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The objective of this work is to establish a cluster-based
optimization method for the optimal design of cellular mate-
rials and structures for crashworthiness, which involves the
use of nonlinear, dynamic finite element models. The pro-
posed method uses a cluster-based structural optimization
approach consisting of four steps: conceptual design gener-
ation, clustering, metamodel-based global optimization, and
cellular material design. The conceptual design is generated
using structural optimization methods. K-means clustering
is applied to the conceptual design to reduce the dimensional
of the design space as well as define the internal architec-
tures of the multimaterial structure. With reduced dimension
space, global optimization aims to improve the crashworthi-
ness of the structure can be performed efficiently. The cellu-
lar material design incorporates two homogenization meth-
ods, namely, energy-based homogenization for linear and
nonlinear elastic material models and mean-field homoge-
nization for (fully) nonlinear material models. The proposed
methodology is demonstrated using three designs for crash-
worthiness that include linear, geometrically nonlinear and
nonlinear models.

∗Address all correspondence to this author.

1 Introduction
A cellular material is an assembly of unit cells, which

are themselves (mesoscale) structures formed by solid and
void phases. According to the unit cell architecture, cellu-
lar materials can be classified into (two-dimensional) honey-
combs and (three-dimensional) foams [1]. These materials
are observed in nature in the form of wood, cork, trabecular
bone, plant parenchyma, and marine sponges, among oth-
ers [2]. In engineering, man-made honeycombs and foams
are used in a variety of applications raging from coffee cups
and lattice injection molds [3] to helmet liners [4] and crash
padding in automotive vehicles [5]. Design of cellular mate-
rials and (macroscale) cellular structures is gaining relevance
due to advances in additive manufacturing and structural op-
timization methods. Models for functionally graded poly-
meric foams have proposed in order to improve the energy
absorption characteristics offered by uniform foams [6]. The
application of metal foams in crashworthiness has been in-
creasingly considered as fillers of straight [7–10] and tapered
[11–13] thin-walled tubular structures. Most of these stud-
ies rely on experimental testing and numerical simulations.
Using analytical expressions of honeycomb unit cells, neg-
ative stiffness honeycomb structures have been designed for
lightweight stiffness and energy absorption [14–16]. Multi-
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scale design of negative stiffness honeycombs have been also
addressed with Bayesian network classifiers [17].

Topology optimization of cellular materials can be dated
to the seminal work from Bendsøe and Kikuchi [18] used
two-dimensional square voids (honeycomb-like material) in
conjunction with the homogenization method to minimize
structural compliance. A hierarchical topology optimiza-
tion method has been proposed in which the topology of the
cellular material unit cell is optimized using the inverse ho-
mogenization method [19]. Their work has been extended to
include 3D cellular materials [20] and hyperelastic material
models [21].

The traditional homogenization and inverse homoge-
nization methods used in topology optimization can be ef-
ficiently applied to the design of cellular materials and struc-
tures with linear material models; unfortunately, such meth-
ods are of limited application in design for crashworthiness
due to the nonlinear natural of the models, which include
large strains, plasticity, and contact. To address this limita-
tion, multiscale analysis methods like FE2 [22–24] can be
applied. In this method, each point of the (macroscopic)
structure is associated with a cellular unit cell and, for each
macroscopic equilibrium iteration, a nonlinear load incre-
ment needs to be computed for each of the cellular unit cells.
While promising, this approach is computationally expen-
sive and not easily scalable to 3D crash structures undergo-
ing dynamic loads. A recent review of design optimization
methods for structural crashworthiness has been presented
by [25].

The objective of this work is to propose a cluster-based
optimization method for the optimal design of cellular mate-
rials and structures that involving nonlinear dynamic crash-
worthiness analysis. The proposed method builds upon
a cluster-based structural optimization approach previously
presented by the authors [26]. The basic approach consists
of three steps: conceptual design generation, clustering, and
metamodel-based global optimization. The method proposed
in this work extends the basic approach by incorporating a
fourth step consisting on the design of the cellular material.
The cellular material design makes use of two homogeniza-
tion methods, namely, energy-based homogenization [27,28]
for linear and nonlinear elastic material models, and mean-
field homogenization [29, 30] for nonlinear material mod-
els. The result of the metamodel-based global optimization
is the Pareto optimal cellular structures. For elastic mate-
rial models, inverse homogenization problems are solved to
synthesize the topology of the cellular unit cell of each ma-
terial cluster. For nonlinear material models, the cellular ma-
terial design step is incorporated into the metamodel-based
global optimization by applying the mean-field homogeniza-
tion method on predefined, parameterized cellular unit cells.

This paper is organized as follows. The basic clustered-
based structural optimization method is summarized in Sec.
2. The proposed method for design of cellular materials is
presented in Sec. 3. Numerical examples that include linear,
geometrically nonlinear, and (fully) nonlinear models are il-
lustrated in Sec. 4. Finally, a summary and discussion are
presented in Sec. 5.

2 Cluster-based Structural Optimization
The basic cluster-based structural optimization approach

involves three design steps: conceptual design generation,
clustering, and metamodel-based global optimization. The
method is presented in detail in [26] and summarized in this
section for clarity.

2.1 Conceptual design (Step 1)
The first step in the proposed design strategy is to gener-

ate a conceptual multimaterial design by solving a (related,
but simpler) structural optimization problem

find x ∈ Rn

minimize f (x,U(x))
subject to h(x,U(x)) = 0

g(x,U(x))6 0
0 6 xe 6 1, e = 1, . . . ,n,

(1)

satisfying the finite element equilibrium equations. In this
problem, the material properties are characterized by the de-
sign variables xe ∈R, for e = 1, . . . ,n, where n is the number
of finite elements in the design domain, f is the objective
function, h(x,U(x)) are the equality constraints, g(x,U(x))
are the inequality constraints, and U(x) are the global nodal
displacements.

To generate the conceptual design, this work makes use
of the Voigt upper bound material mixture model:

Ee(xe) = Emin +(E0−Emin)xe, (2)

where Ee is the element material Young’s modulus and E0 is
the base material Young’s modulus. The conceptual material
distribution x∗ ∈ Rn from (1) is used as the conceptual de-
sign. In practice, the desired number of desired materials K
in the final design is orders of magnitude lower than n; there-
fore, the dimension of the problem is reduced as described in
Sec. 2.2.

2.2 Clustering (Step 2)
The dimension reduction problem is addressed by clus-

ter analysis, which leads to groups of observations in such a
way that the observations in the same group are more sim-
ilar to each other than to those in other groups. This work
uses K-means [31], but other cluster analysis methods can
be implemented.

The input observations to the cluster analysis algorithm
is the conceptual material distribution x∗ ∈ Rn and the de-
sired number of clusters K, where 1 6 K 6 n; usually, K� n
(Algorithm 1 [32]). A discussion on the optimal value of K
can be found in [33].

The iterative refinement clustering algorithm starts by
distributing K cluster centers µk (k = 1, . . . ,K) within the set
of material parameters x∗e (e= 1, . . . ,n). According to the dis-
tance between x∗e and µk, the set is partitioned into K Voronoi



clusters Sk. From this point, the algorithm finds the cluster
centers that minimize the sum of square distance as follows:

find µµµ ∈ RK

minimize J(µµµ) =
K

∑
k=1

∑
x∗e∈Sk

(x∗e −µk)
2,

(3)

where the K-means objective function J(µµµ) is referred to as
the within-cluster sum of squares. The K-means cluster-
ing algorithm converges when the cluster centers no longer
change. The result is a K-dimensional clustered design suit-
able for building metamodels and performing global opti-
mization as described in Sec. 2.3.

Algorithm 1: Iterative K-means clustering algorithm
input : x∗1, . . . ,x

∗
n,K

output: µ1, . . . ,µK
1 Randomly initialize K cluster centroids: µ1, . . . ,µK ;
2 while stopping criterion has not been met do
3 for k : 1 to K do
4 Sk←{} ;
5 end
6 for e : 1 to n do
7 k← argmink′ (x

∗
e −µk′ )

2 ;
8 Sk← Sk ∪{xe} ;
9 end

10 for k : 1 to K do
11 µk← 1

|Sk| ∑xe∈Sk
xe ;

12 end
13 end

2.3 Metamodel-based global optimization (Step 3)
A relevant aspect of using metamodels in global opti-

mization is the ability to balance global exploration and local
exploitation. In other words, it is desirable to generate an ac-
curate metamodel that explores a large portion of the design
space with a few sampling points [34]. Several metamod-
els have been evaluated for design problems in crashworthi-
ness, including: polynomial response surface, radial basis
functions, and Kriging [33]. Based on cross-validation er-
rors, Kriging is the preferred metamodel and it is used in this
work. A Kriging metamodel f̂ of a scalar-valued function f
at the prediction point S(p) is given by

f̂ (S) = E[ f̂ (S)]+
P

∑
p=1

ωp

{
f (S(p))−E[ f (S(p))]

}
(4)

where E[·] is the expected value (mean), S(p) are the pth sam-
pled designs, and ωp are the Kriging weights, which are de-
rived from a covariance function. This metamodel can be
found implemented in MATLAB [35].

The input to the metamodels f̂ is µµµ. The output is the pre-
dicted values of the functions f. One metamodel is built for
each function in the optimization problem using Latin hyper-
cube sampling (LHS) points. Once the metamodels are built,
the global optimization problem can be solved. The global
optimization problem is to find the material parameters that
minimize the objective function vector f̂(x(µµµ)) : RK → Rn f ,
where n f is the number of objective functions. This is,

find µµµ ∈ RK

minimize f̂(x(µµµ))

subject to µL
k 6 µk 6 µU

k

k = 1, . . . ,K.

(5)

where µµµL and µµµU is a vector of lower and upper bounds
on the clustered design variables µµµ, respectively. The op-
timal design can be found using the Efficient Global Opti-
mization (EGO) algorithm [34, 36]. During the search for
the global optimum, the EGO algorithm balances between
global exploration and local exploitation by using the ex-
pected improvement function. The expected improvement
function calculates the amount of improvement one can ex-
pect at a given point S∗(p): consider an optimization problem
that minimizes two objectives f1(x) and f2(x), with the set
of m Pareto points

f∗1,2 =
{(

f ∗(1)1 , f ∗(1)2

)
, . . . ,

(
f ∗(m)
1 , f ∗(m)

2

)}
, (6)

where f ∗(i)j = f j

(
S∗(i)

)
and S∗(i) is a Pareto design. The ex-

pected improvement for this multi-objective problem is de-
fined as [34]:

E[I(S∗(p))] = P[I(S∗(p))] min{d1, . . . ,dm}, (7)

where P[I(S∗(p))] is the probability of improving both func-
tions f1 and f2 at the Pareto design S∗(p). The probability of
improvement is defined as:

P[I(S∗(p))] = Φ(u1
1)+

m−1

∑
i=1

[
Φ(ui+1

1 )−Φ(ui
1)
]

Φ(ui+1
2 )+

[1−Φ(um
1 )]Φ(um

2 ), (8)

where ui
j = ui

j(S∗(p)) =
(

f ∗(i)j − f̂ j(S∗(p))
)
/σ j(S∗(p)).

In (7), di for i = 1, . . . ,m is the distance between the vec-
tors (F̄1, F̄2) and

(
f ∗(i)1 , f ∗(i)2

)
, where (F̄1, F̄2) is the centroid

of the probability integral used to calculate E[I(S∗(p))]:

F̄1(S∗(p)) =
1

P[I(S∗(p))]

[
z1

1 +
m−1

∑
i=1

(
zi+1

1 − zi
1
)

Φ(ui+1
2 )+

zm
1 Φ(um

2 )] (9)



where zi
j = zi

j(S∗(p)) = f̂ j(S∗(p))Φ(ui
j) − σ j(S∗(p))φ(ui

j).
F̄2(S∗(p)) is defined similarly. Details on the derivation of the
multi-objective expected improvement formula can be found
in [34].

The expected improvement function is maximized us-
ing an evolutionary algorithm. If the maximum expected
improvement is less than 0.1% of the present best func-
tion value in two consecutive iterations, then convergence
is achieved and the metamodel needs no further improve-
ment; otherwise, the point where the expected improvement
is maximized is added to the sampled set and the metamodel
is updated. If no convergence is achieved in 100 iterations,
the algorithm is terminated.

3 Design of cellular materials
The basic cluster-based structural optimization approach

(Sec. 2) is extended in this work to the design of cellular ma-
terials and structures. The focus is on quasi-periodic lattice
structures in which each cellular material is a periodic, lat-
tice array. The proposed approach is suitable for both linear
and nonlinear cellular material models. For the design of
linear cellular structures, this work implements inverse ho-
mogenization so an optimal cellular unit cell topology can be
synthesized. For nonlinear cellular structures, mean-field ho-
mogenization is implemented so that nonlinear cellular ma-
terial properties can be approximated.

3.1 Mean field homogenization of nonlinear cellular
structure properties

Mean-field homogenization estimates the volume aver-
ages of the stress and strain fields avoiding the use of finite
element analysis [29]. For a two-phase material, a field vol-
ume average over a unit cell is estimated as follows:

〈g(xe)〉= v0 〈g(xe)〉ω0
+ v1 〈g(xe)〉ω1

, (10)

where 〈·〉 is the averaging operator, g(xe) is any field (e.g.,
stress or strain) defined over the unit cell, ω0 and ω1 are the
material phases, and v1 and v0 are corresponding the volume
fractions, such that v1 + v0 = 1.

Mean-field homogenization models include Voigt (uni-
form strain), Reuss (uniform stress), Self-Consistent model,
Mori-Tanaka model, Double inclusion model, Lielens inter-
polation model, and Bound interpolation model [29,30]. For
any of these models, two dependent strain concentration ten-
sors, Aε and Bε, are defined according to

〈ε〉
ω0

= Bε : 〈ε〉
ω1

, 〈ε〉
ω0

= Aε : 〈ε〉
ω
, (11)

where ω = ω0 ∪ω1. This work uses the Mori-Tanka model
[37]. This model is based on a two-phase composite (ma-
trix and inclusion) and the solution to the Eshelby’s prob-
lem [38]. The corresponding strain concentration tensor is

given by:

Bε =
{

I+ξ(I,C1) : C−1
1 : [C0−C1]

}−1
, (12)

where ξ(I,C1) is Eshelby’s tensor, C1 and C0 are the uni-
form stiffness tensors of the matrix and the inclusion, respec-
tively, and I is the fourth-rank symmetric identity tensor.

The generalization of the Eshelby’s solution and the
Mori-Tanaka homogenization model from linear elasticity to
nonlinear elasto-plasticity involves the incremental lineariza-
tion of the stress rate and the strain rate fields at each material
point in each phase through a tangent operator Cr as follows:

σ̇σσ(X, t) = Cr (ε(X, t), t) : ε̇(X, t) , (13)

where t is the time and X is the spatial coordinate of the
material point. Notably, Cr is not uniform, i.e., the stress
and strain fields are not uniform within the phase. Therefore,
the Eshelby’s solution and the Mori-Tanaka homogenization
model cannot be applied [37, 38]. In order to homogenize
(13), comparison materials that are uniform within the phase
can be defined as

σ̇σσ(X, t) = Ĉr (t) : ε̇(X, t) , (14)

where Ĉr(t) is the approximate tangent operator for a uni-
form material. The definition of Ĉr(t) and the practical im-
plementations of the nonlinear mean-field homogenization
method are discussed in details in [30]. This work uses
DIGIMAT-MF to perform the mean-field homogenization.

3.2 Energy-based homogenization of linear cellular
structure properties

For linear elastic materials, the homogenized stiffness
tensor CH

i jkl of the cellular materials can be calculated using
the homogenization theory [39, 40] by integrating over the
base cell volume Y ,

CH
i jkl =

1
|Y |

∫
Y

Ci jpq(ε
0(kl)
pq − ε

∗(kl)
pq )dY, (15)

where ε
∗(kl)
pq is the periodic solution of

∫
Y

Ci jpqε
∗(kl)
pq

∂vi

∂y j
dY =

∫
Y

Ci jpqε
0(kl)
pq

∂vi

∂y j
dY, ∀v ∈V

V = {v : v is Y-periodic}
(16)

where ε
0(kl)
pq is the unit test strain fields. (15) can be rewritten

in terms of mutual energies [40]:

CH
i jkl =

1
|Y |

∫
Y

Cpqrs(ε
0(kl)
pq − ε

∗(kl)
pq )(ε

0(i j)
rs − ε

∗(i j)
rs )dY. (17)



The unit cell is discretized into ne equal-sized elements,
the independent constitutive parameters can be written as:

CH
i jkl =

ne

∑
i=1

Qe
i jkl , (18)

where Qe
i jkl are the element mutual energies and can be de-

fined as

Qe
i jkl =

1
|Y e|

∫
Y e

Cpqrs(ε
0(kl)
pq − ε

∗(kl)
pq )(ε

0(i j)
rs − ε

∗(i j)
rs )dY e,

(19)
where Y e is the domain of the element e-th in the unit cell.

3.3 Design of linear cellular structures using inverse ho-
mogenization (Step 4)

The result of the multi-objective, metamodel-based
global optimization problem (5) is the optimal volume frac-
tions µµµ∗ of the cellular meterials within the structure. For
isotropic elastic materials, the stiffness tensor C∗(µ∗k) can be
determined using two material properties: Young’s modulus
E∗(µ∗k) and Poisson’s ratio ν0. As customary in topology op-
timization, the Poisson’s ratio is treated as constant, while the
Young’s modulus is defined as function of the volume frac-
tion µ∗k . This work uses the rule of mixture model defined
by

E∗(µ∗k) = E∗min +(E∗0−E∗min)(µ
∗
k)

η, (20)

where η≥ 1 is a penalization power, which by default takes
the value η = 3. The goal of this step is to find the optimal
cellular material topology with a homogenized property ten-
sor equal (or as close as possible) to C∗k(µ

∗
k). To this end, in-

verse homogenization is implemented [27, 28] to synthesize
the topology of the corresponding unit cell within the cellu-
lar material. The inverse homogenization problem is stated
as follows:

given µ∗k ,C
∗
k(µ
∗
k)

find xe ∈ Rne

minimize fe(xe) = ‖CH
k (xe)−C∗k(µ

∗
k)‖2

subject to he(xe) =
1
ne

ne

∑
j=1

x je−µ∗k = 0

0 6 xe 6 1,

(21)

where CH
k (xe) is the homogenized material property tensor

of the k-th cellular material, which can be calculated using
(17), and xe = [x1e, . . . ,xnee]

T is the vector of element densi-
ties within the e-th unit cell of the k-th cellular material. The
optimization problem (21) is solved for each of the K cellular
materials so that K unit cell topologies are obtained.

4 Numerical examples
In this section, three designs for crashworthiness are

presented. The first two examples consider elastic material
model, therefore, the optimal cellular material unit cell can
be synthesized using inverse homogenization. For the third
example, nonlinear material models are considered. In this
example, the cellular material has a predefined, parameter-
ized topology. The cellular material design step is incorpo-
rated into the metamodel-based global optimization through
the mean-field homogenization method.

4.1 2D linear bumper-like structure
This example considers a rectangular plate fixed at both

ends that is impacted in the middle by a rigid object. The cor-
responding design problem is illustrated in Fig. 1. 2D linear
finite element analysis under a static load is applied. Due to
the symmetry of the problem, only half of the entire structure
is analyzed. The design domain is discretized into 100×30
Q4 finite elements. Unit forces are applied to the upper-right
corner of the plate. As in other academic problems in topol-
ogy optimization [27], the base material has dimensionless
Young’s modulus E0 = 1 and Poisson’s ratio ν0 = 0.3.

30
m
m

100 mm

5 mm

Fig. 1: Design domain for the 2D bumper problem

Step 1: Conceptual design The conceptual design is gen-
erated from the solution of the following minimum compli-
ance, topology optimization problem:

find x ∈ Rn

minimize f (x,U(x)) = FTU(x)

subject to h(x) =
1
n

n

∑
e=1

xe−m f = 0

0 6 xe 6 1, e = 1, . . . ,n,

(22)

satisfying the equilibrium condition K(x)U(x) = F, where
K(x) is the global stiffness matrix, U(x) is the global dis-
placement vector, F is the global force vector, and m f is the
mass fraction target. The Voigt upper bound material mix-
ture model (2) is utilized to determine the Young’s modulus
in each finite element. The solution is obtained using the



MATLAB program top88 [41]. The final topology is ob-
tained after 48 iterations and contains 2563 unique values in
x∗ (Fig. 2).

Fig. 2: Conceptual design for the 2D bumper problem, f =
1.77×103.

Step 2: Clustering The conceptual design is generated
using 3000 design variables with 2563 unique values. It
is, therefore, impractical to utilize traditional optimization
schemes due to the large number of design variables. The
large number of design variables also compromises the man-
ufacturability of the design. To overcome these problems,
K-means is used to reduce the dimension of the design space
(Sec. 2.2).

A parametric study is performed to determine the influ-
ence of the K value. To enhance manufacturability as well
as effective use of metamodels in the next step, the optimal
value is selected in the range of 1 and 10. Figure 3 shows
the clustered designs corresponding to K = 1, . . . ,10. As the
number of clusters increases, the objective value J tends to
decrease (see Fig. 4). For the clustered design, it is desir-
able to keep the lowest K value as well as the lowest J value.
From these results, an elbow is observed at K = 4. After this
point, the rate of improvement of the objective function J is
significantly reduced. Therefore, K = 4 is identified as the
optimal number of clusters.

Step 3: Metamodel-based global optimization The de-
sign optimization problem in this step is to find the optimal
volume fractions µµµ of the cellular materials that minimize the
structural compliance satisfying a mass constraint. In order
to map the cellular material volume fraction to its material
property, this step uses the material mixture rule (20). To
ensure the feasibility of the cellular material property, η = 3
is used so that the (elastic) properties fall within the Hashin-
Shrikman bounds. The problem statement is the same as the
one in the conceptual design step (22), except that objective

function is replaced by its Kriging metamodel. This is,

find µµµ ∈ RK(K = 4)

minimize f̂ (x(µµµ)) : Kriging compliance

subject to h(x(µµµ)) =
1
n

K

∑
k=1

∑
xe∈Sk

µk−m f = 0

0.1 6 µk 6 1.0
k = 1, . . . ,K.

(23)

Note that in (23), the mass constraint h(x(µµµ)) is a linear
function, therefore, a metamodel is not required. The num-
ber of samples for LHS to build the initial metamodel f̂ is ten
times the number of clusters, i.e., P = 10K. The metamodel
is sequentially updated using the EGO framework. The final
optimal design is found in 88 iterations with the objective
value f = f̂ = 1.80× 103 and µµµ = [0.10,0.41,0.51,1.00]T.
The final design uses 87% fewer design variables than the
conceptual design; however, its compliance is only 1.6%
higher. The next step aims to find the optimal cellular struc-
ture within each of the four cellular material clusters.

Step 4: Cellular material design For any given cellu-
lar material volume fraction, one can find its correspond-
ing material property tensor, which is defined as the target
material property tensor C∗(µ∗k). The goal of this step is
to find the optimal cellular unit cell topology that matches
the target material property C∗(µ∗k). The optimal cellular
material volume fractions found in the previous step are
µµµ = [0.10,0.41,0.51,1.00]T. The equivalent cellular struc-
ture for µ = 1.00 and µ = 0.10 are solid and void. There-
fore, only the optimal cellular structures with µ = 0.41 and
µ = 0.51 need to be solved using the inverse homogenization
problem stated in (21). Table 1 shows the resulting optimal
cellular materials for the four clusters. Figure 5 shows the
optimal cellular structure of the (half domain) 2D bumper-
like design by substituting the cellular unit cell from Table 1
into the clustered design (Fig. 3, K = 4).

4.2 3D geometrically nonlinear bumper-like structure
A symmetric 3D bumper-like structure is considered in

this problem (Fig. 6). The structure is subjected to rigid pole
impact. The mass of the impacting pole is 2.2×10−3 ton and
the impacting speed is 10×103 mm/s. The design domain is
800 mm ×100 mm ×80 mm and it is discretized into 5 mm
×5 mm ×5 mm brick elements. The material of the struc-
ture is aluminum. The material properties are summarized in
Table 2. The four steps involved in the optimal design of the
cellular structure are described below.

Step 1: Conceptual design The conceptual design cor-
responds to the solution of a (linear) minimum compliance
problem subjected to a mass fraction constraint of 25% [42].
In this initial problem, the impact load is replaced by static
nodal forces along the center of the design domain. The solu-
tion is obtained using top3d and the material mixture model



K =  1 K =  2 K =  3 K =  4 K =  5

K =  6 K =  7 K =  8 K =  9 K =  10

1 10

Fig. 3: Clustered designs with K = 1 . . .10.

Table 1: Optimal cellular materials for the 2D bumper problem.

k µ∗k C∗k(µ
∗) CH

k (x
∗
e) Unit cell Tile 3x3

1 0.10


0.001 0.000 0.000

0.000 0.001 0.000

0.000 0.000 0.000




0.001 0.000 0.000

0.000 0.001 0.000

0.000 0.000 0.000



2 0.41


0.076 0.023 0.000

0.023 0.076 0.000

0.000 0.000 0.027




0.076 0.023 0.000

0.023 0.076 0.000

0.000 0.000 0.026



3 0.51


0.149 0.045 0.000

0.045 0.149 0.000

0.000 0.000 0.052




0.149 0.045 0.000

0.045 0.149 0.000

0.000 0.000 0.052



4 1.00


1.099 0.330 0.000

0.330 1.099 0.000

0.000 0.000 0.385




1.099 0.330 0.000

0.330 1.099 0.000

0.000 0.000 0.385



Table 2: Base material properties.

Property Value

Density 2.70×10−9 ton/mm3

Elastic modulus 70×103 MPa

Poisson’s ratio 0.33

(2) [42]. The boundary conditions and the resulting concep-
tual design are shown in Fig. 7. This design contains 25600
elements with 23685 distinct design variable values.

Step 2: Clustering The conceptual design is clustered us-
ing K-means with K = 1, . . . ,10. Figure 8 shows the result-
ing clustered designs. Figure 9 shows the relation between
the number of clusters and the K-means objective function
defined in (3). The elbow is observed at K = 3 and this val-

ues is chosen as the optimal number of clusters.

Step 3: Metamodel-based global optimization In this
step, the optimization problem is to find the Pareto designs
that maximize internal energy and minimize the mass of the
structure. As before, the design variable µk is mapped to the
material property tensor Ck using the material mixture model
(20) with η = 3. The multiobjective optimization problem is
formulated as follows:

find µµµ ∈ RK(K = 3)

maximize f̂1(x(µµµ)) : Kriging internal energy
minimize f2(x(µµµ)) : mass fraction
subject to 0.3 6 µk 6 1.0

k = 1, . . . ,K.

(24)

Notably, (24) has higher lower bound than (23). This
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Fig. 4: K-means objective as a function of the number of
clusters K for the 2D bumper-like problem.

Fig. 5: Optimal cellular structure with K = 4.
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is due to the effect in the finite element model. In our ex-
perience, nonlinear models require a higher lower bound
than linear models, i.e., a cellular material with a very small
volume fraction µk causes numerical instabilities during the
crash simulation. The Pareto designs are obtained using lin-
ear and geometrically nonlinear finite element analysis. Fig-
ure 10 shows the specific energy absorption (internal energy
divided by mass fraction) contour plot, conceptual design,
and the resulting Pareto fronts. As expected, the Pareto de-
signs dominate the conceptual design (Fig. 7). Interestingly,
the Pareto designs using linear finite element analysis seem
to dominate the geometrically nonlinear finite element anal-
ysis counterparts. This is due to the over estimation of the in-

Fig. 7: The final topology generated for the bumper problem
with internal energy= 1.90×106 J and mass fraction= 0.50.

ternal energy caused by the linear approximation of the strain
field.

Step 4: Cellular material design In this step, the optimal
topology of the cellular unit cell of each cluster is synthe-
sized by solving the inverse homogenization problem stated
in (21). The initial design is a solid cube with a void voxel in
the middle. Table 3 shows the final cellular topologies of five
selected Pareto designs from both linear and geometrically
nonlinear elastic models. Several topologies show a solid
cube with an internal, spherical void. Random initial design
would result in different topologies. As observed, even for
similar structural mass values f2, the topologies of the linear
and the geometrically nonlinear cellular unit cells are differ-
ent as well as the optimal cellular material volume fractions
µµµ∗. Material nonlinearity is considered in Sec. 4.3.

4.3 3D nonlinear bumper-like structure
In order to synthesize the topology of the cellular unit

cells in nonlinear material models, the inverse homogeniza-
tion method (Sec. 3.3) is replaced by the mean-field homoge-
nization method (Sec. 3.1). To this end, the cellular unit cell
is parameterized. In this is study, the parameter is defined
as the radius of an internal, spherical void in the center of a
solid cube. The cellular structure volume fraction changes
as a function of this parameter, hence, the cellular material
properties also changes. Figure 11 shows a set of material
nonlinear response curves as a function of the volume frac-
tion of the cellular unit cell.

The generation of the conceptual design (Step 1)
and clustering (Step 2) are the same as presented in
Sec. 4.2. Since the cellular unit cell topologies are al-
ready pre-determined, only metamodel-based global opti-
mization (Step 3) is required. In this step, the material mix-
ture rule (20) is replaced by the mean-field homogenization
method on a predefined parameterized cellular structure. The
metamodel-based global optimization problem is stated as
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Fig. 11: Material nonlinear responses with volume fraction
from 0.1 to 1.0 with step 0.1.

given µ(r),CH(µ(r))

find r ∈ RK(K = 3)

maximize f̂1(x(µµµ(r))) : Kriging internal energy
minimize f2(x(µµµ(r))) : mass fraction
subject to 0.3 6 µ(rk)6 1.0

k = 1, . . . ,K,

(25)

where r is a vector of the void sphere radius in the cellu-
lar material and CH(µ(r)) is the homogenized cellular ma-
terial property obtained by the mean-field homogenization
method. Note that, the cellular material volume fraction µ
now is a function of the sphere radius r.

The optimization problem (25) requires more computa-
tion power to solve since mean-field homogenization is re-



Table 3: Optimal cellular materials for the 3D bumper problem.

Linear Geometrically Nonlinear

f2 = 0.41 with µµµ∗ = [0.30,0.57,1.00]T f2 = 0.41 with µµµ∗ = [0.30,0.59,0.92]T

f2 = 0.53 with µµµ∗ = [0.40,0.84,1.00]T f2 = 0.53 with µµµ∗ = [0.39,0.92,1.00]T

f2 = 0.63 with µµµ∗ = [0.54,0.85,0.98]T f2 = 0.63 with µµµ∗ = [0.52,0.92,1.00]T

f2 = 0.72 with µµµ∗ = [0.64,0.92,1.00]T f2 = 0.74 with µµµ∗ = [0.66,0.97,1.00]T

f2 = 0.80 with µµµ∗ = [0.73,1.00,1.00]T f2 = 0.84 with µµµ∗ = [0.79,0.97,1.00]T

quired for each EGO iteration. However, no additional cel-
lular material design step is required since the cellular unit
cell is parameterized by r. The comparisons of the concep-
tual design (Fig. 7), the resulting cellular structures obtained
by the linear elastic analysis (Sec. 4.2), geometrically non-
linear elastic analysis (Sec. 4.2), nonlinear inelastic analysis,
and the specific energy absorption (internal energy divided

by mass fraction) contour are shown in Fig. 12. As expected,
the Pareto designs dominate the conceptual design. Notably,
the nonlinear analysis dominates all other designs, even with
the sub-optimal cellular unit cell. This indicates the impor-
tance of considering a nonlinear model in the design.
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5 Summary and Discussion
This work introduces a cluster-based optimization

method for the design cellular materials and structures. The
proposed method consists of four steps: conceptual design
generation, clustering, metamodel-based global optimization
and cellular material design. The conceptual design consists
of a continuous distribution of a response variable or a de-
sign variable generated through the solution of a structural
optimization problem. The K-means clustering algorithm is
utilized to reduce the dimension of the optimization problem
from thousands of design variables to a tractable number of
cellular material clusters. With the reduced number of design
variables, metamodel-based global optimization algorithms,
such as EGO, can be utilized. For the design of linear and ge-
ometrically nonlinear material models, inverse homogeniza-
tion is implemented so that the optimal cellular topologies
for each cluster are obtained.

For (fully) nonlinear material models, the cellular ma-
terial design step is incorporated into the metamodel-based
global optimization through the mean-field homogenization
method. The benefits of the proposed method, particularly
handling nonlinear models, are demonstrated through design
problems for crashworthiness that incorporate three different
material models, namely, 2D linear, 3D geometry nonlinear,
and 3D (fully) nonlinear. The resulting cellular structures
are evaluated under a dynamic crushing load. Simplifica-
tions and assumptions by using either linear static finite ele-
ment analysis or elastic material will over-predict the struc-
ture performance during the optimization. As the structures
are not optimized under the nonlinear dynamic cursing load,
they are dominated by the designs that are optimized under
the nonlinear dynamic crushing load.

While the proposed method can effectively handle the
large-scale, nonlinear cellular structures undergoing crush-
ing load, it has limitations that are currently under ongoing
research. With respect to the material model: densification
in the cellular materials and material failure need to be in-
corporated. With respect to the design method, the applica-

tion of the mean-field homogenization method is limited to
predefined parameterized cellular material models; inverse
homogenization-like methods are currently under investiga-
tion.
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