or reduction in ligament force parameter by 18% caused recognizable deviation219

(i.e., more than one std) from BSL models. WEAK models with simultaneous reduction in muscle220

strength (>24%) and in ligaments force parameter (>15%) led to even larger kinematic deviation221

from BSL models. In this subset of MSK models, switching the cost function from Min-Max to222

synergy optimization decreased the kinematic deviations but the kinematics remained marginally223

significant from BSL models (Table 2).224

3.2.Bode Margins in BSL vs. WEAK Models225

Bode analysis of all BSL models led to positive stability margins (i.e., positive amplitude226

margin and positive phase margin) with amplitude margins (G) ranging from 5.8(dB) to 22.5(dB)227

and phase margins (P) ranging from 35.7 (deg) to 136.8(deg) indicating a promptly-generated228

power with bounded amplitude in response to perturbation (Figure 5a). In contrast, 85% of WEAK229

models with reduced muscle strength, ligament force parameter or both led to negative stability230

margins in Bode analysis. More directly, 88% of WEAK models with reduced muscle strength231

led to negative amplitude margins (G= -15.8±13.5 (dB)) indicating an unbounded power response232

to perturbation (Figure 5b). On the other hand, 82% of WEAK models with reduced ligament force233

parameter led to negative phase margins (P= -65.3±23.7 (deg)) indicating a delayed power234

behavior in response to perturbation (Figure 5c). Note 12% of models with reduced muscle235

strength and 18% of those with reduced ligament force parameter still led to positive, albeit small,236

stability margins (G=2.3±2.7 (dB), P=11.4±6.9 (deg)). A closer investigating of these models237

revealed that manipulated parameters were close to nominal thresholds (strength reduction less238

than 10% and ligament force parameter reduction less than 8%). Switching the cost function from239

Min-Max to synergy optimization decreased the prevalence of negative stability margins from240

88% to 72% (and from 82% to 78%) in models with reduced strength (and models with reduced241
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ligament force parameter). Yet, the prevalence of negative Bode margins in WEAK models242

remained notable.243

Bode analyses of WEAK models with simultaneous reductions of muscle strength and244

ligament force parameter led to negative stability margins indicating a delayed (P=-97.8±32 (deg))245

and unbounded (G= -23.8±14.6 (dB)) power response to perturbation (Figure 5d). In these models,246

Bode estimations of the knee power were consistent regardless of the muscle recruitment function;247

i.e., changing the muscle recruitment function from the Min-Max optimization to the synergy248

optimization slightly changed the magnitude and the delay in joint power, but WEAK models still249

showed a delayed power behavior with unbounded magnitude in response to perturbation (see250

Figure 5). Samples of Bode plots are presented in the Appendix.251

4. Discussion252

This study recruited Bode analysis to qualitatively estimate the knee joint power in response253

to a simulated perturbation. We aimed to investigate whether weakness (up to 30%) in the ligament254

and muscles immediately cause abnormal knee kinematics during level walking (hypermobility)255

and whether impair the kinetic behavior (power) in response to the larger perturbations. Two256

different muscle recruitment criteria were also tested to examine whether altered muscle257

recruitment pattern can mask the influence of weak stabilizers on the knee joint kinematics and258

kinetics. Results showed that depending on the muscle recruitment pattern, weak knee joint259

stabilizers may or may not cause excessive joint motions, but it notably affects the knee joint power260

in response to the perturbation.261

Computational analyses of the knee joint stability advance our understanding of the262

isolated and combined roles of knee joint kinematics and kinetics, muscle co-activation or263
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anatomical variables on the knee joint stability (Sharifi et al., 2018). Significant reduction in264

ligament stiffness and/or muscle activation has been shown to change the knee joint kinematics265

and causes hypermobility (Sharifi et al., 2017). Some patients however may demonstrate266

asymptomatic knee kinematics during walking while presenting with persistent complaints of knee267

instability and dysfunction (Ardestani et al., 2017). The present study therefore focused on only268

small levels of muscle weakness and ligament laxity. Considering the redundancy of human MSK269

system, we aimed to demonstrate that impairment at the knee stabilizers may be compensated270

through altered muscle recruitment such that it may not immediately translate into abnormal271

kinematics. Yet, it may impair the ability of the knee joint to respond to a perturbation beyond272

level walking. Morgan et al used Bode analysis to discuss the abnormal knee kinematic in response273

to perturbation and the present study focused on perturbed kinetic behavior.274

The knee joint power was studied as the kinetic behavior of interest. The knee joint power275

integrates the role of both kinematics (dictated by passive constraints such as ligaments) and276

kinetics (dictated by active constraints i.e., muscles) and hence is expected to be more informative277

to manifest knee joint complications. Besides, the knee joint power is calculated as the dot product278

of the joint moment and the angular velocity (the derivation of sagittal knee motion). Sagittal knee279

joint motion is the dominant movement of the knee joint and mid-flexion instability is the most280

popular type of instability. Moreover, daily-life activities often induce perturbation which can be281

modeled as sudden changes in the movement (e.g., rapid turn) and/or sudden changes in the ground282

reaction forces (e.g., uneven ground, slippery surfaces) influencing the knee joint moment.283

This study has several limitations. First the computational approach was based on a small284

patient population. Nonetheless, random selection of the key variables including muscle strength285

and ligament force parameter created a large probabilistic data base (400 simulations per each286
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subject). Future experimental investigations with a larger TKA population is required to confirm287

present findings.288

Second, computational modeling including MSK modeling and Bode analysis bring their289

inherent limitations. The origin and insertion sites of the muscles and the ligaments were based on290

TLEM model and may not exactly represent individual patients. Although MSK models were291

scaled to each patient, other properties such as muscle activation, muscle cross-sectional area and292

ligament geometries were not adjusted to individual age and their unique anatomy. Moreover,293

muscle weakness was solely simulated by decreasing the strength. Reduction in muscle cross-294

sectional area and muscle fiber excitability are other etiologies that may also lead to muscle295

weakness. Also, muscle weakness was only simulated in eight muscles. It should be noted that296

other muscles, even those that are not directly connected to the knee, may also influence the knee297

joint loads and its motions. Muscle-tendon units were simplified using a bilinear model (equation298

1). This model consists of a contractile element and a serial-elastic element. Unlike a hill-type299

model, the bilinear model does not have a parallel elasticity element to account for passive muscle300

force. Instead, this model uses larger isometric force parameters compared to hill-type model To301

account for passive muscle force. This built-in passive force however cannot be switch off and302

may leads to over-estimated muscle strength and thus muscle forces. This model was chosen as it303

is computationally efficient for probabilistic studies.304

Furthermore, the knee joint stabilizers (ligaments and muscles) were weakened according to305

pre-determined thresholds and from a normal probability distribution. These assumptions may not306

necessarily represent an “unstable knee” but rather an increased likelihood of instability. Note,307

both BSL and WEAK models were simulated using the same marker trajectory data. Therefore308

knee F-E rotation and the overall kinematic pattern of walking calculated based on marker309
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trajectories were assumed to be the same for both models (Thompson et al., 2013; van der Krogt310

et al., 2012). In real world however, changes in the joint internal structure can influence all joint311

kinematics in all planes. Furthermore, Bode analysis simplifies the knee by a linear approximation312

to computationally simulate perturbation and to qualitatively estimate system’s behavior in313

frequency domain. Bode analysis is not a quantitative approach and interpretation of its result in314

time domain should be conducted with caution.315

Finally, further investigations are required to provide a one-by-one comparison between the316

knee joint power, knee joint kinematic and Bode margins in presence of a real perturbation.317

Questions such as whether Bode margins are negative (or respectively positive) for patients with318

confirmed knee instability (or for uninjured knee joints) remains unanswered.319

In summary this study explored the application of Bode analysis to estimate the knee joint320

power in response to a simulated perturbation. Impairment at the knee joint stabilizers can321

potentially impair the knee joint power in response to the perturbation regardless of the muscle322

recruitment pattern.323
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Table 1 Simulation parameters for BSL and WEAK models

Baseline models Weak models

`Muscle Strength (F0)
(N)

Semimembranosus 2674-2954 1800- 2530
Semitendinosus 2674-2954 1800- 2530
Biceps femoris 2674-2954 1800- 2530
Rectus femoris 1260-1386 900-1188

Vastus 6522-7200 4500-6170
Tibialis anterior 952-1053 650-740

Medial gastrocnemius 1568-1733 1000-1200
Soleus 2865-3166 2000-2216

Ligament force
parameter (S0)

(N)

PCL_a 8550-9450 5900-8100
PCL_p 8550-9450 5900-8100
MCL_a 2613-2888 1800-2475
MCL_p 2613-2888 1800-2475
MCL_i 2613-2888 1800-2475
LCL_a 1900-2100 1300-1800
LCL_p 1900-2100 1300-1800
LCL_s 1900-2100 1300-1800
MPFL 1900-2100 1300-1800
LPFL 1900-2100 1300-1800

Table 2 Anterior-posterior (A-P) displacement and internal-external(I-E) rotation for BSL and WEAK models (calculated) using FDK
analysis (mean ± std). Two different cost-functions were utilized to explore whether altered muscle recruitment strategy can mitigate

the influence of defected stabilizers on knee secondary kinematics.

Variable Baseline models Models with weak muscles Models with lax ligaments
Models with weak muscles

and
lax ligaments

Cost f1* Cost f2** Cost f1 Cost f1 Cost f1 Cost f2 Cost f1 Cost f2
A-P range(mm) 5.5±4.1 4.8±3.2 8.3±5.8 6.5±4.8 6.7±5.7 5.0±4.1 9.7±5.6 8.7±5.3
I-E range(deg) 11.6±5.7 11.2±4.5 15.7±8.4 12.9±5.5 15.3±5.4 12.5±8.2 18.4±8.5 13.8±8.4

*Costf1: Min-Max optimization
**Costf2: Synergy optimization



Appendix

Two deformable contact models were defined between the tibial insert and femoral component bearing surfaces and between
the patellar button and the femoral component. The tibial insert was divided into medial and lateral compartments with
separate contacts created for each. The contact force between the two objects, represented with the contacting surfaces (in
STereoLithography (STL) format), was calculated using a linear force-penetration volume law.29 The contact pressure
module PressureModule in Newton per meter cube is the key parameter in the default FDK computational framework of
AnyBody. Due to the contact model implemented in AnyBody being very close to the elastic foundation theory,20 the
equations derived by Fregly et al. (2003) according to the elastic foundation theory, were used for the calculation of the
PressureModule :



݀
=

(1 − ()ܧ(ݒ

(1 + 1)(ݒ − (ݒ2 × ℎ

where p and d are contact pressure and surface overclosure, respectively; and E(p), v, and h are Young’s modulus, Poisson’s
ratio, and the local thickness of the UHMWPE tibial layer, respectively; and d is the element’s spring deflection, defined as
the interpenetration of the undeformed surfaces in the direction of the local surface normal. For a non-linear material, the
elastic modulus was set as a function of the current level of contact pressure for each element. The following equation was
taken from a non-linear power law material model:
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where  is the strain, p is the contact pressure, εo = 0:0597, po = 18:4MPa, and n = 3 based on the experimental stress strainߝ

data for UHMWPE (Cripton 1993). To take the derivative of p over ε, and replace with ()ܧ =
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Equation (3) was substituted into equation (1) to generate a single non-linear equation for p and d which was solved using
a standard root-finding method. Further details for elastic foundation contact model can be found in the literature.3,20. In
this study, the UHMWPE was considered as a non-linear material, and its elastic modulus was at least two orders of
magnitude lower than that of the metallic femoral component. Therefore, the contact pressure module Pressure Module was
calculated from equations (1) to (3) as a function of the contact pressure p:

Pressure Module =


ௗ
=

(ଵି௩)
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×
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బ
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where A is the unit contact area. Due to the range of the contact pressure over the articulating surface of UHMWPE tibial
inserts from 5 to 25 MPa during a gait cycle,31–33 the maximum, minimum, and average PressureModule values
corresponding to the contact pressure values were calculated as 2.59e11 N/m3, 0.48e11 N/m3, and 1.24e11 N/m3
respectively. Similar values for the PF joint were also adopted. The effect of using different PressureModule values on the

model prediction was investigated in our previous publication (Chen et al, 2014).
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Figure A.1. Typical examples of Bode plots with positive (a) and negative (b) phase margins



 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 1. A schematic diagram of the modeling process used in the present study 
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Figure 2. The TLEM MSK model was modified in AnyBody software. The geometry of knee joint was replaced with 

patient’s implant (cruciate retaining knee implant). 

  



  

 

Figure 3. A typical Bode diagram to demonstrate amplitude response (G) and phase response (P) for a range of various 

frequencies (i.e., perturbation). The x axis demonstrates the perturbation, as the frequency of a sudden change in the 

inputs of knee joint model (i.e., motion and moment). The y axis in amplitude response presents the relative amplitude of 

knee joint power to the amplitude of perturbation. The y axis in phase response presents the time delay between when the 

perturbation occurs and when the peak of knee joint power is generated in response to that perturbation. Time delay is 

expressed in degree as gait is a periodic task and 2ᴫ radian (= 360 deg) is considered as one complete cycle delay.  
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Figure 4 Internal-external (I-E) rotation (a) and anterior-posterior (A-P) displacement (b) for MSK models with weak 

muscles, lax ligaments and the combination of both weak muscles and lax ligaments. I-E and A-P kinematics were 

calculated using FDK analysis and based on two different muscle recruitment patterns: Min_Max optimization and 

synergy optimization. Graphs present the average and standard deviations for one representative subject. 
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Figure 5. Comparison of perturbed knee power (calculated from Bode analysis) vs. unperturbed knee power (calculated 

from inverse-dynamic analysis of level-walking) for BSL models (a), models with weak muscles (b), lax ligaments (c) and 

models with combined deficits(d). Models with lax ligaments showed a delayed response to perturbation whilst models 

with weak muscles unbounded power. 
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