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Samar Hussein Binkheder 

BIOMEDICAL LITERATURE MINING AND KNOWLEDGE DISCOVERY OF 

PHENOTYPING DEFINITIONS 

Phenotyping definitions are essential in cohort identification when conducting 

clinical research, but they become an obstacle when they are not readily available. 

Developing new definitions manually requires expert involvement that is labor-intensive, 

time-consuming, and unscalable. Moreover, automated approaches rely mostly on 

electronic health records’ data that suffer from bias, confounding, and incompleteness. 

Limited efforts established in utilizing text-mining and data-driven approaches to automate 

extraction and literature-based knowledge discovery of phenotyping definitions and to 

support their scalability. In this dissertation, we proposed a text-mining pipeline combining 

rule-based and machine-learning methods to automate retrieval, classification, and 

extraction of phenotyping definitions’ information from literature. To achieve this, we first 

developed an annotation guideline with ten dimensions to annotate sentences with evidence 

of phenotyping definitions' modalities, such as phenotypes and laboratories. Two 

annotators manually annotated a corpus of sentences (n=3,971) extracted from full-text 

observational studies’ methods sections (n=86). Percent and Kappa statistics showed high 

inter-annotator agreement on sentence-level annotations. Second, we constructed two 

validated text classifiers using our annotated corpora: abstract-level and full-text sentence-

level. We applied the abstract-level classifier on a large-scale biomedical literature of over 

20 million abstracts published between 1975 and 2018 to classify positive abstracts 

(n=459,406). After retrieving their full-texts (n=120,868), we extracted sentences from 

their methods sections and used the full-text sentence-level classifier to extract positive 

sentences (n=2,745,416). Third, we performed a literature-based discovery utilizing the 

positively classified sentences. Lexica-based methods were used to recognize medical 

concepts in these sentences (n=19,423). Co-occurrence and association methods were used 

to identify and rank phenotype candidates that are associated with a phenotype of interest. 

We derived 12,616,465 associations from our large-scale corpus. Our literature-based 

associations and large-scale corpus contribute in building new data-driven phenotyping 

definitions and expanding existing definitions with minimal expert involvement. 

Josette Jones, RN, Ph.D, Chair 



vii 

TABLE OF CONTENTS 

 

LIST OF TABLES ...............................................................................................................x 
LIST OF FIGURES ........................................................................................................... xi 
LIST OF ABBREVIATIONS ........................................................................................... xii 
CHAPTER ONE: INTRODUCTION ..................................................................................1 

1.1 Background ................................................................................................................1 
1.2 Problem Statement .....................................................................................................2 
1.3 Overview of the Dissertation .....................................................................................3 
1.4 Significance ...............................................................................................................5 
1.5 Innovation ................................................................................................................11 
1.6 Description of the Chapters .....................................................................................12 

CHAPTER TWO: A CORPUS FOR ANNOTATING SENTENCES WITH 
INFORMATION OF PHENOTYPING DEFINITIONS IN BIOMEDICAL 
LITERATURE ...................................................................................................................14 

2.1 Introduction ..............................................................................................................14 
2.2 Background ..............................................................................................................17 

2.2.1 Phenotyping definitions ....................................................................................17 
2.2.2 Applications of phenotyping definitions ...........................................................18 
2.2.3 Medical corpora for text mining .......................................................................20 

2.3 Methods ...................................................................................................................22 
2.3.1 Selection of Phenotypes ....................................................................................23 
2.3.2 Abstracts and full texts collection and selection ...............................................24 
2.3.3 Corpus construction ..........................................................................................26 
2.3.4 Annotation process............................................................................................31 
2.3.5 Inter-annotator agreement (IAA) ......................................................................32 

2.4 Results ......................................................................................................................33 
2.4.1 Corpus description ............................................................................................33 
2.4.2 Inter-annotator agreement .................................................................................35 

2.5 Discussion ................................................................................................................36 
2.5.1 Sentence-level annotation and dimensions selection ........................................37 
2.5.2 Error analysis ....................................................................................................38 
2.5.3 Limitations of the study ....................................................................................41 
2.5.4 Applications of the corpus ................................................................................41 

CHAPTER THREE: AN AUTOMATED TEXT MINING APPROACH OF 
PHENOTYPING DEFINITIONS IN THE BIOMEDICAL LITERATURE ....................43 

3.1 Introduction ..............................................................................................................43 
3.2 Background ..............................................................................................................47 

3.2.1 EHR phenotyping..............................................................................................47 
3.2.2 Standardized terminologies for EHR phenotyping and literature mining ........48 
3.2.3 Biomedical literature text mining .....................................................................50 

3.3 Methods ...................................................................................................................52 
3.3.1 Building Lexica and Dictionary ........................................................................52 
3.3.2 Corpus description ............................................................................................53 
3.3.3 Information retrieval: the abstract-level classifier ............................................54 



viii 

3.3.4 Information extraction: the full-text sentence-level classifier ..........................55 
3.3.5 Classifiers performance evaluation ...................................................................57 
3.3.6 Large-scale literature screening ........................................................................58 

3.3.6.1 Phase 1—Large-scale screening of abstracts .............................................58 
3.3.6.2 Phase 2—Full text data pre-processing......................................................59 
3.3.6.3 Phase 3—Large-scale screening of full-text sentence-level ......................61 

3.4 Results ......................................................................................................................62 
3.4.1 The dictionary and lexica ..................................................................................62 
3.4.2 Optimal machine learning algorithms for classifying phenotyping related 
abstracts and full text sentences .................................................................................62 
3.4.3 Literature large-scale prediction results ............................................................65 

3.5 Discussion ................................................................................................................65 
3.5.1 Error analysis ....................................................................................................66 
3.5.2 Limitations of the study ....................................................................................68 
3.5.3 Future work .......................................................................................................69 

CHAPTER FOUR: DISCOVERY STUDY TO REPRESENT AND VALIDATE 
LITERATURE-BASED PHENOTYPING DEFINITIONS .............................................71 

4.1 Introduction ..............................................................................................................71 
4.2 Background ..............................................................................................................74 

4.2.1 Phenotypes in EHRs .........................................................................................74 
4.2.2 Co-occurrence and graph-based representation ................................................76 
4.2.3 Measures of associations...................................................................................76 

4.3 Methods ...................................................................................................................77 
4.3.1 Co-occurrence analysis of phenotypes ..............................................................77 
4.3.2 DICE scores for ranking phenotypes ................................................................78 
4.3.3 Network graphs .................................................................................................79 
4.3.4 Evaluation of literature-based co-occurrence results ........................................81 

4.3.4.1 Evaluation of derived co-occurrences with 50/50 sample split of 
articles ....................................................................................................................81 
4.3.4.2 Comparing T2DM concepts with existing sources for standard 
terminologies..........................................................................................................81 
4.3.4.3 Comparing with existing sources phenotyping definitions and clinical 
guidelines ...............................................................................................................81 
4.3.4.4 Manual analysis of Type 2 Diabetes Mellitus (T2DM) co-occurred 
terms .......................................................................................................................82 

4.4 Results ......................................................................................................................83 
4.4.1 Co-occurrence analysis results ..........................................................................83 
4.4.2 DICE ranking and network graphs of co-occurred terms .................................84 
4.4.3 Evaluation and validation analysis of literature-based co-occurred 
phenotypes .................................................................................................................87 

4.5 Discussion ................................................................................................................94 
4.5.1 Primary findings................................................................................................94 
4.5.2 Limitations of the study ....................................................................................97 
4.5.3 Impact and future work .....................................................................................99 

CHAPTER FIVE: DISCUSSION AND CONCLUSION ...............................................102 
APPENDICES .................................................................................................................109 



ix 

Appendix 1 ...................................................................................................................109 
Appendix 2 ...................................................................................................................113 
Appendix 3 ...................................................................................................................114 
Appendix 4 ...................................................................................................................116 
Appendix 5 ...................................................................................................................123 
Appendix 6 ...................................................................................................................130 
Appendix 7 ...................................................................................................................131 
Appendix 8 ...................................................................................................................133 
Appendix 9 ...................................................................................................................134 
Appendix 10 .................................................................................................................135 
Appendix 11 .................................................................................................................136 
Appendix 12 .................................................................................................................137 

REFERENCES ................................................................................................................139 
CURRICULUM VITAE 

  



x 

LIST OF TABLES 

 

Table 1 Abstract Inclusion-Exclusion criteria ...................................................................25 
Table 2 Sentence-level annotation’s categories, dimensions, and sub-dimensions ...........28 
Table 3 Level of evidence of a sentence with a phenotyping definition 
(Rule-based final decisions) ...............................................................................................30 
Table 4 Phenotypes appeared in more than one abstract in our corpus .............................34 
Table 5 Corpus description and inter-annotator agreement ...............................................35 
Table 6 Error analysis of the annotation disagreements ....................................................39 
Table 7 Mapping terms to ADE list of 279 phenotypes ....................................................53 
Table 8 Corpus summary ...................................................................................................53 
Table 9 Sections used for the “Baseline” extraction of full text articles ...........................60 
Table 10 Dictionary for 279 adverse drug events (ADEs) and other medical terms 
used for extraction of full-text sentence-level features ......................................................62 
Table 11 Classifiers performance for abstract level classifiers and full sentence 
classifiers on 10-cross validation .......................................................................................63 
Table 12 Classifiers validation results on testing dataset (70% validation results) ...........64 
Table 13 Results for large-scale screening of abstracts and full texts sentences ...............65 
Table 14 Error analysis for full-text sentence-level classifier ...........................................67 
Table 15 Dictionary used to extract co-occurrence and MedDRA normalization .............78 
Table 16 Co-occurrence analysis results ............................................................................83 
Table 17 Top 20 terms for co-occurred terms with Myopathy in the two divided 
datasets (50/50) and combined (full dataset) .....................................................................86 
Table 18 The number of terms from text sources (Literature, PheKB, UpToDate) 
in ten selected phenotypes .................................................................................................89 
Table 19 Categories of candidate phenotypes for Type 2 Diabetes Mellitus in 
the three sources .................................................................................................................91 
Table 20 Missing terms in our literature-based concepts and existed in PheKB...............96 
  



xi 

LIST OF FIGURES 

 

Figure 1 Theoretical model for the dissertation ...................................................................5 
Figure 2 Flowchart of selection of phenotypes ..................................................................24 
Figure 3 Iteration process of developing the annotation guidelines and the final 
annotation ...........................................................................................................................32 
Figure 4 Classifiers training and prediction flowchart ......................................................55 
Figure 5 Flowchart for large-scale data processing ...........................................................59 
Figure 6 Full text processing (Phase 2 & 3 in Figure 5) ....................................................61 
Figure 7 Full-text sentence-level classifier performance using logistic regression 
(threshold selector).............................................................................................................64 
Figure 8 Co-occurrence analysis, DICE ranking, and network graphs ..............................80 
Figure 9 The process of processing type 2 diabetes mellitus data and ranking of 
T2DM definition-related sentences ....................................................................................83 
Figure 10 Word cloud based on the frequency of unique concepts (Table 16) .................84 
Figure 11 Myopathy Network (full dataset) ......................................................................85 
Figure 12 Myopathy in MedDRA and SNOMED CT .......................................................88 
Figure 13 Venn diagrams of overlapping concepts for the 10 phenotype .........................90 
Figure 14 Named-entity recognition for “Tolerance” and examples from literature 
sentences ............................................................................................................................99 
Figure 15 Overview of literature-based phenotyping definitions mining and 
knowledge discovery of this dissertation .........................................................................106 
  



xii 

LIST OF ABBREVIATIONS 

 
ADE   Adverse Drug Event 
ANSI   American National Standards Institute 
CDC   Centers of Disease Control 
CHF   Chronic Heart Failure 
CRS   Chronic Rhinosinusitis 
CU   Columbia University 
CDM   Common Data Model 
CTD   Comparative Toxicogenomics Database 
CAD   Coronary Artery Disease 
CPT    Current Procedural Terminology 
CYPs   Cytochrome P450 
DTM   Document-Term Matrix 
DDI   Drug-Drug Interaction 
DILI   Drug Induced Liver Injury 
DILIN   Drug Induced Liver Injury Network 
EHR   Electronic Health Record 
eMERGE  Electronic Medical Records and Genomics 
EXC   Exclusion Conclusion 
XML   Extensible Markup Language 
FN   False Negative 
FP   False Positive 
FAERS  FDA Adverse Event Reporting System 
FDA   Food and Drug Administration 
HOI   Health Outcome of Interest 
HLGT   High Level Group Term 
HLT   High Level Term 
INC   Inclusion Conclusion 
IBD   Inflammatory Bowel Disease 
I2b2   Informatics for Integrating Biology at the Bedside 
IE   Information Extraction 
IR   Information Retrieval 
IRB   Institutional Review Board 
IAA   Inter-Annotator Agreement 
ITC   Intermediate Conclusion 
ICD   International Classification of Diseases 
IHTSDO  International Health Terminology Standards Organization 
ICH   International Conference on Harmonisation 
IMRAD  Introduction, Methods, Results And Discussion 
IDF   Inverse Document Frequency 
LOINC  Logical Observation Identifiers Names and Codes 
LR   Logistic Regression 
LLT   Lowest Level Term 
MedDRA  Medical Dictionary for Regulatory Activities 
MeSH   Medical Subject Headings 



xiii 

MEDIC  Merged Disease Vocabulary 
NB   Naïve Bayes 
NER   Named Entity Recognition 
NLP   Natural Language Processing 
OHDSI  Observational Health Data Sciences and Informatics 
OMOP   Observational Medical Outcomes Partnership 
OMIM   Online Mendelian Inheritance in Man® 
PD   Pharmacodynamics 
PK   Pharmacokinetics 
PheKB   Phenotype Knowledgebase 
PT   Preferred Terms 
PMR   Proportional Mortality Ratio 
SMO   Sequential Minimal Optimization 
SIDER   Side Effect Resource 
SRS   Spontaneous Reporting Systems 
SHARP  Strategic Health IT Advanced Research Projects 
SOC   System Organ Class 
SNOMED CT  Systematized Nomenclature of Medicine - Clinical Terms 
TN   True Negative 
TP   True Positive 
TF   Term Frequency 
TPR   True Positive Rate 
T2DM   Type 2 Diabetes Mellitus 
UMLS   Unified Medical Language System 
WEKA  Waikato Environment for Knowledge Analysis 
WHO   World Health Organization 
 



 

1 

CHAPTER ONE: INTRODUCTION 

 

1.1 Background 

Adverse drug events (ADE) are a big concern in health care, leading to significant 

costs, morbidity, and mortality (Eriksson, Werge, Jensen, & Brunak, 2014; "U.S. Food and 

drug administration. Preventable Adverse Drug Reactions: A Focus on Drug Interactions," 

2018). It has been estimated that over 2 million serious ADE are reported yearly ("U.S. 

Food and drug administration. Preventable Adverse Drug Reactions: A Focus on Drug 

Interactions," 2018). In the first quarter of 2017, the U.S. Food and Drug Administration 

(FDA) reported around 297,010 serious outcomes and around 44,693 deaths due to ADEs 

(Somnath Pal, 2017). The annually estimated cost to manage ADEs in the United States is 

up to 30.1 billion dollars due to hospitalizations, prolonged hospital stays, and prescriptions 

to treat ADEs (Sultana, Cutroneo, & Trifiro, 2013). The Institute of Medicine has defined 

an ADE as an unintended drug-related “injury caused by medical management”, and they 

note that most ADEs can be prevented (Homsted, 2000). Furthermore, polypharmacy, 

where a patient is taking more than one drug, increases the risk of drug reactions ("U.S. 

Food and drug administration. Preventable Adverse Drug Reactions: A Focus on Drug 

Interactions," 2018). Serious adverse events should be reported to the FDA, such as death, 

life-threatening, hospitalization, disability, permanent damage, or birth defects ("U.S. Food 

and drug administration. What is a Serious Adverse Event?,"). 

Pharmacovigilance is “the science and activities relating to the detection, 

assessment, understanding and prevention of adverse effects or any other drug-related 

problems” (Organization, 2002). One of the main objectives of pharmacovigilance is the 

early detection of novel and underreported adverse events and drug correlations (Rave 

Harpaz, Haerian, Chase, & Friedman, 2010) as a part of post-marketing drug discovery. A 

sub-domain of pharmacovigilance is pharmacoepidemiology that aims in quantifying 

ADEs in a large population (de Vries & de Jong-van den Berg, 2001). Aims of 

pharmacovigilance and pharmacoepidemiological research includes: early detection of 

ADEs as well as identification of contributing risk factors and its quantitative aspects (de 

Vries & de Jong-van den Berg, 2001). Post marketing surveillance is important to detect 

both anticipated and unanticipated adverse effects (Czaja et al.). Studies show that early 
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discovery of post-marketing ADEs (R. Harpaz et al., 2013) and identification of causes is 

necessary to decrease the occurrence harmful events (Tache, Sonnichsen, & Ashcroft, 

2011). Post-marketing research provides the opportunity to study factors that contribute to 

the risk of ADE in general population, such as pharmacokinetics in patients with organ 

impairment, drug’s dose and frequency, and genotype (Sultana et al., 2013). 

There are two major sources for mining ADE-drug associations: spontaneous 

voluntary reporting and electronic health records (EHRs). FDA Adverse Event Reporting 

System (FAERS) is an example of a spontaneous voluntary reporting system where health 

professionals, consumers, and manufacturers send reports of adverse events. EHRs have 

become an emerging source for pharmacovigilance, which is similar to FAERS, support 

hypothesis generation in areas like drug-adverse effect associations (Castro et al., 2014). 

Unlike the challenges of voluntary reporting of suspected ADEs (e.g. bias and 

underreporting), EHRs longitudinal data is capable of providing measurements of drug’s 

harm in actual patients (Eriksson et al., 2014) using medications in real-world settings 

(Castro et al., 2014) contributing to advancement of the medical knowledge ("U.S. Food 

and drug administration. Preventable Adverse Drug Reactions: A Focus on Drug 

Interactions," 2018). However, it also can add some challenges when conducting EHR-

based studies for ADEs or any phenotype. 

 

1.2 Problem Statement 

Even though EHR secondary research helped in advancement of the overall 

population health, it accompanied with several challenges. To conduct an EHR-based 

study, one of the earliest stages in EHR mining is the identification of a cohort of specific 

cases (Q. Li et al., 2014) which needs a phenotyping case definition. These phenotyping 

case definitions might not be readily available for all conditions, especially when dealing 

with large-scale phenotypes. Furthermore, conventional methods to create new case 

definitions require experts’ knowledge or to use existing case definitions require literature 

evidence and reviews. Either of these methods can be time-consuming and labor-intensive. 

Within the EHR setting, incorrectly identified phenotypes cases can result in unreliable and 

biased results (Macdonald, Kilty, & van Walraven, 2016). Therefore, we have identified 

the lack of availability of phenotyping definitions for many cases of interest or their 
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inconsistencies (Hansen et al., 2013; R. L. Richesson, Hammond, et al., 2013) as a 

knowledge gap, which creates a barrier when a researcher needs to identify cases for EHR-

based research. 

With this, there is a need to develop informatics approaches and data-driven 

approaches to define cases (Lasko, Denny, & Levy, 2013) on large-scale settings (Rubbo 

et al., 2015). Utilizing biomedical literature, there is a need to discover and understand the 

repeatable patterns and relationships of phenotypes that help in building new phenotyping 

case definitions and support existing definitions (Overby et al., 2013; Rasmussen et al., 

2014). Such health informatics tools help to utilize literature-based phenotype definitions 

information for future applications (Kirby et al., 2016; Rasmussen et al., 2014) and to 

support the knowledge-discovery of unknown relationships across these phenotypes. 

Based on our research interest, the cases of interest for this work are primarily 

derived as phenotypes with an evidence to be an ADE (Duke et al., 2012; H. Y. Wu, Zhang, 

Desta, Quinney, & Li, 2017). However, several other phenotypes were included because 

some are considered confounding, risk factors, or other clinical concepts. In other words, 

our proposed approach is generalizable to not only ADE cases, but also to other phenotypes 

and diseases. 

 

1.3 Overview of the Dissertation 

This dissertation presents an informatics approach for mining phenotyping 

definitions in the biomedical literature. We developed a text-mining pipeline combining 

rule-based and machine-learning methods to automate retrieval, classification, and 

extraction of phenotyping definitions’ information from literature. To our knowledge, there 

is no existing work for mining literature-based phenotyping definitions. To achieve this 

goal, we proposed three Aims. 

Aim 1. Develop a corpus for annotating phenotyping case definitions in published 

literature. An annotated corpus is needed for building and evaluating text-mining tools. As 

a starting point, we created a list of phenotype of interest to collect abstracts and full texts. 

These phenotypes were ADEs that were selected from an observed ADE evidence in 

previously published in-vitro Pharmacokinetics (PK), in-vivo PK, and clinical 

Pharmacodynamics (PD) studies. Moreover, we analyzed the presentation of phenotyping 
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case definitions in the biomedical literature to identify sections where this information can 

be located. A new annotation schema is developed to manually annotate a corpus on a 

sentence level. One of the major goals for developing the annotated domain-specific corpus 

is to serve as a gold standard for developing text-mining tools (J.-D. Kim, Ohta, & Tsujii, 

2008) that is accomplished in Aim 2. 

Aim 2. Automated extraction of sentences with phenotyping case definitions from 

biomedical literature. These ADE terms served as the building block for developing our 

dictionary and lexica, corpus, and text-mining pipeline. For building the lexica, a 

comprehensive dictionary was developed using standard terminologies reflecting major 

entities, including clinical diagnoses, procedures, and drugs. This dictionary can assist in a 

number of text-mining tasks, such as named entity recognition (NER), information 

retrieval, and information extraction. Moreover, we developed a text-mining pipeline that 

will be composed of two levels of classification. First, Abstract-level classifier to retrieve 

abstracts with relevant studies describing phenotyping definitions. Second, Full-text 

sentence-level classifier to classify sentences within methods sections of the full text with 

that show evidence of phenotyping case definitions. These classifiers will utilize 

informatics approaches of text-mining, machine learning, and rule-based. The validated 

classifiers are applied on a large-scale literature and further information extraction and 

knowledge discovery is performed in Aim 3. 

Aim 3. Perform a discovery-based study to evaluate and validate literature-based 

phenotyping case definitions of selected phenotypes. In this Aim, we will utilize sentences 

with evidence of phenotyping case definitions from the large-scale screening of literature 

as well as the lexica and dictionary (from Aim 2). We aimed to use a data-driven approach 

to prioritize the co-occurrence of terms for a phenotype of interest in literature. Moreover, 

an approach was proposed to rank the sentences for each ADE of interest based on its 

significant associated terms. Lastly, we will compare, validate, and evaluate the results of 

literature-based phenotypes with existing sources. Figure 1 shows the theoretical model for 

this dissertation. 
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Figure 1 Theoretical model for the dissertation 

 

1.4 Significance 

First, to facilitate the utilization of EHRs for clinical research. Here we consider 

ADEs as an example of that we use in this dissertation. Studies showed that experimentally 

validating large numbers of drugs-ADEs associations is not feasible and the use of multiple 

resources that together would be able to derive true supportive evidence of these 

associations (Banda, Callahan, et al., 2016). Spontaneous voluntary reporting, such as 

FAERS, have been widely used for signal detection of ADEs. However, the spontaneous 

voluntary reporting suffers from some limitations, such as bias in reporting, lack of 

causality ADE-drug relationship, incomplete data, and duplicated reports. For example, 

ADEs signal scores from FAERS data by themselves do not provide causal ADE-drug 

relationship when used by itself. Instead, FAERS data provide advantage for mining ADE-

drug associations in initial stages of ADE-drug discovery as a guiding resource rather than 

hypothesis generation. Therefore, it is necessary to utilize other resources, such as 

biomedical literature and EHRs, to generate ADE-drug causal relationships and hypotheses 

(R. Harpaz et al., 2012). EHRs are a potential resource to support translational research 

and hypothesis generation in areas of drug safety (Yao, Zhang, Li, Sanseau, & Agarwal, 

2011), and to better understand health outcomes. However, there are several requirements, 

which majorly is the availability of phenotyping case definitions for building the 

appropriate cohort of cases, which we are addressing in this work. 
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Second, to support the biomedical research towards high-dimensional drug 

interactions in EHRs. Here we extends our example of ADEs research on the need to 

support high-dimensional discovery, which is necessary as a part of pharmacovigilance 

research in which the identification of ADEs during the post-marketing stage (Banda, 

Evans, et al., 2016). However, there are still limitations where existing studies mostly work 

on a small scale of associations (Duke et al., 2012), and tend to use traditional methods to 

identify associations of single drugs and single ADE phenotypes (L. Li, 2015). On the other 

hand, clinical trials are capable of capturing multiple phenotypes, but they suffer from low 

sample size and lack “real world” factors that contribute to the efficacy of drugs. Some 

examples of mining high-dimensional ADE-drug associations (L. Li, 2015) are the 

identification of six novel DDIs that increased the risk of myopathy (Duke et al., 2012). 

Another example is the identification of 171 novel drug interactions associated with eight 

(L. Li, 2015; Tatonetti, Fernald, & Altman, 2012). Therefore data mining approaches are 

capable of expanding the dimensions of associations in health records (L. Li, 2015). This 

expansion requires also scaling up the phenotyping process and their definitions by using 

data-driven and data mining approaches. 

Identifying health outcome of interest (HOI) is still a concern in observational 

studies (Fox et al., 2013). For example, Zhang et al. have developed a statistical model to 

identify high-dimensional myopathy-drug associations in EHR. Myopathy definition was 

adopted from literature and were mapped to the concept IDs of Observational Medical 

Outcomes Partnership (OMOP) Common Data Model (CDM) (Zhang et al., 2015). 

However, when dealing with large number of ADEs, there is a need to more scalable 

methods for defining ADEs in EHRs. Accurate definitions are critical in building cohort of 

patients experiencing ADEs and should be matched with study’s goals. De Bie et al. in 

their drug safety surveillance study defined several ADE phenotypes of interest, such as 

acute liver injury and upper gastrointestinal bleeding, using iterative process that was 

initiated by using clinical criteria published in the literature. Diagnosis codes, laboratories, 

and clinical notes were used to define these ADE phenotypes (de Bie et al., 2015). De Bie 

et al. stated that their cohort selection has affected the estimation of statistical power of 

their study, where different definitions can provide different results. 
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“The extrapolation of relevant safety outcomes from adults to children does 
not always work and that it is very important to choose age appropriate 
events and definitions when setting up EHR-based pediatric surveillance 
systems” (de Bie et al., 2015). 
 
In the following sections, we identified the challenges associated with developing 

or using standard phenotyping definitions. 

Third, developing new phenotyping definitions is complex. Such development 

process generates several potential challenges that elaborate in the complexity and 

inconsistency of the phenotyping definitions. The first challenge is that the development 

of a new case definition is a long, time-consuming, and labor-intensive process (Lasko et 

al., 2013; Park & Choi, 2014). A multidisciplinary team works on developing and 

designing phenotyping definitions for mining EHR data where manual review, multiple 

iterations, and validation can be also needed (Carroll, Eyler, & Denny, 2011). Further, such 

a process requires an extensive manual review of EHR charts. For example, Hsu et al. 

developed an algorithm to identify chronic rhinosinusitis (CRS) cases and controls using 

ICD-9 International Classification of Diseases, Ninth Revision (ICD-9) and Current 

Procedural Terminology (CPT) codes. They validated the algorithm using manual chart 

review as the reference standard (Hsu, Pacheco, Stevens, Smith, & Avila, 2014). As a part 

of the manual chart review, the authors identified the need of reviewing the encounter notes 

and CT sinus results, which was held by two reviewers and took a length of 40 hours for 

reviewing only 200 cases. Therefore, such algorithm development process cannot be 

scalable to a bigger set of phenotypes or ADEs (Hsu et al., 2014). Even though several 

Natural Language Processing (NLP) tools have been developed in the medical domain, 

clinical narrative is the most challenging part of the phenotype definition development 

because it requires extensive human involvement (Park & Choi, 2014). Therefore, using 

common terminologies and expanding dictionaries can support newly developed NLP tools 

for mining ADE phenotypes in EHR. 

The second challenge, the multiple cycles of communication during the 

development process of case definitions can be time-consuming, inflexible, and error-

prone. One traditional way of developing new definition is expert-driven, an iterative 

process that requires multiple cycles of communication between the clinical researcher and 

the data analyst. The clinical researcher usually uses the phenotype definition in a human-



 

8 

readable format. On the other hand, the data analyst’s role is to convert the phenotype 

definition from the human-readable format into the computable format. However, 

mismatches between the desired definition and the computable definition are highly 

possible (Xu et al., 2015). Communication challenges can also arise due to the 

multidisciplinary nature needed for developing the phenotype definition where it requires 

input from different medical professionals, such as geneticists, clinicians, informaticians, 

and epidemiologists (Mo et al., 2015). Therefore, creating a source that supports scientific 

collaboration for these definitions will be imperative. 

The third challenge, after the development process, many case definitions lack 

portability across different institutions, which can affect phenotyping definitions’ 

generalizability.  One of the important aspects for any phenotyping definition is portability 

across different EHR systems and/or institutions, especially when applying complex 

selection criteria. The nature of phenotyping definitions across different studies can be 

highly diverse and inconsistent, which is a recognized problem between different 

institutions (Christley, Duffy, & Martin, 2012; Rubbo et al., 2015). Definition portability 

facilitates comparing, sharing, validating, assessing, and disseminating of phenotyping 

definitions (Simonett et al., 2015). The validation step across multiple institutions is 

important to ensure that the definition is performing well across different populations 

(Liao, Ananthakrishnan, et al., 2015). A major player to the lack of portability is the lack 

in consistency between different EHR systems in recording clinical data (Malinowski, 

Farber-Eger, & Crawford, 2014). This can be also true in clinical data that are presented in 

the biomedical literature, as clinical researchers tend to report the same clinical terms 

differently. In addition, Hsu et al. stated that definition generalizability can be affected by 

variations in clinical use of standardized codes between different individuals, centers, or 

specialties (Hsu et al., 2014). Therefore, it is recommended to share phenotyping 

definitions to improve portability and generalizability (Overby et al., 2013). Properly 

documenting published phenotyping definitions in the literature can have an important role 

in discovering the patterns that can cause lack of portability across different phenotyping 

definitions. 

Fourth, literature-based phenotyping definitions are critical, but still not scalable. 

Reporting phenotyping case definitions is very inconsistent in studies where it can even 
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lack some broad or basic description (Yao et al., 2011). The variation of these definitions 

and lack of their availability can inhibit the research of ADEs (Christley et al., 2012; Rubbo 

et al., 2015). The variation in textual descriptions of the phenotyping defining is one of the 

biggest challenges of implementing existing phenotyping definitions. Inconsistency can be 

due to the fact that there is no internationally agreed standard that assists in conducting and 

reporting phenotyping definitions as well as its validation studies (Rubbo et al., 2015). This 

can result in an inconsistent implementation and interpretation of the definitions because 

of variation in concept granularities and ambiguities. Several factors contributed to the 

variations and inconsistencies of definitions that were published in observational studies 

including the increase use of EHR data and other data sources, and the use of standard 

codes (e.g. ICD- codes) (Shankar-Hari et al., 2016). These definitions can differ across 

different studies depending on study purpose and design. For example, Shankar-Hari et al. 

conducted three studies to develop a new definition for identifying septic shock, which was 

called to review by Society of Critical Care Medicine (SCCM) and the European Society 

of Intensive Care Med (ESICM) in January 2014. In their systematic review, 44 studies 

were identified. They stated that septic shock definitions in the literature reported different 

cutoffs and combinations for the following phenotypes “blood pressure, fluid resuscitation, 

vasopressors, serum lactate level, and base deficit” (Shankar-Hari et al., 2016). Their final 

consensus definition for septic shock was: 

 
“Adult patients with septic shock can be identified using the clinical criteria 
of hypotension requiring vasopressor therapy to maintain mean BP 65 
mmHg or greater and having a serum lactate level greater than 2 mmol/L 
after adequate fluid resuscitation” (Shankar-Hari et al., 2016). 
 
Therefore, harmonization of phenotyping definitions that were already published 

in the literature can be very effective in generating stronger phenotype definitions. 

The process of searching literature for evidence-based EHR-phenotyping 

definitions lack scalability, and can be difficult, slow, and time-consuming. However, there 

is evidence that “repeatable patterns within phenotyping algorithms exist” (Rasmussen et 

al., 2014). Using a systematic approach to learn the repeatable patterns in phenotyping 

definitions can be a strong starting point for advancing the process of their development 

and our understanding of these definitions (Rasmussen et al., 2014). Moreover, using 
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systematic approaches can improve the consistency and validity of the phenotyping 

definitions that are generated from different institutions (Overby et al., 2013). A rare 

condition called drug-induced liver injury (DILI) is an example of a case definition with 

such semantic challenge (Overby et al., 2013). Overby et al. addressed the challenge of 

harmonizing the DILI definition between two institutions, Columbia University (CU) and 

Mayo clinic. They reported that there was significant differences in DILI phenotyping 

definitions between CU and Mayo clinic. These differences are reflected by the final scope 

or goal of the study. For example, unlike DILI definition used in CU that used “DILI caused 

by any medications”, the DILI definition that Mayo clinic used was narrowed by 

medications selection as “DILI caused by a medication preparation of interest to Drug 

Induced Liver Injury Network (DILIN)”. The final harmonized definition selected the 

narrowed criteria used by Mayo clinic. They reported that factors influencing these 

differences could be due to the baseline population size, data access characteristics, and 

multiple interpretations of EHR phenotyping definitions (Overby et al., 2013). 

Literature-derived evidence can be established through extraction of evidence from 

unstructured text using combination of text-mining and data mining approaches, for 

example, extraction pairs of biological entities (Ananiadou, Kell, & Tsujii, 2006). Don R. 

Swanson describes knowledge discovery and hypothesis generation from literature as 

 
“assembling pieces of a puzzle to reveal an unnoticed, unintended, but not 
unintelligible pattern. The fragmentation of science into specialties makes 
it likely that there exist innumerable pairs of logically related, mutually 
isolated literatures”  (Swanson, 1988). 
 
In 1988, Swanson discovered a relationship between migraines and magnesium 

deficiency by identifying 11 factors common between the two conditions, which are 

 
“type A personality, vascular tone and reactivity, calcium channel blockers, 
spreading cortical depression, epilepsy, serotonin, platelet activity, 
inflammation, prostaglandins, substance P, and brain hypoxia” (Swanson, 
1988). 
 
Consequently, Swanson generated a hypothesis that supplementing food with 

magnesium can improve migraines. Unlike traditional manual literature, text-mining 

supports scalable and high-throughput research, and is capable of discovering unknown 
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associations and patterns hidden in unstructured text. Biomedicine is a “data-rich but 

hypothesis-poor science”. Accelerating knowledge discovery and hypotheses generation 

by using data-driven methods followed by experimental data validation is needed 

(Ananiadou et al., 2006).  With this, our goal in this work is to use large-scale evidence 

extracted from literature to support knowledge discovery of patterns that can assist in 

defining phenotypes in the EHRs. This can assist in the future by combining biomedical 

literature-derived knowledge with EHR to advance scientific research as well as novel 

discoveries and hypotheses generation (Ananiadou et al., 2006; Rebholz-Schuhmann, 

Oellrich, & Hoehndorf, 2012; Spasic, Ananiadou, McNaught, & Kumar, 2005) in areas of 

EHR-based research. 

 

1.5 Innovation 

This work is the first, based on our knowledge, to use text-mining approaches to 

mine phenotyping definition published in the biomedical literature. Therefore, it is 

innovative in several ways. 

Development of a novel foundational informatics approach for annotating and 

mining phenotyping definitions in the literature. In this work, we analyzed the major 

patterns of phenotyping case definitions’ modalities, such as data sources, standardized 

codes, clinical, and laboratory information. This was supported by using existing 

terminologies and ontologies as well as proposing new keywords that characterize these 

phenotyping definitions. Based on the analysis of features and ontologies, we developed a 

new annotating schema to manually annotate these definitions. The gold standard corpora 

can assist in training and testing classifiers to automate the extraction of the definitions’ 

information and to eliminate the barriers of collecting these definitions. The schema, the 

corpora, and the classifier will contribute in the field of text mining of the biomedical 

information. 

A literature-based large-scale screening of evidence-based phenotyping definitions 

is capable of performing an advanced information retrieval and extraction. Consequently, 

it will introduce a new resource with a large collection of phenotyping definitions. Due to 

the fact that there is limited research in the area of validation of phenotyping algorithms in 

the literature (C. Barber, D. Lacaille, & P. R. Fortin, 2013), researchers need to conduct a 
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series of literature reviews to validate them (C. Barber et al., 2013). Therefore, the 

collection of definitions will enable research to improve, use, and validate these definitions 

as well as discover variability patterns in different definitions. 

An approach to prioritize phenotype concepts derived from large-scale corpus that 

assist in defining phenotypes and identify novel associations. Unlike previous work that 

relied on abstracts rather than full texts (Botsis & Ball, 2013), in this work we proposed 

using full texts for more comprehensive retrieval of information. According to our 

knowledge, this is the first work that uses full texts for mining published phenotyping 

definitions. 

With this, we believe that this work will lay as the foundation of literature-based 

mining phenotyping case definitions information in the field of health informatics. 

 

1.6 Description of the Chapters 

In section 1.2, we proposed three Aims to perform our literature mining and 

discovery-based study of phenotyping definitions. This dissertation is composed of five 

chapters, including this chapter (Chapter 1). Each of following chapters (two, three, and 

four) has introduction, background, methods, discussion, and results. Chapter five is the 

conclusion chapter. The description of each chapter is as the following: 

Chapter 2—this chapter is titled as “A corpus for annotating phenotyping 

definitions sentences in biomedical literature”. To address Aim 1 of this dissertation, the 

following tasks are performed in this chapter: selection of phenotypes, abstracts and full 

texts collection and selection, construction process of corpus, and annotation process as 

well as inter-annotator agreement evaluation. 

Chapter 3—this chapter is titled as “An automated text-mining approach of 

phenotyping definitions in the biomedical literature”. This chapter covers Aim 2, with the 

following tasks: building lexica and dictionary, corpus used for training and building the 

model, information retrieval and extraction, classifiers performance evaluation, and a 

literature large-scale screening pipeline. 

Chapter 4—this chapter is titled as “Discovery study to represent and validate 

literature-based phenotyping definitions”. This chapter covers Aim 3 that further extend 

the information extraction. In this chapter, we performed co-occurrence analysis on the 
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positively classified sentences, DICE coefficients for ranking phenotypes and sentences 

and for building network graphs, and validation of literature-based co-occurrence across 

three sources. 

Chapter 5—this is the discussion and conclusion chapter. It connects the results 

chapters of this dissertation and provides a discussion of the implication of this work. 
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CHAPTER TWO: A CORPUS FOR ANNOTATING SENTENCES WITH 

INFORMATION OF PHENOTYPING DEFINITIONS IN BIOMEDICAL 

LITERATURE 

 

In Chapter 1, we introduced the problem that phenotyping case definitions are not 

available for all phenotypes of interest. There are several efforts for generating phenotyping 

definitions, but the efforts in both literature-based mining and knowledge discovery of 

phenotyping definitions are still limited. Our aim is to develop an automated approach to 

mine these definitions in the literature. However, the state-of-art text-mining methods are 

based on a labeled corpus (Dogan, Leaman, & Lu, 2014; Shatkay & Craven, 2012). 

Therefore, the goal of this Aim is to build corpora and guidelines to annotate phenotyping 

definitions in the biomedical literature. These corpora are used in the following chapters. 

 

2.1 Introduction 

The current direction is moving towards the utilization of electronic health records 

(EHRs) for clinical research, including ADE discovery (Chiang et al., 2018; Czaja et al.; 

Yeleswarapu, Rao, Joseph, Saipradeep, & Srinivasan, 2014; J. Zhao, Henriksson, Asker, 

& Bostrom, 2015). EHR-based studies, in general, rely on defining a phenotype in a 

population in order to advance the knowledge of a disease or an adverse event (Glicksberg 

et al., 2018; R. L. Richesson, Hammond, et al., 2013). In terms of EHR-based research, the 

term “phenotype” can refer to observable patient characteristics inferred from clinical data, 

such as biomarkers and diseases (Hripcsak & Albers, 2013, 2017; R. L. Richesson, 

Hammond, et al., 2013; Shivade et al., 2014). An accurate phenotyping definition is critical 

to establish a cohort of patients for EHR-based research (Glicksberg et al., 2018; Gurwitz 

& Pirmohamed, 2010; Kirby et al., 2016; R. L. Richesson, Hammond, et al., 2013), 

including cross-sectional, and association studies (Banda, Seneviratne, Hernandez-

Boussard, & Shah, 2018). Utilizing either structured or unstructured data (Banda et al., 

2018; Hripcsak & Albers, 2017; W. Q. Wei & Denny, 2015), there are several methods 

that can be used for EHR phenotyping, including natural language processing (NLP), rule-

based systems, statistical analysis, data mining, machine learning, and hybrid systems 

(Banda et al., 2018; Shivade et al., 2014). Depending on the phenotype of interest as well 
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as study’s research question, standard queries for defining a phenotype can consist of any 

of the following: logical operators, standardized codes, data fields, and values sets 

(concepts derived from vocabularies or data standards) (R. L. Richesson, Hammond, et al., 

2013). With this, the goal is to develop the annotation guidelines that are able to capture 

such information about phenotyping case definitions. 

There are two types of methods for developing a phenotyping definition either 

developing new case definitions, or utilizing existing case definitions' information that are 

already available in different sources. Traditional phenotyping relies on expert knowledge 

and these definitions might change overtime (Hripcsak & Albers, 2017). This task is 

challenging due to complexity of EHRs and heterogeneity of patient’s records (Banda et 

al., 2018). Furthermore, it is also a labor-intensive process where a multidisciplinary team 

is needed with team members includes biostatistician, clinical researcher, EHR 

informatician, and NLP expert (Liao, Cai, et al., 2015). One example of expert-driven 

definitions is a study that identified patients with chronic rhinosinusitis (CRS) for a better 

understanding of the “prevalence, pathophysiology, morbidity, and management” using 

EHR data. Their team developed an algorithm to define CRS cases using ICD-9 diagnosis 

codes and Current Procedural Terminology (CPT) codes. The process took several 

iterations until they achieved predictive positive value of 91%. Further, they stated that 

manual review of notes and sinus CT results took two reviewers 40 hours, which is not 

scalable to larger number of patients or notes. Not to mention, their CRS definition has 

only been tested on one site and its performance is not known in other centers (Hsu et al., 

2014). This creates further difficulties when creating new definitions. Lessons learned from 

The Electronic MEdical Records and GEnomics (eMERGE) Network (Gottesman et al., 

2013) showed that the process of developing, creating, and validating a phenotyping 

definition for a single disease is time consuming and can take around 6-8 months. 

Consequently, the eMERGE network developed Phenotype KnowledgeBase (PheKB) 

(Kirby et al., 2016), which is a phenotype knowledgebase collaborative environment that 

allows collaborating and commenting between groups of researchers who were invited by 

a primary author. PheKB (Kirby et al., 2016) uses an expert-driven approach where new 

phenotyping definitions are generated by multi-institutional input and available publicly 

for use. PheKB provides a library of definitions for several phenotypes and incorporates 
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several data modalities, majorly including standard codes, laboratories, medications, and 

NLP. 

Another method relies on deriving phenotyping definitions from existing data 

sources, such as EHR and biomedical literature. Some of these were addressed manually 

using systematic reviews (Claire Barber, Diane Lacaille, & Paul R. Fortin, 2013; Fiest et 

al., 2014; Leong et al., 2013; Lui & Rudmik, 2015; Macdonald et al., 2016; Pace, Peters, 

Rahme, & Dasgupta, 2017; Souri et al., 2017) or automatically using computational 

approaches. Systematic reviews have a big role in the medical knowledge. However, with 

the massive amount of information, there is still a need to use automated approaches to 

extract medical knowledge; for example, the rate of published clinical trials articles is over 

20,000 per year while around 3000 systematic reviews were indexed in MEDLINE yearly. 

Overall, systematic reviews are time-consuming and labor-intensive (Cohen et al., 2010). 

On the other hand, the automated approaches for mining phenotypes in the literature were 

mostly focused on extracting phenotype terminologies (Collier et al., 2015; Henderson, 

Bridges, Ho, Wallace, & Ghosh, 2017; D. Zhao & Weng, 2011) in studies without the 

defined scope of EHR-based studies. Some of these studies (Botsis & Ball, 2013; D. Zhao 

& Weng, 2011) have addressed only one phenotype at a time and utilized abstracts rather 

than full text. Unlike full texts that are richer in information, abstracts are not sufficient for 

the granularity of phenotyping definitions information. Furthermore, such approaches 

might not be generalizable especially when working on a large-scale set of phenotypes. In 

“Automating case definitions using literature-based reasoning” (Botsis & Ball, 2013), 

Botsis and Ball (Botsis & Ball, 2013) have developed a corpus and a classifier to automate 

extraction of “anaphylaxis” definitions from literature. However, Botsis and Ball (Botsis 

& Ball, 2013) only relied on abstracts rather than full text that provides more rich 

information. In addition, the classifier was developed for only one condition "anaphylaxis". 

Even though they focused on some cues of phenotyping definitions e.g. signs and 

symptoms, they did not consider other cues of phenotyping definitions (e.g. standardized 

codes and laboratory measures) (Botsis & Ball, 2013). Therefore, this effort did not address 

our information needs that reflecting modalities of phenotyping definitions such these used 

in PheKB. 
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With the goal of minimizing human involvement, we realized that there is a lack of 

phenotyping tools (Shivade et al., 2014) addressing or automating the extraction of existing 

definitions from scientific literature. There is a strong motivation for this research, to our 

knowledge; there is no existing corpora that address our information needs. An example of 

developing corpus for phenotypes is PhenoCHF (Noha Alnazzawi, Thompson, & 

Ananiadou, 2014; N. Alnazzawi, Thompson, Batista-Navarro, & Ananiadou, 2015), an 

annotated corpus by domain experts for phenotypic information relevant to Congestive 

Heart Failure from literature and EHR. The PhenoCHF corpus data was derived from i2b2 

(the Informatics for Integrating Biology at the Bedside) discharge summaries dataset 

(Uzuner, 2009) and five full text articles retrieved from PubMed that covered the 

characteristics of Chronic Heart Failure (CHF) and renal failure. However, PhenoCHF 

focused only on one condition, CHF, and it was built on a small set of only five full text 

articles. Furthermore, they did not annotate contextual cues for phenotyping case 

definitions. 

 

2.2 Background 

2.2.1 Phenotyping definitions 

Different institutions view a phenotyping case definition differently. For example, 

Strategic Health IT Advanced Research Projects (SHARP), which is a collaboration effort 

(academic and industries partners) to advance the secondary use of clinical data. It views a 

phenotyping definition as the 

 
“inclusion and exclusion criteria for clinical trials, numerator and 
denominator criteria for clinical quality metrics, epidemiologic criteria for 
outcomes research or observational studies, and trigger criteria for clinical 
decision support rules, among others” (Chute et al., 2011). 
 
On the other hand, eMERGE phenotyping definitions extends to include practices 

as the 

 
“algorithmic recognition of any cohort within EHR for a defined purpose. 
These purposes were inspired by the algorithmic identification of research 
phenotypes” (Chute et al., 2011). 
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Further practices that eMERGE used in developing phenotyping definitions include 

other data modalities, such as diagnostics fields, laboratory values, medication use, and 

NLP-based (Chute et al., 2011). Here, we summarize definitions from different 

perspectives for defining a phenotyping case definition, which are: 

 
“The identification of patients’ cohort in the EHR by defining an inclusion 
and exclusion criteria performed for structured data and unstructured 
clinical text” (Pathak, Kho, & Denny, 2013). 
 
“An EHR-based cohort that only select subset of patients who fulfill the 
pre-defined phenotype” (Yu et al., 2015). 
 
“EHR-based research is concerned about cohort selection that is the 
identifying cases and controls for a phenotype of interest. A phenotype 
definition is developed from combining multiple EHR data, such as billing 
codes, medications, narrative notes, and laboratory data” (Carroll et al., 
2011; Liao, Cai, et al., 2015; Roden & Denny, 2016). 
 
“The process of deriving a cohort of a phenotype of interest using either 
low-throughput or high-throughput approaches” (R. L. Richesson, Sun, 
Pathak, Kho, & Denny, 2016). 
 
“The identification of cohort utilizing risk factors, clinical or medical 
characteristics and complications” (R. Richesson et al.; Yadav, Steinbach, 
Kumar, & Simon, 2018). 
 

2.2.2 Applications of phenotyping definitions 

The aim of this section is only to provide some overview about study designs in the 

biomedical research where phenotyping case definitions can be used. A phenotyping case 

definition can be applied to several types of studies, such as cross-sectional, association, 

and experimental (Banda et al., 2018). For example, pharmacovigilance, predictive 

modeling, clinical effectiveness research, and risk factors studies are considered use cases 

for the association case-control or cohort studies. More examples are shown in (Banda et 

al., 2018). Different study designs require different cohort designs as well as definitions 

where one phenotype can be defined in different ways depending on the study needs and 

research question. For instance, type 2 diabetes mellitus, which can be defined as 
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“patients with type 2 diabetes or far more nuanced, such as T2DM patients 
with stage II prostate cancer and urinary urgency without evidence of 
urinary tract infection” (Banda et al., 2018). 
 
There are two major types of studies in the biomedical domain: primary research 

that directly collect data and secondary research that relies published information or 

sources of data. The focus of this section is on the primary research since it is the used 

research for EHR-phenotyping. Primary research has observational, also called 

epidemiological studies, and interventional studies, also called experimental studies 

(Thiese, 2014). Study designs for observational study designs are ecological, proportional 

mortality, case-crossover, cross-sectional, retrospective and prospective cohort. Each of 

these has its own strengths and weaknesses. Examples of some of the primary studies that 

we cover in this work (Thiese, 2014): 

 Ecological study design: Generally, called retrospective, and it is used to estimate 

a prevalence of a disease or an ADE in a population. The grouping is based on 

geographical locations or temporal associations. 

 Proportional mortality ratio study (PMR): Identify relationships between exposure 

and outcomes. E.g. cardiovascular deaths among different ethnic groups. 

 Cross-sectional studies, also prevalence studies: Samples are selected based on 

exposure without knowing their outcome. 

 Case-control study design: Samples are identified based on the case status. This is 

the optimal study design for rare diseases. 

 Retrospective and prospective cohort study design: Cohort studies is to identify 

patients based on the exposure and observe the development of the outcome of 

interest either for the future or for the past. Prospective is the gold standard for 

observational studies. 

New research, such as pharmacovigilance, is moving towards the emergence of 

electronic health information, machine learning, and NLP (Sarker & Gonzalez, 2015). 

EHRs provide complementary data with some flexibility with extended periods tracking, 

large sample size, and data heterogeneity (Yadav et al., 2018). The availability of a cohort 

can create several opportunities for data mining and modeling such as risk models, adverse 

event detection, measuring the effect of intervention, and building evidence-based 



 

20 

guidelines (Yadav et al., 2018). Cohort identification can be accomplished by using 

phenotyping definitions, which classify patients with specific disease based on EHR data, 

can be manually developed by experts or machine learned.  A phenotyping definition 

shared some major features, such as logic, temporality, and the use of standard codes 

(Newton et al., 2013). Furthermore, examples of data categories that are commonly used 

across institutions are age, sex, race, ethnicity, height, weight, blood pressure, inpatient and 

outpatient diagnosis codes, laboratory tests, and medications (Newton et al., 2013). On the 

other hand, there are some challenges with cohort identification process that vary 

depending on the study type. The phenotyping process is more sophisticated than creating 

simple code (Banda et al., 2018). Several factors can contribute to their complexity, 

including the used methods and confounding. For example, when defining acute or less-

defined phenotypes, one critical step is addressing confounding using matching of gender 

and age. These confounders are relatively easy to address, but others, such as co-diseases, 

might be more difficult. In some of the studies, Castro et al. were not able to identify 

methods for matching controls in EHR data. Case-control studies may inherent some 

limitations in detecting comorbidity such as insufficient controls, identification of correct 

confounders, and matching process. Literature-based comorbidity associations derived by 

clinical-expert is considered as a reference standard to compare the performance of the 

matched controls. However, the study reported that those clinical-expert driven 

associations between a list of PheWAS disease groupings and inflammatory bowel disease 

(IBD) generated some disagreement among gastroenterologists. Instead, Castro et al stated 

that their goal is to compare matching algorithms methods in order to identify clinically 

meaningful comorbidity associations (Castro et al., 2014). 

 

2.2.3 Medical corpora for text mining 

Text mining application mostly relies on supervised learning requires a corpora that 

is a collection of text annotated by experts. This is due to the challenges of recognizing 

terms as the example provided by Rodriguez-Esteban R for: “the text “early progressive 

multifocal leukoencephalopathy” could possibly refer to any, or all, of these disease terms: 

“early progressive multifocal leukoencephalopathy,” “progressive multifocal 

leukoencephalopathy,” “multifocal leukoencephalopathy,” and “leukoencephalopathy””. 
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Such annotations based on expert knowledge can be used to train machines, for example, 

on recognizing biomedical terms in text (Rodriguez-Esteban, 2009). An annotated high-

quality corpus requires experienced annotators and comprehensive guidelines (Dogan et 

al., 2014). The manually annotated corpus can serve as a gold standard for building 

automated systems including statistical, machine learning, or rule-based (H. Gurulingappa 

et al., 2012). Examples of annotated biological corpora, are GENIA for annotating 

biological terms (J. D. Kim, Ohta, Tateisi, & Tsujii, 2003), BioCreative1 for annotating 

biological entities in literature e.g. genes and proteins (Krallinger et al., 2015), and 

BioNLP2 that is a collection of corpora, such as Colorado Richly Annotated Full-Text 

Corpus (CRADF)3 and Protein Residue Corpora4, for annotating biological entities. Other 

usages of an annotated corpus is as curated data to create literature-based knowledgebase, 

such as MetaCore5 and BRENDA86 for enzyme functional data (H. Gurulingappa et al., 

2012). However, these are mostly restricted to specific domains such as biological domain 

which annotates information, such as gene names, protein names, cellular location or 

events (e.g. protein-protein interaction) (H. Gurulingappa et al., 2012). Availability of 

corpora in the medical domain is even more limited than biological domain. One of the 

major reasons is that medical domain confronted with data availability and ethical issues 

of using electronic medical records (H. Gurulingappa et al., 2012) , including privacy and 

confidentiality and Health Insurance Portability and Accountability Act (HIPAA) 

regulations (Ozair, Jamshed, Sharma, & Aggarwal, 2015). Examples of biomedical corpora 

are Text Corpus for Disease Names and Adverse Effects for annotating diseases and 

adverse effects entities (Harsha Gurulingappa, Klinger, Hofmann-Apitius, & Fluck, 2010), 

CLinical E-Science Framework (CLEF) for annotating medical entities and relations (e.g. 

drugs, indications, findings) in free text of 20,000 cancer patient records (Roberts et al., 

2009), and Adverse Drug Effects (ADE) corpus7 for annotating ADEs entities (H. 

                                                 
1 http://www.biocreative.org/news/corpora/biocreative-iii-corpus/ 
2 http://bionlp-corpora.sourceforge.net/ 
3 http://bionlp-corpora.sourceforge.net/CRAFT/index.shtml 
4 http://bionlp-corpora.sourceforge.net/proteinresidue/index.shtml 
5 http://www.genego.com/metacore.php 
6 http://www.brenda-enzymes.org/ 
7 https://sites.google.com/site/adecorpus/home/document 
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Gurulingappa et al., 2012). None of the available corpora serves our needs for this task to 

annotate contextual cues of defining a phenotype in observational studies on sentence-level 

annotations from full texts, such as the presence of codes, laboratory tests, and type of data 

used. 

With this, our aim is annotating a corpus that capture sentences with not only 

phenotype concepts, but also contextual cues of a phenotyping definition that are presented 

in the literature. We believe that EHR-based studies will provide relevant information for 

defining phenotypes. An annotation schema is developed, and it serves as a foundational 

approach for annotating phenotyping definitions-related information in the literature. Both 

the corpus and the guidelines are designed based on extensive textual analysis of sentences 

to reflect phenotyping definitions information and cues. Ten dimensions are proposed to 

annotate the corpus at the sentence-level. Furthermore, after identifying the presence or 

absence of the ten dimensions, the level of evidence for each sentence was generated 

automatically using rule-based approach to ensure consistency and accuracy of 

annotations. All sentences in the methodology section were extracted from full text 

research papers. To the best of our knowledge, there is no existing corpus that is publicly 

available for annotating sentences with contextual cues of phenotyping definitions from 

biomedical full texts. 

 

2.3 Methods 

The procedure of a corpus construction consists of documents selection and 

sentence-level annotation (Verspoor et al., 2013). The documents selection starts with 

selection of phenotypes of interest that can assist in searching for abstracts. After that, 

abstracts collection prepared and full texts of selected abstracts were downloaded for the 

sentence-level annotation. For the sentence-level annotation, ten dimensions are proposed 

to annotate sentences with cues of a phenotyping case definition e.g. biomedical terms, and 

standard codes. Finally, their conclusions derived to an overall level of evidence for each 

sentence. 
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2.3.1 Selection of Phenotypes 

Our group is primarily interested in ADEs (Duke et al., 2012; H. Y. Wu et al., 

2017). Therefore, we identified our phenotypes of interest based on our previous work of 

literature-based discovery (Duke et al., 2012; H. Y. Wu et al., 2017) that have identified 

drug-drug interactions (DDIs)  due to interactions among five Cytochrome P450 (CYPs) 

enzymes, including CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A. These CYPs 

have a significant role in drug metabolism leading to several DDIs (Ogu & Maxa, 2000; 

J.-F. Wang & Chou, 2010). Furthermore, text-mining technology were used to extract DDI 

evidence and their corresponding ADEs from biomedical literature. DDIs were identified 

with evidence in all types of DDI studies, including clinical pharmacodynamics (PD), 

clinical pharmacokinetics (PK), and in vitro PK studies (H. Y. Wu et al., 2017). Among 

those clinical PD abstracts with 986 drugs pairs, we explored ADEs from those abstracts 

containing substrates of five major metabolizing enzymes above mentioned. The drug-

enzyme relationships were collected from Flockhart table1 and FDA. As a result, a list of 

ADEs (n = 673) was used as the primary list of phenotypes. All the ADE terms for those 

substrates were Medical Dictionary for Regulatory Activities terminology (MedDRA) 

(Brown, Wood, & Wood, 1999) preferred terms (PT). 

To narrow down our phenotypes of interest, we identified ADEs that showed 

evidence of drugs-ADEs linkage in Side Effect Resource (SIDER) database (Kuhn, 

Letunic, Jensen, & Bork, 2016) and found that 398 ADEs were successfully linked to the 

side effects in SIDER database. At the end, expert reviews were performed by two experts 

who are Lang Li, Ph.D., and Sara Quinney, Pharm.D., Ph.D. to finalize the list of 

phenotypes of interest. They excluded ADE terms that are did not meet our lab research 

interests, such as terms related to infections and cancer. The final list of phenotypes of 

interest is 279 ADEs (Appendix 1). Figure 2 shows the process of the selection of 

phenotypes. 

 

                                                 
1 https://drug-interactions.medicine.iu.edu/Main-Table.aspx 
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Figure 2 Flowchart of selection of phenotypes 

 

2.3.2 Abstracts and full texts collection and selection 

To search the literature for observational studies, we consulted a medical librarian 

to assist in building search queries to ensure the highest coverage. A review study reported 

that due to the broad nature of phenotyping studies, it can be difficult to perform one search 

that is capable of capturing all EHR phenotyping studies (Banda et al., 2018). Therefore, 

we collected our abstracts based on two search criterions: 

First, we searched PubMed database to identify observational studies of our 

phenotypes of interest. The searching query consist of [an ADE phenotype of interest term] 

combined with a set of keywords that were tested to retrieve relevant observational studies 

(see Table 1). We did not put restrictions on the year of publication and the searched was 

performed on November 2017. The total number of retrieved abstracts without duplications 

was 1323 abstracts. One reviewer manually reviewed each abstract to select articles that 

met the inclusion criteria described in Table 1. It also shows the exclusion criteria that was 



 

25 

applied to exclude abstracts. A total of 800 abstracts met our inclusion criteria. From the 

800 abstracts, a subset of 57 abstracts were randomly selected for full-text sentence-level 

annotation task (PMIDs in Appendix 2). 

 

Table 1 Abstract Inclusion-Exclusion criteria 
Searching Query [A phenotype of interest term] AND electronic health record (code OR codes 

OR algorithm* or "case definition" OR "phenotyping" OR "case identification" 
OR claim OR administrative) 
 

Inclusion Criteria 1. Abstracts should satisfy each of the following: English, full text available 
and original research. 

2. The primary source of data is EHR or EMR. Some accepted terms: Registry, 
administrative data. 

3. The article should use observational data (population-based, surveillance, or 
cohort/cases) either retrospectively or prospectively. 

4. Clearly describe a case definition or algorithm according to any of the 
following criteria: coding algorithms (SNOMED, ICD9/10, CPT, LOINC, 
RxNorm, UMLS, READ), laboratory, natural language processing (NLP), or 
inclusion and exclusion criteria. 
 

Exclusion Criteria 1. Review articles 
2. Non-human studies 
3. Nurses/practitioners as primary population of the study 
4. Not real-world data: e.g. simulation data 
5. Tools, systems, or reporting systems that do not address phenotyping or 

descripting phenotyping definition. 
 

Second, we used abstracts from a previous search that was performed by two 

reviewers. The used search queries were more generalized such as “electronic health record 

AND myopathy” (all queries are presented in Appendix 3). The downside of these queries 

is that it generates large number of abstracts that can be time-consuming and labor-

intensive to review all of them. The reviewers collected some relevant abstracts from these 

search queries. From these collected abstracts, we randomly selected 29 abstracts. The 

query searches with PMIDs are showed in Appendix 3. 

With this, the total number of abstracts derived from the two search criterions is 86 

abstracts. We achieved this number based on our goal to reach around 4000 sentences from 

methods sections. We downloaded their full texts and we tokenized them into sentence 

tokens using a package called Perl::Tokenizer as preparation for the annotation process. In 
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addition, we manually fixed sentences that were tokenized improperly. After that, we 

extracted sentences within methods sections. 

 

2.3.3 Corpus construction 

The annotation guidelines were developed based on textual analysis of the cues in 

sentences with a phenotyping definition information that were inspired by major data 

modalities of phenotyping definitions used in PheKB (Kirby et al., 2016). We performed 

sentence-level annotations with three major categories for each sentence, which are: 

inclusion, intermediate, and exclusion. The sentence-level annotations’ categories were 

derived based on the availability of ten dimensions that are shown in Table 2 with their 

descriptions and examples. Furthermore, some of these dimensions have sub-dimensions. 

The detailed annotation guidelines is available in Appendix 4. The annotation construction 

is as the following: 

First, inclusion category includes sentences that show evidence of at least one of 

the dimensions that characterize a phenotyping definition (Table 2). We identified five 

dimensions for the inclusion category, which are “Biomedical & Procedure”, “Standard 

codes”, “Medications”, “Laboratories”, and “Use of NLP”. The proposed dimensions are 

represented as either keywords or more complex as events where co-occurrence of more 

than one keyword occurs. For example, “Standard Codes” dimension is represented by the 

presence of any keyword relative to “Standard Codes”, such as ICD9, SNOMED, or a 

diagnostic code. On the other hand, “Biomedical & Procedure”, “Medications”, 

“Laboratories”, and “Use of NLP” require an event presence such as co-occurrence of two 

keywords that were identified for each dimension. A sentence is categorized as positive for 

the inclusion category if it shows evidence of any of these five dimensions (Table 2), which 

we called inclusion conclusion (INC) is true (Table 3). 

Second, intermediate category includes sentences that do not show direct evidence 

of a phenotyping definition, but it can assist by providing supporting evidence for 

phenotyping. We identified two dimensions for the intermediate category, which are “data 

Entities” and “Study Design or Institutional Review Board (IRB)”. Since different studies 

have different research questions and designs, intermediate category can assist in capturing 

data types information that matches the study’s goals (Yadav et al., 2018). A sentence is 
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categorized as positive for the intermediate category if it shows evidence of any of the two 

dimensions (Table 2), which we called intermediate conclusion (ITC) is true (Table 3). 

Third, exclusion category includes sentences that are out of the scope of a 

phenotyping definition or phenotyping. A sentence is categorized as positive for the 

exclusion category if it shows evidence of any of the three dimensions (Table 2), which we 

called exclusion conclusion (EXC) is true (Table 3). 

Finally, the final decision is the overall sentence-level of evidence derived from 

INC, ITC, and EXC. We note that some sentences can have evidence of more than one 

dimension which determines final sentence-level conclusions (INC, INT, EXC) in Table 

3. We used rule-based approach to produce four final sentence-level decisions, which are 

Positive, INTERMEDIATE_I, INTERMEDIATE_II, and Negative. The goal is to create 

an accumulative evidence in each sentence based on the presence of any of the three 

conclusions (INC, ITC, EXC). This help to ensure consistency, accuracy, and quality of 

the annotations. Table 3 shows the criteria of the seven rules (R1, R2, R3, R4, R5, R6, and 

R7). R8 final decision where all the three conclusions (INC, ITC, EXC) are false was 

combined with R7 indicating negative evidence. 
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Table 2 Sentence-level annotation’s categories, dimensions, and sub-dimensions 

1. Inclusions category (n = 5) Description Examples 
1.1. Biomedical & Procedure Evidence of defining a phenotype when 

biomedical and procedure entities co-occur with 
phenotyping definition cues. 

“dyslipidemia was defined as total cholesterol greater 
than 220 mg/dl…” (PMID:20819866). This sentence 
provides an evidence of defining a disorder called 
dyslipidemia. The association of the disorder term with 
the word “defined” satisfies this dimension. 

1.2. Standard Codes Evidence of using standard terminologies that are 
commonly used in clinical setting. Examples of 
these standard coding classifications and/or 
terminologies are ICD-9/10, SNOMED CT, and 
CPT codes. 

“a primary or any secondary discharge diagnosis 
(International Classification of Diseases, Ninth 
Revision, Clinical Modification [ICD-9-CM] code) of 
myoglobinuria (791.3)” (PMID:15572716) provides an 
evidence of the use of ICD-9-CM code. 

1.3. Medications Evidence of the use of medication for defining a 
phenotype. 

“the use of a lipid-lowering medication” (PMID 
20819866). 

1.4. Laboratories Evidence of using quantitative values reflecting 
clinical measurable values (i.e. laboratory tests 
values, vital values, procedures, clinical). 

“Dyslipidemia was defined as total cholesterol greater 
than 220 mg/dl”. (PMID:20819866) reported the use of 
“total cholesterol” test, and the value that the study 
used to define Dyslipidemia. 

1.5. Use of Natural Language 
Processing (NLP) 

Evidence of NLP use accompanied with any of 
the following entities: biomedical, procedure, 
and/or medications. 

“Example of a Clinical Note Represented as a “Bag of 
Words” Note ID 45893484-02 34695234-01 HF status 
positive negative Covariate #1 "heart" 3 1 Covariate #2 
"pulmonary"“  (PMID:17567225) 

2. Intermediate category (n = 2)    
2.1. Data entities Evidence of information relevant to data entities 

used in study or phenotyping definitions. Some 
examples when describing a database used, 
clinical data, and/o electronic health records 
(EHR). 

“Computerized medical and pharmacy records were 
reviewed” (PMID:11388131). 
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2.2. Study design or IRB Evidence of information about study design or 
the IRB. For example, an evidence of the method 
used as “Gold standard”. 

“STUDY DESIGN: Retrospective chart review.” 
(PMID: 11388131). 

3. Exclusion category (n = 3)   
3.1. Exclusion 1– Irrelative evidence: 

3.1.1. Location 
3.1.2. Ethical 
3.1.3. Financial 
3.1.4. Patient direct contact 
3.1.5. Provider or researchers 

(excluding patients) 
3.1.6. Performance 
3.1.7. Quality of Care 

Evidence of information about other study 
methodological details that is not supportive for 
defining a phenotype directly. 

“All patients were members of the managed care 
system and incurred a significant financial advantage 
from having their prescriptions filled within the 
system.” (PMID16765240) – (Sub-dimension: 
Financial) 
 
Note: additional examples in the annotation guidelines 
in the appendix 

3.2. Exclusion 2- Computational and 
statistical evidence: 

3.2.1. Alerts 
3.2.2. Software 
3.2.3. Statistics 

Evidence of computational or statistical 
information that is not supportive for 
phenotyping definitions. 

“We used logistic regression models with generalized 
estimating equations to adjust for race, year, race x year 
interactions, age, and sex.” (PMID16567608) ) – (Sub-
dimension: Statistics) 

3.3. Exclusion 3- Insufficient 
evidence: 

3.3.1. Insufficient evidence 

Sentences that do not show any evidence in any 
of the nine dimensions. 

“As reported previously, administratively-assigned 
race/ethnicity is highly concordant with genetic 
ancestry for European and African Americans” 
(PMID:28222112) 
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Table 3 Level of evidence of a sentence with a phenotyping definition (Rule-based final decisions) 

Rule  Rule description Level of evidence  Final Decision Number of Sentences 
R1 If INC= True and 

ITC= False and 
EXC = False 

The sentence shows strong evidence of a phenotyping definition.  

Positive 1222 (30.77%) 
R2 If INC= True and 

ITC= True and 
EXC = False 

The sentence shows strong evidence of a phenotyping definition.  

R3 If INC= True and 
ITC= True and 
EXC = True 

The sentence shows strong intermediate evidence of a 
phenotyping definition due to the presence of any of the Exclusion 
criteria. 

 

INTERMEDIATE_I 701 (17.65%) 
R4 If INC= True and 

ITC= False and 
EXC = True 

The sentence shows strong intermediate evidence of a 
phenotyping definition due to the presence of any of the Exclusion 
criteria. 

 

R5 If INC= False and 
ITC= True and 
EXC = False 

The sentence shows weak intermediate evidence of a 
phenotyping definition due to the absence of any of the Inclusion 
criteria, but presence of any of the intermediate criteria. 

 

INTERMEDIATE_II 914 (23.01%) 
R6 If INC= False and 

ITC= True and 
EXC = True 

The sentence shows weak intermediate evidence of a 
phenotyping definition due to the absence of any of the Inclusion 
criteria, but the presence of any of the intermediate criteria. 

 

R7 If INC= False and 
ITC= False and 
EXC = True 

The sentence shows no evidence of a phenotyping definition.  
Negative 1134 (28.55%) 
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2.3.4 Annotation process 

In order to produce a high-quality corpus, it is recommended that the corpus is 

annotated by more than one annotator (Artstein, 2017). Here, two annotators with a 

biomedical informatics background (Samar Binkheder, M.S., Heng-Yi Wu, PhD) carried 

out the annotation process. Both annotators have degrees in biomedical informatics, are 

familiar with the medical standard terminologies, and are familiar with text-mining. They 

designed the annotation guidelines iteratively through several meetings and manual 

analysis of textual patterns of a phenotype definition. When both annotators were satisfied 

with the final version of the annotation guidelines, they started the annotation of the corpus. 

For each dimension of the ten dimensions (Table 2), if the dimension is present, the 

annotator annotates it as 1, otherwise, it is 0. The development of an annotation guidelines 

is critical to ensure the consistency and quality of the annotations. The process can start by 

a draft, and then refined iteratively until final draft is satisfied (H. Gurulingappa et al., 

2012). During the guideline’s development process, subsets of the corpus were annotated 

until the annotators were satisfied with the guidelines. After that, the full corpus was 

annotated. The process is shown in Figure 3 which was inspired by (H. Gurulingappa et 

al., 2012). 
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Figure 3 Iteration process of developing the annotation guidelines and the final 
annotation 

 

After finalizing the guidelines, both annotators annotated all sentences of the corpus 

following the final proposed annotation guidelines. The annotation process was divided 

into several rounds starting from annotation of subset of sentences 400 (first round). After 

that, the number of sentences for each round were 1000, 1300, and 2700. After each 

annotation round, there were “consensus sessions” that each took around 1-4 hours where 

annotators discussed and resolved any disagreements. Moreover, a third Ph.D. annotator 

addressed disagreements in annotations between annotators if they did not achieve a 

consensus. The goal was to identify areas of disagreements as well as areas to achieve our 

100% gold standard. 

 

2.3.5 Inter-annotator agreement (IAA) 

The inter-annotator agreement is to assess the reliability of the annotations. There 

are several benefits for the manual annotation by multiple people, such as to generate 

correct annotations, validate and improve the scheme guidelines, resolve ambiguities in 

data, and evaluate valid interpretations (Artstein, 2017). Further, the written annotations 

guidelines scheme help in generating consistent and reproducible annotations (Artstein, 
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2017). Therefore, to measure the agreement between annotators, we used three measures 

of agreement: percent agreement, overall percent agreement (Wilbur, Rzhetsky, & 

Shatkay, 2006), and Cohen’s kappa (McHugh, 2012). These measures vary in their 

approaches, but they all aim at producing the best possible reliable and correct annotations 

as there is no reference for the annotation of some of the sources (Artstein, 2017). The 

percent agreement and Cohen’s kappa (McHugh, 2012) were calculated for each dimension 

using R packages (‘irr’1 for percent agreement and ‘fmsb’2 for kappa). For example, if the 

two annotators annotate a dimension as 1, it means an agreement. On the other hand, if one 

annotator annotates a dimension as 1 and the other as 0, it means disagreement. The overall 

percent agreement (Wilbur et al., 2006) was calculated over the ten (10) dimension on a 

sentence-level (Table 2) as the following: 

Overall sentence level agreement = (#𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆×10)−# 𝑑𝑑𝑑𝑑𝑆𝑆𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆
(# 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ×10)

× 100 

 

2.4 Results 

2.4.1 Corpus description 

PubTator3, a web-based tool for annotating biomedical entities, including diseases, 

genes, mutations, and chemical (C.-H. Wei, Kao, & Lu, 2012). We uploaded our PMID list 

(n = 86) and run the annotation analysis. Table 4 presents the results from PubTator for the 

disease terms that were found in more than one abstracts. Disease terms that appeared in 

single abstracts and terms for other entities (genes, mutations, and chemical) are shown in 

Appendix 5. 

 

                                                 
1 https://cran.r-project.org/web/packages/irr/irr.pdf 
2 https://cran.r-project.org/web/packages/fmsb/fmsb.pdf 
3 https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/PubTator/ 
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Table 4 Phenotypes appeared in more than one abstract in our corpus 
Term Number of abstracts 
Diabetes 16 
Hypertension 11 
Diabetes mellitus 8 
Heart failure 7 
Asthma 3 
Bleeding 3 
Cancer 3 
Coronary heart disease 3 
Diabetic 3 
Hypertensive 3 
Obesity 3 
Osteoarthritis 3 
Pneumonia 3 
Type 2 diabetes 3 
Acute renal failure 2 
Allergies 2 
Death 2 
Dementia 2 
Gout 2 
Myocardial infarction 2 
Pulmonary embolism 2 
Rhabdomyolysis 2 
Rheumatoid arthritis 2 
Right bundle branch block 2 
Sepsis 2 
Stroke 2 

 

We annotated the corpus using our annotation guidelines with ten dimensions 

(Table 2). The total number of sentences in this corpus was 3971 sentences that were 

extracted from 86 full texts methods sections. Table 5 shows the number of annotated 

sentences in for each category and dimension. “Biomedical & Procedure” dimension 

showed the highest number of annotated sentences with around 1449 (36.5%). “Data 

entities” and “EXC2 – Computational and statistical evidence” were both over thousand 

annotated sentences with 1370 (34.5%) and 1314 (33.1%), respectively. The number of 

annotated sentences for “Medications”, “Standard codes”, and “Laboratories” dimensions 
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from inclusion category were 593 (14.9%), 385 (9.7%), and 246 (6.2%). The number of 

annotated sentences for “Use of NLP” dimension were the lowest with 49 (1.2%). 

 

Table 5 Corpus description and inter-annotator agreement 

Category 

# of sentences 
(%) per 
category 

Dimension 
# of sentences 

(%) per 
dimension 

Percent Kappa Kappa 

95% CI 

Inclusion 1923 out of 
3971 (48.4%) 

Biomedical & Procedure 1449 (36.5%) 95.00% 88.96% 0.87 - 0.90 

Standard codes 385 (9.7%) 99.47% 97.01% 0.95 - 0.98 

Medications 593 (14.9%) 99.09% 96.44% 0.95 - 0.97 

Laboratories 246 (6.2%) 99.70% 97.42% 0.95 - 0.98 

Use of NLP 49 (1.2%) 99.65% 83.54% 0.74 - 0.92 

Intermediate 1851 out of 
3971 (46.6%) 

Data entities 1370 (34.5%) 96.71% 92.59% 0.91 - 0.93 

Study design and/or IRB 780 (19.6%) 98.00% 93.56% 0.92 - 0.94 

Exclusion 2273 out of 
3971 (57.3%) 

EXC1 – Irrelative evidence 733 (18.4%) 97.27% 91.05% 0.89 - 0.92 

EXC2 – Computational 
and statistical evidence 

1314 (33.1%) 96.84% 92.83% 0.91 - 0.94 

EXC 3 – Insufficient 
evidence 

359 (9.0%) 95.96% 78.72% 0.75 - 0.82 

 

Table 3 shows the rule-based final decisions which are “Positive”, “Intermediate 

I”, “Intermediate II”, and “Negative”. The positive indicated the highest level of evidence 

of defining a phenotype while the negative indicated no evidence of defining a phenotype. 

The number of sentences with “Positive” are 1222 (30.77%). “Intermediate I” is the 

sentences that showed strong intermediate evidence were 701 (17.65%) sentences of the 

corpus. “Intermediate II” are the sentences that showed weak intermediate evidence were 

914 (23.01%) sentences of the corpus. Finally, the number of negative sentences 

represented in our corpus was 1134 (28.55%) sentences. 

 

2.4.2 Inter-annotator agreement 

For inter-annotator agreement, the calculations were based on annotation of each 

dimension (Table 2 & Table 5). We used the overall sentence-level percent agreement 

(inspired by Wilbur et al. (Wilbur et al., 2006)), percent agreement, and Kappa. The overall 

sentence-level percent agreement was high with 97.8%. The percent agreement and kappa 

measures results are shown in Table 5. Generally, all dimensions showed high agreement 
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on both percent agreement and kappa. For the dimensions of the inclusion category, the 

“Biomedical & Procedure” showed around 95% percent agreement, and almost perfect 

kappa with 88.96%.  For the “Standard codes”, “Medications”, and “Laboratories” 

dimensions, they all showed over 99% percent agreement and over 96% kappa. For the 

“Use of NLP” dimension, it showed over 99% percent agreement and 83.54% kappa. For 

the dimensions of the intermediate category, they showed high agreement on percent 

agreement with over 96%, and kappa with over 92%. Finally, for the dimensions of the 

exclusion category, both “EXC1 – Irrelative evidence” and “EXC2 – Computational and 

statistical evidence” showed high agreement on percent agreement with 97.27% and 

96.84%, and kappa with 91.05% and 92.83%, respectively. The “EXC 3 – Insufficient 

evidence” dimension showed high percent agreement (95.96%) and substantial kappa 

(78.72%). 

 

2.5 Discussion 

In this work, our goal was to develop an annotation approach and an annotated 

corpus that is capable of supporting future text-mining tasks such a literature-based 

discovery of phenotyping case definitions. In terms of selection of phenotypes, we chose 

to select a set of phenotypes based on our group research interests, which were mostly 

ADEs (n = 279). We utilized these phenotypes to search the literature for abstracts and we 

included 86 abstracts to build the sentence-level corpus from their full texts’ methods 

sections. Annotation approaches were based on evaluating the presence of our proposed 

ten dimensions in a sentence (Table 2) and the final decisions were derived based on a set 

of seven rules (Table 3). Our focus in annotating the corpus is to develop a generalized 

approach to capture contextual features of phenotyping rather than focusing on specific 

entities. The two annotators worked in developing the annotation guidelines iteratively; 

after finalizing the guidelines, the whole corpus was annotated. For inter-annotator 

agreement, we used three measures for evaluation: overall sentence percent agreement 

(inspired by Wilbur et al. (Wilbur et al., 2006)), percent, and kappa agreement. Overall, the 

results for the inter-annotator agreement were high and the overall sentence-level percent 

agreement was high with 97.8%. One observation with the “EXC 3 – Insufficient evidence” 

dimension showed “substantial agreement” (see Table 2 for interpretation of Kappa in 
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(Viera & Garrett, 2005)) that was the lowest kappa score among all dimensions. This 

dimension indicates sentences with lack of evidence in any of the other nine dimensions. 

Overall, we annotated 3971 sentences extracted from methods sections of 86 articles and 

the inter-annotator agreement showed that the annotations and guidelines are valid. 

Annotating a larger number of articles might generate more contextual patterns of 

a phenotyping definition in EHR-based studies. However, we also believe that we have a 

comprehensive coverage for several study types of studies. Here we report the study design 

terms as they appeared in our corpus and it here as it appears it the text: 

 Observational Study 

 Longitudinal study 

 Cohort Study (retrospective cohort, prospective cohort, Nonrandomized 

retrospective cohort study) 

 Case-Control Study 

 Retrospective Study (retrospective cohort, nonexperimental retrospective, 

Nonrandomized retrospective cohort study, retrospective validation) 

 Cross-sectional Study 

 Comparative Study 

 Descriptive Study 

 Validation Study 

 Prospective Study (prospective cohort study) 

 Genome-Wide Association Study 

 Epidemiology and/or Surveillance Study 

 Follow-up Study 

With the multi-study coverage, we believe that our corpus was sufficient to capture 

wide range of contextual cues representing a phenotyping case definition in the biomedical 

literature. 

 

2.5.1 Sentence-level annotation and dimensions selection 

Our decision in this work is to focus on the sentence-level annotations rather than 

entity-level annotations. There are several reasons for this decision. First, we believe that 

a phenotyping definition is best represented as full sentences rather than single concepts or 
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terms. Entity-level annotations can be accomplished in future steps with the goal of text 

summarization. Second, we aimed to utilize a generalizable approach that serves as a 

foundational basis for annotating a phenotyping definition. The selection of ten proposed 

dimensions (Table 2) was based on identifying phenotyping definition contextual cues that 

were observed in published literature (Botsis & Ball, 2013; Kirby et al., 2016; Shivade et 

al., 2014; Yadav et al., 2018)  as well as during our manual annotation process (Figure 3). 

Third, based on our analysis, contextual cues of a phenotyping definition are not only 

reliant only on biomedical concepts, but also it can be extended to other cues, such as 

“defined”, “inclusion criteria”, “exclusion criteria”, and “eligibility”. To our knowledge, 

contextual cues of phenotyping definitions in the literature that surround biomedical and 

medication entities were not studied previously. 

 

2.5.2 Error analysis 

We performed an error analysis on sentences where annotators had disagreements. 

We found that recognizing abbreviated terms was slightly challenging and it appeared 

problematic in seven dimensions shown in Table 6. Thus, it can be hard to determine if an 

abbreviated term is a biomedical, procedure, or medication. For example, the term ICD can 

mean “implantable Cardiac Defibrillators” or “International Classification of Diseases”. 

Therefore, we addressed this to the best of our abilities by returning to the full text article. 

In addition to the abbreviation challenge, we observed that natural human error could also 

generates some disagreements during the annotation process. For example, one of the 

annotators missed some keywords that were noticed during the consensus sessions. Such 

mistakes were not intentionally made. Furthermore, there was an ambiguity in some of the 

terms that the same term has more than one meaning. In this case, understanding the context 

around the text is necessary and helped in addressing this problem. Overall, annotating 

phenotyping definitions’ events e.g. a co-occurrence of more than one keyword, is 

challenging because they require the presence of more than one pattern. Table 6 provides 

common errors that led to some of the disagreements with examples. 

 



 

39 

Table 6 Error analysis of the annotation disagreements 
Error Dimensions Examples (Sentences) 

Abbreviated terms 

Biomedical & 
Procedure 

"Events that occurred during follow-up were 
identified from hospitalization records, and 
ARIC and CHS study" (PMID25104519) 

Standard codes "Finally, the Apollo Data Repository provided 
data for ICDs" (PMID26961369) 

Medications "‘‘common’’ side effects, e.g. headache, to 
judge the relevance of side effects associated 
with AZA." (PMID24177317) 

Use of NLP "From this cohort, we identified 15,761 
patients with HPI” (PMID25567824) 

Data “Cohort with HPI data” (PMID25567824) 
EXC1 – irrelevant 
evidence 

"190 patients completed the SCID 
assessment"(PMID25827034) 

EXC2 – Computational 
and statistical evidence 

"The MCMC method" (PMID21931496) 

One of the annotators 
missed keywords or/and 
criteria 

Use of NLP "The algorithm uses non-negated terms 
indicative of HF" (PMID17567225) 

Data "If data on weight and height were available” 
(PMID21862746) 

EXC1 – irrelevant 
evidence 

- EXC1 – irrelevant evidence (financial): 
"until termination of insurance coverage." 
(PMID12952547) 

- EXC1 – irrelevant evidence (Ethical): 
"To protect patient confidentiality, all 
personal identifiers are deleted” 
(PMID21051745)  

- EXC1 – irrelevant evidence (Location of 
the study): "We randomly sampled 
outpatient clinical encounters from 
October 1, 2003 through March 31, 2004 
at VA Maryland (VAMHCS) and at VA 
Salt Lake City (VASLCHCS) Health 
Care systems." (PMID20976281) 

EXC2 – Computational 
and statistical evidence 

"Characteristics were measured during the 
one-year baseline period (i.e., before time 
zero)." (PMID20112435) 

Without co-occurrence 

Use of NLP 
 

"Humedica derives NLP items from text 
entries that correspond primarily to terms in 
two large dictionaries, SNOMED and 
MedDRA" (PMID26725697) 
NLP terms did not co-occur with 
biomedical/procedure/medication concept 

Data "If the first record for a woman was either …" 
(PMID22071529) 
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Term ambiguity 

Biomedical & 
procedures events 

"Only acute conditions occurring during the 
first 24 hours of hospital admission were 
considered." (PMID24734124) 
The term “condition” by itself can have 
different meaning not relevant to disease. 
However, when the word "condition" is not 
supported with other keyword indicating it is 
a medical condition. 

Study design or IRB "The nucleotide reference for this allele is 
guanine. 4." (PMID26221186) 
The term “reference” does not indicate gold 
standard reference. 

EXC2 – Computational 
and statistical evidence 

"More points mean a higher risk of 
hyperkalemia." (PMID20112435) 

Neither Biomedical nor 
Procedure (e.g. social 
status) 
 

Biomedical & 
Procedure 

"We created a binary variable for marital 
status, where “single” included those patients 
classified as divorced, single, widowed, or 
separated." (PMID25091637) 

Not clear statement of 
using standard codes 
 

Standard codes "Outcomes were evaluated by 
administratively coded data” 
(PMID26370823) 

Assigning terms as 
Biomedical & Procedure 
vs. medications (e.g. 
substances) 
 

Biomedical & 
Procedure/Medications 
 

"The most recent fasting lipid profile in 
patients with dyslipidemia and glycosylated 
hemoglobin level in patients with diabetes” 
(PMID11388131) 

Spelling and short forms 
 

Medications "Asthma meds refilled regularly." 
(PMID12952547) 

Biomedical/Procedure/Me
dication terms without 
supportive definition 
evidence 
 

Biomedical & 
Procedure/Medications 

"reports KD=9100 for bupropion and 
KD>10 000 for mirtazapine (vs 200 for 
nefazodone)." (PMID22466034) 

“More than or less than” 
value, but not directly 
relevant to phenotyping 
 

Clinical measurable 
values 

"≥2 years of observation before period of 
interest; n = 50." (PMID23449283) 

Adding new keywords for 
the dimension 

EXC2 – Computational 
and statistical evidence 

Example of new keywords describing 
“EXC2”, are: risk score, inter-rater variability, 
custom-designed data entry template, 
predictor variable, Tukey multiple comparison 
test, Web-accessible, teleconferences, 
propensity-matched, machine-implementable 
rule, Illumina Omni1_- QUAD, Illumina 
660W, TaqMan, Illumina 660-Quad, and 
Illumina. 
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2.5.3 Limitations of the study 

This work does not stand without limitations. The manual corpus annotation is 

time-consuming and labor-intensive. Only two annotators annotated the corpus; therefore, 

we tested the annotations with more than one measurement of agreement (overall percent, 

percent, and kappa). Both annotators were familiar with biomedical informatics concepts 

and text-mining approaches, but we note that some were more challenging than others. The 

results inter-annotator agreement showed high agreement indicating reliable annotations 

and guidelines. Generally, more annotators with clinical expertise could assist more during 

the task of annotations. In addition, automatic entity recognition to recognize biomedical 

entities can also improve the annotation process and decrease the time of annotation. As 

mentioned previously, the scope of this work is on capturing patterns of contextual cues 

surrounding a phenotyping definition. 

For “Use of NLP” dimension, we decided to only annotate the presence or absence 

of NLP in a sentence with the goal to use it as a part of phenotyping. Going beyond this 

scope would complicate the annotation task, require detailed and full annotation of NLP 

methodology, and require a bigger corpus. Therefore, the number of sentences of this 

dimension is comparably lower than other dimensions. In addition, our aim in this work is 

to establish a foundational approach. 

 

2.5.4 Applications of the corpus 

To date, PheKB (Kirby et al., 2016) library provides around 50 definitions only for 

some phenotypes. A study of best practices for phenotyping of adverse events found that 

the re-utilization of existing definitions is crucial (Wiley, Moretz, Denny, Peterson, & 

Bush, 2015). This only works for case definitions that have been already published in the 

literature. Therefore, this work aimed to support the re-usability of published definitions 

(R. L. Richesson, Hammond, et al., 2013) by analyzing their contextual cues. Specifically, 

for using case definitions to establish EHR-based research, such drug safety surveillance. 

Availability of these definitions can also assist in the validation of them in several 

institutions to ensure cohort consistency (R. L. Richesson, Rusincovitch, et al., 2013). The 

ten dimensions in our annotation guidelines provide a foundational understanding of the 

basic contextual cues that represent a phenotyping case definition in the literature. 
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Therefore, we believe that this corpus can serve as a baseline for developing either 

automatic or manual approaches to annotate a larger corpus size and advancing our 

proposed guidelines. Furthermore, our main aim of developing this corpus is to use it for 

text-mining applications to automate mining of phenotyping definitions publish in the 

literature. 

In conclusion, clinical research, such as drug discovery, is moving toward the use 

of EHRs that provides information about patient’s variations, including comorbidities and 

co-medications. The corpus and annotation guidelines can serve as a foundational 

informatics approach for annotating and mining literature-based phenotyping definitions. 

Ten dimensions are proposed characterizing major contextual patterns and cues of a 

phenotyping definition in published literature. This is a step towards research to advance 

leveraging of phenotyping definitions from literature to support EHR-based phenotyping 

studies. 
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CHAPTER THREE: AN AUTOMATED TEXT MINING APPROACH OF 

PHENOTYPING DEFINITIONS IN THE BIOMEDICAL LITERATURE 

 

In Chapter 2, we proposed an approach to annotate phenotyping definitions in 

published literature. In addition, we used our proposed annotation guidelines to create a 

corpus of annotated sentences from full texts. The main motivation behind developing the 

corpus is to develop a text-mining technology. In this chapter, we build an information 

retrieval (IR) and extraction (IE) systems for facilitating the use of published literature-

based phenotyping definitions. In addition, we applied these systems on a large-scale 

literature. Similar to Chapter 2, we are using adverse drug reactions (ADEs) as our 

phenotypes of interest that can be used in many tasks, such as building lexica and 

dictionary. The final product of this chapter is a large collection of phenotype definitions-

related abstracts and sentences. We note that our used approaches for mining ADE 

phenotype definitions-related abstracts and sentences can be generalized to other 

phenotypes and are not limited to ADEs. 

 

3.1 Introduction 

A major public problem is that many drug side effects appears in public, including 

deaths and hospitalizations, after the release of the drug to the market. These side effects 

reported to reach millions, where “5% hospital admissions, 28% emergency visits, and 5% 

hospital deaths” (Sarker & Gonzalez, 2015). Furthermore, the estimated cost is about 

seventy-five billion dollars yearly (Sarker & Gonzalez, 2015). There are several sources 

that have been used to conduct post-marketing ADE-based research, such as spontaneous 

reporting systems, electronic health records (EHRs), social media, and biomedical 

literature (Davazdahemami & Delen, 2018). Research shows that FDA Adverse Event 

Reporting System (FAERS) data has limitations where it either underestimates or 

overestimates some ADEs (Sarker & Gonzalez, 2015). On the other hand, repurposing of 

EHR for pharmacovigilance and clinical research (Newton et al., 2013) has increased 

where a number of approaches can be used for phenotyping (Banda, Callahan, et al., 2016; 

Newton et al., 2013; X. Wang, Hripcsak, Markatou, & Friedman, 2009). For example, 

several studies have used EHR for ADE signal detection and used literature for its 
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validation (Iyer, Harpaz, LePendu, Bauer-Mehren, & Shah, 2014). The use of EHR 

provides several advantages, including “large scale, reduced cost, repeated observations, 

and the ability to observe rare events” (Mo et al., 2015). Furthermore, EHR for secondary 

use purposes mining is important because it offers a rich resource of accumulated clinical 

& patient’s data on variable disease levels, it provides opportunities for analyzing ADEs, 

and it supports answering of clinical research questions (Chiu & Hripcsak, 2017; Yadav et 

al., 2018). Examples of patient’s data in EHRs that are collected routinely in clinical 

practice are diagnoses, laboratory tests, billing records, medications, and medical history 

which can be either in structured (e.g. ICD9 codes) or unstructured format (e.g. clinical 

notes) (Chiu & Hripcsak, 2017). In contrast, EHR use generates new challenges. 

The use of EHR does not stand without challenges. These challenges have opened 

new opportunities for informatics research. One of the challenges of EHR-based research 

is to accurately find cases and controls for a phenotype of interest (Carroll et al., 2011). 

This is called as cohort identification that has been widely used for various clinical and 

biomedical studies (Yadav et al., 2018). Cohort identification is an obstacle especially 

when phenotyping definitions are not readily available for performing clinical research 

studies (D. Li et al., 2012). Therefore, we have identified a gap, which is the absence of 

phenotyping definitions for some phenotypes of interest or sources that support its 

development. 

To generate or obtain a phenotyping definition, there are several approaches: low-

throughput or high-throughput approaches (R. L. Richesson et al., 2016). First, the low-

throughput phenotyping is highly reliant on expert domain knowledge and rule-based 

algorithms, such as decision trees and boolean logic (R. L. Richesson et al., 2016). These 

methods for cohort identification tend to be time-consuming and labor-intensive (D. Li et 

al., 2012; Park & Choi, 2014) due to the need of an expert involvement. A multidisciplinary 

team works on developing and designing a phenotyping definition in which manual review, 

multiple iterations, and validation are needed (Carroll et al., 2011). For example, generation 

of a new phenotyping definition, especially when it is derived based on the EHR data of 

that institution, does not mean it is portable across other institutions. Therefore, a validation 

step of a phenotyping definition across multiple institutions is important to ensure that it is 

performing well across different populations (Liao, Ananthakrishnan, et al., 2015; Overby 
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et al., 2013). Electronic Medical Records and Genomics (eMERGE) network has an effort 

to manually create, disseminate, and validate phenotyping definitions that they made them 

publicly available in Phenotype KnowledgeBase (PheKB)1 (Newton et al., 2013; R. L. 

Richesson et al., 2016). However, these are still lacking standardized representations. For 

example, these definitions are stored in Microsoft® Word, Excel files, or other formats 

with no specific template for easing human interpretation (Chute et al., 2011). Another 

challenge is the development of a phenotyping definition for clinical notes that requires 

knowledge in Natural Language Processing (NLP) and human involvement (Park & Choi, 

2014). Therefore, the development of expert-driven phenotyping definitions process is still 

very challenging, labor intensive, error-prone, and time-consuming (Lasko et al., 2013; 

Park & Choi, 2014; Xu et al., 2015). 

Second, recent efforts (V. Agarwal et al., 2016; Banda, Callahan, et al., 2016; 

Halpern, Choi, Horng, & Sontag, 2014) are moving toward high-throughput phenotyping 

that uses statistical, machine learning, and data-driven approaches (Halpern et al., 2014; R. 

L. Richesson et al., 2016). Unlike low-throughput phenotyping that can be time-consuming 

and require high-effort, high-throughput phenotyping can be scalable to high-dimensional 

adverse events (V. Agarwal et al., 2016; Halpern et al., 2014; R. L. Richesson et al., 2016). 

However, it require multiple sources to support its scalability (Zhang et al., 2018). Some 

efforts suggest the use of machine-learning approaches to automate the development of a 

phenotyping definition using EHR data (Lasko et al., 2013). Such definitions are developed 

on specific populations in which generalization of models and algorithms can be infeasible 

due to EHR natural challenges. Moreover, EHR data can be sparse across patient data. 

EHR data usually reflects patient who are very ill, which generates bias (Castro et al., 2014; 

Malinowski et al., 2014; W. Q. Wei et al., 2016). Moreover, EHR data can be inconsistent 

(Castro et al., 2014; Frey, Lenert, & Lopez-Campos, 2014; Malinowski et al., 2014; W. Q. 

Wei et al., 2016), incomplete (Frey et al., 2014; Pathak et al., 2013; W. Q. Wei et al., 2016), 

fragmented, (Daniel & Choquet, 2014; W. Q. Wei et al., 2016), inaccurate, complex 

(Daniel & Choquet, 2014; Frey et al., 2014; Pathak et al., 2013), formatted in free text, 

from unknown sources, and variable in granularity (Daniel & Choquet, 2014).  A challenge 

                                                 
1 http://www.PheKB.org 



 

46 

is the variability across institutions in EHR data, which generate problem when creating or 

applying phenotyping definitions. For example, each institution might have its own usage 

of ICD-9 codes and drugs’ brand names. This can affect the query of the definition that if 

generated in one institution would not work in another institution and will generate variable 

and inconsistent results (Chute et al., 2011). A study found that only half of the evaluated 

tools can be used portable among other EHRs that are different from where the phenotyping 

definition were originally developed (Xu et al., 2015). Therefore, these common issues can 

be problematic, especially when phenotyping definitions are derived from it. 

Several systematic reviews have been performed to harmonize, compare, and 

validate phenotyping definitions in the literature. These studies (Claire Barber et al., 2013; 

Fiest et al., 2014; Leong et al., 2013; Lui & Rudmik, 2015; Macdonald et al., 2016; Pace 

et al., 2017; Souri et al., 2017) have systematically reviewed several case definitions for a 

number of phenotypes, including ADEs. Their goal was to validate or to compare 

performance of different case definitions. Moreover, these studies reported several reasons 

for performing these systematic reviews, such as the lack of widely used or validated 

definitions (Claire Barber et al., 2013; Fiest et al., 2014; Leong et al., 2013; Lui & Rudmik, 

2015; Macdonald et al., 2016; Pace et al., 2017; Souri et al., 2017), and the need to improve 

reproducibility of observational studies (Fox et al., 2013). In addition to these efforts, the 

Observational Medical Outcomes Partnership (OMOP) (Fox et al., 2013), which is called 

today the Observational Health Data Sciences and Informatics (OHDSI), has developed a 

library source based on systematic literature review of a number of health outcomes of 

interest (HOIs) definitions for ADEs. Even though these efforts are very valuable in 

harmonization and validation of phenotyping definitions, the process of searching literature 

systematically for evidence-based phenotyping definitions lacks scalability, and can be 

difficult, slow, and time-consuming. 

To summarize, we have identified several gaps related to the development of a 

phenotyping case definitions: (1) The lack of phenotyping definitions for several 

phenotypes; (2) The current approaches are labor-intensive and not scalable; (3) The need 

for high-throughput phenotyping with minimum expert involvement; and (4) The need of 

utilizing large-scale literature for knowledge discovery of phenotyping definitions. 

Therefore, in this study, we identified biomedical literature as a potential resource for text-
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mining, automated retrieval & extraction, and knowledge discovery of phenotyping 

definitions. 

 

3.2 Background 

3.2.1 EHR phenotyping 

Large-scale EHR has become an enriched resource for secondary use research. In 

the United States, office-based physicians adoption of any EHRs (i.e. all or partially 

electronic records) has increased from 42% in 2008 to 87% in 2015 (C. Barber et al., 2013). 

The increase of EHR adoptions has led to an increase in EHRs longitudinal data providing 

new efficient and cost-effective resources for biomedical and clinical research. A number 

of other advantages of using EHRs data for research, such as big data, variety of data types, 

diverse populations, and real-world patterns of phenotypes. Moreover, EHRs enable new 

discoveries and hypothesis generations in areas like drug-adverse effect associations, 

phenotype-genetic associations, phenotype-disease associations, and comparing 

effectiveness of established therapies (Castro et al., 2014). Declerck et al. (Declerck et al., 

2015) hypothesized that using EHR data can support the drug-related adverse events 

discovery. Examples of EHR datatypes, are demographics, drug history, symptoms, and 

laboratory tests (Declerck et al., 2015). Large number of these EHR based studies are 

already published in the literature. 

As we introduced in Chapter 2 and this Chapter, the use of EHR requires an 

identification of cohort for a desired population with a data-driven approach called EHR 

phenotyping (Lasko et al., 2013; Park & Choi, 2014). EHR phenotyping is the process that 

involves the design, implementation, and execution of phenotyping algorithms for a 

phenotype of interest as well as the analysis of the queried results (Peterson & Pathak, 

2014). Furthermore, EHR phenotyping process includes engineering, identifying, 

quantifying, and automating cohort and phenotype selection in EHR. This process is 

primarily achieved by using EHR-driven data (Frey et al., 2014; Glueck et al., 2016; Lasko 

et al., 2013). EHRs data is large by nature, phenotyping process involves dealing with 

massive amount of practice-based daily routine clinical data, such as clinical narratives, 

billing codes, and medications, and patient-generated data that both can be imperfect 

(Roden & Denny, 2016; W. Q. Wei et al., 2016). Moreover, data within the EHR can be 
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structured, such as coded data (e.g. Logical Observation Identifiers Names and Codes 

(LOINC), Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT), and 

International classification of Diseases (ICD)) that can be used for billings and diagnosis 

(N. Alnazzawi et al., 2015; Ho et al., 2014). On the other hand, EHR data can be 

unstructured providing detailed information about clinical setting findings, vitals, 

symptoms, diagnosis, and signs (N. Alnazzawi et al., 2015), such as discharge summaries, 

radiology reports, and progress notes. However, with respect of phenotyping, there is a 

trade-off between the use of structured and unstructured data. Structured data can miss 

tremendous amount of clinical information about the patient, but it can be more 

interoperable, and machine-readable.  On contrary, unstructured data is enriched with 

detailed clinical information that derived more knowledge about diseases, but it is more 

difficult to manipulate, and it needs new computational approaches. 

 

3.2.2 Standardized terminologies for EHR phenotyping and literature mining 

One of the biggest challenges in EHR secondary use is data interoperability. In fact, 

efforts of developing phenotyping definitions are known to lack standardization and 

portability (Fort, Wilcox, & Weng, 2014; Simonett et al., 2015). As a result, inconsistency 

creates a difficulty in using these definitions across different EHR systems (Declerck et al., 

2015). In this section, a description of the common standardized terminologies is provided. 

There are many standard terminologies that are commonly used for different clinical 

purposes, such as Medical Dictionary for Regulatory Activities (MedDRA) for adverse 

events, and Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT) for 

clinical representation. Since we are using ADE as our example for phenotypes of interest, 

it is recommended to combine SNOMED CT, which is the most comprehensive 

terminology for clinical use, with MedDRA, which is used for adverse events but is not 

commonly used in clinical practice (Declerck et al., 2015). For literature uses, Medical 

Subject Headings (MeSH) terms were developed to index biomedical literature (S. T. Wu 

et al., 2012) which has been integrated in Merged disease vocabulary (MEDIC) (Davis, 

Wiegers, Rosenstein, & Mattingly, 2012). These terminologies are not only supportive for 

EHR phenotyping, but also for literature phenotyping and mining. Therefore, our 

dictionary integrates the above mentioned terminologies that are combined as a one 
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dictionary to serve our text mining tasks. Here, we provide a brief description for each of 

these terminologies: 

1. Medical Dictionary for Regulatory Activities (MedDRA) (Brown et al., 1999) is the 

international medical terminology developed under International Conference on 

Harmonisation of Technical Requirements for Registration of Pharmaceuticals for 

Human Use (ICH). MedDRA has been widely used in classifying adverse events in 

clinical trials and event reporting systems (Reich, Ryan, Stang, & Rocca, 2012). 

MedDRA is characterized by its five levels hierarchy, which are System Organ Class 

(SOC), High Level Group Term (HLGT), High Level Term (HLT), Preferred Terms 

(PT), and Lowest Level Term (LLT). Furthermore, MedDRA covers pharmaceutical 

regulatory affairs terms, such as diagnoses, drug reactions, signs and symptoms, and 

procedures. Some of the advantages of using MedDRA is its completeness, accuracy, 

and flexibility (Brown et al., 1999). 

2. Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT) is 

maintained by the International Health Terminology Standards Organization 

(IHTSDO). IHTSDO is a non-profit organization that owns SNOMED CT and was 

founded in 2007. SNOMED CT is considered as the most comprehensive health 

terminology in the world for clinical documentation in EHR. One of the features of 

SNOMED CT is that it can be mapped to other terminologies, such as ICD9 and ICD 

10 codes. In fact, SNOMED CT is the largest resource that was developed specifically 

for clinical use (S. T. Wu et al., 2012). In addition, it supports data interoperability in 

healthcare settings. Therefore, mapping data from literature to SNOMED CT 

terminologies can be support for text mining tasks, particularly Named entity 

recognition (NER). 

3. International classification of diseases (ICD) is the standard for classifying diseases 

and conditions for clinical care use. ICD is the official coding system for coding 

procedures and diagnosis in the United States. ICD-9-CM is based on the World Health 

Organization’s Ninth Revision, International Classification of Diseases (ICD-9). For 

our dictionary, we will incorporate the available ICD-9 procedure terms to combine 

them with SNOMED CT procedure terms. 
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4. Comparative Toxicogenomics Database (CTD) is a publicly available database that 

provides manually curated information about diseases, genes, and chemical.  Merged 

disease vocabulary (MEDIC) (Davis et al., 2012) is a subset of diseases from the U.S. 

National Library of Medicine's Medical Subject Headings (MeSH) (Lipscomb, 2000), 

and a subset of genetic disorders from the Online Mendelian Inheritance in Man® 

(OMIM) database. MeSH vocabulary has been used to index MEDLINE/PubMed 

articles. On the other hand, OMIM has links of its diseases to many resources, such as 

MEDLINE. We believe that using MEDIC in our dictionary would enhance its 

coverage. 

 

3.2.3 Biomedical literature text mining 

Text mining was successful in several applications, such as protein-protein 

interaction, bio-entity tagging, normalization, and term extraction (Krallinger, Valencia, & 

Hirschman, 2008). Most of knowledge that requires analysis is represented in text. This 

knowledge provides a rich resource of scientific information (Fleuren & Alkema, 2015) 

that is mostly found within biomedical literature (Krallinger et al., 2008; Shatkay & 

Craven, 2012). For instance, PubMed offers over 24 million citations (Fleuren & Alkema, 

2015) and is the most accessible database for the biomedical literature with more than 5000 

biomedical journals, MeSH indexed, links to full text. Full texts can come in PDF or HTML 

formats where each of these possess its own challenges (Shatkay & Craven, 2012).  

Text mining, literature mining, and text data mining are terms that have been used 

with the goal of making an effective use of the biomedical text with the utilization of 

computational tools. Text mining implies mining of valuable information within text. Text 

mining is not a single-step process, but rather it is a multi-task process which involves, user 

needs, accessibility to text source, text representation (e.g. PDF and XML), tools, and 

evaluation (Shatkay & Craven, 2012). Text mining automates the process of discovering 

and extracting knowledge from unstructured text to represent knowledge in a concise 

format and to generate hypotheses (Ananiadou et al., 2006; Rebholz-Schuhmann et al., 

2012; Spasic et al., 2005). Most of text-mining tools consist of two major steps: information 

retrieval (retrieve relevant text and documents) and information extraction (extract 

information and knowledge from text) (Ananiadou et al., 2006; Rebholz-Schuhmann et al., 
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2012). Examples of the text-mining tasks and their descriptions (Shatkay & Craven, 2012), 

are:  

 The process of segmentation is to segment a document into smaller units, such as 

sections. Within these units, there are paragraphs and sentences. The paragraphs and/or 

sentences are further tokenized into smaller segments or tokens that can be either 

sentences or words. This process possesses some challenges such as the recognition of 

the end of a sentence. For example, a period can mean the end of a sentence or an 

abbreviation. In addition, recognizing token boundaries of biomedical text is another 

challenge. For this, medical dictionaries can be used as a solution for this, but there can 

be other solutions that are out of our scope. Therefore, the overall objective of the 

tokenizer is highly reliant on the used application. 

 Most of the literature documents are represented as PDF or HTML. Therefore, 

document conversion into free text is important but the structure of the final converted 

text is dependent on how the original format was presented. For example, PDF 

documents are more concerned on how the information look like rather than the 

structure of information. However, when converting PDF to text, the text might not 

presented in the correct order or characters. On the other hand, XML is more structured, 

but the structured can vary across publishers. 

 Normalization is one of the tasks. There are several normalization approaches, such as 

converting all letters to lowercase. Stemming is another approach where we trim the 

end of the word without the context involvement. On the other hand, lemmatization is 

a linguistic-oriented approach and it considers parts of speech, morphological rules, 

and lemmas. The used method/s is highly dependent on the application. 

 Chunking is the process of grouping words into phrases. 

 Parsing is the process of analyzing a sequence of words (Shatkay & Craven, 2012). 

In this work, we proposed building an automated text-mining approach to mine 

phenotyping definitions-related sentences in the biomedical literature. To achieve this goal, 

we performed several tasks. First, we build an annotated corpus for abstracts and full-text 

sentence-level (Chapter 2) and we used it to train and test machine learning algorithms. In 

these classifiers, we created features utilizing several text-mining approaches based on 
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analyzing patterns and contextual cues of a phenotyping definition. Second, we performed 

a large-scale information retrieval and extraction using the trained and validated classifiers. 

 

3.3 Methods 

We developed a text-mining pipeline for classifying abstracts and full texts on a 

sentence-level. First, the Abstract-level classifier to retrieve and classify abstracts with 

relevant content of observational studies. Second, Full-text sentence-level classifier to 

identify and extract method sections, and to classify positive sentences in full texts with 

evidence of a phenotyping definition. 

 

3.3.1 Building Lexica and Dictionary 

Our research group is primarily interested in adverse drug events (Duke et al., 2012; 

H. Y. Wu et al., 2017). In Chapter 2, we proposed a list of 279 ADEs as phenotypes for 

data collection. The primary list of 279 ADE terms (Appendix 1) are represented as 

MedDRA PT level (Brown et al., 1999). In order to develop a text-mining suite for 

extracting phenotyping related sentences, we developed a comprehensive terminology that 

assists in information retrieval (IR) and information extraction (IE) tasks from both 

literature and medical records. Our aim is to increase the coverage of terms. In addition to 

MedDRA, a number of terminologies are integrated: SNOMED CT) (Stearns, Price, 

Spackman, & Wang, 2001), MEDIC (Davis et al., 2012), ICD-9 procedures, and DrugBank 

(Wishart et al., 2006). For the task of IE NER, we created four dictionaries: 

This ADE dictionary is built by mapping our list of ADEs to all synonyms in 

MedDRA LLT, SNOMED CT, and MEDIC. The most recent version of SNOMED CT 

terms SNOMED CT was downloaded from Unified Medical Language System (UMLS) 

and MEDIC data were downloaded from CTD database. Within MEDIC, we used 

MeSH/OMIM terms, synonyms, and codes. SNOMED CT and MEDIC were mapped to 

MedDRA concepts (PT & LLT) using exact match method (Table 7). The clinical 

dictionary includes all clinical concepts excluding data from ADE dictionary for each of 

MedDRA (PT, LLT), SNOMED CT (diseases and disorders, body structure, clinical 

finding, clinical event, observable entity, organism, and the situation with explicit context), 

and MEDIC. The procedure dictionary is for procedures performed within a healthcare 
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setting. For this dictionary, we included procedures from SNOMED CT and ICD-9 

procedures. Finally, the drug dictionary is for drug terms from DrugBank1. 

 

Table 7 Mapping terms to ADE list of 279 phenotypes 
Source Number of mapped terms to ADE Number of unmapped to ADEs 

SNOMED CT 274 5 

MEDIC 140 139 

 

3.3.2 Corpus description 

In this work, we followed a similar approach to the manual or human-based process 

of reviewing literature-based medical knowledge by an abstract selection and full texts 

retrieval (Cohen et al., 2010). For the abstract selection, we manually reviewed abstracts 

for their relevance to observational-based studies in EHR. PubMed articles were searched 

for the 279 ADEs. We manually reviewed abstracts and decided on their relevance to 

observational studies using EHR data (See Chapter 2). The negative abstracts (n=1079) 

were selected randomly from PubMed foe years between 1995 and 2017. In constructing 

the full-text sentence-level corpus, a random subset from the positive abstracts in abstract 

corpus were selected. Their full texts were retrieved, and sentences in the method sections 

were extracted. More details about the annotation guidelines and performance as well as 

the annotated dimensions in Chapter 2 (annotation examples were shown in (Binkheder, 

Wu, Quinney, & Li, 2018) and Table 2). A summary description of the corpus is provided 

in Table 8. 

 

Table 8 Corpus summary 
Corpus Document type Class Number of documents Total 

Abstract-level Abstract Positive 799 
1878 Negative 1079 

Full-text sentence-level Sentence Positive 1923 
3971 Negative 2048 

 

                                                 
1 https://www.drugbank.ca/ 
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The positive class, for either abstracts or sentence-level, means that they contain 

information about phenotype definitions. Sentences with a phenotype definition 

information can contain a description used for defining a phenotype or for building a cohort 

in an EHR that can include the inclusion and/or exclusion criteria or algorithmic criteria. 

Within an EHR context, “A phenotype is defined as a biochemical or physical trait of an 

organism, such as a disease, clinical or physical characteristics, or blood type” (Yadav et 

al., 2018). Several practices are used for defining phenotypes can be seen within the 

phenotyping definition descriptions, such as diagnostics terms or codes, clinical 

characteristics, laboratory tests values, use of medications, risk factors, use of standardized 

terminologies, and the use of NLP (e.g. list of keywords used) (Chute et al., 2011; R. 

Richesson et al.; Yadav et al., 2018). In addition, information about data sources (e.g. 

demographics, vitals, notes, electronic medical records) (Shivade et al., 2014) used in 

defining the phenotype can be potential for phenotyping, and it can appear in phenotype 

definitions-related sentences. 

On the other hand, the negative class, for either abstracts or sentence-level, means 

that they do not contain relevant information for phenotyping or defining a phenotype, such 

as financial information, location of the study, and computational and statistical analyses. 

An example of a negative sentence, 

 
“Since nearly everyone residing in the target ZIP code for the current study 
receives their health care through Marshfield Clinic, this record is 
considered comprehensive.” (PMID17456828). 
 

3.3.3 Information retrieval: the abstract-level classifier 

The abstract classifier is a binary with two categories: positive for abstracts that 

satisfied the criteria for observational studies, and negative for abstracts that were not 

(Table 2). The abstract corpus was implemented in Waikato Environment for Knowledge 

Analysis (WEKA) as string attributes where each contains a title and an abstract. 

“StringToWordVector” module in WEKA was used to represent each text document as a 

set of attributes, using the following sub-specifications: “Lowercase tokens”, 

“wordsToKeep(1000)”,“IteratedLovinsStemmer”, “stopwordsHandler(MultiStopwords)”, 
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“NGramTokenizer (1-3 grams)”, “IDFTransform” (Inverse Document Frequency (IDF) 

Transformation), and “TFTransform” (Term frequency score (TF) Transformation). 

After pre-processing of text data and defining these input features, we tested several 

classification approaches and trained our classifier on the best algorithm, including 

sequential minimal optimization (SMO) (Platt, 1999), logistic regression (LR) (Quinlan, 

2014)), Naïve Bayes (NB) (John & Langley, 1995), and decision trees (C4.5 clone 

(Lecessie & Vanhouwelingen, 1992) called J48 in WEKA). All of the analyses were 

performed in WEKA software (Figure 4). 

 

 
Figure 4 Classifiers training and prediction flowchart 

NER: Named-entity recognition 

 

3.3.4 Information extraction: the full-text sentence-level classifier 

Document representation is a necessary pre-processing step for machine learning 

to represent text documents as vector of significant terms or patterns (Dalal & Zaveri, 2011; 

Khan, Baharudin, Lee, & Khan, 2010). There are several approaches that can be used for 

document representation utilizing different levels of linguistic processing, such as co-

occurrence, single term or token, and/or phrase approach (Khan et al., 2010). We used our 
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observations and intuitions to generate features (Kilicoglu, Rosemblat, Malicki, & ter Riet, 

2018) that were inspired by features from the annotation guidelines in Chapter 2. 

The sentence level classifier identifies phenotyping related sentences from full 

texts. This classifier is trained using full text sentence level corpus (Table 8). This corpus 

is a collection of documents (i.e. each document is a sentence from full texts’ methods 

sections. We constructed 339 features from this corpus and converted the corpus into a 

matrix of numerical attributes: binary (0, 1), count of terms in a sentence, or sum of values 

multiple attributes (i.e. sum of attribute values for specific set of features). After the text 

pre-processing and features extraction, we trained the sentence-level full-text on four 

algorithms, SMO (Platt, 1999), J48 Decision Tree (Quinlan, 2014), Logistic Regression 

(Lecessie & Vanhouwelingen, 1992), and Naïve Bayes (John & Langley, 1995). All the 

sentence classifier is trained for binary classification: positive and negative (Figure 4). 

Most of the extracted features used for representing each sentence in the corpus 

were based on Named-Entity Recognition (NER) technology. NER of medical terms for 

ADE, clinical, procedure, and drug entities (the dictionaries used for this task are shown in 

Table 10). For ADE entities, the 279 ADE phenotypes (listed in Appendix 1) were mapped 

to their exactly matched concepts and synonyms in other dictionaries which are Merged 

disease vocabulary (MEDIC) (Davis et al., 2012) and SNOMED-CT. With this, these 

ADEs terms and their synonyms were excluded from clinical and procedure entities’ 

dictionaries (Table 10). For clinical entities, SNOMED CT dictionary includes terms for 

body structure, finding, event, observable entity, organism, and situation. For drug entities, 

we used DrugBank. Other NER features used for recognizing phenotype definitions’ 

keywords (e.g. “defined as” and “identify”). These keywords were previously identified 

either manually during the annotation process, or using automated approaches such as n-

grams, term frequency (TF-transform), and inverse document frequency (IDF-Transform) 

(Binkheder et al., 2018). Overall, there we used two ways to represent these features, which 

are described below. 

Single-features refer to single term or pattern representations without rules. Several 

feature reduction techniques were used, such as word stemming (Dalal & Zaveri, 2011) 

and regular expression patterns. Regular expressions were used to capture some patterns, 

such as values of blood pressure, lab, age, height, weight, and body mass index (Appendix 
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6). NER of medical terms were used to represent single entities as single-features (Table 

10 and examples are shown in Appendix 7). In addition, NER of phenotype definitions’ 

keywords is used to represent phenotype definition-related information as one single 

feature. These definition keywords can be words or phrases, such as “defined", 

"definition", "classified", "defined as", "identification", "identified", "diagnosis of", 

"diagnostic criteria", and "case identification". For example, “Controls were patients 

without evidence of (definition keyword) PAD” (PMID20819866). In this sentence 

example, evidence of is recognized as a phenotype definition keyword and it can be 

represented as a single feature called “definition keywords”. 

Compound-features (c-features) refer to the co-occurrence of terms without any 

order or distance specifications between these terms. This approach was introduced by 

Figueiredo et al. (Figueiredo et al., 2011) who showed that combining c-features with other 

e.g. single-features improved the performance of classification. For example, 

 
“Confirmed adult-onset asthma (ADE entity) (AOA) cases were defined as 
(definition keywords) those potential cases with either new-onset asthma 
(ADE entity) or reactivated mild intermittent asthma (ADE entity) that had 
been quiescent for at least one year” (PMID12952547). 
 
In this example, asthma is recognized as an ADE entity, and defined as is 

recognized as a definition keyword. With this, the co-occurrence of ADE entity and 

definition keywords can be represented as one compound-feature indicates that this 

sentence has a phenotype definition for asthma. C-features can be also used, for instance, 

for the co-occurrence of “DRUG” entities with any of the medication-related terms, such 

as "initiat", "window", "dose", or "value". We hope that some c-features can represent 

important patterns of sentences in our corpus. Additional examples are shown in Appendix 

7. 

 

3.3.5 Classifiers performance evaluation 

For each of the abstract-level and full-text sentence-level classifiers, the full corpus 

was divided into 70% for training and 30% for testing. These algorithms were evaluated 

using 10-fold cross validation. The training and validation were performed in WEKA. To 
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assess the classifier performance, we used a number of matrices (Zaki, Meira Jr, & Meira, 

2014), which are: 

1. Recall (Sensitivity) The proportion of the correct predictions for the positive class, 

which also called as the true positive rate (TPR) or the recall for the positive class. 

TPR=
TP

TP+FN
 

2. Precision (Positive predictive value) is defined as 

FPR=
FP

FP+TN
=1-specificity 

3. F-measure The F-measure is the trade-off between precision and recall where the 

higher the F-measure value indicates the better the classifier. 

F=2×
precision ×recall
precision+recall

 

 

3.3.6 Large-scale literature screening 

The large-scale screening of PubMed database is summarized into three major 

phases: large-scale screening of abstracts, full text data pre-processing, and large-scale 

screening of full-text sentence-level (Figure 5 & Figure 6). 

 

3.3.6.1 Phase 1—Large-scale screening of abstracts 

In this phase, we downloaded abstracts from PubMed database for years 1975-2018 

(1st Quarter). We selected the machine-learning algorithm with the highest performance 

(Table 8) in Weka software package. Using abstract-level classifier, PubMed abstracts that 

were classified as positive are further processed for the large-scale full text screening. 
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Figure 5 Flowchart for large-scale data processing 
 

3.3.6.2 Phase 2—Full text data pre-processing 

After the abstract-level retrieval, we retrieved full text articles in PDF or XML 

format. These files were pre-processed by converting them into text and then into GENIA 

format. The steps are as the following: 

1. Retrieve positive full text PDF and XML documents. Using our positive set of abstract 

PMIDs, their PDF and XML documents were downloaded from PubMed repository if 

they are open access articles or from the subscribed publisher by our institute. We 

excluded abstracts that were not human studies.  

2. Convert PDF format to text format. After retrieval of the PDF documents, they were 

converted to text format with pdftotext1 tool. In addition, sentences are tokenized and 

                                                 
1 The Xpdf is an open source project offers command line tools for processing PDF files 
(http://www.xpdfreader.com/about.html) 
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their boundaries are defined (Dalal & Zaveri, 2011) using a package called 

Perl::Tokenizer. 

3. Convert from text format to GENIA XML format. GENIA format (J. D. Kim et al., 

2003) has been used for bio-text-mining of the literature. GENIA is an XML format in 

which each article is annotated with PMID, Title, and full text sentences (Figure 6). 

4. Extraction of method sections. Biomedical text in scientific papers are usually 

represented by four major sections; introduction, methods, results and discussion 

(IMRAD) (S. Agarwal & Yu, 2009). Using IMRAD keywords and rule-based methods, 

we were able to identify boundaries of the methods sections and extract them (Figure 

6). IMRAD is a standard format that was recommended by American National 

Standards Institute (ANSI) since 1979 (American National Standards Institute. & 

Council of National Library and Information Associations (U.S.), 1979), where it is the 

most used format in many research journals (Nair & Nair, 2014). We utilized rule-

based approach to extract these sections based on number of features (Figure 6). To 

automate extraction of method sections within the full texts according to IMRAD, we 

used “Baseline” classifier system which showed strong performance (S. Agarwal & 

Yu, 2009). “Baseline” system is a simple classifier that works by assigning each 

sentence IMRAD category to its original IMRAD section in structured full texts (S. 

Agarwal & Yu, 2009). Therefore, we developed a rule-based program that assigns 

sentences to IMRAD headings. We used two categories for our system: relevant section 

and irrelevant section (Table 9). For example, if a keyword “Methods” appears in a 

sentence all subsequent sentences were assigned to “Methods” until “Results” 

keywords appear. Specifically, features that implies heading were considered, such as 

capitalization of first letter of the keyword, the presence of “:” or “—” after the 

keyword, or the presence of capital letter after the keyword. Keywords and rules used 

are shown in Appendix 8. 

 

Table 9 Sections used for the “Baseline” extraction of full text articles 
Category Sections Reason 
Relevant 
section 

Methods Methods sentences are the sentences that we used for 
extracting phenotyping definitions information. 

Irrelevant 
section 

Introduction, Results, 
Discussion, Conclusion, 
References, Other sections 

Sentences from these sections did not show a 
significant presentation of a phenotyping definition 
information. 
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Figure 6 Full text processing (Phase 2 & 3 in Figure 5) 

 

3.3.6.3 Phase 3—Large-scale screening of full-text sentence-level 

After full text processing and method section extraction, we followed similar steps 

of feature definitions for the sentence classifier when it was trained in the corpus (Figure 5 

& Figure 6). First, NER was conducted to identify and normalize ADE/medical and drug 

terms (the dictionaries used for medical entities are described in 3.3.1 section). Second, 

sentences ware represented as a matrix. Each row represents one sentence, and each column 

represents a feature. This data matrix is ready for the sentence-level classification. We used 

our optimal full-text sentence-level classifier trained from our corpus for the prediction. It 

was conducted in in WEKA software package. Positive sentences, i.e. phenotyping related, 

were further used in the next analysis. 
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3.4 Results 

3.4.1 The dictionary and lexica 

Table 10 shows the dictionary and lexica that we developed for text-mining tasks 

by combining multiple standard terminologies. These were used mainly for the IE full-text 

sentence-level classifier. For example, a sentence with any of ADE entities is represented 

as a feature in the matrix of phase 3 (Figure 5). Similarly for CLINICAL, Procedure, and 

Drug entities. 

 

Table 10 Dictionary for 279 adverse drug events (ADEs) and other medical terms used 
for extraction of full-text sentence-level features 

Entity & Dictionary Number of terms 
279 ADEs (100%) 5627 
        MedDRA PT (4.9%) 279 
        SNOMED-CT (62.5%) 3517 
        MEDIC (MESH) (32.5%) 1831 
CLINCAL (100%) 471979 
         SNOMED-CT (84.3%) 398077 
         MEDIC (MESH) (15.3%) 72167 
         MEDIC (OMIM) (0.4%) 1735 
Procedure (100%) 190399 
         SNOMED-CT (98.8%) 188031 
         ICD-9 Procedures (1.2%) 2368 
Drug (100%) 21752 
        DrugBank (100%) 21752 
Total 689751 

 

3.4.2 Optimal machine learning algorithms for classifying phenotyping 

related abstracts and full text sentences 

The abstract-level classifiers were built upon the positive and negative abstract 

training dataset in our corpus. Table 11 shows the performance of the abstract-level 

classifier for SMO, J48 Decision Tree, Logistic Regression, and Naïve Bayes. SMO and 

J48 Decision Tree outperform the other algorithms, and their recall, precision, and F-

measure are as high as 97%; while Naïve Bayes and logistic regression’s performances are 

slightly lower. 

Similarly, full-text sentence-level classifiers were developed under the positive and 

negative sentence training dataset in our corpus.  The classification performances of SMO, 

decision tree, logistic regression, and Naïve Bayes, are reported in Table 11. Overall, SMO 

and logistic regression showed the best performance, and their precision, recall, and F-
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measures reach as high as 0.84. Decision tree and Naïve Bayes’s performances were a bit 

lower. Similar to the abstract level classifiers, sentence level classifiers were trained under 

the 10-fold cross-validation in the training set. 

 

Table 11 Classifiers performance for abstract level classifiers and full sentence classifiers 
on 10-cross validation 

Classifier Algorithm Precision Recall F-Measure 
Abstract-level Classifier *SMO 0.972 0.972 0.972 

J48 Decision Tree 0.971 0.971 0.971 
Logistic Regression 0.953 0.953 0.953 
Naïve Bayes 0.924 0.908 0.909 

Full-text sentence-level Classifier 
 

SMO 0.846 0.844 0.843 
J48 Decision Tree 0.817 0.816 0.816 
*Logistic Regression 0.840 0.838 0.837 
Naïve Bayes 0.799 0.796 0.794 

*The selected algorithm for this classifier 
 

For the full-text sentence-level classifier, we optimized the performance for recall. 

The default threshold that is used in WEKA is 0.5 where the predicted probability should 

be higher than 0.5 to be predicted as ‘positive’. This threshold can be adjusted manually in 

Weka using “manualThresholdValue” for values between 0 and 1. Figure 7 shows the plot 

to visualize the threshold values of the predicted probability for logistic regression. Since 

we were interested in high recall, we selected 0.2 as our threshold for ‘positive’ category 

with a recall of 94.2%.  
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Figure 7 Full-text sentence-level classifier performance using logistic regression 
(threshold selector) 

 

Both the abstract-level and full-text sentence-level classifiers were further validated 

by a random subset of 30% of the corpus. Table 12 shows the number of documents for 

each of the training and testing dataset. Both abstract level classifier and sentence level 

classified have the comparable performance as in their training samples, and F-measures 

are 0.98 and 0.81 respectively. 

 

Table 12 Classifiers validation results on testing dataset (70% validation results) 
Classifier Training Testing Optimal 

Algorithm 
Class Performance measures 

Precision Recall F-Measure 
Abstract-
level 

1315 563 SMO Positive 0.97 0.98 0.98 
Negative 0.99 0.98 0.98 
Averaged 0.98 0.98 0.98 

Full-text 
sentence-
level 

2780 1191 Logistic 
Regression 

Positive 0.79 0.86 0.82 
Negative 0.85 0.77 0.81 
Averaged 0.82 0.81 0.81 
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3.4.3 Literature large-scale prediction results 

For literature large-scale phenotyping case definitions discovery, we used our 

validated classifier for the automatic phenotype discovery (Table 11). PubMed abstracts 

were used for years between 1975 and first quarter of 2018. Using our abstract-level 

classifier (SMO machine-learning algorithm), the number of abstracts that were predicted 

as positive, i.e. phenotyping related, are 459,406 abstracts (the distribution of abstracts on 

years is shown in Appendix 9. For positive abstracts, we retrieved their full texts. Some 

filters were applied, such as institutional full text accessibility and exclusion of animal 

studies. We retrieved the full text only either as PDF or XML. Some scanned articles (i.e. 

pictures) cannot be converted into text file, and full texts with issues in either PDF and 

XML format were excluded. Therefore, the total number of the final set of full texts is 

120,868. Using these full text articles, 6,129,574 sentences were extracted from their 

methods sections. Using our full-text sentence-level classifier (logistic regression machine-

learning algorithm), the number of sentences that were predicted as positive were 

2,745,416. Table 13 shows a summary of the results. 

 

Table 13 Results for large-scale screening of abstracts and full texts sentences 
Abstracts (Abstract-level classifier) 
Number of predicted positive abstracts (1975-2018 “Mid-March”) 459,406 

Full-text Retrieval 
Number of full text retrieved (Filters: full text available, not animal studies) 141,511 

Number of full text after data processing 120,868 

Full-text sentence-level classifier 
Total number of sentences (Method section) 6,129,574 

Number of predicted positive sentences 2,745,416 

Number of predicted negative sentences 3,384,158 

 

3.5 Discussion 

This study proposed an automated approach to mine a phenotyping case definition 

in the biomedical literature. First, we built a dictionary that we used in text-mining tasks, 

such as NER. We used several standard terminologies to build dictionary has 689,752 terms 

for entities: ADEs, Clinical, procedure, and drug. Second, we built two classifiers and 

selected the optimal machine learning algorithms using our annotated corpus from Chapter 
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2, which are abstract-level and full-text sentence-level classifier with F-measures 0.98 and 

0.81, respectively. Third, we used our validated classifiers for large-scale information 

retrieval and extraction in the literature. We predicted 459,406 abstracts as positive that 

were used for further analysis after applying some further filters that includes abstracts 

with full texts and exclude abstracts for animal studies. We were able to include 120,868 

full texts, utilized their sentences within methods sections, and predicted 2,745,416 

classified as positive. Using these sentences, we aimed to support research for phenotyping 

by deriving literature scientific information with evidence of a phenotyping definition. 

 

3.5.1 Error analysis 

We performed an error analysis to identify sources of error. We randomly selected 

100 misclassified sentences and identified some possible reasons for the misclassifications 

of full-text sentence-level classifier. Table 14 shows examples of errors. These are 

challenges associated with text-mining. Ambiguity is one of the challenges where in some 

situations it is hard to correctly infer the meaning of character, symbol, or term. For 

example, periods can indicate the end of a sentence or a word abbreviation (Shatkay & 

Craven, 2012). An error we called as Negative atypical showed the highest number among 

others with 40% appeared in sentences. A possible reason is that we extracted features that 

focused on positive cues for evidence of a phenotyping definition. These sentences can be 

also very similar to positive sentences in features, but it is negative. On the other hand, 

positive atypical are sentences that shows no evidence for positive cues or few that were 

not sufficient to classify correctly them as positive. One of the reasons can be because these 

sentences are too short that few or no positive cues found, but they are still supportive for 

phenotyping. Clinical dictionary and keywords dictionary showed also percentages of 37% 

and 35%, respectively. Both of these errors are utilizing NER approaches. The difference 

is the clinical dictionary used clinical entities from standardized dictionaries, such as 

MedDRA. On the other hand, keywords dictionary are the terms that we derived from our 

corpus analysis for positive or/and negative cues that represent or does not represent a 

phenotyping definition. In addition, abbreviations were challenging. Even though we used 

general approaches of patterns recognition to recognize some of the abbreviations such as 

term length and preceded or succeeded terms, this was not one of the scope of this work. 
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Word boundary detection and semantic ambiguity were the lowest frequent errors among 

this subset of 100 sentences with 16% and 7%, respectively. 

 

Table 14 Error analysis for full-text sentence-level classifier 
Error Descriptio

n 
Example Example 

description 
Positive 
(n = 50) 

Negative 
(n-=50) 

Total 
(n=10
0) 

Abbreviation
s 

Abbreviate
d 
phenotypes 
are harder 
to be 
recognized. 

“A little more 
than one third of 
all patients 
identified by the 
NLP method were 
manually 
confirmed to have 
HF.” 
(PMID17567225) 

This sentence is 
actual positive 
and predicted as 
negative. HF 
was not 
recognized as a 
clinical 
phenotype in 
the sentence. 

27(54%) 3 (6%) 30 
(30%) 

Word 
boundary 
detection 

The word 
boundary 
detection of 
some 
keywords. 

“First-line 
treatment.” 
(PMID11388131) 

This sentence is 
actual negative 
and predicted as 
positive. “men” 
is one of the 
keywords of 
patient. Here, 
"men" 
recognized 
from 
"treatment" due 
to incorrect 
word boundary 
identification. 

4(8%) 12(24%) 16 
(16%) 

Semantic 
ambiguity 

Entities 
that have 
same 
spelling, 
but 
different 
meaning 
depending 
on the 
context. 

“Since nearly 
everyone residing 
in the target ZIP 
code for the 
current study 
receives their 
health care 
through 
Marshfield Clinic, 
this record is 
considered 
comprehensive.” 
(PMID17456828) 

This sentence is 
actual negative 
and predicted as 
positive. The 
term “code” 
was associated 
here with other 
positive cues 

4(8%) 3(6%) 7 
(7%) 

Clinical 
dictionary 

The 
dictionary 
needs 
updates for 

“Uses inhaled 
steroids 
regularly.” 
(PMID12952547) 

This sentence is 
actual positive 
and predicted as 
negative. 

25(50%) 12(24%) 37 
(37%) 
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inclusion 
terms. 

"inhaled 
steroids" was 
not recognized 
as the term not 
in our 
dictionary.  

Keywords 
dictionary 

The 
dictionary 
needs 
updates for 
inclusion 
terms. 

“Baseline 
characteristics 
were compared 
using a X2 test for 
categorical 
variables and 
ANOVA for 
continuous 
variables.” 
(PMID15323063) 

This sentence is 
actual negative 
and predicted as 
positive. X2 test 
and ANOVA 
should be 
recognized as a 
keywords for 
negative cues 

8(16%) 27(54%) 35 
(35%) 

Positive 
atypical 

Sentences 
with 
positive 
phenotypin
g context, 
but not 
clear 
evidence. 

“Uses inhaled 
steroids 
regularly.” 
(PMID12952547) 

This sentence is 
actual positive 
and predicted as 
negative. It 
does not have 
features for 
phenotype 
definitions. 

23(46%) 0(0%) 23 
(23%) 

Negative 
atypical 

Sentences 
with 
negative 
phenotypin
g context, 
but not 
clear 
evidence. 

“Multivariate 
logistic regression 
identified patient 
factors associated 
with a correct 
diagnosis.” 
(PMID17712071) 

This sentence is 
actual negative 
and predicted as 
positive. It has 
many features 
for positive 
sentences. In 
addition, 
“regression” 
was false 
positive as a 
clinical 
diagnosis 
(phenotype). 

0(0%) 40(80%) 40 
(40%) 

 

3.5.2 Limitations of the study 

This work does not stand without limitation. The annotated corpus might not be 

representative to all of the cases that either represent or does not represent a phenotyping 

case definition. However, based on the error analysis, these cases are not very problematic 

as we optimized the full-text sentence-level classifier for high recall for positive class. 

Another limitation is reliance on NER features for the automatic classification of sentence-
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level (S. N. Kim, Martinez, Cavedon, & Yencken, 2011). Our error analysis shows that 

some terms might not be correctly recognized or are not present in the dictionaries. 

Therefore, we note that these lexical-based methods require frequent updating of the 

dictionaries. Furthermore, hand-crafted features based on expert evaluations have also been 

used for sentence-level features, where it might not be optimal. We note that we utilized 

TF and TF-IDF for extracting some of these terms (Binkheder et al., 2018). Additional 

automatic representation and detection of features might be supportive in future studies 

(Kilicoglu et al., 2018) for better representation and performance. 

Most of the literature documents are represented as PDF or XML. For example, 

PDF documents are more concerned on how the information look like rather than the 

structure of information. On the other hand, XML are more structured, but the structured 

can vary across publishers (Shatkay & Craven, 2012). This creates a challenge as we found 

some of the PDFs were in image format and/or some of XML were without content. Due 

to the challenges associated with full texts, most of the studies have focused on abstracts 

because they are free, easy to download, concise, and less challenging to mine (Shatkay & 

Craven, 2012). Here, our goal was to use full texts as we found that they contain most of 

the information for representing a phenotyping definition. Overall, conversions of full texts 

from PDF to text generated several unwanted characters, especially when using this 

information in GENIA XML format. 

 

3.5.3 Future work 

We believe that our large-scale corpus of predicted positive sentences provides a 

potential source for further applications of mining phenotyping definitions, such as 

implementing an evidence-based best practices for cohort identification research studies 

(Yadav et al., 2018). Several of studies shows that relying only on ICD-9 codes is not 

sufficient in building cohorts, and it is critical to utilize other sources like clinical notes 

(Iyer et al., 2014). Most efforts of automating the development of phenotyping definitions 

used EHR data, such as billing and administrative data and clinical text (Yu et al., 2015) 

can be biased. Developing data-driven approaches and more structured definitions using 

literature-mining of phenotyping definitions is recommended. Based on the challenges of 

developing DILI algorithm, such as identification of patients with rare conditions, 
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incomplete knowledge about DILI and its translation to phenotyping definition 

expressions, and variations in interpretation of the definition, textual descriptions of 

definitions are still an issue (Overby et al., 2013). We believe that this is one of the steps 

towards standardization of phenotyping definitions. Literature showed that the differences 

across phenotyping definitions can affect their applications across studies as well as the 

interpretation of results (Chute et al., 2011) and standardization for better portability is still 

a challenge (Fort et al., 2014). There were some efforts in the standardization of the 

representation phenotyping definitions (Chute et al., 2011). Examples are eMERGE and 

OMOP where eMERGE supports portability (Ho et al., 2014). When a phenotyping 

definition is standardized, it can provide consistent inclusion and exclusion criteria to 

define a phenotype of interest across databases (R. Richesson et al.). Utilizing our collected 

sentences, future text-mining applications can be built for tasks, such as information 

extraction and text summarization. Furthermore, we believe that literature-based mining of 

a phenotyping definition supports future work of hypothesis generation to discover 

unknown and novel correlations and patterns for phenotypic associations hidden in text. 

In conclusion, we proposed an automated approach to extract sentences with 

information of a phenotyping case definition. Two classifiers were built: abstract-level and 

full-text sentence-level. Both classifiers showed good performance in predictions and were 

applied to large scale literature. Future efforts are needed to support areas of text mining 

and knowledge discovery of phenotyping definitions information in the literature. 
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CHAPTER FOUR: DISCOVERY STUDY TO REPRESENT AND VALIDATE 

LITERATURE-BASED PHENOTYPING DEFINITIONS 

 

In Chapters 2 and 3, we created corpora for abstracts and full texts’ sentences to 

retrieve and extract phenotyping definition-related information. In this chapter, we utilize 

our large-scale corpus of over two million sentences that were predicted as positive for 

phenotype definition-related sentences. Our goal is to perform information extraction and 

a knowledge discovery study for some phenotypes of interest, such as type 2 diabetes and 

myopathy. After that, we provide some evaluations of the used approaches in this study. 

 

4.1 Introduction 

A phenotyping definition is critical for clinical and pharmacovigilance research. 

World health organization (WHO) and the centers of Disease Control (CDC) developed 

case definitions for some conditions (Botsis & Ball, 2013), these are referred by low-

throughput or expert-driven definitions (R. L. Richesson et al., 2016) that we introduced in 

Chapter 3. Low-throughput or expert-driven has several challenges. For example, we 

introduced the PheKB example (in Chapter 2 & 3) that is capable of disseminating and 

validating definitions across institutions. However, they lack structured representation of a 

case definition (Chute et al., 2011). Low-throughput phenotyping is still a long process, 

labor-intensive not scalable, and does not cover all phenotypes of interest (Botsis & Ball, 

2013; Henderson et al., 2017). Therefore, the main drawbacks with such manual processes 

of developing (Botsis & Ball, 2013) and representing (Rosenman et al., 2014) a 

phenotyping definition is affecting the progress of several research areas and surveillance. 

Existing phenotyping definitions are useful to establish clinical study or to validate 

these definitions. However, existing definitions are more complete for some conditions, 

e.g. myocardial infarction, but less complete for others, e.g. osteoporosis (Rosenman et al., 

2014). Additionally, most of these definitions are not capable of handling complex models, 

such as the ones for unstructured data (Xu et al., 2015) that lack flexible phenotyping 

definitions (Thompson et al., 2012). In validation challenges, an increase in definition 

complexity means harder validation across different institutions, e.g. HTCP definitions 

lack of standardization across EHRs (Simonett et al., 2015). Therefore, there is a need of 
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informatics approaches to automate the general process of representing case definitions 

(Botsis & Ball, 2013). 

The current direction is towards developing automated approaches for high-

throughput phenotyping that uses data-driven approaches (Conway et al., 2011; R. L. 

Richesson et al., 2016). Machine learning algorithms are more capable of discovering 

unknown relationships because the prediction logic uses real-world data rather than prior 

knowledge. Phenotypes generated from such data-driven approaches are called 

computational phenotypes that can be rapidly generated in high volumes to scale up to the 

needs of high-throughput phenotyping (R. L. Richesson et al., 2016). However, current 

efforts of high-throughput phenotyping are mainly using EHR data to generate or derive 

computational phenotypes. The use of EHR data has several limitations. The nature of 

EHRs suffer from several issues, such as bias, confounding, missing/incomplete data, 

irregular data (Castro et al., 2014; Yadav et al., 2018), and more were discussed in Chapter 

3. Furthermore, structured data, e.g. ICD-9 codes, have shown limited results in 

phenotyping; in comparison, when combined with NLP it showed better performance 

(Kotfila & Uzuner, 2015; Liao, Cai, et al., 2015; Roden & Denny, 2016) to obtain cases. 

Limestone (Ho et al., 2014) is an example of an EHR-based effort that uses data-driven 

approaches for deriving candidate computational phenotypes without the need of human 

supervision. Limestone investigated the interactions between diagnoses and medications 

using “tensors (a generalization of metrics)”. They confirmed that 82% of the top 50 

candidate phenotypes are clinical meaningful. Some of the limitations of Limestone, are: 

did not address portability, relied on only one medical expert, not all candidate were 

clinically meaningful (generating novel), and did not use text notes (Ho et al., 2014). 

Therefore, we believe that using EHR data to generate candidate computational phenotypes 

is not sufficient and should be supported with other sources such as biomedical literature. 

There are several studies that used literature-based knowledge discovery. In 

“Automating case definitions using literature-based reasoning” (Botsis & Ball, 2013), 

Botsis and Ball used co-occurrence approach and network-graph to automate 

representation of “anaphylaxis” definitions from literature abstracts. Their aim is to replace 

the manual identification of synonyms and definitions by automation. They used case-

based reasoning that utilize existing knowledge and build sematic similarity framework 
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combined with machine learning approaches. Semantic relationships were used to build 

the graph network nodes and relationships in which semantically co-occurring terms with 

the term anaphylaxis. However, Botsis and Ball have only utilized abstracts rather than full 

texts that restricted the complete retrieval of information. They stated that generating a 

corpus of full text is time-consuming and expensive. In addition, their developed approach 

was for only one condition "anaphylaxis" where more generalization needs further 

research. Moreover, they did not consider all features of a phenotyping definitions where 

some features might not be necessary for anaphylaxis, such as laboratory values, but can 

be important for other conditions (Botsis & Ball, 2013). 

PheKnow-Cloud (Henderson et al., 2017) is another study that used knowledge-

discovery from literature. PheKnow-cloud leveraged clinical expertise from PubMed Open 

Access Subset by using the evidence of co-occurrence in sentences as an automatic 

validation. The user needs to specify candidate phenotypes that were derived from EHR 

data. Then, these candidate phenotypes can be validated by screening the literature as a 

validation tool. The phenotype significance metric called lift was used to measure the 

clinical significance of candidate phenotypes (Henderson et al., 2017). The limitation of 

this tool is the need to have a potential candidate generated from other source rather than 

generating potential candidates, which is our goal in this study. 

Identification of cohorts of chronic diseases, such as diabetes, has critical value for 

the “clinical quality, health improvement, and research” as well as the development of 

patients’ registries and research datasets (R. L. Richesson, Rusincovitch, et al., 2013). With 

the utilization of standard phenotyping definitions, it enables comparison and aggregate 

analysis of patients on several levels, including population characteristics, risk factors, and 

complications (R. L. Richesson, Rusincovitch, et al., 2013). Recent results support the 

evidence that a phenotype or disease, like asthma and heart failure, are not single entity, 

but rather a collection of phenotypes. Data-driven approaches are unbiased and able to 

reveal unknown knowledge. Such analysis tools supported with large datasets are capable 

of discovering, for example, unknown clinical sub-phenotypes of diseases (Lasko et al., 

2013). The hypothesis generation of risk factors involves the use of statistical models to 

“describe the relationship between a condition and phenotypic and clinical data” (Ouyang, 
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Apley, & Mehrotra, 2016). These methods are considered unsupervised methods with the 

goal of minimizing human involvement (Lasko et al., 2013). 

Text mining analysis, especially dictionary-based approaches, using literature text 

is well-studied in the biomedical field (Kilicoglu et al., 2018). One of the text mining tasks 

is the information extraction and knowledge discovery through development of an 

automated approaches for identification of co-occurrence concepts (Krenn, 2000). In the 

medical field, co-occurrence association measures have been used to identify similar 

diseases, predict disease-causing genes (Henry, McQuilkin, & McInnes, 2018), and 

perform literature-based discovery (Henry et al., 2018; Yetisgen-Yildiz & Pratt, 2006). 

Lexical-based approaches can be used to recognize co-occurrence of two biomedical 

concepts. Recurrent concept combinations are expected to contain co-occurrence 

candidates than low ranking combinations (Krenn, 2000). The association measures are 

used to evaluate the likelihood of significant pattern of co-occurrences between any two 

concepts. After that, networks can be built using co-occurrence information; for example, 

Davazdahemami and Delen (Davazdahemami & Delen, 2018) used literature to build a 

network for drug-ADE associations. They reported that when this approach if replicated 

on a larger scale it can generate better results (Davazdahemami & Delen, 2018). 

 

4.2 Background 

4.2.1 Phenotypes in EHRs 

Phenotype is an observable property that result from interaction of an organism’s 

characteristics and environmental factors (N. Alnazzawi et al., 2015; Frey et al., 2014). In 

the medical domain, clinical phenotypes can be defined as one or collection of observable 

and measurable patient’s characteristics within a population (Frey et al., 2014; Glueck et 

al., 2016). The current phenotyping definitions are phenotype-specific, and are composed 

of an application of decision logics using EHR-based features and specifications (Carroll 

et al., 2011; Lasko et al., 2013; Mo et al., 2015; Yu et al., 2015).  The phenotype features 

can come from EHR data, including structured data (coded data), occurrences of two coded 

temporal events, unstructured narrative text, occurrences of clinical concepts (Peterson & 

Pathak, 2014; Yu et al., 2015), or relations between events (Park & Choi, 2014). Some 

studies showed an improved accuracy when EHR phenotyping definitions are combining 
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coded and clinical narratives than using one of them (Liao, Cai, et al., 2015; Roden & 

Denny, 2016; Yu et al., 2015). While other studies showed that structured data can be more 

effective in retrieving cohort data (Denny, 2012). 

EHR phenotyping can be complex; for example, recent studies showed that heart 

failure or asthma are not composed of single entities, but rather a collection of phenotypes 

that can overlap with historical diseases (Lasko et al., 2013). Current technologies are not 

practical in deepen our understanding of phenotypes. Thus, one of the major challenges is 

the insufficient phenotype granularity, which can result in uncertainty during the process 

of EHR phenotyping (Glueck et al., 2016). Therefore, the analysis of EHR phenotypes 

requires a deep understanding of all aspects of phenotypes. Computational algorithms 

capable of dealing with massive amount of data are necessary to generate new discoveries 

from EHR data (Kotfila & Uzuner, 2015). 

An understanding of phenotype-disease associations helps in diagnosing of 

diseases, improving treatments, identification of disease’s etiology (N. Alnazzawi et al., 

2015; Glueck et al., 2016). A phenotype can appear as an abnormal observation of one or 

a combination of the following: physiological, behavior, genetic, and physical traits. In 

addition, other factors can play an important role in the origin phenotypes, such as 

ethnicity, gender, and environment. Therefore, spectrums of phenotypic abnormalities are 

highly considered to better understanding of the phenotype-disease associations (Glueck et 

al., 2016). The use of EHR data has facilitated “novel clinical decision support, biomedical 

association studies, auditing and EHR security, and the cost effectiveness of treatments” 

(Chen et al., 2015). The research on the EHR data enable conversion of this data into 

knowledge (Chen et al., 2015). 

Phenotype definitions are used for cohort identification utilizing risk factors, 

clinical or medical characteristics and complications (Yadav et al., 2018). For example, 

coronary artery disease (CAD) study on three cohorts discovered that the risk of CAD is 

63.68% lower in rheumatoid arthritis and inflammatory bowel disease than diabetes 

mellitus. They developed CAD algorithm to compare the risk factors across diseases. 

However, their use of EHR data affected its generalization. The authors stated that one of 

the major limitations of the study is generalization of the algorithm due to ascertainment 

and bias on recording risk factors in EHR data facilities.  They recognized the need to 
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identify risk factors across other population (Liao, Ananthakrishnan, et al., 2015). 

Therefore, we believe that our approach provides more generalized evidence that can be 

applied over different populations. 

 

4.2.2 Co-occurrence and graph-based representation 

In Natural Language Processing (NLP), words combinations or associations are an 

important source of information (Evert, 2005; Kolesnikova, 2016), such as knowledge 

generation, text analysis and generation, knowledge extraction, text summarization, and 

information retrieval (Kolesnikova, 2016). Such collection of co-occurrences of concepts 

derived from real-world data e.g. sentences from literature creates important source of 

knowledge. A database can be created to represent these collocations of co-occurrences 

(Krenn, 2000) where frequency information of co-occurrences, when interpreted, can 

indicate a statistical association (Evert, 2005). Section 4.2.3 provides a summary about 

these measures of associations. 

Lexical-based approaches are used for recognition of co-occurring concepts rather 

than semantics (Krenn, 2000). One of the advantages of this technique is that it does not 

involve complicated linguistic theories (Chung & Lee, 2001). Mainly, we used positional 

co-occurrence when the terms co-occur within a certain distance (Evert, 2005). For 

example, the distance that we used in this study is the co-occurrence of two terms within 

the same sentence, and we called it direct co-occurrence. The direct co-occurrence can be 

extended using the network graph approaches into indirect co-occurrences. 

 

4.2.3 Measures of associations 

Association measures are statistical tests that help to distinguish between random 

co-occurrences and true associations. These frequencies and measures are used for ranking 

of pairs and/or selection of cutoff threshold. Co-occurrences are called candidates until 

specified criteria is employed (Evert, 2005). There are several associations’ measures 

models. Frequency counts associations is the simplest co-occurrence measure for 

association. However, frequency performance is weak because it only considers positive 

co-occurrences and does not consider the frequency of single words/terms. On the other 

hand, statistical lexical-based co-occurrence approaches provides better results, such as 
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DICE coefficient (Krenn, 2000). Association coefficients, such as Jaccard’s and Dice’s, 

are also called similarity coefficients (Chung & Lee, 2001). 

Dice coefficient (Smadja, McKeown, & Hatzivassiloglou, 1996) is one of the 

simplest association measures that considers the significance of each combination of 

words. Dice coefficient sums up the conditional probabilities p(X|Y) and p(Y|X) with equal 

weights and it considers the significance of individual words. This lowers the bias when 

data frequency is relatively low (Krenn, 2000). The degree of an association between two 

words or linguistic elements can be measured by “coefficients of association strength from 

the observed data” (Kolesnikova, 2016). Dice coefficient outperformed other association 

measures as well as it showed better performance for dictionary-based co-occurrences 

(Kolesnikova, 2016). 

In this work, we aimed to build data-driven approaches and hypothesis-driven 

investigation for high-throughput phenotype representations. We utilized our large-scale 

corpus data predicted from literature mining of full text sentences. The aim for our work is 

to use the corpus of sentences (from Chapter 3) with evidence of phenotyping information 

to identify potential set of computational phenotype candidates. Biomedical concepts were 

used for statistical identification of co-occurrences within the sentences. Reducing terms 

to their preferred terms is one approach for the identification of recurrent concepts with the 

aim to increase co-occurrences (Krenn, 2000). Co-occurrence approaches and association 

measures were used for extraction and ranking of the biomedical and procedure concepts. 

Finally, we compared our results with existing Gold/Silver standards, such as PheKB and 

UpToDate. 

 

4.3 Methods 

4.3.1 Co-occurrence analysis of phenotypes 

Co-occurrence analysis is a functional relationship and occurrence of two medical 

terms within a sentence (Evert, 2005; Fleuren & Alkema, 2015). Table 15 shows the 

dictionary used to recognize medical entities in sentences. After that, co-occurrences of the 

medical entities were extracted regardless of each entity length (Krenn, 2000) for further 

co-occurrence analysis. 
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Table 15 Dictionary used to extract co-occurrence and MedDRA normalization 
 

Terminology 
Number of terms in 

the dictionary 
Percent of terminology 

in the dictionary 
Normalization to MedDRA 

Preferred terms 
Mapped Not mapped 

MedDRA LLT 69955 9.5% 69955 0 

SNOMED CT 580580 79.2% 15062 565518 

MEDIC (MESH) 78650 10.7% 44100 34550 

MEDIC (OMIM) 1643 0.2% 67 1576 

ICD9 Procedure 2354 0.3% 0 2354 

Total 733182 100% 129184 
(17.6%) 

603998 
(82.4%) 

 

After the extraction of co-occurrence terms, they were represented as a document-

term matrix (DTM). DTM is a matrix that the rows are the sentences and the columns are 

the terms. This was further converted into co-occurrence matrix (n x n); n is the total 

number of terms. The matrix has the frequency of co-occurring phenotypes in columns and 

rows (Figure 8). After that, all terms were normalized by mapping them to MedDRA 

preferred terms. 

 

4.3.2 DICE scores for ranking phenotypes 

DICE coefficient is one of the statistical methods used in measuring the degree of 

the association between words x and y in an observed dataset (Evert, 2005). Olga 

Kolesnikova study (Evert, 2005) showed that DICE coefficient outperformed other 

association measures. The DICE coefficient is calculated as: 𝐷𝐷 =  2𝑓𝑓(𝑥𝑥𝑥𝑥)
𝑓𝑓(𝑥𝑥)+𝑓𝑓(𝑥𝑥)

 

Where: 

 F(x) Number of occurrences of x (StartTerm) 

 F(y) Number of occurrences of comparison term y 

 F(xy) Number of joint occurrences of x (StartTerm) and y 

To calculate DICE coefficient, we start with an ADE or phenotype of interest which 

we called StartTerm and calculated its associations. All terms with zero DICE scores were 

eliminated as these indicate that they appeared in the corpus but did not co-occur with 

StartTerm. Terms were ranked in descending order where the highest means more 
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significant associations. Directly co-occurred terms are terms that co-occurred with 

StartTerm in the same sentence. Indirectly co-occurred terms are terms that did not co-

occurred with StartTerm in the same sentence. Indirectly co-occurred terms were derived 

by finding the co-occurred terms for the top-ranked 5% directly co-occurred terms with 

StartTerm. The 5% is our selected threshold, but this can be changed. The relation here is 

when A is related to B and B is related to C, so A is related to C. Both direct and indirect 

terms were utilized in building the network graph of the starting term. NER and term 

extraction were performed in Python and Perl. The co-occurrence analysis and DICE 

ranking (sections 4.3.1 & 4.3.2) were performed in R1 (Wiedemann & Niekler). 

 

4.3.3 Network graphs 

To visualize the co-occurrence results, we used DICE coefficient scores for a 

selection of significant phenotype terms with the StartTerm (Figure 8). Terms were 

normalized to MedDRA PT (Table 15) to facilitate the generation of the network. Both 

direct and in-direct terms were used to generate the co-occurrence network. Network 

graphs were evaluated and visualized in Cytoscape (Shannon et al., 2003). 

 

                                                 
1 The code and R packages can be found in “Tutorial 5: Co-occurrence analysis by 
Andreas Niekler and Gregor Wiedemann”: https://tm4ss.github.io/docs/Tutorial_5_Co-
occurrence.html 
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Figure 8 Co-occurrence analysis, DICE ranking, and network graphs 
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4.3.4 Evaluation of literature-based co-occurrence results 

To validate and evaluate the phenotypes generated from co-occurrence analysis, we 

performed some further analysis. The goal is to compare the phenotype terms from 

literature with existing sources for terminologies, phenotyping definitions, and clinical 

guidelines. 

 

4.3.4.1 Evaluation of derived co-occurrences with 50/50 sample split of articles 

To evaluate if the co-occurrences are reproducible when derived from two 

independent sets of articles, we randomly divided the dataset into two subsets based on the 

number of articles per set. We used “Myopathy” as the StartTerm. The co-occurrence 

analysis and DICE ranking were performed on each of the datasets separately. Paired T-

test in R was used to compare the co-occurred terms with “Myopathy” in the two samples. 

 

4.3.4.2 Comparing T2DM concepts with existing sources for standard 

terminologies 

The goal is to compare phenotypes representations between our literature-based 

results and other existing terminology systems. We used the significant co-occurrence 

terms for “Myopathy” extracted from the full dataset. For comparison, we selected two 

terminology systems, MedDRA and SNOMED-CT. We compared our co-occurring 

myopathy terms to the myopathy related terms in two different terminology systems. 

 

4.3.4.3 Comparing with existing sources phenotyping definitions and clinical 

guidelines 

A number of existing sources are available providing information for case 

definitions or clinical guidelines. Here we selected PheKB1 and UpToDate2. PheKB is a 

“collaborative environment to building and validating electronic algorithms to identify 

characteristics of patients within health data.”  On the other hand, UpToDate is “an 

evidence-based, physician-authored clinical decision support resource which clinicians 

trust to make the right point-of-care decisions.” Documents from both sources were 

                                                 
1 https://phekb.org/ (accessed on September-October 2018) 
2 https://www.uptodate.com (accessed on September-October 2018) 

https://www.uptodate.com/
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converted into raw text, and terms were extracted using our dictionary and lexica (Table 

15). All of the extracted terms were compared across the three sources literature-based 

results, PheKB, and UpToDate. Our phenotypes selection for comparison was based on the 

overlap between our list of ADEs (in Chapter 2) and phenotypes that have case definitions 

available in PheKB. We evaluated 10 phenotypes that were existed in the three sources, 

which are: Diabetes Mellitus Type 2 (T2DM), acute coronary syndrome, aneurysm, 

arthritis, cardiac failure, cough, dementia, High-Density Lipoprotein (HDL) decreased, 

hypercholesterolaemia, hypothyroidism. 

 

4.3.4.4 Manual analysis of Type 2 Diabetes Mellitus (T2DM) co-occurred terms 

In this analysis, we utilized the terms for T2DM as a case study that were extracted 

from literature-based results, PheKB, and UpToDate. We manually evaluated all the terms 

for their clinical significance. For each source, we manually evaluate the phenotype by 

utilizing text documents that were used to extract the terms. For literature-based results, 

we used DICE scores of the T2DM significant terms to rank all positive sentences in our 

dataset. After that, articles were ranked in descending order using the sum of DICE score 

of sentences within that article. All of the text documents were used for manual 

categorizing and validation of all T2DM’s phenotypes (Figure 9). 
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Figure 9 The process of processing type 2 diabetes mellitus data and ranking of T2DM 

definition-related sentences 

 

4.4 Results 

4.4.1 Co-occurrence analysis results 

We used the 2,745,416 positive sentences (Chapter 3) to extract the co-occurrences 

terms. The number of sentences with co-occurrence terms is 1,414,380. The number of co-

occurrences is 12,616,465 and the number unique terms is 19,423 (Table 16). These 

phenotypes are shown in Figure 10 as a word cloud based on their frequency of unique 

terms in our dataset. 

 

Table 16 Co-occurrence analysis results 
Co-occurrence analysis 
Number of sentences with co-occurrences 1,414,380 
Number of co-occurrences 12,616,465 
Number of unique concepts 19,423 
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Figure 10 Word cloud based on the frequency of unique concepts (Table 16) 

 

4.4.2 DICE ranking and network graphs of co-occurred terms 

For each StartTerm (a phenotype of interest), we calculated the frequencies of co-

occurrences with the StartTerm and DICE coefficient. If the DICE coefficient is 0, we 

eliminated these terms as they are not significant. For example, Table 17 shows the top 20 

terms when using “Myopathy” as StartTerm. “Rhabdomyolysis” showed the highest score 

(DICE = 0.1948) to co-occur with “Myopathy”. The number of significantly co-occurred 

terms to “Myopathy” is 573. These terms are directly co-occurred in the same sentence. 

We further extended to indirect terms by utilizing the top 5% of the direct co-occurred 

terms, and it led to additional indirect 29 terms. Table 17 shows the top 20 co-occurred 

terms for Myopathy. 

Co-occurred terms are visualized in network graphs. For example, Figure 11 shows 

the network for “Myopathy” that includes both direct and indirect phenotypes. For 

visualization purposes, we selected the top 69 co-occurred terms with “Myopathy”. 

Further, for the top 5% (n=29) indirect terms, we selected their top 10 co-occurred terms. 
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The largest node with the red color is the StartTerm, “Myopathy”. The bigger nodes have 

more edges than smaller nodes. For T2DM, Appendix 10 shows the top 20 co-occurred 

terms with T2DM and Appendix 11 shows T2DM network. 

 

 
Figure 11 Myopathy Network (full dataset) 
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Table 17 Top 20 terms for co-occurred terms with Myopathy in the two divided datasets (50/50) and combined (full dataset) 
Rank Myopathy (Sample 1) Myopathy (Sample 2) Myopathy (Combined) 

Concept Dice Frequency Concept Dice Frequency Concept DICE Frequency 
1 Rhabdomyolysis 0.2188 36 Rhabdomyolysis 0.1640 21 Rhabdomyolysis 0.1948 57 
2 Myalgia 0.0842 20 Myositis 0.0642 9 Myositis 0.0719 21 
3 Myositis 0.0789 12 Myalgia 0.0456 9 Myalgia 0.0667 29 
4 Muscular dystrophy 0.0592 8 Proximal muscle 

weakness 
0.0370 3 Muscular 

dystrophy 
0.0337 8 

5 SAMS 0.0555 6 Electromyography 0.0246 3 SAMS 0.0315 6 
6 Muscular weakness 0.0306 6 Dystonia 0.0238 3 Muscle 0.0268 43 
7 Muscle 0.0297 25 Muscle 0.0236 18 Muscular weakness 0.0227 8 
8 Critical illness 

polyneuropathy 
0.0295 3 Cardiomyopathy 

alcoholic 
0.0235 2 Critical illness 

polyneuropathy 
0.0219 4 

9 Polyneuropathy 
alcoholic 

0.0294 3 Ophthalmoplegia 0.0235 2 Polyneuropathy 
alcoholic 

0.0217 4 

10 Neuropathy peripheral 0.0259 17 Syringomyelia 0.0229 2 Proximal muscle 
weakness 

0.0217 4 

11 Systemic sclerosis 0.0259 4 Rare disease 0.0218 3 Systemic sclerosis 0.0213 6 
12 Polyneuropathy 0.0258 4 Electromyogram 0.0208 2 Cardiomyopathy 

alcoholic 
0.0209 4 

13 Motor end plate 0.0195 2 Torticollis 0.0208 2 Neuropathy 
peripheral 

0.018 24 

14 Myoglobinuria 0.0193 2 Meningitis cryptococcal 0.0206 2 Myoglobinuria 0.0163 3 
15 Cardiomyopathy 

alcoholic 
0.0188 2 Enuresis 0.0173 2 Polymyositis 0.0162 4 

16 Liver injury 0.0164 3 Polymyositis 0.0170 2 Dystonia 0.0157 4 
17 Polymyositis 0.0155 2 Systemic sclerosis 0.0156 2 Syringomyelia 0.0153 3 
18 Liver disorder 0.0152 3 Ataxia 0.0155 2 Polyneuropathy 0.0143 4 
19 Hepatotoxicity 0.0143 2 Pericarditis 0.0150 2 Cardiomyopathy 0.0122 10 
20 Asthenia 0.0148 11 Asthenia 0.0148 11 Asthenia 0.0117 19 
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4.4.3 Evaluation and validation analysis of literature-based co-occurred 

phenotypes 

To better demonstrate the clinical significance of the extracted terms, we performed 

following validation analyses. We compared the performance of co-occurrence approach 

for “Myopathy” by splitting the dataset into two 50/50 samples based on the number of 

PMIDs randomly. “Myopathy” co-occurred terms in each of the two samples were matched 

and we conducted Paired t-test to compare their DICE coefficient scores. The results 

showed no significant difference (t =1.036, df =566, p-value=0.301, 95% CI: -0.0003 - 

0.0009) between the first and the second sample (mean of the difference = 0.0003). This 

suggests the consistency of results in smaller subsets of full-text articles. Three terms 

appeared in the first sample but not in the second: “Electromyogram abnormal” 

(DICE=0.01), “History of hepatocellular carcinoma” (DICE=0.009), and “MPD1” 

(DICE=0.009). On the other hand, three terms appeared in the second sample only: 

“Inclusion body myositis” (DICE=0.01), “able to run” (DICE=0.01), and “unable to run” 

(DICE=0.01). All of these 6 terms have co-occurred with “Myopathy” only one time, 

which explains why they did not appear in both subsets. Table 17 shows the top 20 terms 

in each sample. 

In the second analysis, we compared the co-occurred terms with myopathy to the 

existing sources of terminologies, MedDRA and SNOMED-CT. Figure 12 (A & B) shows 

the representation of terms for “Myopathy” in MedDRA and SNOMED-CT, respectively. 

In MedDRA, for example, “Myopathy” is one of the preferred terms for (“Myopathies”, 

MedDRA HLT). On a lower level, “Myopathy” has 14 LLT terms that serve are synonyms 

for it. On the other hand, in SNOMED-CT, “Myopathy” is considered as the root term, 

which has around seven synonym terms. SNOMED-CT describes relationships where in 

Figure 12 B “Myopathy” is also described as “Is a” “Disorder of muscle” and “Is a” 

“Skeletal muscle (body structure)”. This example illustrates the classification structure for 

“Myopathy” in each standard. We note that in our NER tasks for recognizing terms, we 

used both dictionaries. Overall, these terms are already extended to the same levels as the 

examples in Figure 12. Literature-based phenotypes adds concepts associations (direct and 

in-direct) of other biomedical and procedure terms. 
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Figure 12 Myopathy in MedDRA and SNOMED CT 
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The third analysis was to compare our literature-based co-occurred phenotypes to 

the phenotypes in PheKB and UpToDate. Table 18 shows the total count of terms for each 

phenotype in each of the sources. If we treat the total terms from three databases as total 

information, our literature based co-occurred phenotypes always possess the most the 

information, i.e. they have much more terms than the other two phenotype definition 

sources. For each of these ADEs, we provide the Venn diagram (Figure 13) for the three 

sources, the top terms for each ADE, and the network graph. 

 

Table 18 The number of terms from text sources (Literature, PheKB, UpToDate) in ten 
selected phenotypes 

Phenotypes of Interest Total count of terms Total 
combined Literature (%) PheKB (%) UpToDate (%) 

Diabetes Mellitus Type 2 
(T2DM) 

508 (63.8%) 106 (13.3%) 498 (62.6%) 796 

Acute coronary syndrome 1203 (96.5%) 36 (2.9%) 197 (15.8%) 1247 

Aneurysm 1487 (89.4%) 120 (7.2%) 432 (26.0%) 1664 

Arthritis 2776 (93.9%) 169 (5.7%) 539 (18.2%) 2956 

Cardiac failure 412 (58.0%) 119 (16.8%) 406 (57.2%) 710 

Cough 2299 (93.9%) 31 (1.3%) 526 (21.5%) 2449 

Dementia 2484 (90.5%) 38 (1.4%) 793 (28.9%) 2744 

High-Density Lipoprotein 
(HDL) decreased 

405 (78.9%) 33 (6.4%) 197 (38.4%) 513 

Hypercholesterolaemia 1307 (87.7%) 340 (22.8%) 147 (9.9%) 1491 

Hypothyroidism 1418 (81.8%) 137 (7.9%) 678 (39.1%) 1733 

 

Finally, we manually compared T2DM phenotypes among literature-based 

discovery, PheKB and UpToDate. Figure 9 shows the data processing steps. All of the 

terms were extracted using our lexica (Table 15) and NER method. For literature-based, 

we used the DICE scores for T2DM co-occurred terms and their synonyms to recognize all 

sentences with presence of these terms. The DICE scores for each article’s sentences were 

summed. The total number of articles that showed DICE score more than zero was 36,172 

articles with a total of 903,120 sentences (Figure 9). Articles with higher DICE scores 

suggest that they contain more relevant T2DM definition-related sentences. For PheKB 
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and UpToDate, the relevant T2DM texts were extracted and relevant terms were 

recognized using NER method. 

Figure 13 shows a Venn diagram for the overlap of T2DM terms across the three 

sources. There were around 59 terms overlapped across the three sources. The overlap 

between Literature-based and PheKB was on 78 terms. Therefore, the literature-based 

T2DM covered 73.6% (n= 78 out of 106) of the PheKB terms. Then, we further looked 

into all of the terms (n = 796) from three sources combined. We evaluated each of the terms 

manually and assigned a category for it. Table 19 shows the categories, their counts in each 

of the sources, and examples for some overlapped terms. 

Examples of risk factors that we found in our literature-based discovery, but not in 

PheKB and UpToDate are in Appendix 12. All of these concepts were direct relationship 

with T2DM, which means that they appeared in the same sentence. Appendix 12 shows 

examples of sentences for some T2DM risk factors or complications that appeared only in 

literature-based definitions. These sentences were selected from our dataset for illustration 

and might not have T2DM terms within the same sentence. However, these terms provide 

sentences with phenotyping definition information for phenotypes with relation to T2DM. 

Each of these concepts was mapped to its MedDRA PT. 

 
Figure 13 Venn diagrams of overlapping concepts for the 10 phenotype 
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Table 19 Categories of candidate phenotypes for Type 2 Diabetes Mellitus in the three sources 
Type Description Number of terms in each source Number of 

terms 
appeared 

in the 
three 

sources 

Terms appeared in the three sources 
Literature PheKB UpToDate Term Term rank in 

literature co-
occurrences (DICE 

score) 

Clinical diagnosis 
or symptom 

Refers to an illness, 
condition, disease, 
disorder, or clinical 

features that describes 
patient’s status to establish 
a clinical diagnosis. It can 

be also other related 
conditions, such as co-

morbidities. 

68 (13.4%) 11 (10.4%) 83 (16.6%) 6 (10.2%) Type 2 diabetes 
mellitus 

0 

Type 1 diabetes 
mellitus 

1 (0.23267) 

Diabetes type 4 (0.01513) 
Hyperglycaemia 15 (0.00949) 
Diabetes mellitus 19 (0.00812) 
Glycosuria Indirect relationship 

(T2DM | Gestational 
diabetes | Glycosuria) 

Risk factor or 
complication 

Factors that increase the 
risk of diabetes and reduce 
the risk of diabetes, or are 

diabetic complications. 

225 
(44.4%) 

41 (38.7%) 199 
(39.9%) 

23 (39%) Gestational 
diabetes 

10 (0.01092) 

Diabetic 
retinopathy 

41 (0.00494) 

Caucasian 43 (0.00475) 
Neuropathy 
peripheral 

47 (0.00412) 

Family history 49 (0.00399) 
Retinopathy 55 (0.00339) 
Diabetic 
complication 

82 (0.00317) 

Female 200 (0.00195) 
Nephropathy 255 (0.00136) 
Metabolic 
syndrome 

265 (0.00131) 

Infected dermal 
cyst 

281 (0.00115) 

Sensation of 
pressure 

297 (0.00101) 
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Pregnancy 314 (0.00085) 
Hypertension 355 (0.00064) 
Weight 366 (0.00057) 
Kidney 371 (0.00052) 
Smoking 374 (0.00052) 
Fall 401 (0.00043) 
Ethnicity 432 (0.00032) 
Race 435 (0.00031) 
Gender 439 (0.00029) 
Birth 449 (0.00023) 
Polycystic ovaries Indirect relationship 

(T2DM | Gestational 
diabetes | Polycystic 
ovaries) 

Measurements (e.g. 
laboratory tests) 

Refers to the terms for 
clinical measurements, or 
laboratory tests or results. 

38 (7.5%) 14 (13.2%) 58 (11.6%) 9 (15.2%) Blood insulin 6 (0.0137) 
Drug tolerance 22 (0.0067) 
Blood glucose 46 (0.0041) 
Glycosylated 
haemoglobin 

51 (0.0037) 

Fasting 122 (0.0029) 
Body mass index 289 (0.0010) 
Haemoglobin 316 (0.0008) 
Blood pressure 428 (0.0003) 
Glucose tolerance 
test 

Indirect relationship 
(T2DM | Tolerance | 
Glucose tolerance test) 

Procedure Refers to the procedures 
that are performed as a part 

of a healthcare delivery, 
such as surgery. 

33 (6.5%) 4 (3.8%) 16 (3.2%) 2 (3.4%) Pancreatectomy 21 (0.00746) 
Therapeutic 
procedure 

298 (0.00099) 

Definition criteria Terms that describe the 
medical entity within the 
phenotype definition, but 
not specific enough to be 
categorized as a diagnosis 

or a procedure 

15 (3%) 8 (7.5%) 8 (1.6%) 6 (10.2%) Diagnosis 266 (0.00131) 
Problem 319 (0.00082) 
History 359 (0.00062) 
Screening 370 (0.00054) 
Included 393 (0.00045) 
Measurement 394 (0.00045) 
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General / remove Terms that are either too 
general for describing a 
phenotype or disease, or 

can be a noise. 

128 
(25.2%) 

28 (26.4%) 135 
(27.1%) 

13 (22%) Mass 165 (0.00233) 
Syndrome 177 (0.00222) 
Concentration 312 (0.00089) 
Related 324 (0.00079) 
Management 334 (0.00076) 
Education 341 (0.00073) 
Disease 346 (0.00068) 
Euphoric mood 384 (0.00049) 
Will 386 (0.00048) 
Single 434 (0.00032) 
Observation 442 (0.00025) 
Counseling Indirect relationship 

(T2DM | supervision | 
counseling) 

Ovary Indirect relationship 
(T2DM | Gestational 
diabetes | ovary) 

Grand Total 507 
(100%) 

106 
(100%) 

499 
(100%) 

59 
(100%) 

Terms with ranking are the terms that have direct relationship with T2DM. On the other hand, terms without ranking are the indirect 

relationships terms i.e. they did not co-occur in the same sentence with T2DM. 
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4.5 Discussion 

4.5.1 Primary findings 

The corpus of sentences predicted as positive (from Chapter 3) with evidence of 

phenotyping information were used for further discovery. Using these sentences, we used 

lexical-based named entity recognition to extract co-occurrences (n=12,616,465) and 

identify unique phenotypes (n=19,423). The statistical co-occurrence approach called 

DICE coefficient was used to rank co-occurrence concepts for a phenotype of interest. We 

used several approaches to validate the co-occurrences. First, for myopathy phenotype, we 

divided the dataset into 50/50 randomly, extracted co-occurrences concepts for each half 

with “Myopathy”. We applied paired t-test on the co-occurrence concepts and it showed 

no significant difference between the two datasets. Second, we compared the co-occurrence 

concepts with myopathy from the whole dataset with other existing terminologies, such as 

MedDRA and SNOMED CT. According to our observations, existing terminologies do not 

provide the relationships that were observed in our literature-based phenotypes. We believe 

that literature-based concepts would generate unknown relationships for a phenotype of 

interest and serve better for the task of phenotyping and cohort identification. Third, 

literature-based phenotypes were further compared to phenotypes in other existing data 

sources: PheKB and UpToDate. When considering the total terms from three data sources 

combined as total information, literature-based co-occurred phenotypes always showed the 

most information across the ten tested phenotypes. Furthermore, we showed that T2DM 

concepts that were derived from literature-based co-occurrence analysis covered terms 

with 73.6% of PheKB. Finally, we manually evaluated T2DM concepts using raw text or 

online searches. 

PheKB provides phenotyping definitions for several phenotypes through 

collaboration between institutions. The process of building these definitions are still 

manual, and relied on experts and multidisciplinary teams from several institutions. Since 

PheKB has expert-driven phenotype definitions, we further explored the missing terms by 

our method. For T2DM, we found 28 terms appeared in PheKB, but not in our literature 

concepts. We note that we are looking for exact concept match. Upon further manual 

assessment of the 28 terms contained within PheKB T2DM definition (Table 20), we found 

that 18 terms of them were directly relevant to the T2DM definition. We looked further in 
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our literature concepts, we found that all of terms co-occurred with T2DM as direct 

relationships as single terms except one terms, which is “Diabetes with Hyperosmolarity” 

co-occurred as indirect relationship. The indirect relationship between T2DM and 

“Hyperosmolarity” means that they did not co-occur in the same sentence. Instead, T2DM 

co-occurred directly with a complication called “Ketoacidosis”, “Ketoacidosis” co-

occurred directly with “Hyperosmolarity”, and the final indirect relationship is “T2DM| 

Ketoacidosis| Hyperosmolarity”. For the 17 terms that co-occurred with T2DM as direct 

relationships, these terms appeared as single terms.  For example, “Cataract diabetic” 

appeared as “Cataract” and “Diabetic coma” appeared as “Coma” in which both terms in 

this example co-occurred with T2DM. For the 17 terms that co-occurred with T2DM as 

direct relationships, these terms appeared as single terms.  For example, “Cataract diabetic” 

appeared as “Cataract” and “Diabetic coma” appeared as “Coma” in which both terms in 

this example co-occurred with T2DM. For the term “Diabetes mellitus uncontrolled”, even 

though its exact match is not in our literature-based terms, we found diabetic complications 

that can be caused by uncontrolled diabetes as single concepts. According to the American 

Diabetes Association (ADA)1, uncontrolled diabetes can lead to several complications 

including foot complications, (Ketoacidosis) & Ketones, Kidney Disease (Nephropathy), 

High Blood Pressure, Stroke, and infections. These conditions appeared as single terms in 

our literature-based concepts that co-occurred with T2DM. 

On the other hand, 7 terms were found in PheKB were not relevant directly to 

T2DM phenotyping definition, such as “Blue” and “Circling”. We found that these terms 

appeared out of context of T2DM definition such as a description of using blue highlight 

pen during the manual extraction process. Lastly, we found that “American Indian” 

appeared as a datatype in PheKB for manual data collection. “American Indian” did not 

appear in neither directly or indirectly co-occurred terms with T2DM in literature. Instead, 

we found the term “Race” co-occurred with T2DM, which is more generalized term. 

Overall, we found that most them co-occurred with T2DM as single terms. This shows that 

the concepts contained within T2DM phenotyping definitions-related sentences overlapped 

with most concepts contained within T2DM PheKB definition excluding the 7 terms (Table 

                                                 
1 http://www.diabetes.org/living-with-diabetes/complications/ 
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10) that are not relevant to phenotyping definitions as well as “Chart review”. Table 10 

shows the 28 concepts with their assessment for their presentation in PheKB. Table 20 

shows the 28 concepts with their assessment for their presentation in PheKB. 

 

Table 20 Missing terms in our literature-based concepts and existed in PheKB 

T2DM terms in PheKB, but 
not in literature-based co-
occurrences 

The presence of the 
term within PheKB 
phenotype 
definition 

Reasons for missing the terms in T2DM 
literature-based co-occurrences 

1. Cataract diabetic 
2. Diabetes self management 
3. Diabetes with 

hyperosmolarity 
4. Diabetic arthropathy 
5. Diabetic coma 
6. Diabetic nephropathy 
7. Diabetic neuropathy 
8. Glycosylated hemoglobin 

measurement 
9. Macular oedema 
10. Neurological symptom 
11. Familial risk factor 
12. Family history of 
13. Glucose measurement 
14. Impaired fasting glucose 
15. History of 
16. Random blood glucose 
17. Screening for diabetes 
18. Tolerance test 

Presented with 
T2DM 
definition/algorithm 

These terms are presented in the literature as 
single terms that co-occurred with T2DM as 
either direct (n=17) or indirect relationship 
(n=1): 
 “Cataract diabetic” appeared as 

“Cataract” 
 “Diabetes self management” appeared 

as "Diabetes self-management" 
 “Diabetes with hyperosmolarity” 

appeared as indirect relationship 
“T2DM | Ketoacidosis | 
hyperosmolarity”. 

 “Diabetic arthropathy” appeared as 
“Arthropathy” 

 “Diabetic coma” appeared as “coma” 
 “Diabetic nephropathy” appeared as 

“Nephropathy” 
 “Diabetic neuropathy” appeared as 

“Neuropathy peripheral” 
 “Glycosylated hemoglobin 

measurement” appeared as 
“Glycosylated haemoglobin” and 
“measurement” 

 “Macular oedema” appeared as 
“Oedema” 

 “Neurological symptom” appeared as 
“Neuropathy peripheral” 

 “Familial risk factor” appeared as 
“family history” and “family medical 
history” 

 “Family history of” appeared as “family 
history” and “family medical history” 

 “Glucose measurement” appeared as 
“measurement” and “Blood glucose” 

 “Impaired fasting glucose” appeared as 
“Fasting” and “Blood glucose” 

 “History of” appeared as “history" and 
"family history 

 “Random blood glucose” appeared as 
“Blood glucose” 

 “Screening for diabetes” appeared as 
“screening” 



 
 

97 
 

 “Tolerance test” appeared as “Glucose 
tolerance test” 

19. Diabetes mellitus 
uncontrolled 

Presented with 
T2DM 
definition/algorithm 

“Diabetes mellitus uncontrolled” is not in 
literature-based concepts, but terms for 
diabetes complications are present. 

20. American Indian Presented with 
datatypes used for 
data extraction, not 
T2DM 
definition/algorithm 
itself. 

“American Indiana” appeared in PheKB 
T2DM datatypes for extraction of patient’s 
data. In our literature, we found more 
generalized terms, such as “Ethnicity” and 
“Race, co-occurred with T2DM. 

21. Chart review Presented within the 
method the 
validation criteria, 
not T2DM 
definition/algorithm 
itself. 

“Chart review” is not in our literature terms. 
This term is usually appear within 
information used for creating or building a 
gold standard. 

22. Blue 
23. Circling 
24. Digit 
25. Does not fall 
26. Interested 
27. Sign 
28. Separated 

Presented within 
other text. These 
terms are not 
contained within 
T2DM definition. 

These terms were either noise or not relevant 
to T2DM phenotyping definition itself. In 
our manual evaluation, these terms were 
categorized as “general/remove”. 

 

4.5.2 Limitations of the study 

One limitation is the manual process of assigning categories for T2DM co-occurred 

concepts. T2DM was selected for manual validation of the co-occurred phenotypes because 

both PheKB and UpToDate provide sufficient information. For each candidate phenotype 

for T2DM, we manually reviewed the original text in each of the three sources.  We 

identified six categories, and each of them was assigned to a concept. These concepts 

include diagnosis and/or symptom, risk factor, laboratory, procedure, definition criteria, 

and general and/or remove. We note that false associations, i.e. noise, we called it “general 

and/or remove” in literature-based and UpToDate is higher than in PheKB. A possible 

reason is that literature and UpToDate sources have more textual information than PheKB 

that has finalized & post-processed T2DM definition information. Besides, when some of 

the phenotype candidates were still ambitious, we consulted a physician with specialization 

in diabetes. She reviewed the co-occurred T2DM concepts, confirmed the clinical 

significance of some, and denied others, including the overlapping concepts in the three 

sources. 
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Another limitation is the NER matching that it may match shorter terms rather than 

longer ones (e.g. one word rather than two). It has been reported that vocabulary mapping 

can generate some error in creating cohorts (Hripcsak, Levine, Shang, & Ryan, 2018), such 

as mapping to preferred terms or string matching. There is no standard or agreement on the 

best method for normalization, but dictionary-based methods are the best (Botsis & Ball, 

2013). However, for example, we found that the preferred term ‘Drug tolerance’ is the 

MedDRA PT for the term 'Tolerance' (see Figure 14). In this example, the correct matched 

concept is “oral glucose tolerance test”. The normalization of terms helped in increasing 

the weight of some of the co-occurrences by extending the synonyms of a phenotype. There 

are still some other challenges when using lexicon based methods such as describing the 

occurrence of hypokalemia or hyperglycemia in quantitative terms, such as changes in 

potassium or sugar levels (Iyer et al., 2014). Our network graphs helped to improve our 

understanding about the relations between concepts. It also helps in observing the patterns 

and clusters of phenotypes and the in-direct phenotypes, which provides a vision of 

unknown relationships. This was a more technical issue that can be addressed with 

advanced NLP approaches such as dependency approaches (Abacha & Zweigenbaum, 

2011) as a future work. 
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Figure 14 Named-entity recognition for “Tolerance” and examples from literature 
sentences 

 

4.5.3 Impact and future work 

One of the major goals of this work is to decrease the need for human involvement 

during the process of developing a phenotyping definition. We used literature to derive 

evidence that supports information extraction of these definitions. We showed that we were 

able to decrease the expert involvement during this process. A researcher or an expert role 

can come later by either selecting a subset of candidate phenotypes or using all of them. 

This replaces the need to manually search for this information to define these terms in 

literature and medical guidelines sources. Besides, our data-driven approach provides less 

bias criteria for selection of phenotypes in comparison to expert involvement that their 

prior knowledge and experience might reflect their selection. We believe that utilizing this 

domain-specific corpus of sentences (from Chapter 3) with evidence of a phenotyping 
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definition information helped in generating more accurate co-occurrence concepts. Such 

evidences were not built on a single definition, but on a large-scale set of data. We were 

able to extract over 12 million co-occurrences that the more recurrence of a co-occurrence 

means the highest its significance (Krenn, 2000). This provides research-based evidence to 

promote certain science and to derive consistent and generalizable findings built across 

several studies (Greenhalgh). We believe that our approach will support the generation and 

advancement of phenotyping definitions that were not represented previously in other 

sources, such as PheKB. In addition, it will support developing machine learning 

algorithms for automatic identification of cohorts of patients. With this, the goal is to help 

to transform the data to answer different research questions because different studies 

require different questions, and consequently designs (Yadav et al., 2018). 

One of the advantages of utilizing literature-based definitions is the availability of 

definitions that were already used in research studies; in comparison, UpToDate is only 

providing diagnosis descriptions and guidelines developed primarily for clinical use. In 

addition, PheKB did a great achievement in creating a collaborative environment for 

developing, disseminating, and validating phenotyping definitions; however, it does not 

provide the definitions for all phenotypes of interest. In fact, the already existing definitions 

might not be efficient on all research purposes (R. Richesson et al.)1. Moreover, the 

designation of medical knowledge mapping, such as co-occurrences of terms extended to 

common dictionaries, can support phenotyping. For example, a patient with rheumatoid 

arthritis with an elevated liver function test might indicate either an ADE or a result of viral 

infection, heart failure, sepsis, or other causes (Mo et al., 2015). In this example, single 

phenotypes are not sufficient to understand or identify the cohort, but rather evidence from 

other supportive sources is required to define a phenotype. The terms contained within 

literature-based phenotyping definitions is capable of providing not only phenotype 

synonyms, but also other terms with some correlation evidence in the literature, such as 

risk factors and complications. These provide more flexibility for the user in designing the 

study of interest. For example, infectious disease is one of the candidate phenotypes with 

T2DM, but not in other sources (PheKB and UpToDate). Studies showed that there are 

                                                 
1 http://rethinkingclinicaltrials.org/resources/ehr-phenotyping/ 
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associations between infectious diseases and diabetes (Casqueiro, Casqueiro, & Alves, 

2012; Shah & Hux, 2003). Furthermore, the procedure of splenectomy is also shown in our 

phenotypes, but not in other sources. We found that there is literature-evidence that 

splenectomy has an association with diabetes (S. C. Wu, Fu, Muo, & Chang, 2014). More 

examples are shown in Appendix 12. 

In conclusion, data-driven approaches were used for extracting and ranking 

candidate phenotypes, including co-occurrence and network graphs, named-entity 

recognition, and DICE coefficients. Our main contribution is to decrease the human effort 

and involvement during the process of deriving phenotyping information from literature. 

Furthermore, our candidate concepts offer potential resource to support phenotyping and 

hypothesis generations, and open opportunities for EHR-based studies and validation. 

Overall, data-driven approaches are supportive for the areas of knowledge discovery of 

phenotyping definitions. 
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CHAPTER FIVE: DISCUSSION AND CONCLUSION 

 

This dissertation presents an innovative informatics approach for mining 

phenotyping definitions in biomedical literature. Phenotyping definitions are often not 

available for many phenotypes of interest, especially when performing high-throughput 

phenotyping. A phenotyping case definition helps in the identification of cohorts of patients 

(Q. Li et al., 2014). We further discussed current approaches to develop a phenotyping 

definition including low-throughput phenotyping (expert-driven) and high-throughput 

phenotyping (data-driven). These methods can be time-consuming, labor-intensive, biased, 

and not scalable. Therefore, we developed a text-mining pipeline combining rule-based 

and machine-learning methods to automate retrieval, classification, and extraction of 

phenotyping definitions-related sentences from literature. To our knowledge, there is no 

existing work for mining literature-based phenotyping definitions using full texts on a large 

scale. We proposed three Aims to build our text mining and knowledge discovery approach 

for mining literature-based phenotyping definitions. In this chapter, we summarize major 

findings in each Aim of this dissertation, limitations of the study, and future work. 

In Aim 1, we developed two corpora, abstracts and sentence-level full texts, as a 

first step for building a text-mining pipeline. Our selected phenotypes of interest were 

based on our research group’s interests in adverse drug reaction phenotypes, and 279 

phenotypes were selected. The list of phenotypes was used for several tasks, including data 

collection and lexica construction. For abstract-level corpus construction, two searching 

criteria were performed to retrieve abstracts relevant to EHR-based studies. A random set 

of these abstracts were selected that consists of 86 abstracts to build the full text corpus. 

Top phenotypes in these 86 abstracts are diabetes, hypertension, and heart failure. We 

downloaded their full texts, tokenized text into sentence tokens, and extracted sentences 

within methods sections boundaries. We proposed a new generalizable approach that 

serves as foundational basis for sentence-level annotations. The annotation guidelines 

aimed to annotate sentences that show contextual cues of a phenotyping definition (Botsis 

& Ball, 2013; Kirby et al., 2016; Shivade et al., 2014; Yadav et al., 2018)  and PheKB 

modalities (Kirby et al., 2016), such as laboratories and standard codes. To our knowledge, 

contextual cues of phenotyping definitions in the literature that surround biomedical and 
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medication entities were not studied previously. Two annotators with degrees in 

biomedical informatics have annotated the corpus. Several inter-annotator agreement 

measurements were used to assess the reliability of the annotations and guidelines. These 

measurements are overall sentence-level percent agreement (inspired by Wilbur et al. 

(Wilbur et al., 2006)), percent agreement, and Kappa. 3971 sentences were annotated. The 

overall sentence-level percent agreement was as high as 97.8%. 

In Aim 2, we constructed a text-mining approach to automate extraction of 

phenotyping definitions’ information. Two tasks were performed to accomplish this goal: 

information retrieval of abstracts and information extraction of sentences from methods 

sections of full texts. First, we used the 279 ADEs from Aim 1 to build our lexica and 

dictionary composed of 689,752 concepts that were used in several text-mining tasks. 

Second, we trained and validated two classifiers: abstract-level and full-text sentence-level. 

These classifiers utilized informatics approaches of text-mining, machine learning, and 

rule-based. For building the abstract-level classifier, we utilized a corpus of 799 positive 

abstracts (manually reviewed from Aim 1) and 1079 negative abstracts (randomly selected 

from PubMed between 1995 and 2017). We used WEKA to test and train the abstract-level 

classifier on several classification algorithms including sequential minimal optimization 

(SMO) (Platt, 1999), logistic regression (LR) (Quinlan, 2014)), Naïve Bayes (NB) (John 

& Langley, 1995), and J48 Decision Tree (Lecessie & Vanhouwelingen, 1992). The SMO 

and J48 Decision Tree algorithms outperformed the others, and their recall, precision, and 

F-measure were as high as 97%. For building the full-text sentence-level classifier, we used 

the corpus of 3971 sentences from Aim 1. NER and feature extraction (n=339) were 

performed followed by training and testing the classifier on SMO, LR, NB, and J48 

Decision Tree algorithms. SMO and logistic regression showed the best performance, and 

their recall, precision, and F-measures were 84%. Both classifiers, the abstract-level (SMO 

algorithm) and the full-text sentence-level (LR algorithm), were used for predictions on 

large-scale literature text data. After optimizing the classifiers, we performed a large-scale 

screening of PubMed for years between 1975 to early March 2018. Using the abstract-level 

classifier, we predicted 459,406 abstracts as relevant to phenotyping. We retrieved their 

full texts, and our final set of full texts is 120,868. We processed the documents that were 

either PDF or XML formats into text format. Sentences within methods sections were 
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extracted for predictions (n=6,129,574). We used the full-text sentence-level classifier on 

these sentences and were able to predict 2,745,416 sentences to be relevant to phenotyping. 

We believe that these sentences provide important phenotyping information, and were used 

for further knowledge discovery in Aim 3. 

In Aim 3, we performed a discovery-based study to evaluate and validate literature-

based phenotyping case definitions of selected phenotypes. We utilized sentences with 

phenotyping information from Aim 2 (n=2,745,416). Using lexical-based approaches we 

extracted concepts (n=19,423) and their co-occurrences in the same sentence 

(n=12,616,465). We used DICE coefficient scores to rank associated concepts with a 

phenotype of interest from the most significant to the least. We showed examples for 

myopathy and Type 2 Diabetes Mellitus (T2DM). Furthermore, we performed several 

validation tests. First, we compared the performance of co-occurrence approach for 

“Myopathy” by dividing the PMIDs into two subsets randomly. From each of the two 

subsets “Myopathy” co-occurred terms were extracted. We performed a paired t-test to 

compare the DICE coefficient scores between the two subsets, and the results showed no 

significant difference between them (p-value=0.301). Second, we compared candidate 

concepts for myopathy with concepts in MedDRA and SNOMED CT. We found that our 

candidate concepts provide additional information about myopathy phenotype such as risk 

factors and comorbidities. We note that we used both MedDRA and SNOMED CT for 

recognizing concepts in sentences. Third, we compared the candidate concepts for ten 

phenotypes in three resources: our literature-based results, PheKB, and UpToDate. We 

found that our literature-based phenotypes generally generated the largest number of 

concepts. We further manually reviewed T2DM candidate concepts for their clinical 

significance. We identified six categories that were each assigned to a T2DM concept, 

diagnosis and/or symptom, risk factor, laboratory, procedure, definition criteria and general 

and/or remove. Literature and UpToDate provided the most information about the risk 

factor category phenotypes followed by the diagnosis and/or symptom category. The 

diagnosis and/or symptom category was the highest in PheKB followed by the risk factor 

category. 

In this work, we aimed to provide a scalable approach that is capable of deriving 

large number of concepts relevant to a disease, a phenotype, or an ADE with a minimum 
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need to experts’ involvement. We were able to collect large number of sentences containing 

phenotyping definitions information using text-mining and machine learning classifiers. 

The collection of sentences, if collected manually, can be time-consuming and labor-

intensive. With this, we were able to extract over 2 million sentences that were predicted 

to contain phenotype definitions information. This collection of sentences can be used for 

several tasks, in future work, including information extraction and text summarization. 

We utilized these sentences for extracting knowledge relevant to phenotyping 

definitions that uses data-driven approach. Unlike traditional methods, data mining and 

data-driven approaches provide new opportunities to use several data sources for 

knowledge discovery and identification of significant associations (R. Harpaz et al., 2012). 

We compared our data-driven approach to PheKB, which their phenotype definitions are 

considered expert-driven. Expert-driven approach, as we mentioned previously, requires, 

in many cases, experts collaboration and multidisciplinary teams involvement from one or 

multiple institutions. In addition, generating new definitions in PheKB is still a long 

process. To date, PheKB contains definitions for less than 65 phenotypes, which does not 

cover all phenotypes or ADEs of interest in high dimensions. Therefore, we identified the 

need of a more scalable approach that can accelerate the process of identifying concepts 

that are relevant to a phenotype. We further found that our literature results is capable of 

deriving most terms that were presented in PheKB. Additionally, our literature-based 

concepts are not limited to the expert knowledge, which can be sometimes bias, but are 

derived from evidence presented in literature supporting the goal of discovering unknown 

knowledge. Moreover, we believe that our literature-based concepts can provide 

phenotyping candidates in large numbers that supports high-dimensional research of ADEs 

and other phenotypes. This approach of extracting and ranking terms from full texts 

showed that we were able to present terms and concepts that are related to a phenotype or 

ADE of interest. The evidence used is the co-occurrence of the concepts within the same 

sentence that we called direct relationships. We further built and extended relationships of 

our network to the terms that did not co-occur within the same sentence and we called it 

indirect relationships. Our literature-based concepts included not only phenotypes, but also 

others such as procedures, definition criteria, and laboratories. With this, we are able to 

generate candidate concepts for any phenotype or ADE of interest if its data is contained 
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in our literature-based concepts. These phenotype candidates facilitate standardized 

development of definitions using common terminologies. In addition, they can provide 

potential lists of concepts and relationships that can be later filtered according to research 

needs. The corpus of sentences combined with our candidate concepts can provide potential 

data sources for supporting EHR-based phenotyping research. A summarized overview of 

literature-based phenotyping definitions mining and knowledge discovery is shown in 

Figure 15. 

 

 
Figure 15 Overview of literature-based phenotyping definitions mining and knowledge 
discovery of this dissertation 

 

This work does not stand without limitations. First, the annotation process is 

expensive, time-consuming, and labor-intensive. Therefore, only two annotators annotated 

the sentences of the corpus. Testing the guidelines on more annotators with clinical 

expertise is highly recommended. Second, a number of tasks were reliant on dictionary or 
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lexical-based approaches such as feature extraction and co-occurrence extraction tasks. 

Such lexical-based approaches require frequent updates of the used dictionaries. Third, 

challenges accompanied with processing full texts are more than with abstracts. For 

example, texts converted from PDF documents had some issues with structure and 

unreadable special characters. Fourth, the manual validation process of the T2DM requires 

time and effort as well as expertise in several clinical specialties. Fifth, we note that one of 

the limitation of this study in our annotation criteria and text-mining classifier is not 

addressing the differentiation between the inclusion and exclusion criteria of a phenotyping 

definition. At this level of work in this dissertation, our goal was to extract all sentences 

that contain phenotyping definitions information. Future work can include further 

categorization and negation handling (J. J. Kim, Zhang, Park, & Ng, 2006) in order to 

differentiate between inclusion and exclusion sentences and terms contained within these 

sentences. Here are examples of definitions with inclusion and exclusion criteria, 

consecutively: 

 
“Those with specific diagnoses were included based on the following 
criteria: PA: diagnosis confirmed by pathological SIT i.e., PAC > 140 
pmol/L post the infusion of 2 L of normal saline (0.9% NaCl) over 4 h” 
(PMID28924583), and “Patients with gestational diabetes mellitus, 
secondary diabetes (steroid-induced, cystic fibrosis, hemochromatosis, and 
chronic pancreatitis), or type 1 diabetes were excluded” (PMID25986070). 
 
There are several opportunities for future work. We developed a corpus that can 

serve as a gold standard for future text-mining applications. In addition, the annotation 

guidelines can serve as a foundational basis for mining a phenotyping case definition and 

can be tested on a bigger corpus with more annotators. Furthermore, we recommend 

annotating entities including biomedical and phenotyping modalities. Such annotations can 

assist in several text-mining tasks, such as information extraction and summarization. For 

co-occurrence analysis, the candidate associations need some further validation and testing 

in other data sources such as EHR. These candidate concepts support several future 

research opportunities within areas of EHR-based research. For a phenotype of interest, 

indirect associations contribute in hypothesis generation and knowledge discovery. 

Negative outcomes, such as drug-drug interactions (DDIs) and ADEs, have 

triggered the expansion of drug discovery research to detect relationships between drugs 
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and outcomes at different levels (Zeng, Deng, Li, Naumann, & Luo, 2018). There are 

several data sources for mining ADEs such as literature, FAERS, social media, and EHR, 

that evaluation of ADEs can use more than one source (Tafti et al., 2017). Mining ADEs 

in EHR requires phenotyping definitions, especially when dealing with large number of 

ADE phenotypes. A phenotyping definition has several research applications, which 

include diagnosis categorization, novel phenotype discovery, clinical trial screening, 

pharmacogenomics, DDIs and ADEs, and genomic studies (Zeng et al., 2018). Therefore, 

our work has the potential to build a database for ADEs phenotyping definitions and their 

associated concepts that serve as dictionaries and potential related candidates. In addition, 

the collection of sentences can support the process of future text annotation and 

summarization of ADEs phenotype definitions from literature to build this database.  

Harmonization of the definitions in one source can help in a better understating of how an 

ADE has been defined previously across different studies in the literature. By creating such 

a source, ADEs phenotyping definitions information can be available to use for the EHR-

based drug discovery research. 

In conclusion, the contribution of this dissertation is in building specific corpus for 

mining a phenotyping definition and advancing knowledge about contextual cues 

surrounding these definitions. Abstract-level and full-text sentence-level classifiers were 

built to recall relevant sentences with phenotyping information. Furthermore, this work is 

different than previous work because it uses full texts rather than abstracts to represent co-

occurrences of phenotypes. In addition, it used literature rather than EHR that suffers from 

bias. Validation of the co-occurrence candidates were performed with several methods. For 

empirical validation, text from different sources was used that differs in origin and style. 

For statistical validation, a paired t-test was used for comparing the co-occurrences derived 

from two subsets of data and showed no significant difference. Finally, this work is an 

effort to build scalable data-driven approach to represent computational phenotypes that 

can serve in several high-throughput phenotyping applications. 
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APPENDICES 

 

Appendix 1 
 

Phenotypes of interest: list of 279 potential adverse drug events (ADEs) 
ADE-related phenotypes (1-150) MedDRA 

PT 
ADE-related phenotypes (151-279) MedDRA 

PT 
Abscess 10000269 Insomnia 10022437 
Acne 10000496 Irritability 10022998 
Acute coronary syndrome 10051592 Ischaemia 10061255 
Affect lability 10054196 Ischaemic stroke 10061256 
Aggression 10001488 Jaundice 10023126 
Agitation 10001497 Lethargy 10024264 
Akathisia 10001540 Leukocytosis 10024378 
Alopecia 10001760 Leukocyturia 10050791 
Anaemia 10002034 Leukopenia 10024384 
Aneurysm 10002329 Lipoatrophy 10024604 
Angina pectoris 10002383 Lipodystrophy acquired 10049287 
Anxiety 10002855 Liver disorder 10024670 
Anxiety disorder 10057666 Liver injury 10067125 
Arrhythmia 10003119 Lung disorder 10025082 
Arteriosclerosis 10003210 Lymphocele 10048642 
Arthritis 10003246 Lymphoproliferative disorder 10061232 
Asthenia 10003549 Malaise 10025482 
Asthma 10003553 Mania 10026749 
Ataxia 10003591 Menorrhagia 10027313 
Atrial fibrillation 10003658 Methaemoglobinaemia 10027496 
Atrioventricular block 10003671 Miosis 10027646 
Atrioventricular block second degree 10003677 Mitochondrial toxicity 10053961 
Azotaemia 10003885 Multi-organ failure 10028154 
Back pain 10003988 Muscular weakness 10028372 
Bipolar disorder 10057667 Musculoskeletal pain 10028391 
Blood cholesterol increased 10005425 Musculoskeletal stiffness 10052904 
Blood creatinine increased 10005483 Mutism 10028403 
Blood pressure decreased 10005734 Myalgia 10028411 
Bone marrow failure 10065553 Myocardial infarction 10028596 
Bradycardia 10006093 Myocardial ischaemia 10028600 
Bundle branch block left 10006580 Myoclonus 10028622 
Cachexia 10006895 Myopathy 10028641 
Cardiac arrest 10007515 Myositis 10028653 
Cardiac failure 10007554 Nail disorder 10028694 
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Cardiac failure congestive 10007559 Nephrolithiasis 10029148 
Cardiac fibrillation 10061592 Nephropathy 10029151 
Cardiomegaly 10007632 Nephropathy toxic 10029155 
Cardiotoxicity 10048610 Nephrotic syndrome 10029164 
Cerebrovascular accident 10008190 Nervousness 10029216 
Chest discomfort 10008469 Neuralgia 10029223 
Chills 10008531 Neuropathy peripheral 10029331 
Cholelithiasis 10008629 Neurotoxicity 10029350 
Cholestasis 10008635 Neutropenia 10029354 
Chronic allograft nephropathy 10063209 Nightmare 10029412 
Cognitive disorder 10057668 Obsessive-compulsive disorder 10029898 
Coma 10010071 Oedema 10030095 
Completed suicide 10010144 Oliguria 10030302 
Confusional state 10010305 Osteopenia 10049088 
Constipation 10010774 Overdose 10033295 
Convulsion 10010904 Pain 10033371 
Coronary artery disease 10011078 Palpitations 10033557 
Cough 10011224 Pancreatitis 10033645 
Crying 10011469 Pancytopenia 10033661 
Cyanosis 10011703 Panic attack 10033664 
Delirium 10012218 Panic disorder 10033666 
Delusion 10012239 Paraesthesia oral 10057372 
Dementia 10012267 Parkinsonism 10034010 
Depression 10012378 Peptic ulcer 10034341 
Dermatitis 10012431 Peripheral sensory neuropathy 10034620 
Diabetes mellitus 10012601 Peripheral vascular disorder 10034636 
Diarrhoea 10012735 Pharyngitis 10034835 
Dissociation 10013457 Poisoning 10061355 
Dizziness 10013573 Polyuria 10036142 
Drug intolerance 10061822 Poor quality sleep 10062519 
Drug tolerance 10052804 Pregnancy 10036556 
Drug tolerance decreased 10052805 Presyncope 10036653 
Dry mouth 10013781 Productive cough 10036790 
Duodenal ulcer 10013836 Proteinuria 10037032 
Dysarthria 10013887 Prothrombin time prolonged 10037063 
Dyslipidaemia 10058108 Pruritus 10037087 
Dysphagia 10013950 Psoriasis 10037153 
Dyspnoea 10013968 Psychosomatic disease 10049587 
Dystonia 10013983 Psychotic disorder 10061920 
Electrocardiogram qt interval 10014385 Pulmonary toxicity 10061924 
Electrocardiogram qt prolonged 10014387 Pyelonephritis 10037596 
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Electrocardiogram st segment 10014389 Rash 10037844 
Embolism 10061169 Renal failure 10038435 
Epistaxis 10015090 Renal failure chronic 10038444 
Erectile dysfunction 10061461 Renal impairment 10062237 
Erythema 10015150 Renal tubular necrosis 10038540 
Erythema multiforme 10015218 Restlessness 10038743 
Essential hypertension 10015488 Rhabdomyolysis 10039020 
Euphoric mood 10015535 Rhinitis 10039083 
Extrapyramidal disorder 10015832 Salivary hypersecretion 10039424 
Fatigue 10016256 Schizoaffective disorder 10039621 
Fluid retention 10016807 Schizophrenia 10039626 
Flushing 10016825 Sedation 10039897 
Formication 10017062 Serotonin syndrome 10040108 
Gait disturbance 10017577 Sexual dysfunction 10040477 
Gastric ulcer 10017822 Shock 10040560 
Gastrointestinal haemorrhage 10017955 Sinus bradycardia 10040741 
Gastrooesophageal reflux disease 10017885 Sinusitis 10040753 
Gingival hyperplasia 10018283 Skin toxicity 10059516 
Glomerulonephritis 10018364 Sleep disorder 10040984 
Glucose tolerance impaired 10018429 Social avoidant behaviour 10041243 
Glycosuria 10018473 Somnolence 10041349 
Gout 10018627 Stomatitis 10042128 
Graft dysfunction 10059677 Stress 10042209 
Graft loss 10048748 Sudden cardiac death 10049418 
Graft versus host disease 10018651 Sudden death 10042434 
Grand mal convulsion 10018659 Suicidal ideation 10042458 
Gynaecomastia 10018800 Suicide attempt 10042464 
Haematoma 10018852 Syncope 10042772 
Haematuria 10018867 Tachycardia 10043071 
Haemolysis 10018910 Tardive dyskinesia 10043118 
Haemorrhage 10055798 Tension 10043268 
Haemorrhagic diathesis 10062713 Thinking abnormal 10043431 
Hallucination 10019063 Thrombocytopenia 10043554 
Hemiparesis 10019465 Thrombosis 10043607 
Hemiplegia 10019468 Thrombotic thrombocytopenic purpura 10043648 
Hepatic cirrhosis 10019641 Torsade de pointes 10044066 
Hepatic encephalopathy 10019660 Transaminases increased 10054889 
Hepatic enzyme increased 10060795 Tremor 10044565 
Hepatic failure 10019663 Type 2 diabetes mellitus 10067585 
Hepatic function abnormal 10019670 Ulcer 10045285 
Hepatic steatosis 10019708 Upper gastrointestinal haemorrhage 10046274 
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Hepatitis cholestatic 10019754 Urinary incontinence 10046543 
Hepatotoxicity 10019851 Urticaria 10046735 
High density lipoprotein decreased 10020060 Vasoconstriction 10047139 
Hostility 10020400 Ventricular arrhythmia 10047281 
Hot flush 10060800 Ventricular extrasystoles 10047289 
Hyperbilirubinaemia 10020578 Ventricular failure 10060953 
Hypercalcaemia 10020583 Ventricular fibrillation 10047290 
Hyperchlorhydria 10020601 Ventricular tachycardia 10047302 
Hypercholesterolaemia 10020603 Vision blurred 10047513 
Hyperglycaemia 10020635 Visual impairment 10047571 
Hyperhidrosis 10020642 Weight decreased 10047895 
Hyperkalaemia 10020646 Weight increased 10047899 
Hyperlipidaemia 10062060 Withdrawal syndrome 10048010 
Hypersensitivity 10020751 

 
 

Hypertension 10020772 
  

Hyperthyroidism 10020850 
  

Hypertriglyceridaemia 10020869 
  

Hypertrophic cardiomyopathy 10020871 
  

Hyperuricaemia 10020903 
  

Hypoalbuminaemia 10020942 
  

Hypochondriasis 10020965 
  

Hypoglycaemia 10020993 
  

Hypokalaemia 10021015 
  

Hypomagnesaemia 10021027 
  

Hypomania 10021030 
  

Hyponatraemia 10021036 
  

Hypophosphataemia 10021058 
  

Hypoprothrombinaemia 10021085 
  

Hypotension 10021097 
  

Hypothyroidism 10021114 
  

Idiopathic thrombocytopenic purpura 10021245 
  

Immunodeficiency 10061598 
  

Incontinence 10021639 
  

Infarction 10061216 
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Appendix 2 
 

PMIDs selected by searching criteria explained in (Table 1 Abstract Inclusion-Exclusion 

criteria) 
12952547 
16765240 
17456828 
20112435 
20819866 
21051745 
21156884 
22071529 
22737097 
23449283 
23471929 
23574801 
23740530 
24377421 
24780720 
25024246 
25567824 
25725597 
25827034 

25991397 
26524702 
27112538 
27969571 
28081941 
20362271 
20504370 
20976281 
21182790 
21722567 
21727258 
21862746 
21931496 
23193215 
23873756 
23913737 
23940245 
23969148 
24177317 

24297547 
24349080 
24636641 
24658100 
24734124 
24882379 
25104519 
25431293 
26167484 
26209741 
26365338 
26370823 
26725697 
26961369 
27151343 
27621120 
27749702 
25851993 
28222112 
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Appendix 3 
 

Abstracts selected by using the other searching criteria (Not included Table 1 Abstract 

Inclusion-Exclusion criteria) 
PMID Search Criteria 
11388131 hypertension electronic medical record diagnosis guideline 
12461305 hypertension and "electronic medical record" and algorithm 
15323063 
22051424 
17712071 
24283597 

hypertension electronic medical record (code OR retrospective)  

15572716 
26116311 

myopathy electronic medical record 

15758007 
20655691 

thrombosis electronic medical record 

16567608 
17162144 
27252874 
23439167 
23445773 

diabetes electronic medical record 

17269833 electronic medical records adrenal cohort  
17567225 electronic medical records heart failure 
22466034 stroke electronic medical record (cohort* OR retrospective)  
27940627 (cardiotoxicity OR cyanosis OR "peripheral vascular disorder" OR shock OR 

vasoconstriction OR "hypertrophic cardiomyopathy" OR "acute coronary syndrome" OR 
"angina pectoris" OR "cardiac arrest" OR infarction OR ischaemia OR" myocardial 
infarction" OR "myocardial ischaemia" OR "sudden cardiac death" OR arteriosclerosis 
OR "coronary artery disease" OR arrhythmia OR "atrial fibrillation" OR 
"atrioventricular block" OR "atrioventricular block second degree" OR bradycardia OR 
"bundle branch block left" OR "cardiac fibrillation" OR "electrocardiogram st segment" 
OR palpitation* OR presyncope OR "sinus bradycardia" OR syncope OR tachycardia 
OR "ventricular arrhythmia" OR "ventricular extrasystoles" OR "ventricular failure" OR 
"ventricular fibrillation" OR "ventricular tachycardia" OR "torsade de pointes" OR 
electrocardiogram qt interval OR" electrocardiogram qt prolonged" OR "cardiac failure" 
OR cardiac failure congestive OR cardiomegaly OR "blood pressure decreased" OR 
"blood pressure increased" OR thrombotic thrombocytopenic purpura OR "sudden 
death")  electronic health record (cohort OR surveillance or case-control or 
epidemiological or Longitudinal Studies) (code or billing or algorithm)(code OR codes 
OR algorithm* or case definition) 

23781409 (Diabetes type II) AND ("Electronic Health record" OR "Electronic Medical Record" 
OR "Electronic Health records" OR "Electronic Medical Records") AND validation  

23968235 electronic health records and anemia  
24303267 (diabetes mellitus OR glucose tolerance impaired OR glycosuria OR hyperglycaemia 

OR hypoglycaemia OR type 2 diabetes mellitus OR DM2) electronic health record 
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(cohort OR surveillance or case-control or epidemiological or Longitudinal Studies) 
(code or billing or algorithm) (code OR codes OR algorithm* or case definition) 

24507049 renal failure electronic medical record 
25091637 myocardial infarction electronic medical record (retrospective OR cohort*)  
25933736 electronic medical record Arrhythmia cohort  

26221186 electronic medical record Arrhythmia algorithm  
26283069 electronic health records and anemia and validation  
27317850 (drug-induced OR "adverse events" OR "DDI" OR drug drug interaction OR "adverse 

reaction") electronic health record (cohort OR surveillance or case-control or 
epidemiological or Longitudinal Studies)  

26082655 (asthenia OR chest discomfort OR chills OR dry mouth OR dysphagia OR fluid 
retention OR flushing OR formication OR haematoma OR hot flush OR hypercalcaemia 
OR hyperkalaemia OR hypokalaemia OR hypomagnesaemia OR hyponatraemia OR 
hypophosphataemia OR mitochondrial toxicity OR multi-organ failure OR oedema OR 
overdose OR pain OR poisoning) electronic health record (cohort OR surveillance or 
case-control or epidemiological or Longitudinal Studies) (code or billing or 
algorithm)(code OR codes OR algorithm* or case definition) 
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Appendix 4 
 

Annotation guidelines to annotate a phenotyping definition in the literature 
 

Inclusion category (five dimensions) 
 

Inclusion dimension 1 – Biomedical & Procedure: 
Criteria 1: The sentence should include two entities: 
Rule for criteria 1: [Biomedical|Procedrue] AND [Definition criteria] 
A. [Biomedical|Procedrue]: any biomedical or procedure terms, or any of the following: disease stages, 

symptoms, outcome of interest, diseases, laboratory & vital tests, diagnosis, procedure, clinical 
observation, person-time, Bed rest, Height, race, comorbidity, weight, sex or gender (Males, 
females, women, woman, man, men), hospitalization, birth date, surgery, chronic condition, BMI, 
age, ADE(drug-induced side effect), medication adherence, drug intolerance, cell level 
(gene/allele/SNPs/ homozygotes/dna). 

B. [Definition criteria]: can be any of the following: 
- Verbs to define a phenotype: defined, identify, identified, included, excluded, calculate, having, 

undergoing, underwent, who had, documented, diagnosed, classified, consider, selected, 
counted, captured 

- Nouns to define a phenotype: inclusion, exclusion, definition, case identification, eligible, 
presence, criteria, Algorithm, diagnostic criteria, presence, absence, parameter, incident, sign, 
history, diagnosis, diagnoses, initiation, onset, occurrence, referral, guideline, category or 
categories, stage, outcome, outcome of interest, history, endpoint, examination, severity, 
adverse event, condition of interest 

- Phrase: “Patients/case/subject/child with”, “Patients/case/subject/child had”, 
“Patients/case/subject/child who”, “primary diagnosis”, “secondary diagnosis”, “primary 
procedure”, “secondary procedure”, “based on”, evidence of. 

 
Criteria 2: Definitions in table, figure, box, or appendix. The sentence provide evidence of a 
phenotyping definition information presented in other sources, rather than text, such as table, figure, 
box, or appendix: 
Rule for criteria 2: [Table terms] AND [Definition terms] 
A. [Table terms]: Table, figure, Box, appendix. 
B. [Definition terms]: inclusion, exclusion, definition, case identification, inclusion criteria, criteria, 

phenotyping algorithm, exclusion criteria. 
 
Examples for inclusion dimension 1: 
• “[identification] of [syndromic conditions]” (PMID17567225) – criteria 1 
• “Such phenocopies [include] several [vasculitides, Buerger’s disease, embolism, trauma to leg 

arteries and other rare arteriopathies].” (PMID20819866) – criteria 1 
• “We first [calculated] the prevalence of [prehypertension], [stage] 1 [hypertension], and stage 2 

[hypertension] in the cohort.” (PMID17712071) – criteria 1 with categories or stages 
•  “The [categories] of [race] were ‘white’, ‘black or African American’, ‘American Indian or 

Alaskan’, ‘Asian’, ‘other’, and ‘unknown’” (PMID20819866) – criteria 1 with categories or stages 
• “ Six comorbid disease conditions were selected and validated using the definitions reported in 

Table 3.” (PMID21051745) – criteria 2 
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• “The diagnoses are presented in hierarchical order in the first column of the Table.” 
(PMID23449283) – criteria 2 

 
Inclusion dimension 2 – Standard Codes: 
Criteria 1: Mention of standard terms (e.g. International classification of diseases), such as ICD, CPT, 
UMLS, SNOMED, RxNorm, billing code, Read codes, diagnostic code¸ procedure code. Accepted 
formats: Short or long form (ICD or International Classification of Diseases) or list diagnostic or 
procedure codes. 
Criteria 2: able terms with evidence of diagnostic or procedure codes list/ code definitions/algorithms: 
Table, figure, Box, appendix 
 
Example for inclusion dimension 2: 
• “a primary or any secondary discharge diagnosis (International Classification of Diseases, Ninth 

Revision, Clinical Modification [ICD-9-CM] code) of myoglobinuria (791.3)” (PMID15572716) 
 
Inclusion dimension 3 – Medications: 
Criteria 1: Keywords describe medications: e.g. generic drug names, prescribing, medication regimens, 
recommended agent, medication prescribed, drug dosage, drug frequency, drug route, medications, 
prescriptions. 
 
Criteria 2: Drug name o-occurs with any of the following: medication, dose, treatment, therapy, drug, 
receiving, received, prescrib, using, use, use of, inclusion, include, exclusion, exclude, definition, case 
identification, identify, eligible, presence, criteria, presence, initiation, window, dose, guideline, history, 
started, agent(s), drug, medication, exposure, who had, treated with, indication, drug dosage, drug 
frequency, drug route, cohort. 
 
Criteria 3: Medication terms co-occur with table, figure, box, or appendix: Table terms with evidence of 
a list of medication terms (Table, figure, Box, appendix). 
 
Examples for inclusion dimension 3: 
• “Other risk factors and comorbidities were ascertained based on ICD-9-CM codes, medication use 

and laboratory data.” (PMID20819866) – criteria 1 
• “Prior antihypertensive therapy was defined as the use of any AHDs before the start of amlodipine, 

which were not discontinued on or before the start of amlodipine therapy.” (PMID15323063) – 
criteria 2 

• “Table 1 outlines the recommended agents for specific comorbid conditions, as stated in our 
guideline.” (PMID12952547)- criteria 3 

 
Inclusion dimension 4 – Laboratories: 
Criteria 1: The sentence should provide evidence of using clinical measurable values (i.e. laboratory 
values, vital values, procedures, clinical) combined with real values. The sentence should include 
[Clinical or procedure] AND [Measurable value]: 
A. [Clinical or procedure]: Clinical can be any of the following: disease stages, symptoms, outcome of 

interest, diseases, laboratory & vital tests, diagnosis, procedure, clinical observation, Height, weight, 
BMI, age. 

B.  [Measurable value]: Any of the following: 
- Terms or numbers indicate measurable values: >, <, ≥,  numerical values, more than, less than. 
- Other = ["mg", "ml”, “mg/dL”, “years old”] 
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- Other clue words combined with real values: value, measure, measurement, reference range, 
normal range, reading, level. 

 
Example for inclusion dimension 4: 
• “Achievement of lipid goals was defined as recommended by the National Cholesterol Education 

Program Adult Treatment Panel III guidelines16 as follows: LDL-C less than 100 mg/dL, 
triglyceride level less than 150 mg/dL, HDL-C greater than 40 mg/dL, and non–HDL-C less than 
130 mg/dL.” (PMID16765240) 

 
Inclusion dimension 5 – Use of Natural Language Processing (NLP): 
Criteria 1: The sentence provides evidence of using NLP in a phenotyping definition. 
Rule for criteria 1: [Phenotype, procedure, medication] AND [NLP terms] 
A. [Phenotype, procedure, medication]: Terms can be any of the following: disease stages, symptoms, 

outcome of interest, diseases, diagnosis, procedure, clinical observation, drugs, medications. Other 
terms can be considered: person-time, Bed rest, Height, race, comorbidity, weight, sex, birth date, 
surgery, diseases, signs/symptoms, anatomical sites, procedure, drug, medication. 

B. [NLP terms]: Natural Language processing, Natural language, nlp, text mining, "wildcard 
character", “bag of words”, parses, “named entity”, rule-based, NLP algorithm, n-grams, Regular 
Expression, tokenization, normalization, stemming, Lemmatization, named entity, named entity 
recognition (NER). 

 
Criteria 2: NLP evidence in a phenotyping definition and this information explained in a table, figure, 
box, or appendix. 
Rule for criteria 2: [NLP terms] AND [Table terms] 
A. [NLP terms]: Natural Language processing, Natural language, nlp, text mining, "wildcard 

character", “bag of words”, parses, “named entity”, rule-based, NLP algorithm, n-grams, Regular 
Expression, tokenization, normalization, stemming, Lemmatization, Named entity, synonym, 
Named entity recognition (NER). 

B. [Table terms]: Table, figure, Box, appendix. 
 
Examples for inclusion dimension 5: 
• “Example of a Clinical Note Represented as a “Bag of Words” . . .  HF status positive negative 

Covariate #1 "heart" 3 1 Covariate #2 "pulmonary"” (PMID17567225) – criteria 1 
• “Rule-based and machine learning techniques were applied to clinical narratives and smoking status 

was classified as ‘past’, ‘current’, ‘smoker’, ‘non-smoker’, or ‘unknown’.” (PMID20819866) – 
criteria 1 

• “Structuring free text into useable coded data Text mining techniques were used to code diagnoses 
and drug prescriptions into ICD10 and ATC classification systems, respectively.” (PMID26209741) 
– criteria 1 medications 

• “Details of text mining for identifying diagnoses are contained in a supplementary technical 
document” (PMID26209741) – criteria 2 

 
 

Intermediate category (two dimensions) 
 

Intermediate dimension 1 – Data sources: 
Criteria 1: mention of used sources. 
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• Electronic health records keywords: Electronic health records, EHR, electronic medical record, 
EMR, database, registry, biobank, biospecimen, biorepositories 

 
Criteria 2: mention of datatypes/variables used in EHR/EMR. 
• Medical records keywords: progress notes, clinical notes/reports, laboratory records/data, radiology 

report/data, pharmacy records/data, administrative records/data, insurance claims/records/data, 
patient record, patient chart, hard copy report, medical chart, computerized charts. 

• Clinical data keywords: referral, encounter, immunization, consultation report, laboratory, dismissal 
summaries, Height measurement, weight measurement, genetic data, serological data, problem list, 
scanned image, free-text, diagnoses list 

• Procedure data keywords: claim, discharge, hospitalization, visit, admission, outpatient, inpatient, 
billing, hospital report, note. 

• Other data mentions with evidence in EHR/EMR: demographic, sociodemographic, patient 
characteristics, abnormal measurement, follow-up data/measurement., encounter identifier. 

 
Criteria 3: Any clinical or procedure followed with data keywords. 
Rule for criteria 3: [Biomedical|Procedrue] AND [Data keywords] 

A. [Biomedical|Procedrue]: any biomedical or procedure terms, or any of the following: disease 
stages, symptoms, outcome of interest, diseases, laboratory & vital tests, diagnosis, procedure, 
clinical observation, person-time, Bed rest, Height, race, comorbidity, weight, sex or gender 
(Males, females, women, woman, man, men), hospitalization, birth date, surgery, chronic 
condition, BMI, age, ADE(drug-induced side effect), medication adherence, drug intolerance, 
cell level (gene/allele/SNPs/ homozygotes/dna). 

B. [Data keywords]: data, measures, measurement, value, values, datamart, dataset. 
 
Examples for intermediate dimension 1: 
• “Computerized medical and pharmacy records were reviewed for patient demographics, 

antihypertensive medications, comorbid conditions, and BP readings.” (PMID11388131) – criteria 1 
& 2 

• “The data were all based on pharmacy claim records from the KP electronic prescription system.” 
(PMID17269833) – criteria 1 & 2 

•  “This detailed information includes medical history, clinical assessments, consultation reports, 
dismissal summaries, laboratory and radiology results, and correspondence.”  (PMID17162144) – 
criteria 2 

 
Intermediate dimension 2 – Study design or Institutional Review Board (IRB): 
Criteria 1: Institutional Review Board (IRB) or Study design. If any of the following is in the sentence: 
• Study design keywords:  Retrospective, observational study, longitudinal study, case-control study, 

“random/ly sample/d”, Inception cohorts, matched controls, matched cases, intervention group, 
control group, matched pairs, case-control pairs, cohort, negative cohort, positive cohort, pilot 
study, stratified, stratification, prospective, Surveillance Study, control. 

• Gold standard keywords: chart review, manual review, notes reviewed, records reviewed, manual 
abstraction, expert panel, validation study, gold standard, standardized abstraction, standardized 
protocol. 

• IRB keywords: IRB, Institutional Review Board, study protocol 
 
Criteria 2: Any of the following co-occurrences the same sentence: 
•  “case” and “control” 
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• “chart” and “review”, “record” and “review”, or similar. 
 
Examples for intermediate dimension 2s: 
• “IRB approval The Institutional Review Board (IRB) at the Birmingham VA Medical Center 

approved this study.” (PMID24377421) – criteria 1 
• “STUDY DESIGN: Retrospective chart review.” (PMID11388131) – criteria 1 
• “To establish the control group, all active patients in the practice for less than 12 months were 

excluded.” (PMID11388131) – criteria 1 
• “Chart review Confirmation of case status by manual review” (PMID12952547) – criteria 1 
 

 
Exclusion category (three dimensions) 

 
Exclusion dimension 1 – Irrelative evidence: 
Criteria 1: Evidence of information relevant to other components of the study that might not assist in 
phenotyping. Each of the following sub-dimensions shows examples of keywords: 

• Physical location (geographic) of the study only: information about the location (country, 
county, city, zip code, region, geographic). 

Note: We exclude from this criterion general location names because it can cause ambiguity 
with other institution names that are not physical location. Examples: institute, office, clinic, 
department…etc. In addition, we exclude from this criterion: if the state name is referring to the 
hospital. 

• Ethical: consent, ethics, patient approval, patient denial, HIPAA. 
• Financial: Funding, financial support, copayment, charged, sponsor, cost, insurance 

coverage, fee-per-service. 
• Patient direct contact or enrollment: The sentence that shows evidence of a direct contact 

or enrollment of patients in the study. Example keywords: Surveys, questionnaire, 
interviews, instructions, recruitment, recruit, enrollment, enroll patients, 9-item Patient 
Health Questionnaire (PHQ-9) 

• Providers & researchers: provider, physician, medical student, nurse, team, staff, clinician, 
fellow, --ologist, resident, general practitioner (GP), team, psychiatric, principal 
investigator, case manager. 

Note: We exclude from this criterion: author 
• Performance: performance evaluation, training, performance measure, CPOE intervention, 

human error 
• Quality of care: Quality of care, Quality Assurance, Quality Improvement 

 
Examples for exclusion dimension 1: 
• “Patients from the Department of Neurology, the Newborn Service, and the Neonatal Intensive Care 

Unit were excluded, as were patients receiving mechanical or pharmacologic prophylaxis.” 
(PMID15758007) – (Type: Location) 

• “Reasons for exclusion were as follows: 6 persons denied permission to use their medical records 
for research” (PMID17162144) – (Type: Ethical) 

• “All patients were members of the managed care system and incurred a significant financial 
advantage from having their prescriptions filled within the system.” (PMID16765240) – (Type: 
Financial) 
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•  “Patients overdue for specific screening services received personalized letters recommending the 
needed service (e.g., cholesterol testing or dilated eye examinations) on a quarterly basis.” 
(PMID16567608) – (Type: Patient direct contact or enrollment) 

• “Physicians received training on the use of the electronic medical record system and associated 
tools, such as reminders, from consultants working for the vendor company.” (PMID16567608) – 
(Type: Provider) 

• “Physicians received training on the use of the electronic medical record system and associated 
tools, such as reminders, from consultants working for the vendor company.” (PMID16567608) – 
(Type: Performance) 

• “Quality of care was determined by measuring the same parameters designed to measure the 
awareness, treatment, and control of hypertension.” (PMID12461305) – (Type: Quality of care) 

 
Exclusion dimension 2 – Computational and statistical evidence: 
Criteria 1: Evidence of information relevant to computational and statistical that might not assist in 
phenotyping. Each of the following sub-dimensions shows examples of keywords: 
• Alerts: computer alerts, reminders, intranet tracking, continuously updated, robust, automated 
• Software or tool: software, platform, plugin, computer, tool 
• Statistical methods (usually toward the end of the method section). Any of the following statistical 

terms (or similar):  
 Analysis of covariance (ANCOVA)  Measure (measured) - verb 
 Area under the receiver operating 

characteristic curves (AUC) 
 Model (modeled, modeling) 

 Bayes  Multiplication [ x ] 
 Bias  Multivariate 
 Bivariate  Normally distributed 
 Calculate (calculated, calculates, 

calculations) 
 Odds 

 Charlson’s comorbidity index  Over-fitting 
 Chisquare  P value 
 Chi-square  Package 
 Cluster  Permutation 
 Coefficient  Poisson distribution 
 Compute (computed, computes) - verb  Poisson regression 
 Confidence interval, CI  Predict 
 Correlation  Predicted 
 Covariance  Predictive value 
 Cox  Probability 
 Degrees of freedom  Propensity score 
 Descriptive statistics  R statistical language 
 Equation  
 Fisher exact test  Regression 
 Fisher’s exact  Relative risk (rr)  
 Fishers test  Risk score 
 General linear model  SAS 
 Goodness-of-fit  Sensitivity, specificity 
 Graphic  Simulation 
 Imputat  SPSS 
 Independent samples t-test  Statistically significant 
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 Kaplan-meier  Statistics, statistical 
 Kolmogorov– smirnov  T-test 
 Likelihood  Two-tailed 
 Logistic  Univariate statistical analysis  
 Logistic regression  Variance 
 Mantel–Cox (log-rank)  Welch and Brown–Forsythe 
 Mean, median, mode  Weighted 
• Structured Query Language (SQL)  

 
Examples for exclusion dimension 2:  
• “We used logistic regression models with generalized estimating equations to adjust for race, year, 

race x year interactions, age, and sex.” (PMID16567608) – (Type: Statistics) 
• “We used the proportional-hazards model to estimate the relative hazard of clinical end points 

associated with the computer alert and obtained 95 percent confidence intervals from this model.” 
(PMID15758007) – (Type: Alerts) 

 
Exclusion dimension 3 – Insufficient evidence: 
Criteria 1: Sentences with insufficient evidence. We mean by insufficient evidence is a sentence that 
does not met any of the dimensions in all categories (inclusion, intermediate, exclusion 1 & 2). 
 
Example of exclusion dimension 3: 
• “BSA= beclomethasone-salmeterol; COPD= chronic obstructive pulmonary disease; FSA= 

fluticasone-salmeterol; ICS= inhaled corticosteroid.” (PMID17162144) 
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Appendix 5 
 

Entities and terms in the 86 abstracts using PubTator annotation tool 
Entity Term Count of PMID 
Chemical 60 
 1RA 1 
 alcohol 1 
 aminosalicylates 1 
 amlodipine 1 
 amlodipine besylate 1 
 atorvastatin 1 
 beclomethasone 1 
 bilirubin 1 
 calcium 1 
 cerivastatin 1 
 cerivastatin-fibrate 1 
 chloride 1 
 cholesterol 6 
 creatinine 3 
 Cys 1 
 cystatin C 1 
 DVT 1 
 fatty acid 1 
 ferritin 1 
 fibrate 1 
 fluticasone 1 
 gabapentin 1 
 glucose 1 
 Hg 1 
 irbesartan 1 
 iron 2 
 lisinopril 1 
 losartan 1 
 N 1 
 Neurontin 1 
 olmesartan 1 
 PIO 1 
 potassium 1 
 PPV 2 
 pravastatin 1 
 rivaroxaban 1 
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 SABA 1 
 salmeterol 1 
 serotonin 1 
 simvastatin 1 
 statin-fibrate 1 
 statins 1 
 steroid 1 
 TGL 1 
 thiopurines 1 
 triamcinolone acetonide 1 
 triglyceride 1 
 triheptanoin 1 
 uric acid 1 
 valsartan 1 
 venlafaxine 1 
Disease 264 
 AAA 1 
 abdominal aortic aneurysm 1 
 acute gout, chronic gout 1 
 acute kidney injury 1 
 acute liver failure 1 
 acute myocardial infarction 1 
 acute renal failure 2 
 adult-onset asthma 1 
 agranulocytosis 1 
 AHDs 1 
 ALD 1 
 allergic reaction 1 
 allergic reactions 1 
 allergies 2 
 allergy 1 
 AMI 1 
 anemia 1 
 aneurysm 1 
 anxiety 1 
 anxiety symptoms 1 
 AOA 1 
 AOA to infection 1 
 ARDS 1 
 ARF 1 
 ARI 1 
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 arrhythmia 1 
 arthritis 1 
 ASCVD 1 
 aspiration 1 
 asthma 3 
 atherosclerotic 1 
 Atrial Fibrillation 1 
 beta-lactams 1 
 bipolar disorder 1 
 bleeding 3 
 BP reduction 1 
 breast cancer 1 
 CAD 1 
 cancer 3 
 cancers 1 
 cardiomyopathy 1 
 cardiovascular disease 1 
 Cardiovascular Health Study 1 
 CAS 1 
 catheter-directed thrombolysis 1 
 CDT 1 
 cellulitis 1 
 cerebrovascular disease 1 
 CHD 2 
 CHF 1 
 chronic disease 1 
 chronic diseases 1 
 chronic kidney disease 1 
 chronic obstructive pulmonary disease 1 
 CKD 3 
 CLIA 1 
 cognitive impairment 1 
 congestive heart failure 1 
 COPD 1 
 coronary heart disease 3 
 CRC 1 
 Crohn disease 1 
 CRT-D 1 
 CVD 1 
 death 2 
 deep vein thrombosis 1 
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 deep-vein thrombosis 1 
 defined as high blood pressure 1 
 dementia 2 
 depression 1 
 Device failures 1 
 diabetes 16 
 diabetes care 1 
 diabetes mellitus 8 
 diabetic 3 
 diabetics 1 
 DM 4 
 DVT 1 
 ectopic pregnancies 1 
 epilepsy 1 
 GAD 1 
 generalized anxiety disorder 1 
 GI and other bleeding complications 1 
 GI bleeds 1 
 gout 2 
 gout flares 1 
 gout-related visits 1 
 heart disease 1 
 heart failure 7 
 Hemorrhage 1 
 HEP 1 
 Hepatic encephalopathy 1 
 hepatocellular carcinoma 1 
 HF 2 
 HH 1 
 hip fractures 1 
 HLD 1 
 HLMs 1 
 HSD 1 
 HTN 1 
 hyperkalemia 1 
 hypertension 11 
 hypertensive 3 
 hypertensives 1 
 hypoglycemia 1 
 hyporesponsive 1 
 hyporesponsiveness 1 
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 IBD 1 
 ICD 2 
 ICS 1 
 IDA 1 
 IHD 1 
 iliofemoral DVT 1 
 incremental systolic BP reduction 1 
 infection 1 
 injury research 1 
 injury type definitions 1 
 injury types 1 
 ischaemic heart disease 1 
 LBBB 1 
 LE PAD 1 
 major bleeding 1 
 MB 1 
 MDD 2 
 MELD 1 
 mineral abnormalities 1 
 Model for End-Stage Liver Disease 1 
 myocardial infarction 2 
 nephrolithiasis 1 
 neutropenia 1 
 neutrophilia 1 
 NVAF 1 
 obese 1 
 obesity 3 
 osteoarthritis 3 
 PAD 2 
 pain 1 
 pancreatitis 1 
 parkinsonism 1 
 peripheral arterial disease 1 
 pneumonia 3 
 poisoning 1 
 postoperative complications 1 
 postoperative myocardial infarction 1 
 prehypertension 1 
 Preoperative anemia 1 
 pulmonary embolism 2 
 RBBB 1 
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 reduced kidney function 1 
 rhabdomyolysis 2 
 rheumatoid arthritis 2 
 right bundle branch block 2 
 rupture 1 
 SCD 1 
 Scotia 1 
 sepsis 2 
 SIRS 1 
 SSS 1 
 stroke 2 
 systemic inflammatory response 

syndrome 
1 

 T2D 2 
 TBI 1 
 TBI-related condition 1 
 thrombosis 1 
 thrombus 1 
 tophaceous gout 1 
 trauma 1 
 TSAT 2 
 tumor 1 
 type 3 
 type 2 diabetes 3 
 type of injury 1 
 UC 1 
 ulcer prophylaxis 1 
 Ulcerative Colitis 1 
 ULT 1 
 urate-lowering therapy 1 
 venous thromboembolism 1 
 weight loss 1 
 white-black disparity 1 
Gene 18 
 ACE 1 
 Angiotensin-converting enzyme 1 
 ARNO 1 
 CLNK 1 
 eGFR 1 
 Epoetin 1 
 HFE 1 
 HSD 1 



 
 

129 
 

 K77 1 
 KCNH2 1 
 LDLR 1 
 RYR2 1 
 serotonin transporter 1 
 transferrin 3 
 zip 1 
 3/5/2019 1 
Mutation 3 
 Cys282Tyr 1 
 His63Asp 1 
 p.Cys282Tyr 1 
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Appendix 6 
 

Regular expressions for numerical patterns 
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Appendix 7 
 

Examples of features with sentences 
Description Semantic 

relationship 
Example 

 
Single features examples 

 
Patterns Regular 

expression to 
capture lab values 

“diabetes was diagnosed if a patient had fasting plasma 
glucose of 126 mg/dl or greater, or a random glucose 
greater than 200 mg/dl” (PMID20819866) 

Regular 
expression to 
capture BMI 
values 

“Height and weight were used to calculate BMI, with 
BMI of 30 kg/m2 or greater defined as obese.” 
(PMID17162144) 

Single term 
(complete, stemmed, 
or multi-word) 

defin “Confirmed adult-onset asthma (AOA) cases were 
defined as those potential cases with either new-onset 
asthma or reactivated mild intermittent asthma that had 
been quiescent for at least one year.” (PMID12952547) 

code “Cerebrovascular disease was defined as the presence of 
ICD-9-CM diagnosis codes 430. X X -438. X X” 
(PMID20819866) 

history “Cerebrovascular disease was defined as the presence of 
ICD-9-CM diagnosis codes 430. X X -438. X X or a 
history of carotid stenting or endarterectomy (ICD-9-CM 
procedure codes 00.61, 00.63, 38.10).” (PMID20819866) 

Phrases Evidence of Controls were patients without evidence of PAD. 
(PMID20819866) 

Medical records “We retrospectively reviewed the medical records to 
collect the following data: patient age, sex, smoking 
history, previous and current antihypertensive 
medications, history of intolerance to antihypertensive 
agents, comorbid conditions, and BP.” (PMID11388131) 

Medical NER 
presence – (Medical 
entities features) 

ADE “patients for hyperkalemia: (1) potassium value &gt;5.5 
mmol/L; or (2) diagnosis code for hyperkalemia.” 
(PMID17712071) 

CLINICAL “Patient has heart disease diagnosis at any time.” 
(PMID23449283) 

Procedure “The primary endpoint was an asthma-related event 
(ARE), which was defined as (1) an emergency 
department (ED) visit or (2) hospital admission with a 
primary asthma diagnosis code ICD-9-CM code 493.xx.” 
(PMID17269833) 

 
Compound features (c-features) examples 

 
Two words co-
occurrence 

Definition terms + 
Medical NER 
Presence 

“target BP was defined as systolic BP (CLINICAL)” 
(PMID11388131) 

Inclusion terms + 
Exclusion terms 

“the inclusion and exclusion criteria of the clinical 
definition were mapped to a list of ICD9CM codes.” 
(PMID27940627) 
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Inclusion terms + 
Patient terms 

“Patients with the presence of at least one diagnosis of 
major depression determined . . . from the EMR for 
inclusion in a data set (referred to as a data mart).” 
(PMID22466034) 

Two words co-
occurrence followed 
by abbreviation 
(with order) 

Patient terms + 
with + 
abbreviation 

“Patients with CAD (as defined by a history of 
myocardial infarction . . .” (PMID16765240) 

Co-occurrence of 
terms preceded with 
abbreviation (with 
order) 

Abbreviation + 
[diagno | event | 
disease | identif] 

“We used the confirmed SCD diagnosis from Michigan 
NBS administrative records as the gold standard.” 
(PMID24882379) 

Abbreviation + 
[positive | 
negative] 

“HF positive vs HF negative.” (PMID17567225) 
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Appendix 8 
 

IMRAD keywords used and rules 
 

Keywords used to identify methods sections 
 

Section Keywords 
Relevant 
(Method 
section) 

"Methodology", "METHODS", "Methods", "Method", "METHOD","DESIGN, SETTING, 
AND PATIENTS", "Design, Setting, and Participants", "Design", "DESIGN", 
"SETTING", "Setting", "SUBJECTS", "Materials and methods", "Materials and Methods", 
"Material and methods", "Patients and methods", "Participants and methods", 
"Experiment", "EXPERIMENT", "Subjects and methods", "Data source", "Research 
design and methods", u"Materials and methods", "Methods and Procedures", "Methods and 
Materials“ 

Not 
relevant 

"Discussion", "DISCUSSION", "Findings", "Finding", "Result", "RESULT", "Results",  
"FINDING", "BACKGROUND", "Background", "Introduction", "INTRODUCTION", 
"IMPORTANCE", "Keywords", "Key Words:", "In conclusion", "Conclusion", 
"CONCLUSION", "REFERENCES", "COMMENT"] 

 
Examples of rules used 

 
•  A sentence starts with a keyword 
• "part 1: CHECK IF IT ENDS WITH S" 
• "part 2: CHECK IF IT FOLLWOED BY : OR ." 
• "part 3: CHECK IF IT FOLLWOED BY SPACE" 
• "part 4: CHECK IF IT ENDS WITH —" 
• Check if the following word is upper case or number 
• The position of the sentence by sent_index 
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Appendix 9 
 

Distribution of predicted positive abstracts between 1975 and 2018 
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Appendix 10 
 

Top 20 terms for type 2 diabetes mellitus (T2DM) 
Rank Type 2 diabetes mellitus (T2DM) 

Concept DICE Frequency 
1 Type 1 diabetes mellitus 0.2326 94 
2 Glucose tolerance impaired 0.0171 17 
3 Hepatocyte 0.0152 5 
4 Diabetes type 0.0151 8 
5 Mitochondrial disease 0.0148 5 
6 Blood insulin 0.0137 113 
7 Cystic fibrosis 0.0134 9 
8 Ketoacidosis 0.0130 8 
9 Impaired glucose tolerance 0.0115 9 
10 Gestational diabetes 0.0109 12 
11 Haemochromatosis 0.0105 4 
12 Malnutrition 0.0103 10 
13 Mitochondrial myopathy 0.0097 3 
14 Shin 0.0096 4 
15 Hyperglycaemia 0.0094 15 
16 Pancreatic disease 0.0087 3 
17 Insulin resistance 0.0083 10 
18 Ketosis 0.0083 3 
19 Diabetes mellitus 0.0081 419 
20 Lactic acidosis 0.0079 3 

 

 



 
 

136 
 

Appendix 11 
 

Type 2 diabetes mellitus graph 
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Appendix 12 
 

Examples of risk factors or complications that appeared only in literature-based 

definitions 
Category literature-based 

concepts 
Example of sentences with definitions DICE 

for 
PMID 

Diagnosis 
and/or symptom 

Infectious disease “Patients with inflammatory or infectious diseases, 
autoimmune and rheumatic diseases, cancer, 
haematological diseases and severe renal or liver 
failure, as well as those who were under treatment 
with anti-inflammatory drugs, were excluded.” 
(PMID20836881) 
 

8.278 

Diagnosis 
and/or symptom 

Rhinitis “Vasomotor and allergic rhinitis…ICD-10 
codes(J30.0-J30.4 R97)…Related ICPC-2E codes 
(R97)” (PMID27560181) 

2.737 

Diagnosis 
and/or symptom 

Pancreatic disease “we excluded patients with other kidney diseases 
such as … pancreatic disease, and psychopathy; 
with malignant tumors and secondary DM.” 
(PMID23691167) 

16.300 

Procedure Splenectomy “Patients older than 20 years with splenic injury 
who underwent splenectomy (ICD-9-OP 41.5)…” 
(PMID25738485). 

2.502 

Laboratory Microalbuminuria “Persistent microalbuminuria was defined as a 
urinary albumin excretion of 30-300 mg/24 in at 
least two of three consecutive samples.” 
(PMID24146865) 
 

11.089 

Laboratory Blood bicarbonate “Diabetic ketoacidosis (DKA) at diagnosis was 
reported for incident cases only and is based on 
having at least one of the following criteria noted in 
the medical record: 1) blood bicarbonate 15 mmol/l 
or pH 7.25 (venous) or 7.30 (arterial or capillary), 2) 
ICD-9 code 250.1 at discharge, or 3) diagnosis of 
DKA mentioned in the medical records.” 
(PMID19246578) 

10.606 

Criteria Clinical findings “Patients with normal C-peptide levels, those who 
were considered to have maturity-onset diabetes of 
the young (MODY) based on the family history and 
clinical findings, those with T2DM, and those with a 
chronic disease (such as thalassemia, cystic fibrosis, 
drug-induced types) were excluded from the study.”( 
PMID23419424) 

11.916 

Risk factor 
and/or 
complication 

Renal failure “For type 2 diabetes and HNF1Aand HNF4A-
MODY, we tracked microvascular-related 
complications of blindness, renal failure, and 
amputation and macrovascular complications of 
angina, myocardial infarction, congestive heart 
failure, and stroke.” (PMID24026547) 

28.169 

Risk factor 
and/or 
complication 

Adolescence “Little is known about the use of the A1C test for 
the diagnosis of type 2 diabetes and prediabetes in 
childhood and adolescence.” (PMID21515842) 

4.627 
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Risk factor 
and/or 
complication 

Encephalopathy “Subjects who tested positive for anti-glutamic acid 
decarboxylase (GAD) antibodies and those 
diagnosed with mitochondrial disease 
(mitochondrial myopathy, encephalopathy, lactic 
acidosis, and stroke-like episodes [MELAS]) or 
maturity-onset diabetes of the young (MODY) were 
not included.” (PMID23342076) 

13.902 

Risk factor 
and/or 
complication 

Dermatophytosis “This classification was used to create medical lists 
that enabled us to identify cases of three bacterial 
(i.e., septicemia, lower respiratory tract infection 
[LRTI], cutaneous cellulitis), two viral (i.e., herpes 
zoster, varicella), one parasitic (i.e., scabies), and 
two fungal (i.e., local candidiasis, dermatophytosis) 
infections recorded in the database (code lists 
available in S1 Table).” (PMID27218256) 

0.328 

Risk factor 
and/or 
complication 

Dietary fibre intake “Role of TCF7L2 risk variant and dietary fibre 
intake on incident type 2 diabetes.” 
(PMID22782288) 

1.128 

Risk factor 
and/or 
complication 

Gout “Gout was diagnosed according to the American 
College of Rheumatology 1977 criteria C. 
(PMID25031188) 

5.078 
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