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Abstract 

Computational techniques such as structure-based virtual screening require carefully prepared 3D models of poten-
tial small-molecule ligands. Though powerful, existing commercial programs for virtual-library preparation have 
restrictive and/or expensive licenses. Freely available alternatives, though often effective, do not fully account for all 
possible ionization, tautomeric, and ring-conformational variants. We here present Gypsum-DL, a free, robust open-
source program that addresses these challenges. As input, Gypsum-DL accepts virtual compound libraries in SMILES 
or flat SDF formats. For each molecule in the virtual library, it enumerates appropriate ionization, tautomeric, chiral, 
cis/trans isomeric, and ring-conformational forms. As output, Gypsum-DL produces an SDF file containing each 
molecular form, with 3D coordinates assigned. To demonstrate its utility, we processed 1558 molecules taken from the 
NCI Diversity Set VI and 56,608 molecules taken from a Distributed Drug Discovery (D3) combinatorial virtual library. 
We also used 4463 high-quality protein–ligand complexes from the PDBBind database to show that Gypsum-DL 
processing can improve virtual-screening pose prediction. Gypsum-DL is available free of charge under the terms of 
the Apache License, Version 2.0.
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Introduction
Structure-based virtual screening (VS) is a powerful tool 
for pharmacological and basic-science research [1, 2]. 
In a successful VS campaign, a docking program poses 
small-molecule models within a protein binding pocket, 
and a scoring function estimates binding affinities. 
Experimentalists then test the top-scoring compounds 
to verify binding. Hit rates are often better than those 
obtained through high-throughput screening alone [2].

The first and foundational step in a VS workflow is pose 
prediction. Accurate prediction depends on high-quality 

3D models of both protein receptor(s) and potential 
small-molecule ligands. Small-molecule databases often 
store compounds in formats that include only atom-
type and bond information (e.g., SMILES). Furthermore, 
database entries typically describe only one ionization or 
tautomeric state per molecule, and they may lack infor-
mation about chirality and cis/trans isomerization.

Though effective, available commercial and open-
source programs for processing and converting these 
simple representations into fully enumerated 3D mod-
els have their drawbacks. Commercial programs such as 
OpenEye’s OMEGA/QUACPAC [3, 4] and Schrödinger’s 
LigPrep (Schrödinger, LLC) have restrictive licenses and 
can be expensive. While OpenEye does offer a free aca-
demic license, that license imposes substantial commer-
cialization and intellectual-property restrictions. License 
eligibility is also regularly re-evaluated, making long-term 
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access uncertain. And workflows that incorporate com-
mercial tools cannot typically be freely distributed.

Free alternatives include Frog2 [5] and Balloon [6, 7]. 
Frog2 [5] is an open-source, web-based program that 
requires no installation. Users must first upload their 
compounds in SMILES format to the RPBS Web portal 
(http://biose​rv.rpbs.univ-paris​-dider​ot.fr/servi​ces/Frog2​
/) [8, 9]. The Frog2 server then assigns 3D coordinates 
and provides a downloadable file containing the results. 
In contrast, Balloon [6, 7] is a command-line program 
that can be easily and freely incorporated into larger 
workflows. Though Balloon is free, the source code is not 
publicly available, and the program does not account for 
alternate chiral and cis/trans isomeric forms. Addition-
ally, Frog2 and Balloon ignore alternate ionization and 
tautomeric forms; sometimes miss low-energy, non-aro-
matic ring conformations; and generate excess rotamers 
beyond those needed for flexible-ligand docking.

The popular open-source cheminformatics package 
Open Babel [10] also includes several executable files that 
can perform key small-molecule preparation steps. For 
example, the obabel executable accepts a -p (pH) parame-
ter that ionizes molecules as appropriate for a user-spec-
ified pH. The obabel –gen3D (generate 3D coordinates) 
parameter also converts molecular representations to 3D 
models that can be further optimized with obminimize. 
But it is difficult to generate alternate tautomeric, chiral, 
and cis/trans isomeric forms using Open Babel’s com-
mand-line interface. Advanced users/programmers must 
implement these features separately using Open Babel’s 
programming API. Open Babel is also released under a 
copyleft license (GNU General Public License, version 2), 
which requires that any derivate works also be copyleft.

To address the limitations of existing commercial and 
open-source packages, we here present Gypsum-DL, a 
free, open-source program for preparing small-mole-
cule libraries. Beyond simply assigning 3D coordinates, 
Gypsum-DL outputs molecular models with varying 
ionization, tautomeric, and isomeric states. Protein bind-
ing pockets often stabilize these alternate forms, even if 
their prevalence is low in bulk solution. Gypsum-DL also 
generates models with alternate non-aromatic ring con-
formations. Considering alternate ring conformations is 
critical given that most flexible-ligand docking programs 
(e.g., AutoDock Vina [12]) do not account for all possible 
ligand ring geometries during the docking process itself.

We use 4463 high-quality protein–ligand complexes 
from the PDBBind database (http://www.pdbbi​nd.org.
cn/) [13, 14] to show that Gypsum-DL processing can 
improve VS pose prediction. To further show utility, 
we also use Gypsum-DL to process two virtual molecu-
lar libraries: (1) the NCI Diversity Set VI, a set of freely 
available compounds provided by the National Cancer 

Institute (1558 molecules); and N-acylated unnatural 
amino acids enumerated using the accessible chemical 
reaction schemes developed by the Distributed Drug Dis-
covery (D3) initiative (56,608 molecules) [15–18]. These 
virtual libraries are available free of charge for use in VS 
projects.

Gypsum-DL will be a helpful tool for those engaged 
in both basic-science and drug-discovery research. A 
copy is available at http://durra​ntlab​.com/gypsu​m-dl/, 
released under the terms of the Apache License, Version 
2.0.

Implementation
The Gypsum‑DL algorithm
Gypsum-DL uses RDKit (http://www.rdkit​.org), MolVS 
0.1.1 (https​://molvs​.readt​hedoc​s.io), and Dimorphite-
DL 1.0 [11] to convert small-molecule representations 
(SMILES strings or flat SDF files) into 3D models (Fig. 1) 
[19]. Each output SDF file includes fields that describe 
the steps used to generate the corresponding model. 
Gypsum-DL also leverages multiple processors, if avail-
able, to speed the conversion of large virtual libraries. 
Command-line flags allow the user to precisely control 
all aspects of the program, though the default parameters 
should serve most use cases.

Desalting
Gypsum-DL first removes any salts present in the user-
specified virtual compound library. Molecular represen-
tations (e.g., SMILES) often include the primary molecule 
together with accompanying counterions. Gypsum-DL 
retains only the largest fragment, the presumed com-
pound of interest.

Ionization
Gypsum-DL uses the Dimorphite-DL 1.0 algorithm [11] 
to generate models with different ionization states. It 
considers a user-defined range of pH values (6.4–8.4 by 
default) rather than a single (e.g., physiological) pH. Sep-
arate models are created for each identified state.

Given the computational demands of high-through-
put VS, it is important to limit the number of ionization 
forms considered. To eliminate highly charged forms that 
are unlikely to be physiologically relevant, Gypsum-DL 
first identifies the generated ionization form with a for-
mal charge that is closest to zero. It eliminates any addi-
tional ionization forms whose formal charges deviate 
from that baseline by 3 e or more.

Tautomeric forms
Many compounds readily interconvert between tauto-
meric states as protons and electrons shift among atoms. 
Gypsum-DL uses MolVS 0.1.1 to enumerate all possible 

http://bioserv.rpbs.univ-paris-diderot.fr/services/Frog2/
http://bioserv.rpbs.univ-paris-diderot.fr/services/Frog2/
http://www.pdbbind.org.cn/
http://www.pdbbind.org.cn/
http://durrantlab.com/gypsum-dl/
http://www.rdkit.org
https://molvs.readthedocs.io


Page 3 of 13Ropp et al. J Cheminform           (2019) 11:34 

tautomers. It discards tautomers that alter the number of 
aromatic rings (i.e., by breaking ring aromaticity) or the 
number of chiral centers. Separate models are created for 
each identified tautomeric form.

MolVS occasionally produces particularly improbable 
tautomeric forms. Gypsum-DL maintains a list of sub-
structures associated with these forms and automatically 
eliminates any matching models. For example, though 
Gypsum-DL does consider keto–enol tautomerism, it 

does not permit enol forms that result in terminal alk-
enes. It also eliminates compounds with geminal vinyl 
diols, which are improbable tautomers of carboxylic 
acids. Any form with a carbanion is also eliminated, as 
are tautomers that disrupt existing aromaticity.

Unspecified chiral centers and cis/trans double‑bond 
isomerization
Many virtual-library databases do not fully specify all 
compound chiral centers. Gypsum-DL thoroughly gen-
erates alternate chiral species by varying each of the 
unspecified chiral centers in each input molecule. Specif-
ically defined chiral centers remain unchanged. Similarly, 
virtual-library databases often include compounds with 
unspecified double-bond isomerization. Gypsum-DL sys-
tematically and thoroughly generates alternate cis/trans 
isomers as needed.

We note that MolVS removes double-bond cis/trans 
stereochemistry if any derived tautomeric form changes 
the double bond to a single bond. Some compounds 
may thus end up with unspecified double bonds, even 
if the input molecular representation explicitly specifies 
isomerization. This behavior is intentional, though it may 
surprise some users. Gypsum-DL enumerates both the 
cis and trans isomers in such cases.

Alternate conformations of non‑aromatic rings
To sample different small-molecule conformers, flexible-
ligand docking programs permit virtual rotations about 
single bonds during the docking process. But they often 
treat rings as rigid, even if those rings include single 
bonds. Transitions between different ring conformations 
(e.g., the boat and chair conformations of cyclohexane) 
are thus ignored. Gypsum-DL addresses this shortcom-
ing by generating separate models with distinct low-
energy ring conformations.

Gypsum-DL first generates multiple 3D models of each 
input molecule using the Experimental Torsion with 
Knowledge Distance Geometry (ETKDG) method (ver-
sion 2 if available, or version 1 otherwise) [20]. These ini-
tial models are then optimized using the Universal Force 
Field (UFF) [21]. Though this optimization step is com-
putationally expensive, it encourages 3D ring conformers 
that closely correspond to discrete energy minima. For 
a given compound with R non-aromatic rings, there are 
thus M optimized 3D models (see Fig.  2a, where R = 2 
and M = 4).

For reference, we assign an index, m, to each of the M 
models. We also assign an index, r, to each of the R non-
aromatic rings, and we say that the rth ring contains Ar 
atoms (Fig. 2b). There are thus M total conformations of 
the rth ring, one corresponding to each modeled com-
pound. The rth ring of the mth model refers to a specific 

Fig. 1  The Gypsum workflow. a Gypsum prepares a virtual 
small-molecule library by desalting the input compounds and 
considering alternate ionization, tautomeric, chiral, and cis/trans 
isomeric states. It then converts all variants to 3D, accounting 
for alternate ring conformations where appropriate. b Illustrative 
examples of each Gypsum step
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ring. To describe the geometry of that ring, Gypsum-DL 
places the 3D coordinates, (ax, ay, az), of its Ar constituent 
atoms into an ordered list, cm,r (Fig. 2c), where

To describe the collective ring-conformational geometry 
of the mth model, Gypsum-DL collects the geometries of 
the R associated rings, cm,r, into another ordered list, sm 
(Fig. 2c):

To quantify how much a given 3D models’ ring con-
formations collectively differ from those of the first 
model, Gypsum-DL generates an R-dimensional 

cm,r =
{(

ax, ay, az
)

|a ∈ N, a ≤ Ar

}

sm =
{

cm,r |r ∈ N, r ≤ R
}

“ring-conformation fingerprint,” fm (Fig.  2d), for each of 
the sm lists:

where the function RMSD(c1, c2) is the minimum root-
mean-square deviation (RMSD) between coordinate set 
c1 and coordinate set c2 when c1 is allowed to freely rotate 
and translate.

The first fingerprint (f1) is thus an R-dimensional zero 
vector because the conformations of the first-model rings 
are identical to themselves. Subsequent fm are R-dimen-
sional vectors whose entries represent the extent to 
which the conformation of the corresponding ring differs 
from that of the same ring in the first model.

fm =
{

RMSD
(

cm,r , c1,r
)

|r ∈ N, r ≤ R
}

Fig. 2  A schematic of the Gypsum-DL algorithm for generating ring-conformational forms. a Create multiple 3D variants using ETKDG and UFF 
optimization. b Extract the rings. c Collect the coordinates of the ring atoms. d Construct ring fingerprints by calculating the RMSD between each 
ring and the corresponding ring of the first model. e, f Use k-means clustering to identify unique ring fingerprints. The small circles on the graphs 
represent fingerprints, the larger dashed circles represent clusters, and the black circles represent the most central fingerprint of each cluster. g The 
central fingerprints correspond to geometrically unique models
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Among the M models generated, some may have very 
similar ring conformational states. To eliminate this 
redundancy, Gypsum-DL uses k-means clustering [22] to 
cluster the set of all fm into at most max_variants_per_
compound groups, where max_variants_per_compound 
is a user parameter (default: 5; Fig.  2e, f ). Only the 3D 
models corresponding to the most central fm of each clus-
ter are retained (Fig. 2g).

Controlling the combinatorial explosion
Gypsum-DL accounts for alternate ionization, tauto-
meric, chiral, isomeric, and ring-conformational states. 
From an algorithmic perspective, each of these five states 
is independent. It is thus possible to generate an intrac-
table number of models per input molecule. For exam-
ple, consider a molecule with two variants for each state. 
Accounting for all possible forms would require 25 = 32 
models per molecule. Performing a VS of 10,000 com-
pounds would thus require 320,000 separate dockings.

To prevent this combinatorial explosion, after each step 
Gypsum-DL prunes the growing set of enumerated forms 
associated with each input molecule. It first randomly 
selects m x t variants from all the forms generated, where 
m is the max_variants_per_compound user parameter 
(default: 5) and t is the thoroughness user parameter (a 
scaling factor, default: 3). It then uses ETKDG [20] to 
generate a 3D conformer for each of the selected m × t 
variants. The energies of these conformers are evalu-
ated using the UFF [21]. To reduce computational cost, 
Gypsum-DL generally performs this evaluation without 
geometry optimization (except for compounds with non-
aromatic rings, see above). It ultimately retains only the 
m compounds from the m x t variants with the best pre-
dicted energies.

Final geometry optimization and output
As a final step, Gypsum-DL uses the UFF to optimize the 
geometries of any remaining compounds that have not 
already been optimized (i.e., any compound that was not 
already optimized in the ring-conformation step). It saves 
the resulting 3D models to SDF file(s) in a user-specified 
directory. The user can also instruct the program to addi-
tionally save conformers in the PDB format. Optional 
output to an HTML file allows the user to quickly visual-
ize the generated structures in 2D.

Gypsum‑DL and VS pose prediction
To assess the impact of Gypsum-DL processing on 
VS pose prediction, we compiled a benchmark library 
of protein–ligand complexes. We first downloaded 
the 4463 high-quality complexes included in PDB-
Bind refined set [13, 14]. We removed those complexes 
with ligands that had molecular weights greater than 

500 Daltons, contained amino acids, contained multi-
ple residues (e.g., peptides), included improper atom 
names (e.g., “furan”), and/or had ligand files that did 
not match the corresponding entries in the Protein 
Data Bank (https​://www.rcsb.org/) [23]. After filter-
ing, 3177 complexes containing 2438 unique ligands 
remained.

For each ligand, we downloaded the corresponding 
SMILES string from the Protein Data Bank [23]. We 
neutralized the charge of each SMILES representa-
tion to the extent possible and removed all information 
about chirality and cis/trans isomerism. We converted 
these processed SMILES strings to 3D models using 
both Open Babel 2.3.2 and a late-stage beta version 
of Gypsum-DL that did not differ substantially from 
the final published version. For Open Babel, we used 
only the -d (delete hydrogens), -h (add hydrogens), 
and –gen3D (generate 3D coordinates) flags, in that 
order, to standardize hydrogen atoms and generate 3D 
coordinates. For Gypsum-DL, we used the following 
ligand-processing parameters: min_ph 6.4, max_ph 8.4, 
pka_precision 1.0, thoroughness 3, and max_variants_
per_compound 5. We then converted all protein-recep-
tor and small-molecule models to the PDBQT format 
using MGLTools 1.5.6 [24].

For each complex, we defined a docking box that 
entirely encompassed the corresponding crystallographic 
ligand, with 5 Å margins in all directions. We then used 
AutoDock Vina 1.1.2 [12] to dock the Open-Babel and 
Gypsum-DL small-molecule models into the correspond-
ing docking boxes. The default AutoDock Vina param-
eters were used, except we increased the exhaustiveness 
parameter to 100.

To judge pose-prediction accuracy, we first used our 
Scoria Python library [25] to remove the hydrogen atoms 
from all docked compounds. We then used obrms [10], 
an Open-Babel utility program, to calculate the RMSDs 
between the non-hydrogen atom positions of each top-
scoring Vina pose and those of the corresponding crys-
tallographic ligand. The obrms approach accounts for 
equivalent moiety conformations (e.g., symmetric ring 
flips) by considering atom connectivity. We discarded an 
additional 26 protein–ligand complexes because obrms 
determined inconsistent connectivities for the crystallo-
graphic pose versus the docked Open-Babel and/or Gyp-
sum-DL poses. The size of the final benchmark library of 
protein–ligand complexes was thus 3151.

Unlike Open Babel, Gypsum-DL often generates multi-
ple variants of each compound with differing ionization, 
tautomeric, chiral, cis/trans isomeric, and ring-confor-
mational states. For comparison purposes, we selected 
the Gypsum-DL variant with the lowest RMSD to the 
crystallographic pose.

https://www.rcsb.org/
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Enumerating the distributed drug discovery (D3) library 
for Gypsum‑DL testing
To test Gypsum-DL’s ability to process a large virtual 
molecular library, we enumerated 56,608  N-acylated 
unnatural amino acids. We first used ChemDraw Ultra 
12.0 (CambridgeSoft, 2010) to create 2D representa-
tions of the 84 alkyl-halide, 16 Michael-acceptor, and 100 
carboxylic-acid building blocks described in Ref. [16]. 
Some building blocks were racemic, so we expanded this 
initial set to include all associated enantiomers. We then 
used MarvinSketch 16.6.13, 2016, ChemAxon (http://
www.chema​xon.com) to create the multi-step reaction 
schemes required to enumerate a 2D virtual library from 
these building blocks.

A detailed description of the reactions has been pub-
lished previously [16]. We selected them in part because 
they are central to the highly successful undergraduate 
curriculum developed by the Distributed Drug Discov-
ery (D3) initiative [16]. In brief, we first created reaction 
schemes to alkylate polymer-bound benzophenone-imine 
glycine at the carbonyl ɑ-carbon. For alkylation using 
alkyl halides, we created two reaction schemes to gen-
erate products with (S) and (R) stereochemistry, respec-
tively (Fig.  3a). For alkylation using Michael acceptors, 

we created eight reaction schemes to enumerate all pos-
sible diastereomers (Fig.  3b). We used Reactor 16.6.13, 
2016, ChemAxon (http://www.chema​xon.com) to apply 
these reaction schemes to our library of alkyl-halide and 
Michael-acceptor building blocks.

We next created a reaction scheme to deprotect the 
benzophenone protecting groups of the alkyl-halide- and 
Michael-reaction products, yielding amino-free interme-
diates (Fig. 3c). These intermediates were then subjected 
to an acylation scheme (Fig. 3d), which reacted the free 
amino groups with each of our carboxylic-acid building 
blocks. This reaction added another point of diversity, 
ultimately yielding polymer-bound alkylated-acylated 
glycine products. An additional reaction scheme served 
to cleave the polymer (Fig.  3e). We also used reaction 
schemes to remove additional protecting groups (e.g., 
Fmoc, tert-butyl, Boc), which the final products had 
inherited from some of the original building blocks (not 
shown).

Using Gypsum‑DL to process the D3 and NCI molecular 
libraries
We used Gypsum-DL to process both the enumerated 
D3 library and the NCI Diversity Set VI, a set of freely 

Fig. 3  Simplified representations of the reaction schemes used to enumerate the D3 library. The spheres represent the bound polymer. a Alkylation 
of the polymer-bound benzophenone-imine glycine using the alkyl-halide building blocks. b Alkylation using the Michael-acceptor building blocks. 
c Deprotecting the benzophenone protecting group. d Acylation using the carboxylic-acid building blocks. e Cleaving the polymer

http://www.chemaxon.com
http://www.chemaxon.com
http://www.chemaxon.com
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available compounds provided by the National Cancer 
Institute. We used the following Gypsum-DL param-
eters to process these libraries: min_ph 7.4, max_ph 
7.4, pka_precision 1.0, thoroughness 3, and max_vari-
ants_per_compound 5. In the case of the D3 library, we 
additionally set the skip_making_tautomers parameter to 
true. Both libraries are available free of charge in the SDF 
format from http://durra​ntlab​.com/gypsu​m-dl/ for use in 
VS projects.

Results and discussion
Installation
Gypsum-DL is an open-source Python program. It 
requires the third-party Python libraries RDKit, NumPy 
[26], and SciPy [27], which must be installed separately. 
To ease installation, we recommend the popular Ana-
conda Python platform with its convenient conda pack-
age manager. Users who wish to run Gypsum-DL using 
the Message Passing Interface (MPI) standard must also 
install the mpi4py package [28–30]. Gypsum-DL also 
relies on the MolVS library (MIT License). We have 
included a copy of MolVS 0.1.1 with the Gypsum-DL 
source code, so no additional installation is needed.

Platform testing
We have tested Gypsum-DL on several operating sys-
tems, using several versions of Python, RDKit, NumPy, 
SciPy, and mpi4py (Table  1). We expect it will run in 
many other environments as well. We note that the 
multiprocessing feature is not available on Microsoft 
Windows.

Benchmarks
Gypsum-DL can take advantage of multiple proces-
sors, if available. The user-defined job_manager param-
eter determines whether the program runs in “serial,” 
“multiprocessing,” or “mpi” mode. In serial mode, 

Gypsum-DL uses only one processor to prepare each 
small molecule sequentially. This mode is ideal when 
processing only a few compounds or when using Gyp-
sum-DL in low-resource environments. It is also the 
only mode available on the Windows operating system.

In multiprocessing mode, Gypsum-DL uses multiple 
processors on the same computer to speed small-mole-
cule preparation. Its dynamic load-balancing approach 
distributes small-molecule representations (e.g., 
SMILES strings) to various processors as they become 
available. Running in parallel, each processor indepen-
dently prepares its assigned representations. Figure  4a 
shows benchmark run times performed on a 24-core 
Skylake processor using a late-stage beta version of 
Gypsum-DL that did not differ substantially from our 
final published version.

In mpi mode, Gypsum-DL distributes small-mole-
cule preparation across multiple computers. Its static 
load-balancing approach splits the array of input small 
molecules into chunks that can each be handled con-
currently on a different computer (i.e., node). This 
mode is ideal for use on high-performance comput-
ing clusters, where separate computers are networked 
together to enable calculations on a much larger scale. 
To leverage this setup, Gypsum-DL uses the Message 
Passing Interface (MPI) to control parallel communica-
tions between nodes. The user must separately install 
the mpi4py Python package [28–30] to use Gypsum-DL 
in mpi mode. We benchmarked the same beta version 
of Gypsum-DL on a computing cluster provided by the 
University of Pittsburgh’s Center for Research Com-
puting (CRC, Fig. 4b). The CRC provides MPI-enabled 
compute nodes with 28-core Broadwell Processors, net-
worked using Intel’s Omni-Path communication archi-
tecture. Note that the benchmarks shown in Fig.  4b 
were run on 20,000 input SMILES strings, vs. 1000 in 
Fig. 4a.

Table 1  Computational environments used for Gypsum-DL testing

Operating system Python RDKit NumPy SciPy Mpi4py

macOS Mojave 10.14.1 2.7.13 2016.09.2 1.11.3 0.19.0 N/A

macOS Mojave 10.14.1 3.6.3 2018.03.4 1.13.1 0.19.1 N/A

Ubuntu 18.04.1 LTS 3.7.1 2018.03.1 1.15.4 1.0.0 N/A

Ubuntu 18.04.1 LTS 3.6.6 2018.03.1 1.15.4 1.0.0 N/A

Ubuntu 18.04.1 LTS 2.7.1 2018.03.1 1.15.4 1.0.0 N/A

Windows 10 (serial mode) 3.7.1 2018.03.1 1.15.4 1.0.0 N/A

Windows 10 (serial mode) 2.7.1 2018.03.1 1.15.4 1.0.0 N/A

Red Hat Enterprise Linux Server 7.3 3.5.3 2018.03.1 1.12.1 1.0.0 N/A

Red Hat Enterprise Linux Server 7.3 2.7.13 2018.03.1 1.12.1 1.0.0 3.0.1

http://durrantlab.com/gypsum-dl/
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Comments on scalability
In theory, processing an entire virtual library should 
be embarrassingly parallel. But in practice two factors 
prevent perfectly linear scalability. First, in mpi mode 
Gypsum-DL uses static rather than dynamic load bal-
ancing. It assigns each input representation (e.g., 
SMILES string) to a processor before execution begins. 
If the number of inputs is divisible by the number of 
processors, each processor is tasked with handling the 
same number of inputs. Otherwise, Gypsum-DL dis-
tributes the inputs as evenly as possible. Each proces-
sor then independently and concurrently prepares its 
portion of the input virtual library, without requiring 
synchronization or memory sharing. Once all proces-
sors have finished, the main process collects the results. 
Static load balancing minimizes the required communi-
cation between nodes, but it can lead to computational 
inefficiency. If by random chance a given processor is 
assigned many time-consuming molecular representa-
tions, other processors may run idle while waiting for 
it to finish. Increasing the number of representations 

assigned to each processor can reduce the chances of 
highly unbalanced assignments.

Second, in both multiprocessing and mpi mode, some 
tasks cannot be parallelized. For example, the main pro-
cess must send input data to each processor/node and 
collect the results when finished. Furthermore, Gypsum-
DL also spawns a separate Python interpreter on each 
processor to handle the assigned input. The fixed time 
required to start and shutdown each interpreter also 
impacts scalability. Increasing the time spent processing 
molecular representations relative to the communica-
tion/startup/shutdown times (again, by increasing the 
number of representations assigned to each processor) 
thus improves scaling.

In summary, using more processors can drastically 
reduce the total run time (Fig. 4). But as the input data is 
divided among more and more processors, the number of 
molecular representations handled per processor begins 
to drop. As with most large-scale parallel calculations, 
users must strike a balance between short run times and 
computational efficiency.

Gypsum‑DL improves pose‑prediction accuracy
To test Gypsum-DL’s impact on the accuracy of VS pose 
prediction, we considered 3151 protein–ligand com-
plexes taken from the PDBBind database [13, 14]. Both 
Gypsum-DL and Open Babel 2.3.2 were separately used 
to prepare 3D models of the 3151 ligands from the cor-
responding SMILES strings. In the case of Open Babel, 
we intentionally generated electrically neutral models 
(i.e., we omitted the Open-Babel -p flag) so as to better 
judge the impact of Gypsum-DL’s ionization feature on 
pose accuracy [11]. We docked both the Gypsum-DL-
prepared and Open-Babel-prepared molecules into their 
corresponding protein receptors using AutoDock Vina 
1.1.2 [12].

When we used Gypsum-DL, 71.4% of the 3151 ligands 
had RMSDs from the crystallographic pose that were 
less than 3.0 Å (mean: 2.37 Å; standard deviation: 2.03 
Å). The same was true of 53.0% of the Open-Babel-pro-
cessed molecules (mean: 3.40 Å; standard deviation: 2.51 
Å). An F-test led us to reject the hypothesis that the vari-
ances of the Gypsum-DL and Open-Babel RMSDs were 
equal (p = 0.00). A subsequent two-tailed t test (assum-
ing unequal variances) led us to reject the hypothesis that 
the Gypsum-DL and Open-Babel RMSDs had the same 
mean (p = 0.00). These results suggest that accounting 
for multiple ionization, tautomeric, chiral, cis/trans iso-
meric, and ring-conformational forms can improve pose-
prediction accuracy.

As an example of the advantages of Gypsum-DL pro-
cessing, consider folic acid bound to the human folate 
receptor beta (PDB ID: 4KMZ [31]; Fig. 5a). In this test 

Fig. 4  Gypsum-DL benchmarks. a Run times on a single compute 
node, using multiprocessing mode (1000 input SMILES strings). b Run 
times on multiple compute nodes, using mpi mode (20,000 input 
SMILES strings). All benchmarks were performed in triplicate. Errors 
bars represent standard deviations
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case, the RMSD between the Gypsum-DL-prepared and 
crystallographic poses was only 0.76  Å (Fig.  4b, c). In 
contrast, the RMSD between the Open-Babel-prepared 
and crystallographic poses was 11.42 Å (Fig.  5a). Visual 
inspection of the docked molecules, together with struc-
tural analysis using BINANA 1.2.0, a program that auto-
mates the detection of key protein/ligand interactions 
[32], provides insight into why Gypsum-DL performed 
better. Gypsum-DL deprotonated the two folate carbox-
ylate groups, allowing them to form strong electrostatic 
interactions with R152. In contrast, we did not instruct 
Open Babel to consider pH, so it protonated these car-
boxylate groups (Fig. 5a).

The input SMILES string represented folate in the 
favored 2-aminopteridin-4(1H)-one (keto) form. Open 
Babel does not generate alternate tautomeric states 
and so used this same form. Interestingly, Gypsum-DL 
selected the enol tautomer, 2-aminopteridin-4-ol. And 
yet in the accurate Gypsum-DL pose, the enol hydroxyl 

group may form hydrogen bonds with S190 and/or R119 
(Fig. 5b, dotted lines).

Gypsum-DL also protonated one of the 2-aminopteri-
din-4-ol nitrogen atoms. While unusual, the resulting 
positive charge enables electrostatic interactions with 
D97 and may further strengthen the π-π stacking with 
W187 and Y101 by adding a cation-π interaction. Gyp-
sum-DL’s protonated secondary amine may also form 
cation-π interactions with W187 and Y76 (Fig. 5b). It is 
admittedly unclear to what extent the Gypsum-DL enol 
tautomer and protonated amines are physiologically 
relevant, but these states may have contributed to the 
improved pose prediction in this case.

Sample libraries for download
We used Gypsum-DL to process two small-molecule 
libraries. Both are available free of charge from http://
durra​ntlab​.com/gypsu​m-dl/ for use in VS projects. We 
first obtained a copy of the NCI Diversity Set VI in flat 
SDF format from the National Cancer Institute (NCI). 

Fig. 5  An illustration of the crystallographic and docked poses of folic acid bound to the human folate receptor beta. The carbon atoms of the 
protein, the crystallographic ligand, the docked Gypsum-DL compound, and the docked Open-Babel compound are shown in green, yellow, gray, 
and pink, respectively. a The region of the pocket near R152. b The Gypsum-DL-prepared compound forms additional interactions with other 
protein residues (in green). Possible hydrogen bonds are shown as dotted lines. c The crystallographic pose, shown for reference. Image generated 
using BlendMol [33]

http://durrantlab.com/gypsum-dl/
http://durrantlab.com/gypsum-dl/
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This library includes compounds that have been care-
fully selected so as to have diverse pharmacophores 
and favorable chemical properties (e.g., high molecu-
lar rigidity, few rotatable bonds, limited chiral centers, 
etc.). The NCI provides relatively pure samples (≥ 90% 
by LC/Mass Spectrometry) free of charge upon request. 
Gypsum-DL produced 5996 3D models from 1558 input 
NCI structures (pH 7.4, 3.8 models per input molecule). 
Eight bridged compounds could not be processed. We 
confirmed that alternate ionization, tautomeric, iso-
meric, and ring-conformer forms were among the output 
structures.

We also processed a large library of 56,608 N-acylated 
unnatural amino acids. We first generated 2D repre-
sentations of these molecules by reacting alkyl-halide, 
Michael-acceptor, and carboxylic-acid building blocks 
in silico, using chemical reactions developed by the Dis-
tributed Drug Discovery (D3) initiative [15–18, 34]. D3 
is an educational program started at Indiana University–
Purdue University Indianapolis in 2003. Its well-docu-
mented, combinatorial solid-phase synthetic procedures 
enable students—including undergraduates—to syn-
thesize diverse compounds in a classroom-laboratory 
setting. Candidate ligands identified in VS of these com-
pounds can thus be easily synthesized and experimen-
tally tested. Gypsum-DL successfully processed all 56,608 
input compounds, producing 148,240 3D models (pH 7.4, 
2.6 models per input molecule).

To avoid amide-iminol tautomerization, we intentionally 
instructed Gypsum-DL to skip tautomer enumeration for 
the D3 compound set. The iminol form is rare in solution, 
though it is occasionally chemically relevant [35]. It is rea-
sonable to consider the iminol tautomer if virtual-library 
compounds contain only occasional amide moieties (e.g., 
the NCI set). But every compound in the D3 library con-
tains an amide moiety. Modelling the iminol tautomer 
would have needlessly expanded the library’s size, adding 
to the computational cost of any subsequent VS.

Comparison with other programs
Frog2 [5] is another open-source program for preparing 
small-molecule libraries. Its easy-to-use web interface 

is among its many strengths. This  web-based approach 
arguably makes Frog2 more user friendly than Gypsum-
DL. However, Gypsum-DL does offer some key capabili-
ties that Frog2 lacks (Table  2). For example, Frog2 uses 
the Open Babel cheminformatics toolkit [10] to add 
hydrogen atoms to input molecules, but it does not con-
sider alternate ionization states per a user-specified pH 
range. In contrast, Gypsum-DL uses the Dimorphite-DL 
algorithm [11] to predict ionization states. To illustrate 
the usefulness of this feature, we submitted oseltami-
vir carboxylate, an influenza neuraminidase inhibitor, to 
the Frog2 (v2.14) server (Fig.  6a). Frog2 protonated the 
carboxylic-acid moiety, despite the fact that it is largely 
deprotonated at physiological pH. In contrast, Gypsum-
DL appropriately deprotonated the carboxylate group. 
Deprotonation is critical in this case, as neuraminidase-
oseltamivir binding is governed largely by arginine-car-
boxylate electrostatic interactions that require a charged 
(deprotonated) carboxylate moiety [36]. 

Frog2 is similarly limited in its ability to generate 
alternate tautomeric forms. To illustrate, we submitted 
butan-2-one, a ketone, to the Frog2 server (Fig. 6b). The 
server correctly returned a 3D model of the ketone, but 
it did not identify the alternate enol form, but-2-en-2-ol. 
In contrast, both the keto and enol form were present 
among the Gypsum-DL-generated 3D models.

Both Frog2 and Gypsum-DL performed comparably 
at enumerating unspecified chiral centers and cis/trans 
isomers. Both generated (R) and (S) enantiomers of bro-
mochlorofluoroiodomethane when the input SMILES 
did not specify chirality (Fig.  6c). And both generated 
the E and Z isomers of 1-bromo-2-chloro-2-fluoro-1-
iodoethene when given an ambiguous SMILES as input 
(Fig. 6d).

Gypsum-DL takes a more thorough albeit computa-
tionally expensive approach when generating alternate 
non-aromatic-ring conformations. Frog2 initially uses 
DG-AMMOS [37] to generate ring conformations, but 
the algorithm ultimately maintains rings rigid and con-
siders only dihedral variations [5]. In contrast, Gypsum-
DL uses geometry optimization and clustering to identify 
distinct ring conformations. To illustrate the advantages 

Table 2  The available features of several stand-alone programs for converting molecular representations into 3D models

OpenEye’s OMEGA/QUACPAC and Schrödinger’s LigPrep are commercial programs mentioned in the Introduction. Frog2 and Balloon are freely available

Program Ionize Tautomers Chiral cis/trans Rings Optimize Free Open Source Web

Gypsum-DL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
OpenEye ✓ ✓ ✓ ✓ ✓ ✓
LigPrep ✓ ✓ ✓ ✓ ✓ ✓
Frog2 ✓ ✓ ✓ ✓ ✓ ✓
Balloon ✓ ✓ ✓ ✓ ✓
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of the Gypsum-DL approach, consider cis-1,4-di-tert-
butylcyclohexane (Fig.  6e). In the twist-boat conforma-
tion, both of the tert-butyl groups assume equatorial 
positions. The energy difference between the chair and 
twist-boat conformations of this compound are thus 
unusually small [38]. Frog2 generated models in only the 
chair conformation. Gypsum-DL generated models in the 
more stable twist-boat conformation.

An additional Gypsum-DL feature is advantageous in 
some VS contexts. Recall that many docking programs 
sample non-ring, single-bond torsions during the dock-
ing process itself. It is therefore computationally ineffi-
cient to dock otherwise identical models that differ only 

in their non-ring torsions. Frog2 generates these redun-
dant models, but Gypsum-DL does not. As an illustra-
tion, consider propan-1-ol (Fig.  6f ). Frog2 generated 
three redundant conformational isomers of propan-1-ol. 
In contrast, Gypsum-DL generated only one. We recom-
mend Frog2 in those cases that require a more complete 
torsion library (e.g., 3D- or 4D-QSAR [39], pharmacoph-
ore modelling [40], etc.). Gypsum-DL is arguably better 
suited for use with flexible-ligand docking programs such 
as AutoDock Vina [12].

Balloon [6, 7] is a free command-line program that tar-
gets more advanced users. We tested Balloon on the Linux 
platform only, as we could not run any of the provided 

Fig. 6  Example program output. Gypsum-DL outputs a deprotonated oseltamivir carboxylate, b both the ketone and enol forms of butan-2-one, c 
both the (R) and (S) enantiomers of bromochlorofluoroiodomethane, d both the E and Z isomers of 1-bromo-2-chloro-2-fluoro-1-iodoethene, e the 
twist-boat conformation of cis-1,4-di-tert-butylcyclohexane, and f only one rotomer of propan-1-ol. Image generated using BlendMol [33]
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binaries on macOS Mojave. Balloon 1.6.7 is in many 
ways similar to Frog2 (Table 2). We applied the program 
to the same test molecules described above. Like Frog2, 
Balloon does not consider alternate ionization or tau-
tomeric states (e.g., it protonated the oseltamivir car-
boxylate group and failed to identify the enol form of 
butan-2-one; Fig. 6a, b). While Balloon’s ring-generation 
algorithm produced the correct twist-boat conformation 
of cis-1,4-di-tert-butylcyclohexane (Fig. 6e), the tert-butyl 
moieties were not quite as equatorial as those of the Gyp-
sum-DL model. Balloon also tends to generate redundant 
conformational isomers (e.g., it produced two propan-
1-ol models; Fig. 6f ). On the other hand, like Gypsum-DL 
and Frog2, Balloon does successfully enumerate unspeci-
fied chiral centers (e.g., bromochlorofluoroiodomethane; 
Fig. 6c) and cis/trans isomers (e.g., 1-bromo-2-chloro-2-
fluoro-1-iodoethene; Fig. 6d).

Free and open-source cheminformatics toolkits such 
as RDKit and Open Babel [10] target the most advanced 
users. These toolkits provide building blocks that pro-
grammers can assemble into more complex cheminfor-
matics workflows. The RDKit and Open-Babel Python 
bindings are particularly useful for this purpose. Gyp-
sum-DL is built on RDKit and RDKit-powered software 
(Dimorphite-DL 1.0 [11] and MolVS 0.1.1).

We built Gypsum-DL on RDKit, MolVS, and Dimor-
phite-DL rather than Open Babel in part because these 
packages have more permissive software licenses (BSD, 
MIT, and Apache version 2, respectively). Permissive 
licenses encourage broad adoption by allowing users to 
incorporate software into their own projects without hav-
ing to adopt the same license. In contrast, Open Babel is 
released under a copyleft license (GNU General Public 
License, version 2), which requires that any derivate works 
also be copyleft. We note also that Gypsum-DL’s use of 
the Dimorphite-DL algorithm has several advantages over 
Open Babel’s approach (see Ref. [11] for details).

Conclusion
Given the role that structure-based VS plays in modern 
drug discovery, effective techniques for generating 3D 
small-molecule structures are critical. Gypsum-DL is a 
free, open-source program that performs this important 
conversion to 3D. To minimize computational costs with-
out sacrificing accuracy, we have designed Gypsum-DL 
to be highly parallel and computationally efficient. It can 
be easily incorporated into cheminformatic and drug-dis-
covery workflows. Gypsum-DL’s easy-to-use command-
line interface and default parameters make it accessible to 
intermediate users. Additional functionality and customiz-
ability allow advanced users to control more nuanced pro-
gram parameters such as the thoroughness of conformer 
sampling, the pH range, and the output-file format.

Though a powerful tool, Gypsum-DL does have its 
limitations. For example, it often fails to identify low-
energy conformations for large macrocycles. Gypsum-
DL uses the ETKDG algorithm [20] to generate initial 
3D models for subsequent UFF-based geometry opti-
mization. ETKDG assigns macrocycle torsions based on 
acyclic-bond torsion patterns derived from experiment. 
We expect that future versions of the ETKDG algorithm 
will assign macrocycle torsions using the proper experi-
mentally derived macrocycle torsion patterns. In the 
meantime, Gypsum-DL still generates valid, geometry-
optimized macrocycle models, though the output con-
formations sometimes differ substantially from the most 
energetically favorable minima.

Future efforts will also include building a graphical 
user interface and/or web application to better accom-
modate the needs of researchers who are less familiar 
with the command line. We also hope to enable Windows 
multiprocessing in a future release. These current limita-
tions aside, we believe Gypsum-DL will be a useful tool 
for researchers interested in structure-based, computer-
aided drug discovery. A copy can be downloaded free of 
charge from http://durra​ntlab​.com/gypsu​m-dl/.

Availability and requirements
Project name: Gypsum-DL.

Project home page: http://durra​ntlab​.com/gypsu​m-dl/.
Operating systems: Windows, macOS, Linux.
Programming language: Python 2/3.
Other requirements: RDKit, NumPy, SciPy, Mpi4py 

(optional).
License: Apache License, Version 2.0.
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