
PEER-TO-PEER PERSONAL HEALTH RECORD

A Thesis

Submitted to the Faculty

of

Purdue University

by

William Connor Horne

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science Electrical and Computer Engineering

August 2019

Purdue University

Indianapolis, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF THESIS APPROVAL

Dr. Zina Ben Miled, Chair

Department of Electrical and Computer Engineering

Dr. Lauren Christopher

Department of Electrical and Computer Engineering

Dr. Maher Rizkalla

Department of Electrical and Computer Engineering

Approved by:

Dr. Brian King

Head of the Graduate Program

iii

To Kate and Cullane.

iv

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Zina Ben Miled. Her advice and support

have been invaluable. I would also like to thank my committee members Dr. Lau-

ren Christopher and Dr. Maher Rizkalla. The previous work by Zachary King was

valuable to the success of this thesis. The IUPUI ECE and CS departments are ap-

preciated for helping me develop my knowledge. Special thanks to the Naval Research

Laboratory and Dr. Judson Hervey for supporting my graduate education. I would

also like to thank all the students who have been my friends for these past two years.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABBREVIATIONS . xii

GLOSSARY . xv

ABSTRACT . xvi

1 INTRODUCTION . 1

1.1 Health Records . 2

1.2 Proposed Framework . 3

2 RELATED WORK . 5

2.1 Personal Health Record . 11

2.2 Peer-to-Peer Networks . 14

2.2.1 Distributed Transactions . 19

2.2.2 Blockchain . 21

2.2.3 Applications of P2P Networks to Health Records 22

2.3 Application Layer Protocol . 24

2.4 EHR Datamining . 25

2.4.1 Predictive Models and Bayesian Statistics 27

2.4.2 Bayesian Applications to EHR Datamining 28

2.4.3 EHR Datasets . 31

3 ARCHITECTURE . 33

3.1 Network Actions . 36

3.2 Transactions . 42

3.2.1 Authorization and Operation 43

3.2.2 Protocol . 45

vi

Page

3.3 Hypertension Prediction Service . 49

3.3.1 Data Set . 50

3.3.2 Preprocessing . 54

3.3.3 Algorithm . 56

3.3.4 Training and Testing . 56

4 IMPLEMENTATION . 58

4.1 Index Server . 58

4.1.1 Database . 58

4.1.2 API and Handlers . 61

4.2 Peer Client . 62

4.2.1 FHIR Client . 71

4.2.2 P2P Subsystem . 71

4.2.3 TCP Library . 76

4.3 Service Client . 79

4.4 Network . 80

4.4.1 Registration . 80

4.4.2 Login . 82

4.4.3 Resource Lookup . 84

4.4.4 Posting Documents . 85

4.4.5 Requesting and Approving Transactions 86

4.5 Transaction . 89

4.5.1 Get . 92

4.5.2 Push . 93

4.5.3 Service . 94

4.6 Hypertension Prediction Service . 96

4.6.1 Naive Bayes Model . 97

4.6.2 Performance . 99

5 CONCLUSION . 100

vii

Page

REFERENCES . 103

APPENDIX A Hypertension Survey Info . 119

APPENDIX B Example Feature Vector . 121

APPENDIX C Example Client Usage of System 124

C.1 Provider Requesting a Patient Health Record 130

C.2 Patient Requesting the Hypertension Service 134

viii

LIST OF TABLES

Table Page

3.1 Selected Condition Features . 50

3.2 Selected Consolidated Features . 53

4.1 Classifier Performance with Panels 17, 18, and 19 99

B.1 Feature Vector . 121

ix

LIST OF FIGURES

Figure Page

2.1 Types of Network Architectures . 16

2.1 Types of Network Architectures (continued.) 17

2.2 MEPS Panel Design . 32

3.1 System Architecture . 34

3.2 Client Document . 35

3.3 Registration . 36

3.4 Heartbeat Process . 37

3.5 Search for Network Resources . 38

3.6 Fetch FHIR Documents from Portal . 39

3.7 Record Registration . 40

3.8 Registration and Approval of Service . 41

3.9 Network Transaction . 42

3.10 Transaction Request Data . 43

3.11 Transaction Request and Approval . 43

3.12 Transaction Data . 44

3.13 Update Data . 44

3.14 Get Protocol . 46

3.15 Push Protocol . 47

3.16 Service Protocol . 48

3.17 MEPS Data Preprocessing Pipeline . 54

3.18 Feature Vector . 56

4.1 Index Server Classes . 59

4.2 Database Collection . 60

4.3 REST Access . 61

x

Figure Page

4.4 Peer Client Subsystems . 62

4.5 Peer Client Collections . 63

4.6 Network and WUI Classes . 65

4.7 WUI Paths . 66

4.8 Registration . 66

4.9 Login . 66

4.10 Record . 67

4.11 Account Page . 67

4.12 Network Documents and Transaction Request 69

4.13 Transaction Page . 70

4.14 Peer Records Table . 70

4.15 FHIR Query . 71

4.16 Peer-to-Peer Classes . 72

4.17 Job Classes . 74

4.18 TCP library . 76

4.19 Service Client Subsystems . 79

4.20 Transaction Process . 89

4.21 Hypertension Prediction Classes . 96

C.1 Welcome Page . 124

C.2 Patient Registration . 125

C.3 Patient Login . 125

C.4 Network Page . 126

C.5 Portal Selection . 126

C.6 Downloading Records from a Registered Portal 127

C.7 Viewing Records . 128

C.8 FHIR Data for a Single Record and Posting to Network 129

C.9 Provider: Network Records . 130

C.10 Provider: Selecting Patient Record for a Transaction 130

xi

Figure Page

C.11 Provider: Sending Request for Get Transaction 131

C.12 Patient/Provider: Transaction Waiting for Approval 131

C.13 Patient: Approving Transaction . 132

C.14 Provider/Patient: Transaction Complete 132

C.15 Provider: Viewing Peer Records . 133

C.16 Provider: Transferred Peer Record . 133

C.17 Patient Filling out Survey for Service . 134

C.18 Survey as a Record . 135

C.19 Survey Posted to Network . 135

C.20 Selecting Service Transaction . 136

C.21 Requesting Service Transaction . 136

C.22 Service Transaction Finished . 137

C.23 Hypertension Service Result . 137

xii

ABBREVIATIONS

ALS Amyotrophic Lateral Sclerosis

ARHQ Agency for Healthcare Research and Quality

ASIC Application-specific Integrated Circuit

BFT Byzantine Fault Tolerance

BMI Body Mass Index

BNP Bayesian Non-Parametric

BSON Binary JSON

CAD Computer-aided Diagnosis

CEHRT Certified Electronic Health Record Technology

CMS Centers for Medicare and Medicaid Services

DAG Directed Acyclic Graph

DBN Dynamic Bayesian Network

DHT Distributed Hash Table

EM Expectation Maximization

EVM Ethereum Virtual Machine

FHIR Fast Healthcare Interopability Resources

FN False Negative

FP False Positive

FTP File Transfer Protocol

GPI Generic Product Identifier

GUI Graphical User Interface

HHS Health and Human Services

HIE Health Information Exchange

HIPPA Health Insurance Portability and Accountability Act

xiii

HITECH Health Information Technology for Economic and Clinical Health

Act

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

ICD-10 International Classification of Diseases Revision 10

ICD-10-CM International Classification of Diseases Revision 10 Clinical Mod-

ification

ICD-9 International Classification of Diseases Revision 9

ICD-9-CM International Classification of Diseases Revision 9 Clinical Modi-

fication

ICU Intensive Care Unit

IHIE Indiana Health Information Exchange

IP Internet Protocol

JSON JavaScript Object Notation

LSTM Long Short-Term Memory

MAP Maximum a Posteriori

MEPS Medical Expenditure Panel Survey

MR Medical Record

NAT Network Address Transaction

ONC Office of National Coordinator for Health Information Technology

P2P Peer-to-Peer

PHR Personal Health Record

POW Proof-of-Work

PPV Positive Predictive Value

REST Representational State Transfer

RFI Request for Information

RMSE Root Mean Squared Error

RTT Round-Trip-Time

RV Random Variable

xiv

SDA Stack Denoising Autoencoder

SEER Surveillance, Epidemiology, and End Results Program

SHA2 Secure Hash Algorithm 2

SHA3 Secure Hash Algorithm 3

SMOTE Synthetic Minority Over-sampling Technique

SMR State Machine Replication

SNAT Symmetric Network Address Translation

SSP SAS Transport File

STUN Session Traversal Utilities for NAT

TCP Transmission Control Protocol

TN True Negative

TP True Positive

TURN Traversal Using Relay around NAT

UDP User Datagram Protocol

ULMS Unified Medical Language System

VA Department of Veteran Affairs

WEKA Waikato Environment for Knowledge Analysis

WUI Web User Interface

XML eXtensible Markup Language

xv

GLOSSARY

Begnin fault a distributed fault such as message loss or a peer crash

Byzantine fault a distributed fault such as a malicious or faulty peer

posterior probability of an event given evidence

prior probability of an event using previous information

consensus agreement on a single value among distributed peers

features input data dimensions for a machine learning model

index server the central server used to progress and ensure transactions

job a work unit to carry out a transaction

liveness the distributed system does not halt in progress

panel a survey period in MEPS

patient person that is the recipient of healthcare services

peers a program that is participating in a peer to peer network,

acts as both a client and server

provider person or organization that provides healthcare services

quorum the number of peers necessary to agree for consensus

record a health record in the network

requester the peer requesting a transaction

safety only correct actions are taken in a distributed network

target the peer that is the target of the transaction request

third-parties agent that needs access to the healthcare information

xvi

ABSTRACT

Horne, William Connor. M.S.E.C.E., Purdue University, August 2019. Peer-to-Peer
Personal Health Record. Major Professor: Zina Ben Miled.

Patients and providers need to exchange medical records. Electronic Health

Records and Health Information Exchanges leave a patient’s health record fragmented

and controlled by the provider. This thesis proposes a Peer-to-Peer Personal Health

Record network that can be extended with third-party services. This design en-

ables patient control of health records and the tracing of exchanges. Additionally

as a demonstration of the functionality of a potential third-party, a Hypertension

Predictor is developed using MEPS data and deployed as a service in the proposed

framework.

1

1. INTRODUCTION

Patients and healthcare providers need to exchange electronic health records. This

exchange is necessary for patients to inform providers of their health and for multiple

health care providers to collaboratively provide the care needed by each patient.

Traditionally, health record exchanges have primarily focused on provider-to-provider

exchanges and with a common strategy being the use of a data warehouse called a

Heath Information Exchange (HIE). However, these strategies and the associated HIE

often do not involve the patient. Exchanges are limited to a given region or target

only large institutions. Therefore, patients that seek health services from small health

providers or move from one region to another will have a fragmented health record.

To overcome the above issues, this thesis proposes a Peer-to-Peer (P2P) Personal

Health Record (PHR) that enables the exchange of patient data between patients

and health providers. The system consists of a transaction-based model with patients

authorizing access to their records. The network logs each transaction, enabling the

trace of accesses to each record. Providers can post new records thereby updating the

patient’s PHR. Moreover, both patients and providers can access third party network

services to perform operations on these records. The advantages of the proposed PHR

include:

• patient control of his/her health records

• a common platform for the exchange of health data that can offer a continuum

of medical history for each patient

• ease of access to historical data for new health providers added to the system

• ability to keep the health record for each patient up-to-date and accessible in

real time to all concerned

• a distributed risk of compromised data

2

In addition, an efficient representation of the health record will help the patient

make informed decisions about their health. In order to act upon the information in

the PHR, the proposed system is augmented with a prediction service. The prediction

service uses a Bayesian Network to predict a patient’s risk of developing Hypertension

based on a submitted health record. This predictor serves as an example of the types

of services that can enhance the utility of the proposed PHR.

1.1 Health Records

A patient’s electronic health record documents the health of a patient and their

interactions with healthcare providers. Though implementations vary, the FHIR on-

tology [11] contains a generalization of the information captured in health records.

It details roles, workflows, and financial information that documents the patient’s

interaction with a provider. The provider records the observations, symptoms, and

conditions for each patient. Diagnoses in FHIR are standardized according to various

ontologies including ICD-10 [165], the International Classification of Diseases used

for medical diagnosis. In summary, the FHIR ontology includes definitions for:

1. Individuals and their roles in the system (e.g., patient, provider, related, etc.)

2. Entities such as organizations, locations, or devices

3. Workflows such as tasks or appointments

4. Management of the encounter between a patient and a health provider

5. Clinical information such as observations, conditions, and medications

6. Financial information including billing

Several initiatives have attempted to overcome the fragmentation of patient health

records across multiple institutions. One such initiative is the provider’s use of a

Health Information Exchange (HIE) [59]. HIE are data warehouses that aggregate

health records from different providers. Providers can then pull the aggregated records

from the HIE to update their internal information. However, while HIE collect infor-

mation from large providers, they are often unable to reach out to smaller providers.

3

Moreover, HIE are generally limited to a certain region and unable to aggregate health

records from outside their hub of providers.

In 1996, the United States government passed HIPPA, which mandated a pa-

tient’s right to access their own health record [156]. To fulfill this requirement, some

providers have created online portals for patients to view their records. Patients can

access their records but the service is ineffective. Providers control and define the

representation of the records limiting the service’s usefulness to the patient [92,170].

Records from multiple portals are often incompatible with each other, making it hard

to build a comprehensive view of a patient’s health. An alternative to this approach

of provider controlled medical records is a Personal Health Record.

A Personal Health Record (PHR) [109] is an inversion of the provider-centric ap-

proach to health records. The patient stores and maintains the health record and the

provider contacts the patient for record access. This patient-centric approach engages

the patient and allows him or her to choose services from providers. Moreover, the

PHR provides a platform for customized services such as appointment notifications,

research related to a patient’s specific conditions, treatment options, and a connection

to social networks for information sharing [50].

Researchers have estimated that a move to PHRs in the United States will result in

a benefit of $11-19 billion annually [74,144]. However, despite this economic benefit,

PHR’s have experienced low uptake. This is attributed to a lack of patient awareness

about PHRs, provider misgivings, and issues in interoperability [88,147].

1.2 Proposed Framework

This thesis proposes a Peer-to-Peer (P2P) network for the aggregation and ex-

change of patient health records. The network consists of:

• A P2P network of users that is maintained by an index server

• A client that the patient or provider can use to interact with the network

• A protocol for exchanging records between the members of the health network

4

• A callable network service that implements a Bayesian model to predict a pa-

tient’s risk for Hypertension, exemplifying how services can be added to the

proposed platform

The proposed PHR system avoids the central governance and the overhead asso-

ciated with maintaining an HIE. Indeed, in the proposed system, the provider can

directly contact the patient. Moreover, the patient has control over his or her data

and can selectively authorize access to this data. Finally, by leveraging the under-

lying P2P communication network, third party providers can offer additional health

services to the patient such as the prediction of a patient’s risk to develop a condition

from their health record.

The remainder of this thesis is organized as follows. The second chapter summa-

rizes the current state of health record systems, peer-to-peer architectures, distributed

transactions, EHR datamining, and Bayesian approaches. The third chapter describes

the design of the proposed system, including system architecture, client features, and

the dataset and algorithm used for predicting a patient’s risk of developing Hyper-

tension. Chapter four presents the system implementation. Chapter five concludes

with an analysis of the proposed system, its limitations, and potential extensions.

5

2. RELATED WORK

Patients, providers, and third parties are roles in the healthcare system. A patient

is an individual who is seeking, receiving, or received medical care from a provider.

A healthcare provider is the direct giver of care, usually a hospital, doctor’s practice,

or medical institution. This exchange of service to improve the patient’s health is

healthcare. A third party is an agent that needs access to information on the ex-

change of care between the patient and the provider but is not a direct beneficiary.

Common third parties include, but are not limited to: referred specialist, researchers,

government agencies, insurers, and family of the patient. The interactions between

the patient and the provider are documented in the patient’s health record.

The stakeholders in healthcare, the patients, providers, and third-parties, have

differing requirements that a health record needs to fulfill. A patient needs unre-

stricted access to their health record. Indeed, a patient may need to transfer this

information to a new provider. A provider has similar requirements with a greater

emphasis on managing the patient’s EHR, interacting with various payment outlets,

providing a legal record, and tracking resources. Third party requirements are more

diverse. For instance, a diagnostic service might need partial access to lab results

and payment information in order to perform the service on behalf of the provider. A

research group or government organization may want to analyze and track statistics

for a population of patients. A patient’s descendants may want to preserve a fam-

ily member’s record to document medical history. Thus, an EHR must balance and

flexibly handle each party’s needs.

According to [120], a health record contains the following information:

• Administrative and billing data

• Patient demographics

6

• Progress notes

• Vital signs

• Medical history

• Diagnosis

• Medications

• Immunizations

• Allergies

• Radiology images

• Lab and test results

The patient medical information in EHRs conforms to various standards. The

current diagnosis standard is the World Health Organization’s ICD-10 medical clas-

sification list [165]. This specification standardizes the naming of diseases, symp-

toms, and medical terms. Older records use the earlier ICD-9 standard [164]. Gaps

in the standard have caused countries, medical groups, and EHR software develop-

ers to create extensions such ICD-10-CM [27]. Other organizations have developed

ontology’s such as SNOMED-CT [154] and the Unified Medical Language System

(ULMS) [86,157], to encode the semantic meaning of the medical terminology. Some

encodings are proprietary such as the Generic Product Identifier (GPI) [162], which

codes prescription drugs and groups.

Hospitals and care providers have been digitizing health records for the past three

decades [16]. The resulting electronic health records (EHR) consist of the patient’s

history, encounters with providers, and the patient medical record (MR) (e.g., pro-

cedure, lab reports, prescriptions, etc.). Several countries require providers to use

EHRs [16] or heavily incentivize their adoption [16, 45]. In the United States, EHRs

are certified by the Centers for Medicare and Medicaid Services (CMS) and Office

of the National Coordinator for Health Information Technology (ONC) through the

Certified Electronic Health Record Technology (CEHRT) certification [58,119]. More-

over, CMS and ONC promote the adoption of a certified EHR through Medicare and

Medicaid funding programs. EHR developers have created various electronic health-

7

care solutions, often tailored to individual providers. Example commercial EHR sys-

tems include: EPIC [43], Cerner [29], and Meditech [98], which together comprise

66% of the market [149]. These systems adopt different representations of electronic

health records. Therefore, transferring records between these EHRs requires using

protocols such as HL7 [63] or the more recent FHIR [11]. To support these proto-

cols, vendors must implement a mapping of the EHR’s internal representation to the

protocol’s representation. Developing this mapping may be costly and tedious [52].

The expense and vendor lock-in associated with commercial EHR’s has created

interest in open EHR standards. The openEHR foundation proposed an open spec-

ification of templates and archetypes to implement an EHR, rather than purchase

a proprietary solution [124]. Several implementations have been deployed [123], but

none in the United States. Another standard is the ISO-13606, Health informatics -

Electronic health record communication [69]. A benefit of these open specifications is

the ease of development of novel solutions that are customized to providers or specific

fields [37]. However, these standards leave implementation details unanswered, often

leading to wildly varying solutions [49]. Moreover, the implementation of these stan-

dards requires software expertise which is tangential to the core business of healthcare

providers.

To facilitate the exchange of records between providers, States and providers have

created Health Information Exchanges (HIE) [59]. HIE are third party brokers that

aggregate health records for various regional providers, handle the conversion of the

various records to a common data representation, and transfer records to requesting

third parties. HIE fulfill three types of transfer [161]:

• Direct Exchange: Securely send and receive patient information between

providers.

• Query Exchange: Find information related to an unknown patient.

• Consumer Mediated Exchange: Intake records directly from the patient.

8

The ONC has incentivized the development of HIEs with grants from the Health

Information Technology for Economic and Clinical Health act (HITECH) [2,59]. As of

2017, 69% of hospitals had agreements with an HIE [71] but this number is misleading.

The coverage is patchwork, with access to only members of the HIE network resulting

in providers needing multiple HIE agreements to service patients. Furthermore, it is

difficult to transfer records across multiple HIEs and the capabilities of the exchanges

are often inadequate, making it difficult for providers to integrate HIEs with their

local EHR [117]. In Indiana, the Indiana Health Information Exchange (IHIE) [68]

encompasses most of the major providers in the state but has yet to include rural

health providers. In Illinois, established regional exchanges prevented the success of a

statewide exchange [139]. At the national level, the ONC has sponsored the creation

of eHealth Exchange [42] to facilitate interstate transfers. As of 2019, 75% of US

hospitals and 59 HIEs had agreed to participate in eHealth Exchange. When these

mechanisms are absent, the patient needs to facilitate the transfer of records between

providers.

The ONC has expressed interest in making EHRs interoperable [118]. CMS has

created the Promoting Interoperability Program to incentivize providers [28]. Several

EHR vendors and HIE have agreed to increase interoperability under Carequality

[24], an effort and standard to ease the difficulty of transfer and conversion. HL7

proposed the Fast Healthcare Interoperability Resources (FHIR) [11,18] as a standard

to transfer records between providers. FHIR has two major components, a generalized

ontology to represent the various aspects of an EHR and a Representational State

Transfer (REST) protocol to exchange the information. Application developers can

target the standard to create services based on the ontology and interact with servers

that adhere to the REST representation. HL7 has continued development of services

using FHIR under the Argonaut project [64]. One service is SMART [95], a patient

approved access framework for third parties using OAuth2 [36]. Carequality has

recently supported FHIR [150] and it is likely that FHIR will become the industry

standard for EHR transfer.

9

Public sector development has focused on enhancing the Blue Button program.

Blue Button is a CMS and US Department of Veterans Affairs (VA) initiative that

started in 2010 [104] to enable patients to download their records. Blue Button sup-

ports access to Tricare, the VA, and Medicare but has also garnered support from the

private sector. Over the years, CMS has updated Blue Button several times to reflect

new EHR developments. Originally, downloaded records were text files. An update

called Blue Button Plus, includes an option to export the record as HL7 CDA XML

and supports online push/pull requests [20,104]. A supporting Department of Health

and Human Services (HHS) project called Blue Button Connector [1] provided an on-

line website to help patients search for accessible records. The connector later grew to

include a service lookup component for developers. The connector was discontinued

in May 2017. The development of FHIR generated a 2015 HHS pilot project to sup-

port the standard [61, 142]. CMS continued this work and released Blue Button 2.0

in 2018 [26]. Blue Button 2.0 supports FHIR v3.0.0 and allows developers to register

clients for the service. Approved clients can access Tricare, VA, and Medicare Part

A, B, and D records.

All the above initiatives are institution-centric and in support of provider record

ownership. The ownership and control of Health Records is controversial. A 2014

study [22, 140, 152] of primary care patients who had been given granular control of

their records found that 43% of patients enabled some restriction on their record.

Primary care providers could override patient wishes, with 10 overrides of restricted

records out of 126 overrides. In surveying the patients, 93% agreed with restrict-

ing part of their record and 95% with restricting persons from accessing the record.

The corresponding responses for providers were lower at 54% and 42%, respectively.

Follow-up responses supported this patient/provider disparity.

In the United States, patients are guaranteed access to their records under HIPAA

[156]. To fulfill this requirement, hospitals have begun offering online portals, some-

times called tethered PHR, for patients to extract and view their records [77]. In

a 2017 review of patient portals [170], the United States Government Accountabil-

10

ity Office (GAO) interviewed providers who reported that 91-92% of their patients

were offered electronic access to their health information. However, these numbers

are not supported by other studies. For example, Lyes [92] reported that 33% to

45% of patients recalled being directly offered this access. Other studies in 2016

and 2018 [13, 127] reported offer access rates of 34 to 60.3% 1. Peacock and An-

thony [13, 127] found that uptake was heavily influenced by the provider’s explicit

offer and that both men and minorities were offered access at lower rates despite both

groups expressing the same level of interest as their peers. The GAO also interviewed

patients about their portal experiences and found that patients were frustrated by

incomplete or incorrect records and poor user interfaces. Patients expressed interest

in aggregating records from multiple portals and viewing their longitudinal records.

A portal has limited usefullness to a patient and is oriented towards fulfilling regu-

latory requirements. Indeed, the provider still controls and defines the representation

of the health records. Portal records downloaded from multiple providers often have

incompatible formats, preventing the aggregation of these records. If a portal is not

in place, it can take months to access this health data. Access can also be costly to

the patient, and is often non-compliant with the patient’s wishes [92].

1The 60.3% access offers includes access offers from insurers.

11

2.1 Personal Health Record

A Personal Health Record (PHR) makes the patient, rather than the provider,

the custodian of his or her health information. A PHR stores and manages the health

records from various providers, creating a single access point for the patient. Though

the definition of a PHR has been historically ill-defined [116], a CMS Request for

Information (RFI) suggested that a PHR has the following attributes [109]:

• owned and controlled by the patient

• contains lifetime health information

• stores health information from all healthcare providers for each patient

• accessible from any place at any time

• private and secure

• transparent, where the patient can track access to his or her health data by

others

• facilitate the exchange of health information between health providers

A PHR resolves several issues inherent to provider-centric approaches. A single

access point to a patient creates a hub for providers. This resolves the conformance

issues between various EHRs and provides a communication bus between providers.

The provider solutions of HIE and EHR systems consist of distributed architectures

making it difficult to achieve a single consistent view of the patient’s records. More-

over, EHR and HIE have difficulties in of correctly aggregating records from external

sources as patient records lack a primary key [44]. To correctly identify patient

records, providers must resort to heuristic and probabilistic methods with error rates

around 15-38% [44]. A PHR eliminates this issue by making the PHR the master

view of the patient’s health records.

For patients, a PHR can provide access to curated health information, enable the

easy tracking of chronic conditions, and facilitate communicate with providers [147].

Services and home instruments can connect and update the health record. Moreover,

the records, transfers, and communications between various providers is transparent

12

to the patient. The patient can control access to their records, dictate the terms

of access, and trace accesses by providers. This can provide a patient evidence of

HIPAA violations. For caregivers, a PHR provides a framework to help manage the

health of the patient [147].

Providers and third parties can benefit from PHRs. PHRs can help providers

engage with patients to improve outcomes, transfer health records between different

EHR systems, and get real time feedback from patients [147]. It also provides a

common access point, eliminating the need to rely on HIE [147]. Moreover, PHR are

theorized to provide economic benefit. A 2008 economic projection study [74, 144]

of PHR adoption in the United States found the economic benefits depend on the

PHR used. Portal solutions with each provider implementing their own and with no

interoperability were estimated to be an annual net negative of $29 billion with an

initial cost of $130 billion. Third party and interoperable PHRs were projected to

provide $11-19 billion in benefit with initial cost between $3.7-21 billion. The study’s

authors noted that third party PHRs were highly scalable and that interopablilty was

key to reducing cost and providing benefit.

There are several challenges to PHR adoption: PHRs are difficult to implement

and deploy [88,145,147]; Patients are often unaware of existing PHR systems and may

be concerned that their records would be insecure [88,145,147]; Not all patients want

or need a proactive role in their health management [115, 145]; and Providers have

concerns about workflow integration, patient interpretation, PHR validity, liability,

and incentive [88,115,147]. In addition, independent PHRs limit institutional control

of health data which is counter to the business model of these institutions [147]. The

bearer of cost is also unresolved [147]. Recently, several high-profile PHR systems

failed including Google Health [89], Microsoft Health Vault [101], and Dossia [40].

All three of these programs were targeted at the sponsoring company’s employees in

hopes of decreasing the company’s healthcare cost. In light of these concerns and

issues, it is important that both patients and providers see immediate benefits to

13

using a PHR. PHR and PHR-like systems are beneficial to patients with long-term

conditions but have had issues with cost and accessibility [145].

CMS conducted a Personal Health Record Pilot called MYPHRSC for Medicare

enrollees in South Carolina from 2009-2011 [115]. The PHR consisted of a web-based

application from HealthTrio that provided users summaries of health information,

medications, claims, calendars, and more. An outreach program contacted 100,000

Medicare beneficiaries in South Carolina and attempted to generate interest with

demonstrations and adverts. The study conducted follow up surveys and interviews

with beneficiaries. Overall, 4,114 beneficiaries registered and 3,041 used the PHR

more than once. Pilot users expressed interest in the improved communication with

providers, health summary information, and the printable wallet card with informa-

tion on health, medications, and emergency contact. Even though the study focused

on patients with chronic conditions, these users were not more likely to use the PHR.

The lack of uptake among this group might have been caused by the short time period

of the pilot and the lack of results tracking. Other cited issues were inaccurate claims

data, usability issues, and lack of integration with beneficiaries’ workflows.

MyHealtheVet (MVH) [153] is a tethered PHR system operated by the VA which

was launched in 2003 and is still in operation. Veterans can refill prescriptions, look

at health records, search for health information, message the VA, and more. A 2011

usability survey of MVH [56] reported that patients were interested in the prescription

refill feature and in printing their health information. However, there was negative

feedback in regards to the search function and usability. MVH added the Blue Button

feature in 2010. MyHealtheVet is not a true PHR. Patients must manually share their

information downloaded through Blue Button with a third party. The third party is

then responsible for correctly extracting the information.

Third-party applications have started to integrate with the updated Blue Button

service. One application is iBlueButton, a PHR by Humetrix [65]. It is a mobile-

based PHR that allows a patient to access and locally store their health records

from government Blue Button providers. The application allows the patient to make

14

notes and check for drug conflicts. The application is limited as it strictly targets

government Blue Button projects. Additionally, the application can only pull records

and can’t post updates back to the provider.

Patient’s Like Me is an online social network for patients with chronic condi-

tions [126]. Originally the program targeted patients with Amyotrophic lateral scle-

rosis, ALS, but has since grown to encompass more conditions. Users can share

information on conditions and treatments [50,160]. However, users do not control the

shared information and the information is subject to research datamining to fund the

program. Several services can be added to a PHR in order to enhance its benefits

to the patients. For example, a service that enables the prediction of risk factors for

chronic disease. An example of such a service for Hypertension is demonstrated in this

thesis. Another service that might be integrated into a PHR is facilitated provider-

patient communication. For example, providers can monitor medication adherence

and disease conditions. A 2011 study found that testing and screening reminders

helped increase patient medication adherence [166]. A commercial application based

on this idea is care.coach [23]. In care.coach, a provider can communicate with pa-

tients through an online 3D avatar thereby limiting the need for doctor’s visits.

2.2 Peer-to-Peer Networks

There are two different common types of network communication, Client-Server

and Peer-to-Peer (P2P) (Fig. 2.1). In a Client-Server architecture (Fig. 2.1(a)),

clients connect to a central server [78]. The central server controls access to informa-

tion and clients exchange information by way of the central server. A Peer-to-Peer

network architecture has clients called peers, who communicate directly with each

other [78]. These peers must operate as both client and server in the network.

Network design and topology play key roles in the design of a P2P architecture.

There are several models: centralized, pure, and hybrid. These designs have advan-

tages and disadvantages.

15

A centralized P2P model (Fig. 2.1(b)) uses an index server (also called a central

server) to provide resource lookup for the network [67]. Clients search the index

server to find peer resources and then contact the target peer in order to exchange

data directly. Benefits of this system are ease of deployment and fast resource lookup.

Drawbacks include a reliance on the index sever and limited scalability.

A pure P2P network (Fig. 2.1(c)) has no index server and clients must query other

peers to discover resources [67]. To search for a resource, the client either floods

the network with a query [67] or accesses a distributed hash table (DHT) [67, 78]

maintained by the peers which lists the resources and owner. The primary benefit

of a pure P2P system is an equal relationship among the peers, with peers sharing

costs and resources fairly. However, drawbacks include slow lookup and high network

complexity. Pure P2P networks such as Guntella [134] had issues with network traffic

until the development of DHTs.

The hybrid P2P model (Fig. 2.1(d)) selects some peers in the network to act

as supernodes [67]. Other peers connect to the network through these supernodes.

Supernodes route peer messages to other supernodes who then deliver the messages.

This design has a faster lookup than a pure model and is more resilient than the

centralized model. However, the hybrid P2P model is difficult to implement. Skype

prior to 2016 [151] used a hybrid P2P model [67].

16

RequestResponse

Server

Client

Network

(a) Client-Server

Index
Server

Peer

Network

Peer

Resource

Exchange
Resource
Directly

Lookup	Peers
and	Resources

(b) Centralized Peer-to-Peer

Fig. 2.1.: Types of Network Architectures

17

Peer

Network

Peer

Resource

Exchange
Resource
Directly

Peer

Query	for
Resources

(c) Pure Peer-to-Peer

Peer

Network

Super
Peer

Exchange
Resource
Directly

Peer

Query	for
Resources

Super
Peer

Resource

Query	for
Resources

Query	for
Resources

(d) Hybrid Peer-to-Peer

Fig. 2.1.: Types of Network Architectures (continued.)

18

There are three stages to P2P communication: accessing the network, connecting

to peers, and searching for a resource. Each stage has challenges that the network

design must overcome.

During the first stage when accessing the network, the peer has no initial knowl-

edge of the network topology. A standard method to locate other peers is a signaling

server. A signaling server has a predetermined location and holds a list of networked

peers and their IPs. The client application queries this server for networked peers and

attempts to connect to one of the peers using the peer’s IP. With IPV4, port forward-

ing, and Symmetric Network Address Translation (SNAT), it is not always possible

to connect directly to another peer. TCP Hole punching [146] and STUN/TURN

protocols [94] can overcome these issues. The communication between the peers is

usually a custom application protocol built on top of TCP or UDP. Once connected

to the network, the peer can search for resources in the network. The lifecycle of a

search varies according to the network topology. In pure and hybrid P2P models, the

query can flood the network or access the DHT maintained by peers. In a centralized

model, the client sends the query to the index server. The index server has a list of

resources in the network and can direct the client to the owner. The client can then

connect to the target peer and exchange the resource directly or by routing the data

through the network.

P2P networks have several advantages over Client-Server architectures. P2P net-

works are scalable [78]. Compute, network, and storage cost are shared by the peers

and not concentrated in a single server. Lastly, P2P networks are resilient against

network failure [67]. Despite interest in P2P networks, the architecture has several

issues that limit its adoption. SNAT requires a third-party server to facilitate rout-

ing of data between peers [94]. Moreover, peer-churn [78], where peers enter and

leave the network, can lead to network degradation when too few peers are available.

To counteract this, peers must be properly incentivized to remain in the network.

Lastly, P2P file-sharing networks such as BitTorrent are heavy used to illegally share

copyrighted works, which limits business support of P2P models [67].

19

2.2.1 Distributed Transactions

In a distributed network, transactions among peers takes the form of consensus.

A distributed environment is unreliable, creating the need for a protocol that solves

consensus in a bounded time 2. The performance of a distributed system is measured

by its safety and liveness [7]. Safety means that an incorrect action does not occur,

and liveness refers to the system’s ability to progress in state. Fischer, Lynch, and

Paterson [48] proved that there is no protocol that satisfies both. The focus changes

to providing a best effort protocol. Another issue with distributed systems is the

reliability of the individual parts. Processes can lie or fail, an error called a Byzantine

fault 3. A Byzantine fault can be malicious or as a result of a failure to follow the

protocol. In contrast, a Benign fault is a unintentional crash or message loss [25].

Ignoring the unreliability of the connection, Byzantine Fault Tolerance is possible but

only if more than 2
3

of the peers are working correctly.

The simplest solution to consensus is to have a central server manage the state of

the system [93]. The server is the global view of the system and acts as the synchro-

nization between clients. Clients replicate the state of the server upon connecting and

post updates to the server. The server checks the updates against its own internal

copy and broadcast state updates periodically to the clients. This architecture is used

in distributed simulations [93,113]. This design provides some benefits. Incorrect ac-

tions are not possible, and it does not assume client trust. Moreover, client failure

does not block progress of the server’s state and thus the network. However, there

are limitations with this centralized architecture. For instance, clients may need to

repeat actions if they are out of date. Clients can keep up with the state of the system

at the cost of a Round Trip Time (RTT) [78]. The central authority is a point of

failure in the network and the design suffers from limited scalability. Modified P2P

versions can remove this issue at the cost of safety [113].

3Consensus is commonly illustrated as the allegory of the two-general problem [55].
3This is in reference to the allegory of the Byzantine General Problem [84].

20

The Two-Phase-Commit [55] protocol is a commonly used protocol for consensus

in which clients post to a central authority.

• The authority asks if the clients want to commit

• Clients post their messages and wait

• Authority verifies the transaction

• Authority broadcasts the commit to the Clients

• Clients acknowledge the broadcast

This protocol is safe in most scenarios but is reliant on the central authority. If

the authority fails the clients will never release their resources. The Three-Phase-

Commit protocol builds on this protocol by adding a timeout to make the protocol

nonblocking but with a loss of safety.

The Paxos algorithm [82] is a complex algorithm that guarantees safety and good

liveness. The protocol uses periods called rounds, each with a ballot ID and 3 phases.

On each round, a process or multiple processes can act as the leader. Each leader

queries the other processes for their ballot ID. If the proposed leader has the highest

ID then they are the leader for the round. The next phase has the new leader push

a new value to the group. The group responds to the leader. If the leader receives a

majority of the responses, called a quorum, it broadcasts to the group that the round

is complete. Otherwise, the leader moves onto the next round. Paxos is noted for

its cost and complexity to implement and variations have been proposed [83, 122].

Further it can only protect against Benign faults. A program that implements a

variation of Paxos is Apache Zookeeper [66].

State Machine Replication (SMR) [81,138] can provide protection against Byzan-

tine Faults. A state machine is a computation model in which a machine executes

actions to transform its current state. In SMR, each client runs a replica of the same

state machine executing the same actions. When a byzantine failure occurs, as long

as more than 3 healthy replicas of the faulted process exists [84], the system is fault

tolerant. However, a naive implementation of SMR can fail to protect against Byzan-

tine faults [25]. A Byzantine Fault Tolerant system needs a replication algorithm with

21

proper creation, coordination, and verification. The first implementation of such a

system was the Practical Byzantine Fault Tolerant (BFT) algorithm [25].

2.2.2 Blockchain

Blockchain is another architecture designed to solve Byzantine Faults. Unlike BFT

replication protocols, it achieves its resiliency though hashing. Blockchain uses strong

cryptography and Proof-of-Work (POW) [15] to provide an append only ledger [99]

consisting of blocks. The proof-of-work prevents Byzantine faults by making network

peers find cryptography hashes before committing transactions. These blocks are

linked together by these hashes, making rewrites of the transaction tree increasingly

difficult. Blockchains differ from BFT replication protocols. Though they both pro-

vide protection against byzantine faults, Blockchains are open to new users while

BFT systems need a prior verification. Blockchains are also more resistant to Sybil

attacks, where an attacker directs a large number of hidden nodes to disrupt the sys-

tem. High-profile Blockchain applications include the cryptocurrencies Bitcoin [111]

and Ethereum [163].

Bitcoin [111] is a digital currency that uses a Blockchain to maintain a distributed

record of transactions and owners of bitcoins. The goal of the application is to provide

a decentralized, secure, and anonymous method for exchanging assets. Each owner is

identified by a public key. The coin’s value is tied to the market’s demand. Units of

bitcoins can be transferred from one client to another by issuing a transaction to the

network. The owner signs the transaction request with their private key. The system

verifies the owner using the public key. Transaction requests are pooled together into

blocks to be verified and appended to the ledger. Nodes in the network called miners

verify a block by finding a hash of variable strength, a proof-of-work. After a hash

is found, the block is added to the chain and the miner is rewarded a bitcoin for

the proof-of-work. Bitcoin implements a stack-based language to support dynamic

22

transactions [85]. To prevent transactions from not completing, the stack language

does not implement loops and is not Turing Complete 4.

Ethereum [163] is another cryptocurrency aimed at providing verified electronic

contracts called smart contracts. It is similar in design to Bitcoin but has several

key differences. One of Bitcoin’s issues is the hashing race between miners. Over

time miners have upgraded from CPUs to GPUs to ASICs in order to increase their

hashing output. This has contracted the market of miners, putting the network at-

risk. To combat this issue, Ethereum’s block hashing algorithm was changed from

SHA2 to an ASIC-resistant version of SHA3 [10]. To implement electronic contracts,

Ethereum implements the Ethereum Virtual Machine (EVM) in place of Bitcoin’s

stack language. EVM is Turing Complete, allowing arbitrary programs to execute on

the network. To prevent programs from running indefinitely, each program is charged

the cost of its execution steps. The verification of valid EVM programs has been hard

to implement in practice [19].

Blockchain systems are difficult to evaluate. Cryptocurrencies such as Bitcoin

and Ethereum have noted issues with high-transaction cost [79], illegal activities [31],

and market-volatility [79, 129]. Furthermore, the word Blockchain is used to market

alternative products. Hyperledger [148] is a series of industry-sponsored projects that

are marketed as private blockchains. However, most of these projects are append-only

BFT systems. An append-only BFT does not use POW and users are verified.

2.2.3 Applications of P2P Networks to Health Records

Both peer-to-peer and blockchain applications have been previously proposed.

King [76] proposed a peer-to-peer PHR utilizing Blue Button Plus and FHIR.

The system uses a client-server architecture and a series of subnetworks. Peers can

4A Turing complete language can approximate any Turing machine (an idealized computer), or
equivalently, create any algorithm that can run on a Turing machine [87]. A Turing complete
language does not comment on the difficulty of implementation or the computational cost of a target
program. A non-Turing complete language has limitations in what programs can be represented and
in the case of bitcoin, is purposefully chosen to prevent unsafe programs.

23

request access to a patient’s subnetwork. The architecture proposed in this thesis

extends this previous work by providing full PHR functionality as well as integration

with third-party service providers.

Roehrs [135] proposed a distributed PHR called OmniPHR. It uses the Chord

algorithm to manage a series of encrypted blocks of health records over a set of

peers. Each block is digitally signed. Each peer translates the records into open

standards, distributes the blocks to peers, validates a peer’s blocks, and manages

communication between peers. Roehrs tested the system’s network dynamics by

increasing the number of nodes and “backbone” routers. He found that the Chord

algorithm scaled with the number of peers and did not have increased latency. Roehr’s

system is similar to the PHR proposed in this thesis. However, Roehrs is focused on

the performance analysis of the Chord algorithm. The focus of this thesis is on the

functionalities needed to facilitate interactions between patients and health providers.

Xia [167] proposes a cloud-based health record sharing system that uses a Blockchain

style ledger to track transfers of health records. Peers upload health record data to a

shared cloud repository. Peers request and grant access to records through a trans-

action. A node selects transactions and computes a proof-of-work hash. After the

proof-of-work is completed, the request is granted. An exchange protocol is then

used to access the shared repository. This system benefits little from the Blockchain

solution. Another issue of this solution is that data is stored off chain which removes

the benefit of a Merkle tree [100]. Indeed, the transactions and hashes of the data

are increasingly secure, but the data itself is not. The participants of the network

need to trust the hash of the data and cannot verify it until reading, at which point

it could be corrupted.

Urovi [155] proposed a Peer-to-Peer framework to exchange records across HIEs

and the use of semantics to enable dynamic queries. The study explores integrating

the Swiss healthcare system without reliance on a central authority. The model has a

few limitations. For example, a provider needs predefined knowledge on where target

records are stored and changes to a record are not propagated to providers. Com-

24

munication is based on a tuple space architecture called TuCSoN [121], a derivative

of Linda [51]. A tuple space is a distributed shared memory programming paradigm

that creates a series of shared objects between parties called tuples. The TuCSoN

triple store ontology was modeled in OWL. This allowed the distributed objects to

be defined and resolved at runtime. The underlying P2P architecture is a pure model

that uses TOM P2P [21], a Kademlia DHT, for resource discovery. Each node, called

a community, contains a replica of the tuple primitives with agents reacting to tu-

ple changes. The implementation consists of three basic agents: log, update, and

search. For each community, a single coordinator called a Policy Tuple Center is used

to meditate the tuple actions. The available actions included connect, subscribe,

and search. The system could query the network for a resource and then use the

network’s response to access the record. The agents could also respond to network

requests. Three types of subscriptions were modeled: events, service changes, and

policy changes. The implemented model was tested on Amazon cloud. The net-

work’s search complexity was in line with theoretical estimates but experienced extra

latency as more communities subscribed. Overall, the use of tuple space offers a

flexible distributed programming model whose definitions can be injected at runtime.

However, several issues have been overlooked. For example, consensus, security, and

data representation of current health domain ontologies have not been addressed.

2.3 Application Layer Protocol

Peer-to-peer networks are application protocols built on top of the transport layer

of the OSI model [78]. Programs exchange data in the application layer in a known

format and exchange pattern. Example application layer protocols are HTTP [46,78]

and FTP [78, 131]. The underlying transport layer delivers packets between appli-

cations. There are two common methods for packet delivery in the transport layer,

TCP and UDP.

25

TCP is a connection-oriented protocol between a client and a server [8, 78]. It

provides error-corrected and in-order delivery of packets. TCP provides a guarantee

of the delivery of a message. A connection under the TCP protocol is a safe and

reliable method to transfer data, at the cost of increased overhead.

UDP is a connection-less protocol [78, 130]. The sender sends packets to the re-

ceiver in a best-effort approach. The protocol cannot guarantee the arrival of a packet.

The application protocol must re-request missing packets. The receiver verifies the

packets with a checksum. This makes UDP suitable for real-time applications where

low latency is a priority. It is up to the application layer to provide any additional

guarantees.

2.4 EHR Datamining

Predicting a patient’s future medical conditions is beneficial to patients, providers

and the healthcare system. Patients can take proactive measures to prevent con-

ditions, providers can recommend tests to perform, and the healthcare system can

plan for future health needs. Identifying at-risk patients before conditions occur

can lower the cost of medicine and saves lives. Current clinical research uses either

randomized trials [32, 75] or cohort studies [32, 33, 96] to understand conditions and

symptoms. This supports the approach of diagnosing patients by domain experts

and Computer-aided Diagnosis (CAD) [39]. However, these methods are expensive,

difficult to design, and suffer from selection bias [32, 75,96].

Health providers have generated millions of patient records. Providers primarily

use these records to treat patients and create workflows. This collection is valuable

as it contains detailed health information for a population of patients rather than a

small group. Researchers have proposed to use this wealth of data for the secondary

purposes of clinical research, prediction systems, and clinical decision systems [34,70,

108]. Present research into EHR datamining has had mixed results due to varying

quality, encoding differences, and missing data [60, 159]. Researchers have proposed

26

the standardization and quality assessment of EHR data to overcome these issues

[17]. Despite the problems with mining EHR repositories, researchers have conducted

several large-scale studies [102]. They have used a variety of methods, such as Neural

Network, Bayesian Statistics, Trees, and K-Nearest Neighbor [169]. However, medical

institution control of the research data [90] makes evaluating these studies difficult.

Yadav [169] surveys the current research in EHR datamining. Applications of EHR

datamining include: medical trajectories, cohort studies, risk prediction, intervention

modeling, clinical guidelines, and detecting adverse events. Each of these applications

have varying levels of implementation difficulties, with intervention modeling being

notably difficult. EHRs contain three forms of health data with decreasing structure:

structured, workflows, and clinical notes. Issues with EHR data include: difficulty in

extraction, unobserved data, data fragmentation, bias, and irregular data.

Several recent papers propose utilizing Neural Networks to mine EHRs. Recent

Neural Network approaches focus on many nested hidden layers of “neurons” to ap-

proximate complex functions. Given enough data, neural networks show a good

performance on a variety of health modeling problems. Miotto et al. [102] and Trang

et al. [128] approach EHR datamining from an unsupervised perspective with Neural

Networks.

Miotto et al. [102] presents a large-scale study using Stack Denoising Autoencoders

(SDA) and Random Forest to diagnose conditions such as diabetes, congestive heart

failure, and schizophrenia. The authors choose autoencoders to counteract noise in

EHR data and create a reduced representation of the patient records. The study used

a heavily processed EHR repository of 700,000 patients. The authors annotated the

dataset with the Open Biomedical Annotator [72] and extracted topics from clinical

notes using regular expressions and Latent Dirichlet Allocation. EHR data needs

heavy preprocessing to achieve good results [102] and the reduction of the feature

space is key as EHR data has thousands of sparse features.

27

Trang et al. [128] proposed modeling a chronic patient’s long-term outlook using

Long Short-Term Memory (LSTM) neural networks. A LSTM is a variation of Re-

current Neural Network in which nodes store internal lossy data to replicate memory.

The authors used a modified LSTM to model long term health trends and improve on

methods like Hidden Markov Model for chronic conditions [128]. The authors trained

and tested the LSTM with 12 years of EHR data comprising two datasets, with each

dataset covering approximately 12,000 patients and 53,000 hospital admissions. The

authors noted that the model struggled with patients who had small records.

2.4.1 Predictive Models and Bayesian Statistics

In this thesis, a Bayesian model is used to demonstrate predictive medical diag-

nosis as a service. Bayesian Statistics are probabilistic methods that model systems

using Bayes theorem [125]. Bayes Theorem (Eq. 2.1) is used to infer the probability

of events based on prior observations. These methods can be classifiers or generative

models.

P (Outcome|Data) =
P (Data|Outcome)P (Outcome)

P (Data)
(2.1)

where: [P (Outcome|Data)] is the Posterior, [P (Data|Outcome)] is the Likelihood,

and [P (Outcome)] is the Prior.

The simplest approach is Naive Bayes [136]. Naive Bayes is a classifier that models

a set of features as random variables (RV) with the “naive” assumption that each

is conditionally independent (Eq. 2.2). This simplifies learning and the inference

process. Naive Bayes can perform well despite this simplification [136] and is used

heavily in text mining [141].

P (C,En) = P (C)
∏
i

P (Ei|C) (2.2)

where: [C] = outcome and [En] = evidence

28

Another approach is Bayesian Network. Bayesian Network are Directed Acyclic

Graph (DAG) with nodes representing RVs [136]. The space modeled is the joint

distribution of the RVs but in a compact form. A connection between nodes indicates

conditional dependency. The combined connections and probabilities create a model

of the system representing interrelated events and their probabilities. By using Bayes

Theorem and the graph structure, a query can traverse the network to infer the

conditional probabilities of events given evidence. Bayesian Networks have advantages

over Naive Bayes. The structure intuitively models the relationships between features

and can represent complex models with conditional dependencies. Moreover, experts

can use domain knowledge to define the graph structure, thereby bootstrapping the

network. This is helpful as deriving the graphical structure of the Bayesian Network

is otherwise NP-Hard [136].

Inferencing, computing the probabilities of an event given data, in complex Bayesian

models is NP-Hard [136]. To overcome this issue, models can be trained using Ex-

pectation Maximization (EM) [136], Gibbs Sampling (a variation of Markov Chain

Monte Carlo) [136], or Variational Methods [73]. The EM algorithm iteratively finds

the probability distributions but can converge to local optima. Gibbs Sampling and

Variational Methods use randomization or optimization techniques to approximate

the distributions in order to avoid converging to a local optima.

2.4.2 Bayesian Applications to EHR Datamining

Lucas et al. [91] presents a review of Bayesian Networks for medical diagnosis. The

representation of probabilistic knowledge as a graph creates a formalism that mirrors

how medical domain experts see cause and effect relationships. It is an intuitive

model, with easy to understand relationships and probabilities. Clinical experts can

bootstrap the model allowing the application of prior diagnoses knowledge. Lucas

demonstrates a theoretical application of Bayesian Networks to diagnose ventilator-

associated pneumonia.

29

Sexias et al. [143] proposes using Bayesian Networks for Clinical Decision Sup-

port Systems targeting Dementia, Alzheimer’s, and Mild Cognitive Impairment. The

authors reviewed similar CDSSs that used Bayesian Network, Neural Networks, and

Multiple Criteria Decision Analysis. The study used 1,804 patient neuropsychological

tests from four institutions for the dataset. The authors also used Synthetic Minority

Over-sampling Technique (SMOTE) [30] to balance the dataset. Another process-

ing step was the removal of attributes not related to diagnosis and records missing

values. An expert predefined the network structure. The expert noted that several

features that were removed for low counts were highly relevant to the classification.

The authors generated five Bayesian Networks using the Waikato Environment for

Knowledge Analysis (WEKA) software [57] along with the GeNIe Modeler and SMILE

Engine [41]. The Bayesian Networks used a three-level template and the Dirichlet

Distribution for the nodes. The expert-defined Bayesian network outperformed the

auto-generated Bayesian Network but had similar performance to other methods.

This study shows the benefit of using an expert to bootstrap the network.

Other approaches use Dynamic Bayesian Network (DBN) to account for time.

Dynamic Bayesian Network are a generalization of Bayesian Networks and Hidden

Markov Model that can model a system over time. Nachimuthu et al. [110] used DBNs

to predict sepsis, a rapidly progressing condition in Intensive Care Units (ICU). The

authors chose DBNs to account for the increase in evidence over time in an ICU.

The study used 3,100 patients from an Intermountain Healthcare ICU dataset. The

data was skewed towards control patients by 4 to 1 and was in various unstructured

formats. The researchers extracted lab and vital signs for the first six hours. To reduce

sparseness, the researchers aggregated the data to 1-hour intervals. The authors did

not remove records with missing data and all variables were discretized. The input

space to the model was a set of time increasing vectors of clinical data and observations

for each patient. A physician labeled the data for sepsis diagnosis. The researchers

created the DBN using Projeny, a front end to MATLAB’s Bayes Net Toolbox, and

trained the network using the EM algorithm. The DBN structure was defined by

30

the researchers and used two time slices. Overall the network performed well, with

all performance measures improving over time. Despite the promising performance,

this study does have limitations. The authors noted that missing data prevented the

diagnosis of specific types of sepsis such as septic shock.

Xu et al. [168] propose using a Hierarchical Bayesian Non-Parametric (BNP) to

model patient’s responses to treatment. Patients have varied responses to treatments

over time which motivated Xu to consider BNPs. The stated novel aspects were a

continuous response over time, flexibility in modeling, and probability estimates at

the patient level. The paper notes that longitudinal EHR data has the “time-varying

confounding issue”, where treatments are present at a higher rate in sicker patients.

This creates the impression that treatment caused the condition. Xu used the G-

computation formula as a guide for creating the BNP. The dataset consisted of EHR

time series data of 123 patients from the Boston Beth Israel Deaconess Medical Cen-

ter. The patients averaged a 20.75-day stay and totaled 6,992 observations. The BNP

modeled the patient’s kidney function in response to Ischemic Heart Disease treat-

ments and Continuous Renal Replacement Therapies. The authors trained the model

using Gibbs Sampling and Metropolis-Hastings, another MCMC method. Results

were measured with Root Mean Squared Error (RSME) for Creatinine (a measure of

renal health) and compared against baseline responses from the model using different

distributions. The model performed well against fully and partially observed data.

Overall, this paper presents interesting ideas related to modeling noise, using BNPs

for time series data, and the issue of cause and effect in longitudinal data. Gaps in

this paper were the failure to examine the scalability of the BNP method and effects

of the small population size on the produced results.

31

2.4.3 EHR Datasets

Current EHR repositories have known issues with quality and sparseness. Weiskopf

et al. [158] and Hersh et al. [60] reviewed the quality of EHR data. Weiskopf [158]

examined 3.9 million patient records from the New York Presbyterian Hospital for

completeness. The study tested records for documentation, breadth, number of visits,

and predictive quality using logistical regression. The authors found that clinical notes

increased after EHR adoption. Many records were sparse, only 45% included diagno-

sis and 13% included medication. The repository had limited longitudinal value, only

23% of the records had 5 follow-up visits after the initial visit. The author concludes

that only 0.6 % of the records are complete but recommends not generalizing the re-

sults to other hospital systems. Hersh [60] summarized the EHR issues from multiple

studies. The author found common themes of inaccurate data, incomplete records,

poor semantic encoding, data unrecoverable for research, unknown provenance, insuf-

ficient granularity, and incompatibility with research protocols. Both authors paint a

dim outlook on using EHR data for clinical research. Moreover, Hersh [158] notes the

limited usefulness of the International Classification of Diseases Revision 9 Clinical

Modification (ICD-9-CM) [112] for studies.

The Health Insurance Portability and Accountability Act of 1996 (HIPAA) pro-

tects patient medical records from unauthorized access [156]. The majority of the

reviewed literature on EHR datamining used a restricted dataset provided by a hos-

pital. Yadav et al. [169] mentions that large scale studies before EHRs, used insurance

claims data. Several open datasets target single conditions. Delen et al. [38] used the

Surveillance, Epidemiology, and End Results Program (SEER) for predicting breast

cancer survival rates. However, SEER is not a substitute for an EHR as it only covers

cancer statistics in the United States. Xu et al. [168] used an open ICU EHR dataset,

however, it does not include long term changes.

The Medical Expenditure Panel Survey (MEPS) [4] is a yearly survey of house-

holds by the Agency for Healthcare Research and Quality (ARHQ). ARHQ’s goal is

32

to survey current patient healthcare in the United States. In each survey, ARHQ

asks households questions about conditions, providers, costs and medication. Each

survey group is followed over a two-year period termed a panel with questions over 5

rounds (Fig. 2.2). There are currently 20 panels available, starting from 1996. Each

panel includes approximately 15,000 households with a subset of the previous year’s

respondents carried over. ARHQ warns that MEPS data is missing values, which

affects the overall quality of the data. For example, in Panel 19, only 50% of the

participants responded. ARHQ made attempts to address this issue by altering the

survey design but the result is inconclusive. The questions and recorded information

vary over the years.

ARHQ hosts the surveys online and provides the data files in SSP and fixed

length format. Each survey is by year with two active panels per year [6](Fig. 2.2).

ARHQ groups the information by household and event components. The household

component covers survey questions while the event component tracks patient reported

medical events. The household component contains tables covering topics such as con-

ditions and medications. The link between the tables is the respondent’s DUPERSID,

a concatenation of the respondent’s ID and the household ID.

Round	1 Round	2 Round	3 Round	4 Round	5

Panel
19

Panel
18

Panel
20

Round	1Round	5

2015 2016

First	Half	of
Panel

Second	Half	of
Panel

Fig. 2.2.: MEPS Panel Design

33

3. ARCHITECTURE

The architecture (Fig. 3.1) of the proposed system is a centralized Peer-to-Peer

model, consisting of: an index server, a peer client, and registered network services.

The peer client is an application with a Graphical-User-Interface (GUI) for patients

and providers to manage health records and interact with the network. The index

server controls network access and provides resource lookup for the peers. Once con-

nected to the network, a peer can post document metadata and request transactions.

The target peer can then authorize the transaction. Peers periodically pull autho-

rized transactions from the network. A peer carries out the transaction by directly

contacting the target peer.

The user stores their health records on their own computer. Each new record has

associated metadata (Fig. 3.2). The metadata includes the origin, creation time, and

a SHA256 [9] hash of the data to establish its uniqueness. It is this metadata that

is uploaded to the network for discovery, not the underlying record. Access is only

granted by following the established transaction protocol and with the approval of

the owner. This makes the user in control of their health records and the system a

Personal Health Record.

The index server manages the network for the peers and performs the signal-

ing, signup and lookup services for the network. This centralized model tracks the

registered users, peer IP addresses, documents, transactions, and services.

Patients and Providers use the peer client to register in the network, login, manage

local health records, lookup documents and services, upload records into the network,

and issue requests for transactions. In addition, the client operates a P2P client-server

subsystem to carry out approved transactions.

A service client is a special peer client for network services. Regular peers can

request these services, which are logged and carried out as transactions. The service

34

Connection

Connection

Resource
and

Transaction
Database

Database
Database

Classifer

Health
Records

Health
Records

Health
Record

Connection
Health
Record

Index
Server

Record
to

Classify

Exchange	Record
Directly

Requesting
Service

Peer
Client

Peer
Client

ProviderPatient

Service

Fig. 3.1.: System Architecture

35

Document {

Hash sha256

Time time

Origin string

Data fhir

}

Fig. 3.2.: Client Document

client periodically checks the network for new service transaction requests and ap-

proves them. The service client does not store any records. It returns the result of

the serivce application to the requesting peer.

36

3.1 Network Actions

There are several types of peer actions in the network.

Registration: The peer client presents network actions as a series of pages. A user

can register in the network by filling out the registration information (Fig. 3.3). The

peer client parses the form information and creates a registration message which is

submitted to the network. The server validates this information, and if valid, a new

account is created and a success response is returned to the client. Otherwise, an

error is returned.

Create	Peer

Add	to
Database

Set	State	to
Not	Approved

Register	For
Network

Return	New
Id

Service
Client

Valid

Invalid

Check	Input

Network
Server

Signup	{
Name
Password
Email
}

Get	User
Input

Show	User
Result

Fig. 3.3.: Registration

37

Login: The user logs into the network by entering their credentials. The client

parses the information and creates a new network client. This network client cre-

ates a heartbeat process (Fig. 3.4) which continuously pings the server with route

information on a predefined interval. Other peers use this route information to locate

other clients.

:Peer

Login

:Network

Heartbeat
{
Name
Password
Port
}

Ping

Ping

Ping
Interval	

Ping
Interval	

Active

Inactive

Fig. 3.4.: Heartbeat Process

38

Search: The client can search for network resources (Fig 3.5). Resources include

account information, posted documents, transactions, portals, and services. Each

query can be refined to narrow the search. The client parses the query and sends

the result to the index server. The index server validates the query, executes it, and

returns the results of the search to the client.

Pull	Resource
List	from
Datastore

Return	Err

Request
Network
Resource

Peer
Client

Invalid	Request

Valid	Request
Validate
Request

Network
Server

Show	Result

Return
Resource	List

Fig. 3.5.: Search for Network Resources

39

Record Download: The client can download data from external sources. The index

server holds a list of verified portal servers. The client queries the index server for

this list and selects the desired portal. The user enters their portal login information

and the client parses and creates a FHIR query. The client executes the query against

the portal which returns the user’s documents (Fig. 3.6). If the query fails, the user

is alerted. The downloaded documents are then compared against the local records.

If the documents are the same, the record is not added to the database. Otherwise,

a record is created and added to the peer database.

:Peer

PullPortal

:Network
:FHIR
Server

Get	Portal	List

Portal	List

Query	for	Health	Records

return

FHIR	Records

Fig. 3.6.: Fetch FHIR Documents from Portal

40

Record Registration: A user can register a document in the network (Fig. 3.7).

The client parses the user’s selection and grabs the requested document’s metadata.

The client sends the metadata to the index server. The index server validates the

request and checks that no network document has the same SHA256 as the posted

document. If the request is valid, then the document is assigned to the user. Other-

wise, the request is rejected.

Register
Document
MetaData

under	User

Return	Err

Post
Document
Metadata

Peer
Client

Old	Hash

New	Hash
Check	Store
for	Similar

Hash

Network
Server

Record
Metadata	{
Hash
Time
Origin
Tags
}

Show	Result

Return
Document	ID

Fig. 3.7.: Record Registration

41

Service Registration: A service provider can issue a request for the registration

of a new service by sending a registration request to the network (Fig. 3.8). The

network administrator checks the request and approves or denies the new service. If

the service is approved, a new peer client is created for the service and the service

becomes visible to the peers.

Waiting	for
Approval

Approved

Not	Approved

Opr.
Choice

Create	New
Peer

Set	State	to
Not	Approved

Register	New
Service

Set	Service
to	Active

Service
Client

Create	New
Service

Network
Server

Service
Register	{
Name
Password
Email
Info
DataType
}

Fig. 3.8.: Registration and Approval of Service

42

3.2 Transactions

Transactions are exchanges of records between two peers. Each type of transaction

is treated as a state machine, with the state of the transactions changing as conditions

are met. The index server acts as the ground truth between the two peers and ensures

that transactions are both valid and consistent. In addition, the index server provides

an independent log of the transaction for audit purposes.

Get/Post	Update

Resource
and

Transaction
Database

Database Database
Health
Records

Health
Records

Get/Post	Update

Index
Server

Exchange
Record
Directly

Peer
Client

Peer
Client

ProviderPatient

Health
Record

Fig. 3.9.: Network Transaction

43

3.2.1 Authorization and Operation

A peer, called the requester, can issue a transaction request on a network doc-

ument to the index server. The client posts the document hash and the requested

action to the server (Fig. 3.10). The server validates the request and creates a new

transaction in the pending state (Fig. 3.11). The target peer can view the list of

pending transactions. He or she can then approve, reject, or ignore these requests

and posts the decisions to the index server. The server validates the peer and if

the target approved the transaction, moves the transaction to the next state. If the

target rejects the request, the state is changed to canceled and the transaction is

non-executable by the clients.

Transaction Request {

Action string

ServiceID string

UserID string

DocumentID string

}

Fig. 3.10.: Transaction Request Data

Pending
Completed,

Error,
or	Failure

Running

Decline

ApproveTarget
Choice

Fig. 3.11.: Transaction Request and Approval

Once a transaction is approved, the participating clients can pull the transac-

tion from the server (Fig. 3.12). The transaction is added to each client’s list of

transactions that need to be executed.

44

Transaction {

ID string

Hash string

SenderID string

SenderIP string

ReceiverID string

ReceiverIP string

Port string

Action string

State string

Time time

}

Fig. 3.12.: Transaction Data

Update {

Tid string

Type string

Data rawdata

}

Fig. 3.13.: Update Data

45

To execute transactions, the peers operate both as a client and a server. The

requester initiates the connection with the target peer. The two peers carry out the

protocol and state of the transaction. At the end of the action, the peers alert the

index server of the result with an update message (Fig. 3.13). The index server,

also operating as a state machine, checks the messages to see if a state progress

condition is satisfied. If a transition condition is satisfied, the index server moves the

transaction to the next protocol state. Otherwise, a failure occurs, and the clients

will need to retry the transaction. The clients continue executing the transaction

until the protocol is completed or an error occurs.

3.2.2 Protocol

The method of the transaction determines the type of state machine that is in-

voked. Each state machine is a template with the following states: pending, final,

failed, and canceled. The pending state shows that the owner has not approved a

transaction. The final state indicates the end of a successful transaction. The failed

state indicates that a transaction failed. The canceled state shows that the owner of

the underlying data canceled the transaction. All other states are variable and de-

pend on the protocol. There are three protocols modeled in the network: Get, Push,

and Service.

46

Get: The Get protocol transfers a document from the owner to the requesting peer

(Fig. 3.14). It has three states: pending, get, and final. While waiting for approval,

the transaction is in the pending state. The owner must approve or disapprove a

transaction before the transaction can move to the next state. Once approved, the

transaction is moved to the get state. The requester connects to the owner. The

owner returns the approved document to the requester. The two clients alert the

index server that the transfer is complete. The index server sets the transaction to

final state, thus completing the transaction.

:Requester

Get	Protocol

:Target :Network

Request	Health	Record

Return	Health	Record

Update	Network

Update	Network

Fig. 3.14.: Get Protocol

47

Push: The Push protocol transfers a document from the owner to the accepting

party (Fig. 3.15). It has three states: pending, push, and final. A push transaction

starts in the pending state. The target approves the transaction and the index server

moves it to the push state. The owner of the document opens a connection with the

target and transfers the document. The target adds the record to their data store.

The two peers then alert the index server that the transaction is complete. The index

server moves the transaction to the final state, thus completing the transaction.

:Owner

Push	Protocol

:Target :Network

Push	Health	Record

Ack

Update	Network

Update	Network

Fig. 3.15.: Push Protocol

48

Service: The Service protocol sends a document from an owner to a service and

the service returns a new document in response (Fig. 3.16). It has three states:

waiting, service, and final. The transaction starts in the waiting state. The service

approves the transaction and the index service changes its state to service. The

owner connects to the service and sends the agreed upon document. The service

performs the requested action and returns the result to the owner. The owner adds

the new document to their data store. The two peers alert the index server that the

transaction is complete. The index server places the transaction in the final state.

:Requester

Service	Protocol

:Service :Network

Push	Health	Record

Return	New	Record

Update	Network

Update	Network

Fig. 3.16.: Service Protocol

49

3.3 Hypertension Prediction Service

The Hypertension prediction service is a network service that runs a Naive Bayes

classifier. The classifier predicts a patient’s risk of developing hypertension in the next

year based on the patient’s historical health record. The classifier is trained with data

from the Medical Expenditure Panel Survey (MEPS) [4]. Though not a patient health

record, the MEPS dataset is used to demonstrate the proposed approach and service

protocol. The classifier targets Hypertension (High Blood Pressure), ICD-9-CM Code

401 [112]. Hypertension was chosen as a demonstration of the proposed service as it

is the highest occurring condition in MEPS.

The prediction service has two stages: development and deployment. During the

development stage, the classifier is trained and tested using a MEPS dataset. The

model is then deployed as a service in the proposed PHR.

Records are extracted from MEPS and transformed into a vector of patient demo-

graphics, prior conditions, and labels of posterior conditions. The selected features

included 30 related ICD-9-CM conditions and 17 health related survey questions.

This dataset was split into training and test datasets, with 70% of the records for

training and the remaining 30% for testing. The output of the classifier is a binary

prediction that the patient will develop Hypertension over the next year.

The Hypertension prediction classifier is then added to the network and operates

as the Hypertension prediction service. A peer can connect to the service and pass

the target health record which conforms to the classifier’s requested format. The

service invokes the classifier on the supplied data and returns the result to the client

as a new record.

50

3.3.1 Data Set

The dataset used to train and test the Hypertension Prediction Classifier is com-

prised of two MEPS tables: consolidated and conditions. The consolidated table

contains the bulk of the respondent’s information, including demographics, insur-

ance, income, etc. The condition table contains the self-reported conditions coded in

ICD-9-CM for each respondent. To protect respondents, ARHQ only recorded the

first three characters of ICD-9-CM [5], dropping the number of codes from 13,000 to

less than 1,000. ARHQ further obfuscated the information of children and at-risk

groups.

The highest occurring condition in Panel 19 is Hypertension (ICD-9-CM 401)

with 3,078 instances. The high counts of Hypertension and accessibility to heart-

related information motivated the choice of Hypertension as a target disease for this

thesis. A review of heart condition literature helped prune the list of conditions

to 30 ICD-9-CM codes covering heart and respiratory conditions (Table 3.1). The

consolidated table has few direct measures of health such as Body Mass Index (BMI)

[12]. However, several questions on advice from doctors, major health events such

as stroke, and smoking information are also available [5]. The respondent’s answers

to these questions are used as additional measure of the respondent’s cardiovascular

health. This resulted in an additional 17 features. The selected features are included

in Table 3.2.

Table 3.1.: Selected Condition Features

ICD-9-CM Group Meps Code Feature

410-414: Heart Disease 410 Acute Myocardial Infraction

413 Angina Pectoris

414 Other forms of Ischemic Heart

Disease

continued on next page

51

Table 3.1.: continued

ICD-9-CM Group Meps Code Feature

415-417: Heart Failure 415 Acute Pulmonary Heart Dis-

ease

420-429: Circulatory System

Diseases

424 Other Diseases of Endocardium

425 Cardiomyopathy

427 Cardiac Dysrhythmis

428 Heart Failure

429 Ill-defined Descriptions and

Complications of Heart Disease

430-438: Cardio Brain Hemor-

rhage, Stroke

436 Acute, but ill-defined, Cere-

brovascular Disease

440-449: Restricted Blood Flow 440 Atherosclerosis

441 Aortic Aneurysm and Dissec-

tion

442 Other Aneurysm

443 Other Peripheral Vascular Dis-

ease

444 Arterial Embolism and Throm-

bosis

447 Other Disorders of Arteries and

Arterioles

451-459: Issues with Veins and

Lymph System

454 Varicose Veins of Lower Ex-

tremities

455 Hemorrhoids

458 Hypotension

continued on next page

52

Table 3.1.: continued

ICD-9-CM Group Meps Code Feature

459 Other Disorders of Circulatory

System

490-496: Chronic Respiratory

Issues

490 Bronchitis, not specified as

Acute or Chronic

491 Chronic Bronchitis

492 Emphysema

493 Asthma

496 Chronic Airway Obstruction,

not elsewhere classified

510-519: Secondary Respira-

tory Conditions

511 Pleurisy

514 Pulmonary Congestion and Hy-

postasis

518 Other Diseases of Lung

519 Other Diseases of Respiratory

System

ARHQ conducted panels 17, 18, and 19 from 2012 to 2015 and the related data is

stored in the H15 to H18 datasets. The dataset covers 26,563 patients. The split of

each dataset creates a natural break point to test prior and post conditions. The first

half of the panel (i.e., rounds 1 and 2, and the first part of round 3) is taken as the set

of features to predict hypertension. The second half (i.e., second part of round 3 and

rounds 4 and 5) is used to build the outcome label of whether the patient contracted

Hypertension. Not all patients fully responded to the second half of the survey which

reduced the usable vectors. The conditions and consolidated datasets for each panel

53

Table 3.2.: Selected Consolidated Features

MEPS Feature Description Type

SEX Sex Discrete

RACE1VX Race (edited/imputed) Categorical

AGELAST Person’s age last time eligible Categorical

HIBPDX High Blood pressure diagnosis Continuous

CHHDX Coronary Heart Disease diagnosis Discrete

ANGIDX Angina diagnosis Discrete

MIDX Heart Attack (MI) Diagnosis Discrete

OHRTDX Other Heart Disease Diagnosis Discrete

STRKDX Stroke Diagnosis Discrete

EMPHDX Emphysema Diagnosis Discrete

CHOLDX High Cholesterol Diagnosis Discrete

DIABDX Diabetes Diagnosis Discrete

ADSMOKE42 SAQ: Currently Smoke Discrete

NOFAT53 Restrict High Fat/Cholesterol Discrete

EXRCIS53 Advised to exercise more Discrete

BMINDX53 Adult Body Mass Index Continuous

POVCAT Family Income as Percentage of Poverty Line Categorical

54

are pulled from the ARHQ website and loaded into SAS [137]. SQL joins are then

used to extract the targeted panels and features across the datasets.

3.3.2 Preprocessing

The compiled dataset is further processed (Fig. 3.17) with the Python Data

Analysis Library (pandas) [97]. A custom pipeline converts the compiled prior to

posterior pairs into a vector of demographic information, conditions prior the time

split (i.e., historical information), and the conditions post time split (i.e., predictive

outcome) for each patient. It consists of three stages: feature vector creation, label

vector creation, and feature cleanup.

MEPS
Panels

SQL	JOINS

Prior
Post
Cond.
Pairs

Feature
Vector

Creation

Label
Vector

Creation

Feature
Cleanup

Feature
Vectors

SAS
Python	and

Pandas

Fig. 3.17.: MEPS Data Preprocessing Pipeline

The fist stage converts the feature vector and labels. It compresses the list of

conditions for each respondent into a single vector (Alg. 3.1 1). The next stage

compresses the labels into a single vector (Alg. 3.2). Labels are prepended with L to

differentiate labels from features.

1Error handling has been removed from all algorithm due to length.

55

1 label = ""
2 person = ""
3 feature = pd.Series()
4 l = []
5 for index, row in raw.iterrows():
6 if row["LABEL"] != label or row["DUPERSID"] != person:
7 if type(feature) != None:
8 l.append(feature)
9 feature = pd.Series()

10 add_demographics(row, feature)
11 add_condition(row, feature)
12 label = row["LABEL"]
13 person = row["DUPERSID"]
14
15 else:
16 add_condition(row, feature)
17 feature_vector = feature_vector.append(l)

Algorithm 3.1: Vector Creation

1 l = []
2 vector = pd.Series()
3 person = ""
4 for index, row in feature_set.iterrows():
5 if row["DUPERSID"] != person:
6 vector["LABEL"] = 0
7 l.append(vector)
8 vector = row
9 person = row["DUPERSID"]

10 label = row["LABEL"]
11 vector["l" + str(label)] = 1.0
12 vector["LABEL"] = 0
13 l.append(vector)
14 data = data.append(l)

Algorithm 3.2: Label Creation

The final preprocessing step converts the features to categorical values and replaces

unknown responses with default values. BMI is converted into the standard ranges

of underweight, normalweight, overweight, and obese [12]. The age is converted into

ranges of 10 years. Unknown values for demographic questions are converted to either

no or to an empty variable depending on the count.

The resulting dataset had 26,653 vectors. The ICD-9-CM features and labels are

binary. The other features are categorical or binary. Missing prior conditions or labels

are set to 0. This may cause under-reporting. However, this was unavoidable since

MEPS does not have definite no answers for many cases. The feature vector layout

is shown in Figure 3.18 and an example feature vector is included in appendix B.

56

DUPERSID Consolidated	Features ICD-9-CM	Prior	Features ICD-9-CM	Post	Labels

Fig. 3.18.: Feature Vector

The dataset is randomly divided into training and test data. The split is 70%, or

18,657 records, for training and the remaining 30%, 7,996 records, for testing.

3.3.3 Algorithm

The proposed classifier uses Naive Bayes (Eq. 2.2). As mentioned in section

2.4.1, Naive Bayes is a supervised learning algorithm that requires labeled data. It

is a restricted Bayesian Network with the assumption of conditional independence

between features. This assumption makes inference of an outcome given evidence a

product of the conditional probabilities of evidence. After inferring the probability of

each event given the evidence, the most likely result, called the maximum a posteriori

(MAP) [136], is selected as the prediction outcome.

3.3.4 Training and Testing

The model’s accuracy is evaluated with hypothesis testing. Hypothesis testing

creates a 2x2 matrix of the results of the binary classification. This matrix is some-

times called a confusion matrix. It contains the true positive (TP), false positive

(FP), false negative (FN), and true negative (TN) counts of the prediction versus the

label [80, 136]. High FP or FN rates may be unacceptable in certain environments

(e.g., cancer diagnosis). The confusion matrix is aggregated to derive the Precision

(Eq. 3.1), Sensitivity (Eq. 3.2), and Specificity (Eq. 3.3) of the model. The Precision,

also called the positive predictive value (PPV), measures the performance of classify-

ing a true positive given a positive result. The Sensitivity measures the performance

of correct identification of positive results. The Specificity measures the classification

of events that return negative results.

57

Precision =
TruePositive

TruePositive + FalsePositive
(3.1)

Sensitivity =
TruePositive

TruePositive + FalseNegative
(3.2)

Specificity =
TrueNegative

TrueNegative + FalsePositive
(3.3)

58

4. IMPLEMENTATION

The network server, peer client, and service client are implemented with Go (Golang)

[53] and MongoDB [105]. Libraries used include mgo [114] and the FHIR intervention

engine [103]. The Hypertension classifier subsystem is implemented with Python3

[132], SAS [137], and pandas [97].

4.1 Index Server

The index server supports account management, resource lookup, and transaction

management (Fig. 4.1). It is programmed with Golang and uses MongoDB for per-

sistent storage. Clients access the service through a Representational State Transfer

(REST) [47] API.

4.1.1 Database

The network server connects to a MongoDB [105] server though the mgo [114]

driver. MongoDB stores all documents in BSON [107], a binary JSON format. Tables

in a MongoDB are called collections [106]. The database has the following collections:

user, document, transaction, service, and FHIR (Fig. 4.2).

The user collection holds the account information of the network users. The user’s

email address is the primary key.

The document collection holds the metadata of the documents that users have

posted to the network. The document contents are not posted to the server. The

hash field is the unique SHA256 hash value derived from the document’s contents.

The UID field is a foreign key to the user collection to link the document to the owner.

59

root

-	log.Logger
-	mgo.Session
-	model.Database
-	transaction.IndexF
-	http.Server

-	main():	void

addportal.root

-	log.Logger
-	mgo.Session
-	model.Database

-	main():	void

addservice.root

-	log.Logger
-	mgo.Session
-	model.Database
-	transaction.IndexFSM

-	main():	void
+	ListUnapprovedServices():	
+	ApproveService(string):	e

handler.Index

-	logger:	log.Logger
-	database:	model.Database
-	transaction.IndexFSM
-	model.Database

~	NewService(...):	Service
~	Register(mux.Router,	Service):	
+	Root(w,	r):	void
+	Signup(w,	r):	void
+	Login(w,	r):	void
+	HeartBeat(w,	r):	void
+	User(w,	r):	void
+	Users(w,	r):	void
+	ValidUser(http.HandlerFunc):	..
+	Account(w,	r):	void
+	Log(http.HandlerFunc):	..
+	PostDoc(w,	r):	void
+	ListDocs(w,	r):	void
+	GetDoc(w,	r):	void
+	ListPortals(w,	r):	void
+	GetPortal(w,	r):	void
+	RegisterService(w,	r):	void
+	ListServices(w,	r):	void
+	RequestTransaction(w,	r):	void
+	OkayTransaction(w,	r):	void
+	UpdateTransaction(w,	r):	void
+	AccountTransactions(w,	r):	void
+	RunningTransactions(w,	r):	void
+	OpenTransactions(w,	r):	void
+	GetTransaction(w,	r):	void

model.Database

-	logger:	log.Logger
-	session:	mgo.Session

~	NewDatabase(...):	Database
-	setupDatabase(mgo.Session,	logger):	void
+	NewUser(string,	string,	string):	err
+	ReturnByName(string):	User,	err
+	ReturnById(string):	err
+	CheckCredentials(string,	string):	err
+	Heartbeat(string,	string,	string):	err
+	GetUsers():	[]User,	err
+	GetUser(bson.ObjectId):	User,	err
+	PushToDb(Doc):	err
+	ListDocUID(bson.ObjectId):	[]Doc,	err
+	LIstDocAll():	[]Doc,	err
+	GetDoc(sha256):	Doc,	err
+	CheckOwner(sha256,	string):	bool,	err
+	AddPortal(string):	err
+	ListPortals():	[]Portal,	err
+	GetPortal():	Portal,	err
+	NewService(string,	...):	err
+	ApproveService(string):	err
-	fetchServices(bson.M):	[]Service,	err
-	pipeService():	[]ServiceUser,	err
+	ApprovedServices():	[]ServiceUser,	err
+	UnapprovedServices():	[]Service,	err
+	GetService(string):	Service,	err
+	NewTransaction(string,	api.Tran..Req..):	st
-	newTGet(string,	string):	string,	err
-	newTPush(string,	string):	string,	err
-	newTService(string,	string,	string):	string
+	GetTransactionID(string):	Transaction,	err
+	OkayTransaction(string,	string):	err
+	UpdateTransaction(string,	string,	string):	e
+	RunningUserTransaction(string):	[]Transactio
+	OpenUserTransaction(string):	[]Transaction,	
+	AllUserTransaction(string):	[]Transaction,	e

model.Transaction

+	ID:	bson:ObjectId
+	Hash:	sha256
+	SenderID:	bson.ObjectId
+	SenderIP:	string
+	ReceiverID:	bson.ObjectId
+	ReceiverIP:	string
+	Action:	string
+	State:	string
+	Time:	time.Time

~	NewTGet(Doc,	string,	string):	Transaction
~	NewTPush(Doc,	string,	string):	Transaction
~	NewTService(Doc,	string,	string,	Service):
+	BuildApiTransaction():	api.Transaction

model.Doc

+	ID:	bson:ObjectId
+	UID:	bson.ObjectI
+	Hash:	sha256
+	Time:	time.Time
+	Origin:	string

model.Portal

+	ID:	bson:ObjectId
+	Type:	string
+	Org:	string
+	URL:	string
+	Time:	time.Time

+	BuildApiPortal():	api.Po

model.Portal

+	ID:	bson:ObjectId
+	UID:	bson.ObjectI
+	Info:	string
+	Datatype:	string
+	Approved:	bool

<<Interface>>

transaction.IndexFSM

+	IndexExecute(model.Tran..,	string,	api.Me

model.User

+	ID:	bson:ObjectId
+	Name:	string
+	Password:	string
+	VerCode:	string
+	Email:	string
+	Verified:	string
+	HeartBeat:	time.Time
+	IP:	string
+	Port:	string
+	Role:	string

Fig. 4.1.: Index Server Classes

60

User

ID ObjectID PK

Name String

Password String

Email String

VerCode String

Verified Boolean

HeartBeat Time

IP String

Port String

Role String

Document

ID ObjectID

UID String FK

Hash Sha256 PK

Time String

Origin String

Transaction

ID ObjectID PK

DocHash Sha256 FK

SenderID String FK

RecieverID String FK

Action String

State Boolean

Time Time

Portal

ID ObjectID PK

Type String

Org String

URL String

Time Time

Service

ID ObjectID PK

UID String FK

Info String

DataType String

Approved Time

Fig. 4.2.: Database Collection

61

The transaction collection holds the network transactions. Each transaction record

contains the state, requested data, and actors in a transaction. The actors, senderID

and receiverID, are foreign keys to the user database. The hash field is a foreign key

to the requested document. The ID field is a unique key assigned by the database to

identify a transaction, allowing users to reissue a transaction without duplication.

The service collection holds the approved and unapproved services in the network.

Network clients can only interact with approved services. A service record contains

information on the data needed by the service and the foreign key UID of the linked

peer who operates the service.

The portal collection holds connection information and details on FHIR portals

provided by health providers.

4.1.2 API and Handlers

The Index server provides its services as a REST API. REST is a design pattern for

network services in which resources are URL paths that are called using the standard

HTTP routines (e.g. GET and POST). The network resources are organized as a

hierarchy (Fig. 4.3), for example, the /network path includes resources for logged in

clients.

/

/network

/signup

/account

/login

/network/service

/network/user

/network/transaction

/portal

/service

/portal/{id}

/network/transaction/{tid}

/network/service/{sid}

/network/user/{uid} /network/user/{uid}/doc /network/user/{uid}/doc/{hash}

Fig. 4.3.: REST Access

62

Contacting a REST endpoint invokes a series of HTTP handlers. The handlers

evaluate a request and interact with the database. The full communication details

and routines between clients and the index server are in section 4.4.

4.2 Peer Client

A high-level diagram of the peer client system components and their interactions

is in Figure 4.4.

Main

Model

WUI

Transaction

Job

P2P

Network

Service

API

Fig. 4.4.: Peer Client Subsystems

The Peer Client database is implemented in MongoDB. It has two collections:

Record and PeerRecord (Fig. 4.5). Each collection is independent. The record

collection holds the set of FHIR records pulled from portal servers. Each record

consists of the FHIR record data following the FHIR V3 standard and the metadata

which is generated when adding the record to the database. The FHIR V3 golang

framework is taken from the Intervention Engine [103], which is licensed under the

Apache license, Version 2.0 [14].

63

Record

ID ObjectID

Time String

Origin String

Data String

Hash Sha256 PK

PeerRecord

ID ObjectID

UID String

TID String

Time String

Origin String

Data String

Hash Sha256 PK

Fig. 4.5.: Peer Client Collections

64

New records are added to the database with the Database.NewRecord function

(Alg. 4.1). This function generates the metadata for the record to be added, including:

the origin, date, and a SHA256 hash of the data. The database method StoreRecord

attempts to push the target record to the database.

1 func NewRecord(time time.Time, url string, resource interface{}) (Record,
error) {

2 var record Record
3 buffer := json.Marshal(resource)
4 hash_byte := sha256.Sum256(buffer)
5 session := d.rootSession.Copy()
6 defer session.Close()
7 c := session.DB("client").C("record")
8 c.Insert(record)
9 }

Algorithm 4.1: New Record

The peer record collection holds the records aquired from other peers through

transactions. This collection is similar to record but includes the UID to indicate the

original owner and the origin field holds the ID of the transaction that transferred

the record.

The Peer Client accesses the network through the Network Client (Fig. 4.6). The

Network Client wraps the network calls and keeps the client logged into the network.

The Network Client’s interactions with the network are discussed in Section 4.4.

The client GUI is implemented as a Web User Interface (WUI). The user must

start the client and then use a browser to connect to the WUI running on localhost.

The application is laid out as HTML pages (Fig. 4.7), which are served to the user.

The root page provides access to the initial pages of registration, login, local

records, and help. The registration page allows a user to register using a form (Fig.

4.8). After submitting the form, the WUI parses the form and invokes the network

client. If the registration request succeeds, the user is redirected to the login page.

On the login page, the client can submit their credentials (Fig. 4.9). The submitted

form is parsed and a new network client is launched to connect to the network. This

connected network client is necessary for network page access. It will run in the

background until the user logs out. If the network client is not running, the WUI will

redirect the user back to the login page.

65

wui.Server

-	logger:	log.Logger
-	db:	model.Database
-	netService:	service.Peer
-	netPort:	string
-	filepath:	string

~	PathSetup(gorilla.Mux,		wui.Server):	v
~	Launch(log.Logger,	gorilla.Mux,	string
+Index(w,	r):	void
+	Register(w,	r):	void
+	Postregister(w,	r):	void
+	Login(w,	r):	void
+	PostLogin(w,	r):	void
+	Logout(w,	r):	void
+	Network(w,	r):	void
+	Account(w,	r):	void
+	PortalList(w,	r):	void
+	Portal(w,r):	void
+	PortalPull(w,	r):	void
+	LocalRecordSearch(w,	r):	void
+	Record(w,	r):	void
+	PostRecord(w,	r):	void
+	NetworkRecordSearch(w,	r):	void
+	TransactionRequestList(w,	r):	void
+	TransactionRequestDispatch(w,	r):	void
-	transferForm(w,	r):	void
-	serviceForm(w,	r):	void
+	TransactionRequest(w,	r):	void
+	TransactionList(w,	r):	void
+	AuthorizeTransaction(w,	r):	void
+	LoggedIn(HandlerFunc):	HandlerFunc	
+	PeerRecords(w,	r):	void
+	PeerRecord(w,	r):	void
+	Service(w,	r):	void
+	SurveyForm(w,	r):	void
+	Survey(w,	r):	void

model.Database

-	logger:	log.Logger
-	rootSession:	mgo.Session

~	NewDatabase():	Database
-	setupDatabase():	void
+	StoreRecords([]	Record):	[]Result,
+	StoreRecord(Record):	err
+	FindRecord(string):	Record,	err
+	AllRecords():	[]Record,	err
+	StorePeerrecord(PeerRecord):	err
+	FindPeerRecord(string):	PeerRecord
+	AllPeerRecord():	[]PeerRecord,	err

service.Peer

+	NetClient:	network.Clie
-	jbuilder:	jobBuilder
-	jboard:	job.Board
-	jfetcher:	job.Fetcher

~	NewPeer(logger,	...):	P
+	Close():	void

network.Client

-	logger:	log.Logger
-	heartbeat:	HeartBeat
-	cancel:	context.CancelFunc
-	wg:	sync.WaitGroup
-	netURL:	string
-	creds:	Credentials

~	NewClient(...):	Client
+	Register(logger,	Credentials):	err
+	Login():	err
+	Logout():	err
+	GetUsers():	[]api.User,	err
+	Getuser(string):	api.User,	err
+	GetAccount():	api.User,	err
+	ListPortals():	[]api.Portal,	err
+	GetPortal(string):	api.Portal,	err
+	ListServices():	[]api.Service,	err
+	PostDoc(api.Record):	err
+	ListDoc():	[]api.Doc,	err
+	Doc(string):	api.Doc,	err
+	RequestTransaction(api.TransactionRequest):	stri
+	CheckTransaction(string):	api.Transaction,	err
+	OkayTransaction(string):	err
+	OpenTransactions():	[]api.Transaction,	err
+	RunningTransaction():	[]api.Transaction,	err
+	ListTransaction():	[]api.Transaction,	err
+	UpdateTransaction(api.Message):	err

portal

+	CheckAccess(log.Logger,	fhir.Conn):	err
+	GetPatientRecord(log.Logger,	fhir.Conn):	[]model.Rec

Fig. 4.6.: Network and WUI Classes

66

/

/network

/registration

/login

/help

/network/account

/network/transaction

/network/record

/record

/log

/record/{hash}

/network/record/{hash}

/network/peerrecord

/network/portal

/network/service

/network/portal/{id}

/network/transaction/{tid}

/network/peerrecord/{hash}

/network/record/{hash}/request

Fig. 4.7.: WUI Paths

Fig. 4.8.: Registration

Fig. 4.9.: Login

67

The local records page renders a table of the health records in the local database

(Alg. 4.2). Each row shows the record metadata . A client can click on any individual

record to show the content of the record (Fig. 4.10) . In addition, if the user is logged

into the network, the user can request that the document metadata be posted to the

network.

1 func (d *Database) AllRecords() ([]Record, error) {
2 session := d.rootSession.Copy()
3 c := session.DB("client").C("record")
4 var records []Record
5 c.Find(nil).All(&records)
6 return records, nil
7 }

Algorithm 4.2: Local Records

Fig. 4.10.: Record

The network menu lists pages that require network access. It is the base menu

to other network actions. Accessing the account page triggers the network client

to retrieve the client’s account information from the index server. The returned

information is rendered to the client (Fig. 4.11).

Fig. 4.11.: Account Page

68

The network document page triggers the network client to retrieve the list of

documents in the network. The documents are rendered as a table of each record’s

metadata (Fig. 4.12(a)). Each document is a link, which when accessed, invokes the

network to retrieve the list of network services. The transaction options are rendered

to the client and the user can choose a transaction option from the list (Fig. 4.12(b)).

After selection, a request form for the transaction (Fig. 4.12(c)) is presented. Once

the form is completed, the client sends the request to the network. If the request is

successful, the client is redirected to the transaction page. Otherwise, the client is

receives a network error.

69

(a) Document List

(b) Transaction List

(c) Transaction Request

Fig. 4.12.: Network Documents and Transaction Request

70

The transaction page triggers the network client to retrieve the transactions in

which the client is a participant. The results are rendered as a table for the user (Fig.

4.13).

Fig. 4.13.: Transaction Page

The user can view the list of records that have been transferred to the client on

the peer record page. The peer record page renders the records in the PeerRecord

collection as a table (Fig. 4.14).

Fig. 4.14.: Peer Records Table

Other network pages that the client can access include the service page and the

survey page. The service page lists the active services in the network. The list is

generated by a network client request to the index server. The survey page allows

the client to fill out the equivalent MEPS survey data for the MEPS Hypertension

service.

71

4.2.1 FHIR Client

An access of the portal page triggers a network request to fetch the list of portals

maintained by the index server. The returned list is rendered to the client as a table.

Each portal can be further accessed to make a request. A portal request allows the

client to fill out a form to request records in accordance with the FHIR protocol. The

form is submitted, parsed, and a FHIR query (Fig. 4.15) is constructed. The FHIR

query is then sent to the target server (Alg. 4.3). The returned FHIR records are

added to the database, except in cases where the record is not new.

http://hostname/Patient/{user}/$everything

Fig. 4.15.: FHIR Query

1 func GetPatientRecord(logger *log.Logger, conn fhir.Connection) ([]model.
Record, error) {

2 httpClient := &http.Client{Timeout: time.Second * 10}
3 fhirClient := fhir.NewClient(logger, httpClient)
4 entries := fhirClient.FetchPatientRecord(conn)
5 time := time.Now()
6 records := make([]model.Record, len(entries))
7 for i, entry := range entries {
8 records[i] = model.NewRecord(time, conn.Url, entry.Resource)
9 }

10 return records, err
11 }

Algorithm 4.3: Fetch FHIR Records

4.2.2 P2P Subsystem

The P2P subsystem manages the transactions with other peers (Fig. 4.16). It

operates independently from the user’s input, with the user only controlling the launch

and closing of the system. The P2P subsystem acts as a client and server, pulling

and carrying out transactions from the network and serving transaction requests from

other peers.

72

service.Peer

+	NetClient:	network.Clie
-	jbuilder:	jobBuilder
-	jboard:	job.Board
-	jfetcher:	job.Fetcher

~	NewPeer(logger,	...):	P
+	Close():	void

job.Board

-	logger:	log.Logger
-	jb:	job.Builder
-	mutex:	sync.Mutex
-	joblist:	map[string]Job
-	uid:	string

~	NewBoard(logger,	...):	Board
+	AddJobs([]	api.Transaction):	void
+	AddJob(api.Transaction):	void
+	ListJobs():	[]string
+	GetJob(string):	Job,	err
+	Handlejob(api.Message):	api.Message,	
+	Close():	err

job.Builder

-	logger:	log.Logger
-	client:	network.Client
-	dispatch:	transaction.FSM

~	NewBuilder(...):	Builder
+	NewJob(api.Transaction):	

job.Job

-	Tid:	string
-	logger:	log.Logger
-	cancel:	context.CancelFunc
-	wg:	sync.WaitGroup
+	Transaction:	api.Transaction
-	mutex:	sync:RWMutex
-	dispatch:	transaction.FSM
-	client:	network.Client

~	NewJob(...):	Job
+	Close():	void
+	ClientRun():	void
+	ClientCycle():	bool,	err
+	ServerRun():	void
+	ServerCycle(api.Message):	api.Message,

network.Client

-	logger:	log.Logger
-	heartbeat:	HeartBeat
-	cancel:	context.CancelFunc
-	wg:	sync.WaitGroup
-	netURL:	string
-	creds:	Credentials

~	NewClient(...):	Client
+	Register(logger,	Credentials):	err
+	Login():	err
+	Logout():	err
+	GetUsers():	[]api.User,	err
+	Getuser(string):	api.User,	err
+	GetAccount():	api.User,	err
+	ListPortals():	[]api.Portal,	err
+	GetPortal(string):	api.Portal,	err
+	ListServices():	[]api.Service,	err
+	PostDoc(api.Record):	err
+	ListDoc():	[]api.Doc,	err
+	Doc(string):	api.Doc,	err
+	RequestTransaction(api.TransactionRequest):	stri
+	CheckTransaction(string):	api.Transaction,	err
+	OkayTransaction(string):	err
+	OpenTransactions():	[]api.Transaction,	err
+	RunningTransaction():	[]api.Transaction,	err
+	ListTransaction():	[]api.Transaction,	err
+	UpdateTransaction(api.Message):	err

job.Fetcher

-	logger:	log.Logger
-	cancel:	context.CancelFun
-	wg:	sync.WaitGroup
-	mutex:	sync:RWMutex
-	dispatch:	transaction.FSM
-	client:	network.Client
-	peerServer:	p2p.Server

~	NewFetcher(...):	Fetcher,	
-	updateJobs(string):	err
+	Launch():	err
+	Close():	err

Fig. 4.16.: Peer-to-Peer Classes

73

The system polls the index server for new transactions with the fetcher.updateJobs

routine (Alg. 4.4). These transactions are compared against the already running set

of transactions, termed jobs (Fig. 4.17). If the transaction is new, then a new job is

created by the factory JobBuilder class and stored in a hash table of jobs. Each job

is given its own thread to prevent blocking the main client.

1 ...
2 ticker := time.NewTicker((api.HeartBeatInterval / 2) * time.Second)
3 for {
4 select {
5 case <-ctx.Done():
6 ps.logger.Println("ending transaction update")
7 return
8 case <-ticker.C:
9 err := ps.updateJobs(uid)

10 }
11 }
12 ...
13 func (ps *Fetcher) updateJobs(uid string) error {
14 transactions := ps.netclient.RunningTransactions()
15 err = ps.jboard.AddJobs(transactions)
16 return nil
17 }

Algorithm 4.4: Fetch Jobs

A job’s operation is defined by the user’s role in the transaction. A user that is the

requester will try to execute client-side transactions, while a receiver will wait for a

client to connect before attempting a transition. A transition is a cycle of the current

state of the protocol and any messages. Both operations implement a loop (Alg.

4.5) to poll the server for transaction updates, attempt transitions, and for sending

updates back to the network or caller (Alg. 4.6 and 4.7). After polling the network

for the transaction, the transaction’s state is examined. If the transaction state is in

the final state, the job loop is exited. Otherwise a state transition is performed. The

job sends the returned transition messages to the index server and if a server job, the

client.

74

job.Board

-	logger:	log.Logger
-	jb:	job.Builder
-	mutex:	sync.Mutex
-	joblist:	map[string]Job
-	uid:	string

~	NewBoard(logger,	...):	Board
+	AddJobs([]	api.Transaction):	void
+	AddJob(api.Transaction):	void
+	ListJobs():	[]string
+	GetJob(string):	Job,	err
+	Handlejob(api.Message):	api.Message,	
+	Close():	err

job.Builder

-	logger:	log.Logger
-	client:	network.Client
-	dispatch:	transaction.FSM

~	NewBuilder(...):	Builder
+	NewJob(api.Transaction):	

job.Job

-	Tid:	string
-	logger:	log.Logger
-	cancel:	context.CancelFunc
-	wg:	sync.WaitGroup
+	Transaction:	api.Transaction
-	mutex:	sync:RWMutex
-	dispatch:	transaction.FSM
-	client:	network.Client

~	NewJob(...):	Job
+	Close():	void
+	ClientRun():	void
+	ClientCycle():	bool,	err
+	ServerRun():	void
+	ServerCycle(api.Message):	api.Message,

<<Interface>>

transaction.FSM

+	ClientExecute(api.Transaction):api.Message,	err
+	ServerExecute(api.Tran..,	api.Mess..):	api.Mess..,	api
+	IndexExecute(index.Transaction,	string,	api.Message):	e

network.Client

-	logger:	log.Logger
-	heartbeat:	HeartBeat
-	cancel:	context.CancelFunc
-	wg:	sync.WaitGroup
-	netURL:	string
-	creds:	Credentials

~	NewClient(...):	Client
+	Register(logger,	Credentials):	err
+	Login():	err
+	Logout():	err
+	GetUsers():	[]api.User,	err
+	Getuser(string):	api.User,	err
+	GetAccount():	api.User,	err
+	ListPortals():	[]api.Portal,	err
+	GetPortal(string):	api.Portal,	err
+	ListServices():	[]api.Service,	err
+	PostDoc(api.Record):	err
+	ListDoc():	[]api.Doc,	err
+	Doc(string):	api.Doc,	err
+	RequestTransaction(api.TransactionRequest
+	CheckTransaction(string):	api.Transaction
+	OkayTransaction(string):	err
+	OpenTransactions():	[]api.Transaction,	er
+	RunningTransaction():	[]api.Transaction,	
+	ListTransaction():	[]api.Transaction,	err
+	UpdateTransaction(api.Message):	err

p2p.Server

-	logger:	log.Logger
-	client:	network.Client
-	dispatch:	transaction.FSM

~	NewBuilder(...):	Builder
+	NewJob(api.Transaction):	

job.Fetcher

-	logger:	log.Logger
-	cancel:	context.CancelFun
-	wg:	sync.WaitGroup
-	mutex:	sync:RWMutex
-	dispatch:	transaction.FSM
-	client:	network.Client
-	peerServer:	p2p.Server

~	NewFetcher(...):	Fetcher,	
-	updateJobs(string):	err
+	Launch():	err
+	Close():	err

Fig. 4.17.: Job Classes

75

1 ...
2 ticker := time.NewTicker(1 * time.Second)
3 for {
4 select {
5 case <-ctx.Done():
6 return
7 case <-ticker.C:
8 run := j.ClientCycle() ‘‘or’’ j.ServerCycle()
9 if !run {

10 return
11 }
12 }
13 }
14 ...

Algorithm 4.5: Job Cycle

1 func (j *Job) ClientCycle() (bool, error) {
2 update := j.client.CheckTransaction(j.Tid)
3 if update.State == "final" {
4 return false, nil
5 }
6 temp := j.dispatch.ClientExecute(update)
7 j.client.UpdateTransaction(temp)
8 }

Algorithm 4.6: Client Job

1 func (j *Job) ServerCycle(message *api.Message) (*api.Message, error) {
2 update := j.client.CheckTransaction(j.Tid)
3 if update.State == "final" {
4 return nil, errors.New("final")
5 }
6 sender, index := j.dispatch.ServerExecute(update, message)
7 j.client.UpdateTransaction(index)
8 return sender, err
9 }

Algorithm 4.7: Server Job

76

4.2.3 TCP Library

Peers use a small library to pass messages based on TCP (Fig. 4.18). The TCP

library uses a standard Request-Response pattern utilizing JSON (Alg. 4.8, 4.9) which

can pass arbitrary data. The client side is shown in algorithm 4.10 and the server

side and handler are shown in algorithms 4.11 and 4.12. Each client registers a p2p

listener which dispatches (Alg. 4.13) to the correct job when a peer connects. If the

job is not present the connection is terminated.

p2p.Server

-	logger:	log.Logger
-	client:	network.Client
-	dispatch:	transaction.FSM

~	NewBuilder(...):	Builder
+	NewJob(api.Transaction):	

p2p.Mux

-	logger:	log.Logger
-	mutex:	sync.RWMutex
-	route:	map[string]Handler

~	NewMux(...):	Mux
+	Register(string,	Handler)
+	Dispatch(Request):	Response,	e

p2p.Client

-	logger:	log.Logger
-	ip:	string
-	port:	string
-	tconn:	net.Conn

~	NewClient(...):	Client
+	Connect():	err
+	Do(Request):	Response,	err
~	createAddress(net.IP,	string):	
+	Close():	err

<<Interface>>

p2p.Handler

+	Handler(Request):	Response,	

p2p.Response

+	Status:	string
+	Type:	string
+	Data:	json.RawMessage

p2p.Request

+	Route:	string
+	Type:	string
+	Data:	json.RawMessage

Fig. 4.18.: TCP library

77

1 type Request struct {
2 Route string
3 Type string
4 Data json.RawMessage
5 }

Algorithm 4.8: Request

1 type Response struct {
2 Status string
3 Type string
4 Data json.RawMessage
5 }

Algorithm 4.9: Response

1 ...
2 address := createAddress(c.ip, c.port)
3 tconn, err := net.DialTimeout("tcp", address, IdleTimeout)
4 c.tconn = conn
5 ...
6 func (c *Client) Do(request *Request) (*Response, error) {
7 encoder := json.NewEncoder(c.tconn)
8 decoder := json.NewDecoder(c.tconn)
9 err := encoder.Encode(request)

10 checkErr(err) // if err close connection, check if OpErr
11 var response Response
12 err = decoder.Decode(&response)
13 checkErr(err) // if err close connection, check if OpErr
14 return &response, nil
15 }

Algorithm 4.10: Client Side TCP

1 func (c *conn) serve(cid int) {
2 defer func() {
3 c.tconn.Close()
4 }()
5 decoder := json.NewDecoder(c.tconn)
6 encoder := json.NewEncoder(c.tconn)
7 for {
8 var request Request
9 err := decoder.Decode(&request)

10 checkErr(err) // close connection if err, check err.type
11 response := c.mux.Dispatch(&request)
12 deadline := time.Now().Add(IdleTimeout)
13 c.tconn.SetDeadline(deadline)
14 err = encoder.Encode(response)
15 checkErr(err) // close connection if err, check err.type
16 }
17 }

Algorithm 4.11: Serve Connection

78

1 func (s *Server) ListenAndServe() error {
2 listener := net.Listen("tcp", ":"+s.port)
3 s.listener = listener
4 go func() {
5 var cLock sync.Mutex
6 connMap := make(map[int]*conn)
7 cid := 0
8 OuterLoop:
9 for {

10 tconn, err := s.listener.Accept()
11 checkErr(err) // break to OuterLoop if closed else

contine
12 tconn.SetDeadline(time.Now().Add(IdleTimeout))
13 c := newConn(tconn, s.logger, s.mux)
14 cLock.Lock()
15 cid++
16 id := cid
17 connMap[cid] = c
18 cLock.Unlock()
19 s.wg.Add(1)
20 go func(conn_id int) {
21 defer s.wg.Done()
22 c.serve(cid)
23 cLock.Lock()
24 delete(connMap, conn_id)
25 defer cLock.Unlock()
26 }(id)
27 }
28 for _, v := range connMap {
29 v.tconn.Close()
30 }
31 s.wg.Wait()
32 s.result <- nil
33 }()
34 return nil
35 }

Algorithm 4.12: Listen for Connection

1 func TransactionHandler(logger *log.Logger, board *Board) p2p.Handler {
2 return func(r *p2p.Request) (*p2p.Response, error) {
3 var message api.Message
4 json.Unmarshal(r.Data, &message)
5 tid := message.Tid
6 response := board.HandleJob(&message)
7 jsonData := json.Marshal(response)
8 return &p2p.Response{"ok", "message", jsonData}, nil
9 }

10 }

Algorithm 4.13: Server Dispatch

79

4.3 Service Client

The Service Client allows the execution of approved services for the network (Fig.

4.19). It implements similar functionalities to the Peer Client with several key differ-

ences. A service client only implements the Transaction Service Protocol. The Service

Client has no local database. It only invokes the approved program. Additionally, on

regular intervals it pulls all unapproved service transaction and approves them (Alg.

4.14). This approach allows the service client to remain independent of the index

service while providing the network the necessary services on demand.

Main

S_Transaction*

Job

P2P

S_Network*

S_Service*

API

Fig. 4.19.: Service Client Subsystems

* Subsystem was modified from client version.

80

1 func (a *Approve) approveTransactions() error {
2 transactions, err := a.netclient.OpenTransactions()
3 handleErr(err)
4 for _, t := range transactions {
5 err := a.netclient.OkayTransaction(t.ID)
6 handleErr(err)
7 }
8 return nil
9 }

Algorithm 4.14: Approval All Transactions

A service registers with the network using the Network Client’s ServiceRegister

function. This sends a service registration request to the index server. The index

server creates a new service and a peer database record using the received information

but leaves the service unapproved. The network admin can examine the service

requests and approve them.

4.4 Network

The Peer and Service clients connect and interact with the Network through the

Index Server’s by invoking the appropriate REST API (Fig. 4.3) of the Index Server.

These API are discussed next.

4.4.1 Registration

A peer client can register for an account by calling the Network Client function

Register (Alg. 4.15). The Network Client creates the JSON registration packet (Alg.

4.16) and sends it to the Index Server endpoint /signup. The index server parses

and validates the request (Alg. 4.17). If the client is new and the request is valid, a

new User is created and pushed to the database (Alg. 4.18). Any subsequent network

actions require that the user post their login information as part of the HTTP basic

authentication header.

81

1 func Register(logger *log.Logger, netURL string, name string, pass string,
email string) error {

2 var httpClient = &http.Client{Timeout: timeout}
3 signup := api.Signup{name, pass, email}
4 jsonReq, err := json.Marshal(signup)
5 url := netURL + api.SignUpRoute
6 request, err := http.NewRequest("POST", url, bytes.NewBuffer(jsonReq

))
7 request.Header.Set("Content-Type", "application/json")
8 response, err := httpClient.Do(request)
9 if response.Status != "200 OK" {

10 return errors.New(response.Status)
11 }
12 return nil
13 }

Algorithm 4.15: Client Register

1 type Signup struct {
2 Name string ‘json:"name"‘
3 Password string ‘json:"password"‘
4 Email string ‘json:"email"‘
5 }

Algorithm 4.16: Signup JSON

1 func (s *Service) Signup(w http.ResponseWriter, r *http.Request) {
2 body, err := ioutil.ReadAll(r.Body)
3 var signup api.Signup
4 err = json.Unmarshal(body, &signup)
5 err = s.database.NewUser(signup.Name, signup.Password, signup.Email)
6 w.WriteHeader(http.StatusOK)
7 }

Algorithm 4.17: New User Handler

1 func (d *DataBase) NewUser(name string, password string, email string)
error {

2 session := d.rootSession.Copy()
3 user := User{Name, Password, email, role}
4 c := session.DB("index").C("user")
5 err := c.Insert(user)
6 return err
7 }

Algorithm 4.18: New User Database

82

4.4.2 Login

The Login function logs the client into the network. It spawns a background

process that continuously pings the API heartbeat endpoint within the network’s

timeout period of 10 seconds (Alg. 4.19).

1 func (client *Client) launchHeartBeat() {
2 var ctx context.Context
3 ctx, client.cancel = context.WithCancel(context.Background())
4 client.wg.Add(1)
5 go func(client *Client, ctx context.Context, status chan<- conn) {
6 defer client.wg.Done()
7 ticker := time.NewTicker(api.HeartBeatInterval * time.Second)
8 for {
9 select {

10 case <-ctx.Done():
11 return
12 case <-ticker.C:
13 checkedin, err := client.Heartbeat()
14 var result conn
15 checkErr(err) // set conn to result
16 client.mutex.Lock()
17 client.stat = result
18 client.mutex.Unlock()
19 }
20 }
21 }(client, ctx, client.status)
22 }
23
24 func (client *Client) Heartbeat() (bool, error) {
25 var httpClient = &http.Client{Timeout: timeout}
26 heartbeat := api.Heartbeat{client.credentials.Name, client.

credentials.Password}
27 jsonReq, err := json.Marshal(heartbeat)
28 url := client.netURL + api.HeartBeatRoute
29 request, err := http.NewRequest("POST", url, bytes.NewBuffer(jsonReq

))
30 request.Header.Set("Content-Type", "application/json")
31 response, err := httpClient.Do(request)
32 if response.Status != "200 OK" {
33 return false, nil
34 }
35 return true, nil
36 }

Algorithm 4.19: Launch Heartbeat

When the index server receives a valid request (Alg. 4.20), it checks the IP of the

client and the requested port. It then updates the client’s user record with the new

connection information (Alg. 4.21). A client is not considered part of the network if

it fails to ping the network in the allotted time.

83

1 type Heartbeat struct {
2 Name string ‘json:"name"‘
3 Password string ‘json:"password"‘
4 Port string ‘json:"port"‘
5 }

Algorithm 4.20: Heartbeat JSON

1 func (s *Service) HeartBeat(w http.ResponseWriter, r *http.Request) {
2 body, err := ioutil.ReadAll(r.Body)
3 var heartbeat api.Heartbeat
4 err = json.Unmarshal(body, &heartbeat)
5 check, err := s.database.CheckCredentials(heartbeat.Name, heartbeat.

Password)
6 ip, port, err := net.SplitHostPort(r.RemoteAddr)
7 err = s.database.HeartBeat(heartbeat.Name, heartbeat.Password, ip)
8 w.WriteHeader(http.StatusOK)
9 }

Algorithm 4.21: Server Heartbeat

When the user elects to logout of the network, the close routine is invoked which

shuts down the heartbeat process (Alg. 4.22).

1 func (client *Client) Logout() error {
2 client.cancel()
3 client.wg.Wait()
4 client.stat = conn{errors.New("no heartbeat thread running"), false}
5 return nil
6 }

Algorithm 4.22: Close Client

84

4.4.3 Resource Lookup

The peer can lookup network resources from the index server using various client

network functions and their corresponding REST endpoints. These functions are

similar in implementation and a generic form of each is provided in algorithms 4.23,

4.24, and 4.25. Resource lookup can return details on: Users, Documents, Services,

Portals, and Transactions.

1 func (client *Client) ListData() ([]api.Data, error) {
2 var httpClient = &http.Client{Timeout: timeout}
3 url := client.netURL + api.PortalsRoute
4 request, err := http.NewRequest("GET", url, nil)
5 request.SetBasicAuth(client.credentials.Name, client.credentials.

Password)
6 response, err := httpClient.Do(request)
7 if response.Status != "200 OK" {
8 return nil, errors.New("failed request")
9 }

10 body, err := ioutil.ReadAll(response.Body)
11 var data api.Data
12 err = json.Unmarshal(body, &data)
13 return pb.Entries, nil
14 }

Algorithm 4.23: Client Resource Request

1 func (s *Service) GetDataList(w http.ResponseWriter, r *http.Request) {
2 datas, err := s.database.GetDataList()
3 apiData := make([]api.Data, len(datas))
4 for i, d := range datas {
5 apiData[i] = d.BuildAPIData()
6 }
7 bundle := api.DataBundle{count, apiData}
8 jsonResp, err := json.Marshal(bundle)
9 w.Header().Set("Content-Type", "application/json")

10 w.Write(jsonResp)
11 }

Algorithm 4.24: Index Server Handler

1 func (ds *DataBase) GetDataList() ([]Data, error) {
2 session := ds.rootSession.Copy()
3 c := session.DB("index").C("data")
4 var data []Data
5 err := c.Find(nil).All(&data)
6 return datas, nil
7 }

Algorithm 4.25: Database Access

85

4.4.4 Posting Documents

The user can post documents to the network using the network client’s Post-

Document function (Fig. 4.26). The client constructs an HTTP POST request

using the provided document metadata (Alg. 4.27) and sends it to the network

/network/document endpoint (Alg. 4.26).

1 func (client *Client) PostDoc(record *model.Record) (bool, error) {
2 var httpClient = &http.Client{Timeout: timeout}
3 apiDoc := api.Doc{"", "", record.Hash, record.Time, record.Url}
4 jsonReq, err := json.Marshal(apiDoc)
5 url := client.netURL + api.DocsRoute
6 request, err := http.NewRequest("POST", url, bytes.NewBuffer(jsonReq

))
7 request.SetBasicAuth(client.credentials.Name, client.credentials.

Password)
8 request.Header.Set("Content-Type", "application/json")
9 response, err := httpClient.Do(request)

10 if response.Status != "200 OK" {
11 return false, nil
12 }
13 return true, nil
14 }

Algorithm 4.26: Client Post Document

1 type Doc struct {
2 ID string ‘json:"id,omitempty"‘
3 UID string ‘json:"userid,omitempty"‘
4 Hash [sha256.Size]byte ‘json:"hash,omitempty"‘
5 Time time.Time ‘json:"time,omitempty"‘
6 Origin string ‘json:"origin,omitempty"‘
7 }

Algorithm 4.27: Record JSON

The server parses and validates the request. If valid, the server pushes the docu-

ment along with the owner ID to the document collection (Alg. 4.28). The document

collection is unique on the hash of the document. The result is returned to the client.

86

1 func (s *Service) PostDoc(w http.ResponseWriter, r *http.Request) {
2 body, err := ioutil.ReadAll(r.Body)
3 var postdoc api.Doc
4 err = json.Unmarshal(body, &postdoc)
5 username, _, ok := r.BasicAuth()
6 user, err := s.database.ReturnByName(username)
7 doc := model.Doc{Hash: postdoc.Hash, UID:user.ID, Time: postdoc.Time

, Origin: postdoc.Origin}
8 err = s.database.PushToDb(&doc)
9 w.Header().Set("Content-Type", "text/plain; charset=utf-8")

10 w.WriteHeader(http.StatusOK)
11 }

Algorithm 4.28: Server Add Document

4.4.5 Requesting and Approving Transactions

The /network/transaction path provides peers access to transactions. A client

requests a transaction by sending a POST request with the JSON TransactionRequest

(Alg. 4.29) to the index server (Alg. 4.30). The server verifies the request, and if

valid, creates a new transaction and sets it to the pending state in the database. The

new transaction ID is returned to the client.

1 type TransactionRequest struct {
2 Action string ‘json:"action"‘
3 ServiceID string ‘json:"serviceId,omitempty"‘
4 UserID string ‘json:"userId,omitempty"‘
5 DocumentID string ‘json:"docid"‘
6 }

Algorithm 4.29: Transaction Request JSON

87

1 func (client *Client) RequestTransaction(treq api.TransactionRequest) (
string, error) {

2 var httpClient = &http.Client{Timeout: timeout}
3 jsonReq, err := json.Marshal(treq)
4 uri := client.netURL + api.TransactionsRoute
5 request, err := http.NewRequest("POST", uri, bytes.NewBuffer(jsonReq

))
6 request.SetBasicAuth(client.credentials.Name, client.credentials.

Password)
7 request.Header.Set("Content-Type", "application/json")
8 response, err := httpClient.Do(request)
9 if response.Status != "200 OK" {

10 return "", nil
11 }
12 body, err := ioutil.ReadAll(response.Body)
13 var t api.Transaction
14 err = json.Unmarshal(body, &t)
15 return t.ID, nil
16 }

Algorithm 4.30: Request Transaction

A client can request the list of all waiting transactions by posting a GET request

to/network/transaction endpoint with the query string parameter of state=waiting.

The server checks that the request is valid and queries the database for the trans-

actions in which the client is the receiver and the state is waiting (Alg. 4.31). The

resulting list of transactions (Alg. 4.32) is returned to the client.

1 func (ds *DataBase) OpenUserTransaction(username string) ([]Transaction,
error) {

2 user, err := ds.ReturnByName(username)
3 uid := user.ID
4 session := ds.rootSession.Copy()
5 c := session.DB("index").C("transaction")
6 var transactions []Transaction
7 query := bson.M{"$and": []bson.M{bson.M{"$or": []bson.M{bson.M{"

sender": uid},bson.M{"receiver": uid},},}, bson.M{"state": bson.
M{"$eq": "waiting"}},},}

8 err = c.Find(query).All(&transactions)
9 return transactions, nil

10 }

Algorithm 4.31: Open Transactions

88

1 type Transaction struct {
2 ID string ‘json:"id"‘
3 DocHash string ‘json:"dochash"‘
4 SenderID string ‘json:"sender"‘
5 SenderIP string ‘json:"senderip"‘
6 ReceiverID string ‘json:"receiver"‘
7 ReceiverIP string ‘json:"receiverip"‘
8 Port string ‘json:"receiverport"‘
9 Action string ‘json:"action"‘

10 State string ‘json:"pending"‘
11 Time time.Time ‘json:"time"‘
12 }

Algorithm 4.32: Transaction JSON

A client can approve a transaction by sending a POST request to the

/network/transaction/{TID} endpoint. The {TID} path variable refers to the

transaction ID. The server validates the user and updates the transaction state from

pending to the next protocol state (Alg. 4.33). If the transaction is not in the waiting

state, an error is returned to the client.

1 func (ds *DataBase) OkayTransaction(username string, tid string) error {
2 user, err := ds.ReturnByName(username)
3 uid := user.ID.Hex()
4 session := ds.rootSession.Copy()
5 c := session.DB("index").C("transaction")
6 sel := bson.M{"$and": []bson.M{bson.M{"_id": bson.ObjectIdHex(tid)},

bson.M{"receiver": bson.ObjectIdHex(uid)},}}
7 upd := bson.M{"$set": bson.M{"state": "transfer"}}
8 err = c.Update(sel, upd)
9 return nil

10 }

Algorithm 4.33: Approve Transaction

89

4.5 Transaction

The transaction begins processing after the receiver approves. The transactions

classes are shown in Figure 4.20.

model.Database

-	logger:	log.Logger
-	rootSession:	mgo.Session

~	NewDatabase():	Database
-	setupDatabase():	void
+	StoreRecords([]	Record):	[]Resul
+	StoreRecord(Record):	err
+	FindRecord(string):	Record,	err
+	AllRecords():	[]Record,	err
+	StorePeerrecord(PeerRecord):	err
+	FindPeerRecord(str..):	PeerRecor
+	AllPeerRecord():	[]PeerRecord,	e

<<Interface>>

transaction.FSM

+	ClientExecute(api.Transaction):api.Message,	err
+	ServerExecute(api.Tran..,	api.Mess..):	api.Mess..,	api
+	IndexExecute(index.Transaction,	string,	api.Message):	e

transaction.Mux

-	logger:	log.Logger
-	mutex:	sync.RWMutex
-	route:	map[string]FSM

~	NewMux(...):	Mux
+	Register(string,	FSM):	err
+	ClientExecute(api.Transaction):api.Message,	err
+	ServerExecute(api.Tran..,	api.Mess..):	api.Mess..,	api
+	IndexExecute(index.Transaction,	string,	api.Message):	e

transaction.ClientProtocol

-	logger:	log.Logger
-	db:	model.Database

~	NewClientProtocol(...):	ClientProto
+	ClientExecute(api.Tran..):	api.Mess

transaction.ServerProtocol

-	logger:	log.Logger
-	db:	model.Database

~	NewServerProtocol(...):	ServerProtocol
+	ServerExecute(api.T..,	api.M..):	api.M..,	ap

p2p.Client

-	logger:	log.Logger
-	ip:	string
-	port:	string
-	tconn:	net.Conn

~	NewClient(...):	Client
+	Connect():	err
+	Do(Request):	Response,	err
~	createAddress(net.IP,	str..)
+	Close():	err

api.Message

+	Tid:	string
+	Type:	string
+	Data:	json.RawMessage

api.Transaction

+	ID:	string
+	Hash:	string
+	SenderID:	string
+	SenderIP:	string
+	RecieverID:	stri
+	RecieverIP:	stri
+	Port:	string
+	Action:	string
+	State:	string
+	Time:	time.Time

Fig. 4.20.: Transaction Process

90

A client requests the list of running transactions by posting a GET request to the

/network/transaction path with the query string parameter of state=running.

The network server validates the request and then creates two MongoDB pipelines to

pull the list of running transactions in which the user is participating (Alg. 4.34). The

pipelines are necessary to join the connection information from the User collection

with the results from transaction collection. The two pipelines (Alg. 4.35) are

separated by the clients role in the transaction, one for requester and another for the

receiver. The two results are returned to the user as a single list of transactions. The

clients add the new transactions to their respective job pools.

1 func (ds *DataBase) RunningUserTransaction(username string) ([]Transaction,
error) {

2 user, err := ds.ReturnByName(username)
3 uid := user.ID
4 session := ds.rootSession.Copy()
5 c := session.DB("index").C("transaction")
6 var senderTransactions []Transaction
7 var recieverTransactions []Transaction
8 open := bson.M{"$match": bson.M{"state": bson.M{"$nin": []string{"

final", "waiting"}}}}
9 senderID := bson.M{"$match": bson.M{"sender": uid}}

10 ljReceiverID := bson.M{"$lookup": bson.M{"from": "user", "localField
": "receiver", "foreignField": "_id", "as": "out"}}

11 combine := bson.M{"$project": bson.M{"_id": 1, "sender": 1, "
receiver": 1, "receiverip": bson.M{"$arrayElemAt": []interface
{}{"$out.ip", 0}}, "dochash": 1, "state": 1, "time": 1}}

12 receiverID := bson.M{"$match": bson.M{"receiver": uid}}
13 senderPipe := []bson.M{senderID, open, ljReceiverID, combine}
14 receiverPipe := []bson.M{receiverID, open}
15 err = c.Pipe(receiverPipe).All(&recieverTransactions)
16 err = c.Pipe(senderPipe).All(&senderTransactions)
17 transactions := append(recieverTransactions, senderTransactions...)
18 return transactions, nil
19 }

Algorithm 4.34: Running Transactions

1 db.transaction.aggregate([{$facet: {"sender" : [{$match: {receiver:
ObjectId($UserId) }},{ $lookup: { from: "user", localField: "receiver",
foreignField: "_id", as: "out"}},{"$project":{"_id" : 1, "sender" : 1,
"receiver": 1, "recip": {"$arrayElemAt":["$out.ip",0]}}},{$match:{
sender: ObjectId($UserId)}}],"reciever": [{$match: {sender:ObjectId(
$UserID) }}]}}])

Algorithm 4.35: Example Pipeline Query

91

Clients in the sender role initiate a connection with the receiver and attempt

a transition from the current state of protocol’s state machine. Transitions in the

network are modeled as a set of interfaces (Alg. 4.36). Each role uses the last known

transaction data (Alg. 4.32) and, in the case of the server or index roles, any messages

(Alg. 4.37). The job sends the returned transition execution messages to the client

or the index server.

1 type ClientFSM interface {
2 ClientExecute(*api.Transaction) (*api.Message, error)
3 }
4 type ServerFSM interface {
5 ServerExecute(*api.Transaction, *api.Message) (*api.Message, *api.

Message, error)
6 }
7 type IndexFSM interface {
8 IndexExecute(*index.Transaction, string, *api.Message) error
9 }

Algorithm 4.36: Transition Interfaces

1 type Message struct {
2 Tid string ‘json:"tid"‘
3 Type string ‘json:"type"‘
4 Data json.RawMessage ‘json:"data"‘
5 }

Algorithm 4.37: Message JSON

To correctly dispatch to the protocol and state, a mux acts as a dispatch layer

between the interface and the routines. A mux is a design pattern to register a

path to an action. In this case, the mux allows for state machine transitions to be

registered to a transaction protocol and state. A caller passes a path to a requested

action and the mux returns the registered action. The implemented mux fulfills all

three interfaces, allowing the mux to hide all concrete details from the caller. Each

concrete routine is registered by a path idiom of /{action}/{state}. When the mux

is invoked, it examines the transaction’s state and action and dispatches it to the

correct routine. The results are returned to the caller. If no routine is registered, an

error is returned.

After executing a transition, the client tries to update the index server of the

result by calling the Network Client UpdateTransaction function (Alg. 4.38) with the

92

Message JSON packet. The function posts the packet to the transaction endpoint.

The network server checks if the transaction is valid, pulls the current transaction

from the database, and attempts an index side transition with the transaction and

message information. To ensure correctness, this transition attempt is similar to an

atomic compare-and-swap operation [3]. If the update succeeds, then the transaction

is moved to its next state.

1 func (s *Service) UpdateTransaction(w http.ResponseWriter, r *http.Request)
{

2 body, err := ioutil.ReadAll(r.Body)
3 var update api.Message
4 err = json.Unmarshal(body, &update)
5 username, _, ok := r.BasicAuth()
6 tid := update.Tid
7 transaction, err := s.database.ReturnTransactionByID(tid)
8 err = s.indexFSM.IndexExecute(transaction, username, &update)
9 w.Header().Set("Content-Type", "text/plain; charset=utf-8")

10 w.WriteHeader(http.StatusOK)
11 }
12
13 func (ds *DataBase) UpdateTransaction(tid string, last string, update

string) error {
14 session := ds.rootSession.Copy()
15 c := session.DB("index").C("transaction")
16 sel := bson.M{"_id": bson.ObjectIdHex(tid), "state": last}
17 upd := bson.M{"$set": bson.M{"state": update}}
18 err := c.Update(sel, upd)
19 return nil
20 }

Algorithm 4.38: Update Index Transaction

4.5.1 Get

A Get transaction transfers a record from the owner to the requester (Alg. 4.39).

The sender initiates the connection with the TCP library and sends the transaction

information to the receiver. The receiver checks the request, pulls the record from

its local record database, and returns the result to the sender. The sender adds the

returned document to its peerrecord collection. After the exchange the two clients

send messages to the index server to finalize. The index server checks the messages

and moves the transaction to the final state.

93

1 func (ct *ClientTransfer) ClientExecute(transaction *api.Transaction) (*api
.Message, error) {

2 if transaction.State != "transfer" {
3 return nil, errors.New("wrong state")
4 }
5 message := api.Message{Tid: transaction.ID}
6 m, err := json.Marshal(message)
7 request := p2p.Request{"/", "message", m}
8 ip := net.ParseIP(transaction.ReceiverIP)
9 port := transaction.Port

10 p2pClient := p2p.NewClient(ct.logger, ip, port)
11 err = p2pClient.Connect()
12 defer p2pClient.Close()
13 response, err := p2pClient.Do(&request)
14 record, err := getRecord(response)
15 peerRecord := &model.PeerRecord{transaction.ReceiverID, transaction.

ID, record.Time, record.Url, record.Data, record.Hash}
16 err = ct.database.StorePeerRecord(peerRecord)
17 data, _ := json.Marshal(api.Basic{"done"})
18 indexUpdate := api.Message{transaction.ID, "basic", data}
19 return &indexUpdate, nil
20 }
21
22 func (st *ServerTransfer) ServerExecute(current *api.Transaction, message *

api.Message) (*api.Message, *api.Message, error) {
23 hash := current.DocHash
24 record, err := st.database.FindRecord(hash)
25 update, err := json.Marshal(record)
26 updateIndex, err := json.Marshal(api.Basic{"done"})
27 sender := api.Message{current.ID, "record", update}
28 broadcast := api.Message{current.ID, "basic", updateIndex}
29 return &sender, &broadcast, nil
30 }
31
32 func (i *IndexTransfer) IndexExecute(transaction *index.Transaction, user

string, message *api.Message) error {
33 tid := transaction.ID.Hex()
34 err := i.db.UpdateTransaction(tid, transaction.State, "final")
35 return nil
36 }

Algorithm 4.39: Get Algorithm

4.5.2 Push

A Push transaction transfers a record from the requesting peer to the target peer

(Alg. 4.40). The requesting peer connects to the target by using the p2p library and

passes the agreed upon document to the target. The target peer checks the document

and saves it to their PeerRecord collection. The two peers alert the index server of

94

the transfer. The index server checks the message and transitions the transaction to

the final state.

1 func (cp *ClientPush) ClientExecute(transaction *api.Transaction) (*api.
Message, error) {

2 if transaction.State != "transfer" {
3 return nil, errors.New("wrong state")
4 }
5 record, err := cp.database.FindRecord(transaction.Hash)
6 push, err := json.Marshal(record)
7 message := api.Message{transaction.ID, "record", push}
8 m, err := json.Marshal(message)
9 request := p2p.Request{"/", "message", m}

10 ip := net.ParseIP(transaction.ReceiverIP)
11 port := transaction.Port
12 p2pClient := p2p.NewClient(cp.logger, ip, port)
13 err = p2pClient.Connect()
14 defer p2pClient.Close()
15 response, err := p2pClient.Do(&request)
16 data, _ := json.Marshal(api.Basic{"done"})
17 indexUpdate := api.Message{transaction.ID, "basic", data}
18 return &indexUpdate, nil
19 }
20
21 func (sp *ServerPush) ServerExecute(current *api.Transaction, message *api.

Message) (*api.Message, *api.Message, error) {
22 record, err := getRecord(message)
23 peerRecord := &model.PeerRecord{transaction.SenderID, transaction.ID

, record.Time, record.Url, record.Data, record.Hash}
24 err = sp.database.StorePeerRecord(peerRecord)
25 updateIndex, err := json.Marshal(api.Basic{"done"})
26 sender := api.Message{current.ID, "basic", updateIndex}
27 broadcast := api.Message{current.ID, "basic", updateIndex}
28 return &sender, &broadcast, nil
29 }
30
31 func (i *IndexPush) IndexExecute(transaction *index.Transaction, user

string, message *api.Message) error {
32 tid := transaction.ID.Hex()
33 err := i.db.UpdateTransaction(tid, transaction.State, "final")
34 return nil
35 }

Algorithm 4.40: Push Algorithm

4.5.3 Service

A Service transaction involves one regular peer and a service (Alg. 4.41). The

peer connects to the service using the P2P library. After connecting, the client passes

the agreed upon record to the service. The service invokes the requested application

95

and returns the result to the client. The client saves the result to its database as a

new record. If the operation is successful, the client and service both alert the index

server. The index server checks the messages and moves the transaction to the final

state.

1 func (c *ClientProcess) ClientExecute(transaction *api.Transaction) (*api.
Message, error) {

2 if transaction.State != "transfer" {
3 return nil, errors.New("not process state")
4 }
5 record, err := c.db.FindRecord(transaction.DocHash)
6 jsonRecord, err := json.Marshal(record)
7 message := api.Message{transaction.ID, "record", jsonRecord}
8 m, err := json.Marshal(message)
9 request := p2p.Request{"/", "message", m}

10 ip := net.ParseIP(transaction.ReceiverIP)
11 port := transaction.Port
12 p2pClient := p2p.NewClient(c.logger, ip, port)
13 err = p2pClient.Connect()
14 defer p2pClient.Close()
15 response, err := p2pClient.Do(&request)
16 var respM api.Message
17 err = json.Unmarshal(response.Data, &respM)
18 surveyResult := model.SurveyResult{string(respM.Data)}
19 t := time.Now()
20 newRecord, err := model.NewRecord(t, transaction.ID, surveyResult)
21 err = c.db.StoreRecord(&newRecord)
22 data, _ := json.Marshal(api.Basic{"done"})
23 indexUpdate := api.Message{transaction.ID, "basic", data}
24 return &indexUpdate, nil
25 }
26
27 func (s *ServerProcess) ServerExecute(transaction *api.Transaction, message

*api.Message) (*api.Message, *api.Message, error) {
28 peerRecord, err := getRecordMess(message)
29 j, err := json.Marshal(peerRecord.Data)
30 out, err := s.classifer.Run(j)
31 updateIndex, err := json.Marshal(api.Basic{"done"})
32 sender := api.Message{transaction.ID, "record", []byte(out)}
33 broadcast := api.Message{transaction.ID, "basic", updateIndex}
34 s.logger.Println(sender, broadcast)
35 }
36
37 func (i *IndexProcess) IndexExecute(t *index.Transaction, user string, m *

api.Message) error {
38 tid := t.ID.Hex()
39 err := i.db.UpdateTransaction(tid, t.State, "final")
40 return nil
41 }

Algorithm 4.41: Service Algorithm

96

4.6 Hypertension Prediction Service

The MEPS Hypertension prediction service has three stages of implementation:

training, testing, and deployment. In the training stage, the processed training data is

feed into the model constructing the Naive Bayes classifier (Fig. 4.21). The training

data feature list consisted of the selected 30 ICD-9-CM prior conditions and the

17 consolidated features. The model is saved as a binary object [133] that can be

invoked every time the service receives a request. The model is then deployed as part

of the service client. The service application reloads the model, reads the input JSON

record, classifies the record for Hypertension, and writes out the result.

bayes.naive

-	featurelist:	map[string]float
-	label:	string
-	label_table:	map[string]float
-	feature_table:	map[string]rv

+	__init__(feature_list,	label_list,	data):	naive
-	learn(data):	void
+	classify(record):	float
+	network():	void

bayes.rv

-	counts:	map[string]int
-	name:	string
-	label_table:	map[string]int
-	prob_table:	map[string]float

+	__init__(count_table,	label_table,	name):	rv
-	create_prob():	void
+	get_prob(label,	feature):	float
-	cpt():	map[string]float

main

~	main():
~	get_features():	features,	label
~	train(args,	logger):	void
~	classify(args,	logger):	void
~	test(args,	logger):	void

Fig. 4.21.: Hypertension Prediction Classes

97

1 type SurveyResult struct {
2 Value string ‘json:"result" bson:"result"‘
3 }

Algorithm 4.42: Returned Data

4.6.1 Naive Bayes Model

The Naive Bayes is modeled as the nbayes class (Fig. 4.21). The class constructor

self-calls the learn function with the passed data to construct the model. The class

wraps a hash table of features each with a Conditional Probability Table (CPT).

Each feature is of the RV class. The Naive Bayes creates a database of conditional

probabilities by constructing a RV object for each feature and then adding it to the

hash table (Alg. 4.43).

1 def learn(self, train_data):
2 total = train_data.shape[0]
3 label_true = train_data[self.label].value_counts().get(1)
4 label_false = total - label_true
5 p_label_true = label_true / total
6 p_label_false = label_false / total
7 label_table = {"0.0": p_label_false, "1.0": p_label_true}
8 self.label_table = label_table
9 feature_table = {}

10 for feature, value in self.feature_list.items():
11 gb = train_data.groupby([self.label, feature])
12 count = gb.size().reset_index(name="count")
13 count.set_index([self.label, feature], inplace=True)
14 r = rv(count, label_table, [self.label, feature])
15 feature_table[feature] = r
16 self.feature_table = feature_table

Algorithm 4.43: Model Construction

The RV class creates the CPT by counting the features frequency intersection

with the label and then conditioning it on the probability of that label (Alg. 4.44).

The RV class prob method then retrieves a requested conditional probability from the

CPT.

98

1 def __init__(self, count_table, label_table, name):
2 self.counts = count_table
3 self.name = name
4 self.label_table = label_table
5 self.create_prob()
6
7 def create_prob(self):
8 prob_table = self.counts / self.counts.sum()
9 r = prob_table.loc[0.0, :].apply(lambda x: x / self.label_table["0.0

"])
10 prob_table.loc[0.0,].update(r)
11 r = prob_table.loc[1.0, :].apply(lambda x: x / self.label_table["1.0

"])
12 prob_table.loc[1.0,].update(r)
13 self.prob_table = prob_table

Algorithm 4.44: Calculating Conditional Probability Table

The hypertension event is a Boolean value, either true or false. To classify in-

stances, the Naive Bayes constructs the probability of both events using the provided

evidence (Alg. 4.45). The probability of each event is calculated by taking the prod-

uct of all the features with the evidence. The function returns the label with the

higher probability.

1 def classify(self, record):
2 sum_cond_prob_x_0 = 1
3 for var, value in self.feature_list.items():
4 val = record[var]
5 r = self.feature_table[var]
6 cond_prob_var = r.get_prob(0.0, val)
7 sum_cond_prob_x_0 = sum_cond_prob_x_0 * cond_prob_var
8 p_cond_0_x = sum_cond_prob_x_0 * self.label_table["0.0"]
9 sum_cond_prob_x_1 = 1

10 for var, value in self.feature_list.items():
11 val = record[var]
12 r = self.feature_table[var]
13 cond_prob_var = r.get_prob(1.0, val)
14 sum_cond_prob_x_1 = sum_cond_prob_x_1 * cond_prob_var
15 p_cond_1_x = sum_cond_prob_x_1 * self.label_table["1.0"]
16 if p_cond_0_x > p_cond_1_x:
17 cl = 0.0
18 elif p_cond_0_x < p_cond_1_x:
19 cl = 1.0
20 else:
21 cl = 0.0
22 return cl

Algorithm 4.45: Classifying Instances

99

4.6.2 Performance

An initial test of the classifier resulted in a 95% accuracy. This performance was

caused by cases of prior hypertension, which are easy to classify. After removing prior

instances of hypertension from the dataset, the classifier performance is inline with the

reviewed literature. The results are shown in Table 4.1. The table indicates that the

model struggles when predicting positive results. A potential source of improvement

is the addition of network records to the training data over time.

Table 4.1.: Classifier Performance with Panels 17, 18, and 19

Performance Metric Percentage (%)

Accuracy 75.2

Precision 58.9

Sensitivity 66.3

Specificity 79.1

100

5. CONCLUSION

A Personal Health Record would benefit patients, providers, and third parties. Pa-

tients can control and track the access of records, aggregate multiple providers, and

organize the records according to their wishes. Providers can use the PHR as a hub

to other providers and to interact with patients. Third parties can directly work with

patients through the PHR rather than go through a provider or HIE.

A Peer-to-Peer Personal Health Record Network is patient-centric, highly scalable

and can be made resilient to faults. Moreover, peers directly exchange records, lim-

iting a record’s exposure. Finally, the network allows for new services to be added at

run time.

The traceability of a record accesses is important in making the patients aware of

how their records are used. A log of transactions provides a trace of each access to

record where each access had to be approved by the patient.

Predicting conditions from historical health data can help improve patient care.

Patients and providers can proactively prevent conditions and plan for future care.

EHR data provides a broad view of the public’s health which can be used to build

comprehensive predictive models for important disease conditions. These models can

be deployed as a service in the PHR in order to help identify potential conditions.

101

The system defined and implemented in this thesis is a prototype Peer-to-Peer

Personal Health Record network. The network is maintained by an index server

which is accessed through a REST API. Peer clients connect to the server to post

the metadata of records and to request transactions. Peers directly exchange health

records, carrying out the requested transactions independently and only using the

index server to confirm and log progress. These transactions can be one of three

types: get, post, and service. get and post transfer documents between clients. Service

transactions provide services to other peers. To demonstrate this concept, a prototype

service implementing a Hypertension predictor trained on MEPS data, was deployed

to the network.

An important direction for future work is the implementation of a client for mobile

devices. A majority of patients and health providers use smartphones. This appli-

cation presents some challenges. Though golang can run on both Android and iOS,

the support is still experimental as of 2019 [54]. The GUI would need to be reworked

as the mobile support is mostly bindings around iOS and Android native languages.

The client database storage would also need to be migrated to Couchbase Lite [35]

or SQLite [62].

The current document representation only makes the metadata of the document

available to the network. This limits a peer’s ability to query for documents. The

owner must inform the peer of the document contents and is a direction for future

improvement.

The fine grain access control modeled in this thesis is difficult to propose to

providers, as evidenced by the harsh reaction of providers to patient control of health

records [140, 152]. Additionally, patients approving each transaction is cumbersome.

Designing levels of access, with fine-grained control over sensitive records and coarse-

grained over others, will be considered for future work.

102

A core issue with a centralized P2P model is the limited scalability compared to a

pure P2P model. However, transactions in the pure model would be more difficult to

implement, and the overall maintenance of the framework would increase. Exploring

alternate architecture models can help improve the scalability of the network with

limited increase in overhead.

In the current implementation the transactions are not fully secure. A document’s

ownership is unverified, a party can repost modified documents, and the transmission

of records is unencrypted. These flaws need to be addressed and the system needs to

conform to HIPAA regulations. Transactions are modeled using a simple state ma-

chine design. This model is limited. Distributed programming paradigms like Tuple

Space and Bitcoin’s stack language would allow for more expressive and extensible

transactions to be injected at run time. However, this is difficult to implement in

untrusted scenarios and would require further research.

REFERENCES

103

REFERENCES

[1] “Blue button connector,” September 2017, (Last accessed: 05/29/2019),
internet Archive, orginal link missing. [Online]. Available: https://web.archive.
org/web/20170919215632/http://bluebuttonconnector.healthit.gov:80/

[2] 111th United States Congress, “American recovery and reinvest-ment act
of 2009,” 2009, (Last accessed: 04/04/2019). [Online]. Available: https:
//www.govinfo.gov/content/pkg/PLAW-111publ5/pdf/PLAW-111publ5.pdf

[3] S. Abraham, G. P. Baer, and G. Greg, Operating System Concepts, 9th ed.
John Wiley & Sons Inc., 2013, ISBN: 978118063330, 9781118129388.

[4] “Medical expenditure panel survey,” Agency for Healthcare Research
and Quality, 2006, (Last accessed: 08/31/2018). [Online]. Available:
https://meps.ahrq.gov/mepsweb/

[5] “Meps hc-180 2015 medical conditions,” Agency for Healthcare Research
and Quality, 2017, (Last accessed: 12/04/2018). [Online]. Available:
https://meps.ahrq.gov/data stats/download data/pufs/h181/h181doc.pdf

[6] “panel design,” Agency for Healthcare Research and Quality, 2017,
(Last accessed: 12/04/2018). [Online]. Available: https://github.com/HHS-
AHRQ/MEPS/blob/master/ images/panel design.png

[7] B. Alpern and F. B. Schneider, “Defining liveness,” Cornell University,
Ithaca, NY, USA, Tech. Rep., 1984, (Last accessed: 03/09/2019). [On-
line]. Available: http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=
detail&id=oai%3Ancstrlh%3Acornellcs%3ACORNELLCS%3ATR85-650

[8] Anonymous, “Transmission control protocol,” Internet Engineering Task Force,
Information Sciences Institute University of Southern California, 1981, (Last
accessed: 05/07/2019). [Online]. Available: https://tools.ietf.org/html/rfc793

[9] Anonymous, “Fips pub 180-4: Secure hash standard (shs),” National Institute
of Standards and Technology, Tech. Rep. 180-4, 2015, (Last accessed:
05/07/2019). [Online]. Available: https://nvlpubs.nist.gov/nistpubs/FIPS/
NIST.FIPS.180-4.pdf

[10] Anonymous, “Fips pub 202: Sha-3 standard: Permutation-based hash and
extendable-output functions,” National Institute of Standards and Technology,
Tech. Rep. 202, August 2015, (Last accessed: 05/07/2019). [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

[11] Anonymous, “Index - fhir v3.0.0,” Health Level Seven International
(HL7), 2017, (Last accessed: 10/14/2018), v3.0.0. [Online]. Available:
https://www.hl7.org/fhir/

104

[12] Anonymous, “About adult bmi,” Centers for Disease Control and
Prevention, 2017, (Last accessed: 12/04/2018). [Online]. Available: https:
//www.cdc.gov/healthyweight/assessing/bmi/adult bmi/index.html

[13] D. L. Anthony, C. Campos-Castillo, and P. S. Lim, “Who isnt using
patient portals and why? evidence and implications from a national
sample of us adults,” Health Affairs, vol. 37, no. 12, pp. 1948–1954,
2018, (Last accessed: 06/01/2019), pMID: 30633673. [Online]. Available:
https://doi.org/10.1377/hlthaff.2018.05117

[14] “Apache license,” The Apache Software Foundation, 2004, (Last accessed:
05/07/2019). [Online]. Available: https://www.apache.org/licenses/LICENSE-
2.0

[15] A. Back, “Hashcash - a denial of service counter measure,” 2002, (Last
accessed: 03/09/2019). [Online]. Available: http://www.hashcash.org/papers/
hashcash.pdf

[16] O. Ben-Assuli, “Electronic health records, adoption, quality of care, legal and
privacy issues and their implementation in emergency departments,” Health
Policy, vol. 119, no. 3, pp. 287–297, 2015, (Last accessed: 06/03/2019).
[Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/25483873

[17] E. I. Benchimol, L. Smeeth, A. Guttmann, K. Harron, D. Moher,
I. Petersen, H. T. Srensen, E. von Elm, S. M. Langan, and R. W.
Committee, “The reporting of studies conducted using observational routinely-
collected health data (record) statement,” PLOS Medicine, vol. 12, no. 10,
pp. 1–22, 10 2015, (Last accessed: 10/04/2018). [Online]. Available:
https://doi.org/10.1371/journal.pmed.1001885

[18] D. Bender and K. Sartipi, “HL7 FHIR: An Agile and RESTful approach to
healthcare information exchange,” in Proceedings of the 26th IEEE Interna-
tional Symposium on Computer-Based Medical Systems, June 2013, pp. 326–
331.

[19] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi, G. Gonthier,
N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote, N. Swamy,
and S. Zanella-Béguelin, “Formal verification of smart contracts: Short
paper,” in Proceedings of the 2016 ACM Workshop on Programming
Languages and Analysis for Security, ser. PLAS ’16. New York, NY, USA:
ACM, 2016, (Last accessed: 03/10/2019), pp. 91–96. [Online]. Available:
http://doi.acm.org/10.1145/2993600.2993611

[20] “Blue button rest api,” Blue Button, CMS, 2013, (Last accessed: 05/29/2019),
orginal link missing. [Online]. Available: http://blue-button.github.io/blue-
button-plus-pull/#clinical-api

[21] T. Bocek, “Tomp2p,” October 2016, (Last accessed: 05/30/2019). [Online].
Available: https://tomp2p.net/

[22] K. Caine and W. M. Tierney, “Point and counterpoint: Patient control of
access to data in their electronic health records,” Journal of General Internal
Medicine, vol. 30, no. 1, pp. 38–41, Jan 2015, (Last accessed: 05/21/2019).
[Online]. Available: https://doi.org/10.1007/s11606-014-3061-0

105

[23] “care.coach,” care.coach corporation, 2019, (Last accessed: 05/29/2019).
[Online]. Available: https://www.care.coach/

[24] “Carequality interoperability framework,” Carequality, 2019, (Last accessed:
04/04/2019), organization website. [Online]. Available: https://carequality.
org/resources/

[25] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Trans. Comput. Syst., vol. 20, no. 4, pp.
398–461, Nov. 2002, (Last accessed: 03/05/2019). [Online]. Available:
http://doi.acm.org/10.1145/571637.571640

[26] “Blue button 2.0,” Center for Medicare & Medicaid Services, 2019, (Last
accessed: 05/29/2019). [Online]. Available: https://bluebutton.cms.gov/

[27] Centers for Disease Control and Prevention, “International classification of
diseases, tenth revision, clinical modification (icd-10-cm),” 2018, (Last accessed:
03/21/2019). [Online]. Available: https://www.cdc.gov/nchs/icd/icd10cm.htm

[28] Centers for Medicare & Medicaid Services, “Medicare program; hospital
inpatient prospective payment systems for acute care hospitals and the
long-term care hospital prospective payment system and policy changes and
fiscal year 2019 rates; quality reporting requirements for specific providers;
medicare and medicaid electronic health record (ehr) incentive programs
(promoting interoperability programs) requirements for eligible hospitals,
critical access hospitals, and eligible professionals; medicare cost reporting
requirements; and physician certification and recertification of claims,” Federal
Register, pp. 41 144–41 784, 10 2018, (Last accessed: 05/21/2019). [Online].
Available: https://www.federalregister.gov/documents/2018/08/17/2018-
16766/medicare-program-hospital-inpatient-prospective-payment-systems-for-
acute-care-hospitals-and-the

[29] “Cerner,” Cerner Corporation, 2019, (Last accessed: 04/04/2019), company
website. [Online]. Available: https://www.cerner.com/

[30] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
Synthetic minority over-sampling technique,” J. Artif. Int. Res., vol. 16, no. 1,
pp. 321–357, Jun. 2002, (Last accessed: 06/07/2019). [Online]. Available:
http://dl.acm.org/citation.cfm?id=1622407.1622416

[31] N. Christin, “Traveling the silk road: A measurement analysis of a large
anonymous online marketplace,” in Proceedings of the 22Nd International
Conference on World Wide Web, ser. WWW ’13. New York, NY, USA:
ACM, 2013, (Last accessed: 06/07/2019), pp. 213–224. [Online]. Available:
http://doi.acm.org/10.1145/2488388.2488408

[32] M. J. Clancy, “Overview of research designs,” Emergency Medicine Journal,
vol. 19, no. 6, pp. 546–549, 2002, (Last accessed: 06/03/2019). [Online].
Available: https://emj.bmj.com/content/19/6/546

[33] J. Concato, N. Shah, and R. I. Horwitz, “Randomized, controlled trials,
observational studies, and the hierarchy of research designs,” The New
England journal of medicine, vol. 342, no. 25, pp. 1887–1892, Jun
2000, (Last accessed: 06/03/2019), 10861325[pmid]. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pubmed/10861325

106

[34] P. Coorevits, M. Sundgren, G. O. Klein, A. Bahr, B. Claerhout, C. Daniel,
M. Dugas, D. Dupont, A. Schmidt, P. Singleton, G. De Moor, and
D. Kalra, “Electronic health records: new opportunities for clinical
research,” Journal of Internal Medicine, vol. 274, no. 6, pp. 547–
560, 2013, (Last accessed: 09/07/2018). [Online]. Available: https:
//misclibrary.wiley.com/doi/abs/10.1111/joim.12119

[35] “couchbase lite,” Couchbase, 2018, (Last accessed: 05/07/2019). [Online].
Available: https://docs.couchbase.com/couchbase-lite/2.5/introduction.html

[36] E. D. Hardt, “The oauth 2.0 authorization framework,” IETF, October
2012, (Last accessed: 06/07/2019), rFC 6749. [Online]. Available: https:
//tools.ietf.org/rfc/rfc6749.txt

[37] J. L. C. de Moraes, W. L. de Souza, L. F. Pires, and A. F. do Prado,
“A methodology based on openehr archetypes and software agents for
developing e-health applications reusing legacy systems,” Computer Methods
and Programs in Biomedicine, vol. 134, pp. 267 – 287, 2016, (Last
accessed: 05/21/2019). [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S016926071630298X

[38] D. Delen, G. Walker, and A. Kadam, “Predicting breast cancer survivability:
a comparison of three data mining methods,” Artificial Intelligence
in Medicine, vol. 34, no. 2, pp. 113 – 127, 2005, (Last accessed:
09/18/2018). [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0933365704001010

[39] K. Doi, “Computer-aided diagnosis in medical imaging: Historical review,
current status and future potential,” Computerized Medical Imaging and
Graphics, vol. 31, no. 4, pp. 198 – 211, 2007, (Last accessed:
06/03/2019), computer-aided Diagnosis (CAD) and Image-guided Decision
Support. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0895611107000262

[40] “Dossia consortium,” Dossia, 2018, (Last accessed: 12/25/2018), internet
Archive link, orginal gone. [Online]. Available: https://web.archive.org/web/
20181225065950/http://dossia.org/

[41] M. J. Druzdzel, “Smile: Structural modeling, inference, and learning engine
and genie: A development environment for graphical decision-theoretic
models,” in Proceedings of the Sixteenth National Conference on Artificial
Intelligence and the Eleventh Innovative Applications of Artificial Intelligence
Conference Innovative Applications of Artificial Intelligence, ser. AAAI
’99/IAAI ’99. Menlo Park, CA, USA: American Association for Artificial
Intelligence, 1999, (Last accessed: 09/18/2018), pp. 902–903. [Online].
Available: http://dl.acm.org/citation.cfm?id=315149.315504

[42] “ehealth exchange,” eHealth Exchange, 2019, (Last accessed: 04/04/2019),
organization Website. [Online]. Available: https://ehealthexchange.org/

[43] “Epic,” Epic Systems Corporation, 2019, (Last accessed: 04/04/2019),
company website. [Online]. Available: https://www.epic.com/

107

[44] H. Eric, H. Shan, I. Kevin, K. Andy, and L. Katherine, “A framework for cross-
organizational patient identity managment,” The Sequoia Project and The
Care Connective Consortium, 2018, (Last accessed: 05/21/2019), white paper.
[Online]. Available: https://sequoiaproject.org/wp-content/uploads/2015/11/
The-Sequoia-Project-Framework-for-Patient-Identity-Management.pdf

[45] Federal Register, “Medicare and Medicaid Programs; Electronic
Health Record Incentive Program,” pp. 44 313–44 588, 07 2010,
(Last accessed: 03/25/2019), 75 FR 44313. [Online]. Avail-
able: https://www.federalregister.gov/documents/2010/07/28/2010-17207/
medicare-and-medicaid-programs-electronic-health-record-incentive-program

[46] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee,
“Hypertext transfer protocol – http/1.1,” Internet Engineering Task Force,
January 1997, (Last accessed: 05/10/2019), http/1.1. [Online]. Available:
https://tools.ietf.org/html/rfc2068

[47] R. T. Fielding, “Architectural styles and the design of network-based software
architectures,” Ph.D. dissertation, University of California, Irvine, 2000.

[48] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” J. ACM, vol. 32, no. 2,
pp. 374–382, Apr. 1985, (Last accessed: 03/09/2019). [Online]. Available:
http://doi.acm.org/10.1145/3149.214121

[49] S. Frade, S. M. Freire, E. Sundvall, J. H. Patriarca-Almeida, and R. Cruz-
Correia, “Survey of openehr storage implementations,” in Proceedings of the
26th IEEE International Symposium on Computer-Based Medical Systems, June
2013, pp. 303–307.

[50] J. H. Frost and M. P. Massagli, “Social uses of personal health information
within patientslikeme, an online patient community: what can happen when
patients have access to one another’s data,” J Med Internet Res, vol. 10,
no. 3, pp. e15–e15, May 2008, (Last accessed: 05/07/2019), 18504244[pmid].
[Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/18504244

[51] D. Gelernter, “Generative communication in linda,” ACM Trans. Program.
Lang. Syst., vol. 7, no. 1, pp. 80–112, Jan. 1985, (Last accessed: 05/30/2019).
[Online]. Available: http://doi.acm.org/10.1145/2363.2433

[52] A. Gettinger and A. Csatari, “Transitioning from a legacy ehr to a commercial,
vendor-supplied, ehr: one academic health system’s experience,” Applied
clinical informatics, vol. 3, no. 4, p. 367376, 2012, (Last accessed: 05/21/2019).
[Online]. Available: http://europepmc.org/articles/PMC3613040

[53] “Go,” Google, 2019, (Last accessed: 02/20/2019), programming language.
[Online]. Available: https://golang.org/

[54] “Go mobile,” Google and Open Source Contributors, 2019, (Last accessed:
05/07/2019). [Online]. Available: https://github.com/golang/go/wiki/Mobile

[55] J. Gray, “Notes on data base operating systems,” in Operating Systems, An
Advanced Course. London, UK, UK: Springer-Verlag, 1978, (Last accessed:
03/09/2019), pp. 393–481. [Online]. Available: http://dl.acm.org/citation.cfm?
id=647433.723863

108

[56] D. A. Haggstrom, J. J. Saleem, A. L. Russ, J. Jones, S. A. Russell,
and N. R. Chumbler, “Lessons learned from usability testing of the va’s
personal health record,” Journal of the American Medical Informatics
Association : JAMIA, vol. 18 Suppl 1, no. Suppl 1, pp. i13–i17, Dec
2011, (Last accessed: 05/21/2019), 21984604[pmid]. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pubmed/21984604

[57] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten,
“The weka data mining software: An update,” SIGKDD Explor. Newsl.,
vol. 11, no. 1, pp. 10–18, Nov. 2009, (Last accessed: 04/04/2019). [Online].
Available: http://doi.acm.org/10.1145/1656274.1656278

[58] Health and Human Services Department, “2015 edition health in-
formation technology (health it) certification criteria, 2015 edition
base electronic health record (ehr) definition, and onc health it
certification program modifications,” Federal Register, pp. 62 601–
62 759, 10 2016, (Last accessed: 05/21/2019). [Online]. Available:
https://www.federalregister.gov/documents/2015/10/16/2015-25597/2015-
edition-health-information-technology-health-it-certification-criteria-2015-
edition-base

[59] W. R. Hersh, A. M. Totten, K. B. Eden, B. Devine, P. Gorman, S. Z.
Kassakian, S. S. Woods, M. Daeges, M. Pappas, and M. S. McDonagh,
“Outcomes from health information exchange: Systematic review and future
research needs,” JMIR Med Inform, vol. 3, no. 4, pp. e39–e39, Dec
2015, (Last accessed: 09/18/2018), 26678413[pmid]. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pubmed/26678413

[60] W. R. Hersh, M. G. Weiner, P. J. Embi, J. R. Logan, P. R. O. Payne, E. V.
Bernstam, H. P. Lehmann, G. Hripcsak, T. H. Hartzog, J. J. Cimino, and
J. H. Saltz, “Caveats for the use of operational electronic health record data
in comparative effectiveness research,” Med Care, vol. 51, no. 8 Suppl 3, pp.
S30–S37, Aug 2013, (Last accessed: 09/18/2018), 23774517[pmid]. [Online].
Available: https://www.ncbi.nlm.nih.gov/pubmed/23774517

[61] “Improving medicare beneficiary access to health information:
Blue button on fhir,” HHS IDEA Lab, 2018, , (Last ac-
cessed: 05/29/2019), internet Archive, orginal link gone. [On-
line]. Available: https://web.archive.org/web/20181113071726/https:
//www.hhs.gov/idealab/projects-item/improving-medicare-beneficiary-access-
to-health-information-blue-button-on-fhir/

[62] D. R. Hipp, “Sqlite,” Hipp, Wyrick & Company, Inc., 2019, (Last accessed:
04/16/2019). [Online]. Available: https://www.sqlite.org/index.html

[63] “C-cda (hl7 cda r2 implementation guide: Consolidated cda templates for
clinical notes - us realm),” HL7 International, December 2018, (Last accessed:
06/07/2019). [Online]. Available: https://www.hl7.org/implement/standards/
product brief.cfm?product id=492

[64] “Argonaut project,” HL7 International, 2019, (Last accessed: 05/29/2019), r3
support, R4 upcoming. [Online]. Available: http://argonautwiki.hl7.org/index.
php

109

[65] Humetrix, 2019, (Last accessed: 05/29/2019). [Online]. Available: http:
//www.ibluebutton.com/index.html

[66] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper:
Wait-free coordination for internet-scale systems,” in Proceedings of the
2010 USENIX Conference on USENIX Annual Technical Conference,
ser. USENIXATC’10. Berkeley, CA, USA: USENIX Association, 2010,
(Last accessed: 03/05/2019), pp. 11–11. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1855840.1855851

[67] K. Hwang, J. Dongarra, and G. C. Fox, Distributed and Cloud Computing:
From Parallel Processing to the Internet of Things, 1st ed. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2011.

[68] “Indiana health information exchange,” Indiana Health Information Exchange,
Inc, 2019, (Last accessed: 06/03/2019). [Online]. Available: https:
//www.ihie.org/

[69] “Health informatics - electronic health record communication,” International
Organization for Standardization, Geneva, CH, Standard, 2 2008.

[70] P. B. Jensen, L. J. Jensen, and S. Brunak, “Mining electronic health records:
towards better research applications and clinical care,” Nature Reviews
Genetics, vol. 13, pp. 395 EP –, May 2012, , (Last accessed: 09/18/2018),
review Article. [Online]. Available: https://doi.org/10.1038/nrg3208

[71] C. Johnson, Y. Pylypchuk, and V. Patel, “Methods used to enable
interoperability among u.s. non-federal acute care hospitals in 2017,”
Office of the National Coordinator for Health Information Technol-
ogy, 2018, (Last accessed: 06/03/2019), no.43. [Online]. Available:
https://www.healthit.gov/sites/default/files/page/2018-12/Methods-Used-
to-Enable-Interoperability-among-U.S.-NonFederal-Acute-Care-Hospitals-in-
2017 0.pdf

[72] C. Jonquet, N. H. Shah, and M. A. Musen, “The open biomedical
annotator,” Summit Transl Bioinform, vol. 2009, pp. 56–60, Mar
2009, (Last accessed: 09/18/2018), 21347171[pmid]. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pubmed/21347171

[73] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, “An introduction
to variational methods for graphical models,” Machine Learning, vol. 37, no. 2,
pp. 183–233, Nov 1999, (Last accessed: 06/07/2019). [Online]. Available:
https://doi.org/10.1023/A:1007665907178

[74] D. Kaelber and E. C. Pan, “The value of personal health record (phr)
systems,” AMIA ... Annual Symposium proceedings. AMIA Symposium, vol.
2008, pp. 343–347, 2008, (Last accessed: 06/02/2019), 18999276[pmid].
[Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/18999276

[75] J. M. Kendall, “Designing a research project: randomised controlled
trials and their principles,” Emergency Medicine Journal, vol. 20, no. 2,
pp. 164–168, 2003, (Last accessed: 06/03/2019). [Online]. Available:
https://emj.bmj.com/content/20/2/164

110

[76] Z. King, “P2HR, A Personalized Condition-Driven Person Health Record,” Au-
gust 2017, MSECE Thesis, Purdue University, Indianapolis.

[77] C. S. Kruse, D. A. Argueta, L. Lopez, and A. Nair, “Patient and
provider attitudes toward the use of patient portals for the management
of chronic disease: A systematic review,” J Med Internet Res, vol. 17,
no. 2, p. e40, Feb 2015, (Last accessed: 05/21/2019). [Online]. Available:
http://www.jmir.org/2015/2/e40/

[78] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach,
6th ed. Upper Saddle River, New Jersey: Pearson, 2012, isbn-10: 0132856204.

[79] Kurtis, “Steam is no longer supporting bitcoin,” Valve Corporation, De-
cember 2017, (Last accessed: 05/17/2019), blog post. [Online]. Avail-
able: https://steamcommunity.com/games/593110/announcements/detail/
1464096684955433613

[80] A. G. Lalkhen and A. McCluskey, “Clinical tests: sensitivity and specificity,”
BJA Education, vol. 8, no. 6, pp. 221–223, 12 2008, (Last accessed:
05/10/2019). [Online]. Available: https://doi.org/10.1093/bjaceaccp/mkn041

[81] L. Lamport, “Time, clocks and the ordering of events in a distributed system,”
Communications of the ACM 21, 7 (July 1978), 558-565. Reprinted in several
collections, including Distributed Computing: Concepts and Implementations,
McEntire et al., ed. IEEE Press, 1984., pp. 558–565, July 1978 (Last accessed:
03/09/2019), 2000 PODC Influential Paper Award (later renamed the Edsger
W. Dijkstra Prize in Distributed Computing). Also awarded an ACM SIGOPS
Hall of Fame Award in 2007. [Online]. Available: https://www.microsoft.com/
en-us/research/publication/time-clocks-ordering-events-distributed-system/

[82] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst., vol. 16,
no. 2, pp. 133–169, May 1998, , (Last accessed: 03/05/2019). [Online].
Available: http://doi.acm.org/10.1145/279227.279229

[83] L. Lamport, “Fast paxos,” Distributed Computing, vol. 19, no. 2, pp.
79–103, Oct 2006, (Last accessed: 03/05/2019). [Online]. Available:
https://doi.org/10.1007/s00446-006-0005-x

[84] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,” ACM
Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401, Jul. 1982, (Last accessed:
03/05/2019). [Online]. Available: http://doi.acm.org/10.1145/357172.357176

[85] J. Lee, “Understanding cryptocurrency & blockchain technology,” IUPUI,
2018, (Last accessed: 03/10/2019). [Online]. Available: https://github.com/
indystar1/BlockchainSeminarSeries

[86] D. A. B. Lindberg, B. L. Humphreys, and A. T. McCray, “The unified medical
language system,” Yearb Med Inform, vol. 02, no. 01, pp. 41–51, 1993, 41.

[87] P. Linz, An Introduction to Formal Languages and Automata, Fifth Edition,
5th ed. USA: Jones and Bartlett Publishers, Inc., 2011.

111

[88] L. S. Liu, P. C. Shih, and G. R. Hayes, “Barriers to the adoption
and use of personal health record systems,” in Proceedings of the
2011 iConference, ser. iConference ’11. New York, NY, USA: ACM,
2011, (Last accessed: 06/01/2019), pp. 363–370. [Online]. Available:
http://doi.acm.org/10.1145/1940761.1940811

[89] S. Lohr, “Google to end health records service after it fails to attract users,”
New York Times, 6 2011, (Last accessed: 06/02/2019). [Online]. Available:
https://www.nytimes.com/2011/06/25/technology/25health.html

[90] H. J. Lowe, T. A. Ferris, P. M. Hernandez, and S. C. Weber,
“Stride–an integrated standards-based translational research informatics
platform,” AMIA Annu Symp Proc, vol. 2009, pp. 391–395, Nov
2009, (Last accessed: 09/13/2018), 20351886[pmid]. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pubmed/20351886

[91] P. Lucas, “Bayesian networks in medicine: a model-based approach to medical
decision making,” December 2001, (Last accessed: 06/03/2019). [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.4103

[92] C. T. Lye, H. P. Forman, R. Gao, J. G. Daniel, A. L. Hsiao, M. K.
Mann, D. deBronkart, H. O. Campos, and H. M. Krumholz, “Assessment
of US Hospital Compliance With Regulations for Patients’ Requests for
Medical Records,” JAMA network open, vol. 1, no. 6, pp. e183 014–e183 014,
Oct 2018, (Last accessed: 05/29/2019), 30646219[pmid]. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pubmed/30646219

[93] M. R. Macedonia and M. J. Zyda, “A taxonomy for networked virtual environ-
ments,” IEEE MultiMedia, vol. 4, no. 1, pp. 48–56, Jan 1997.

[94] R. Mahy, P. Matthews, and J. Rosenberg, “Traversal using relays
around nat (turn): Relay extensions to session traversal utilities for nat
(stun),” IETF, 2010, (Last accessed: 03/21/2019). [Online]. Available:
https://tools.ietf.org/html/rfc5766

[95] J. C. Mandel, D. A. Kreda, K. D. Mandl, I. S. Kohane, and R. B.
Ramoni, “SMART on FHIR: a standards-based, interoperable apps platform
for electronic health records,” Journal of the American Medical Informatics
Association, vol. 23, no. 5, pp. 899–908, 02 2016, (Last accessed: 05/29/2019).
[Online]. Available: https://doi.org/10.1093/jamia/ocv189

[96] C. J. Mann, “Observational research methods. research design ii: cohort, cross
sectional, and case-control studies,” Emergency Medicine Journal, vol. 20,
no. 1, pp. 54–60, 2003, (Last accessed: 06/03/2019). [Online]. Available:
https://emj.bmj.com/content/20/1/54

[97] W. McKinney, “Python data analysis library,” 2018, (Last accessed:
10/04/2018). [Online]. Available: https://pandas.pydata.org/

[98] “meditech,” Medical Information Technology, Inc., 2019, (Last accessed:
04/04/2019), company website. [Online]. Available: https://ehr.meditech.com/

[99] R. C. Merkle, “A digital signature based on a conventional encryption func-
tion,” in Advances in Cryptology — CRYPTO ’87, C. Pomerance, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1988, pp. 369–378.

112

[100] R. C. Merkle, “Secrecy, authentication, and public key systems.” Ph.D. disser-
tation, Stanford, CA, USA, 1979, aAI8001972.

[101] “Health vault,” Microsoft, 2019, (Last accessed: 06/02/2019), notice of
shutdown. [Online]. Available: https://international.healthvault.com/us/en

[102] R. Miotto, L. Li, B. A. Kidd, and J. T. Dudley, “Deep patient: An unsupervised
representation to predict the future of patients from the electronic health
records,” Scientific Reports, vol. 6, pp. 26 094 EP –, May 2016, (Last accessed:
09/13/2018), article. [Online]. Available: https://doi.org/10.1038/srep26094

[103] “Generic fhir server implementation in golang,” mitre, 2018, (Last accessed:
02/20/2019). [Online]. Available: https://github.com/intervention-engine/fhir

[104] M. O. Mohsen and H. A. Aziz, “The Blue Button Project: Engaging
Patients in Healthcare by a Click of a Button,” Perspectives in
health information management, vol. 12, no. Spring, pp. 1d–1d, Apr
2015, (Last accessed: 05/29/2019), 26755898[pmid]. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pubmed/26755898

[105] “Mongodb database,” MongoDB Inc., 2019, (Last accessed: 02/20/2019).
[Online]. Available: https://www.mongodb.com

[106] MongoDB 4.0 Manual, 4th ed., MongoDB Inc., 2019, (Last accessed:
05/07/2019), under introduction section databases and collections. [Online].
Available: https://docs.mongodb.com/manual/

[107] “Bson,” MongoDB, Inc., 2019, (Last accessed: 05/10/2019). [Online].
Available: http://bsonspec.org/

[108] T. B. Murdoch and A. S. Detsky, “The Inevitable Application of Big Data to
Health Care,” JAMA, vol. 309, no. 13, pp. 1351–1352, 04 2013, (Last accessed:
09/13/2018). [Online]. Available: https://dx.doi.org/10.1001/jama.2013.393

[109] S. Nachimson, “Summary of Responses to an Industry RFI Regard-
ing a Role for CMS with Personal Health Records,” Center for
Medicare & Medicaid Services, 2005, (Last accessed: 05/21/2019). [On-
line]. Available: https://www.cms.gov/Medicare/E-Health/PerHealthRecords/
Downloads/SummaryofPersonalHealthRecord.pdf

[110] S. K. Nachimuthu and P. J. Haug, “Early detection of sepsis in the emergency
department using dynamic bayesian networks,” AMIA Annu Symp Proc, vol.
2012, pp. 653–662, Nov 2012, (Last accessed: 09/18/2018), 23304338[pmid].
[Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/23304338

[111] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008, (Last
accessed: 03/09/2019). [Online]. Available: https://bitcoin.org/bitcoin.pdf

[112] “International classification of diseases, ninth revision, clinical modification
(icd-9-cm),” National Center for Health Statistics, 2015, (Last accessed:
09/03/2018). [Online]. Available: https://www.cdc.gov/nchs/icd/icd9cm.html

[113] C. Neumann, N. Prigent, M. Varvello, and K. Suh, “Challenges in
peer-to-peer gaming,” SIGCOMM Comput. Commun. Rev., vol. 37, no. 1,
pp. 79–82, Jan. 2007, (Last accessed: 06/01/2019). [Online]. Available:
http://doi.acm.org/10.1145/1198255.1198269

113

[114] G. Niemeyer and GlobalSign, “mgo a go library for mongodb,” 2019, (Last
accessed: 02/20/2019), v2. [Online]. Available: https://github.com/globalsign/
mgo

[115] NORC at the University of Chicago, “Evaluation of the personal health
record pilot for medicare fee-for service enrollees from south carolina,” U.S.
Department of Health and Human Services, 4350 East West Highway, Suite
800Bethesda, MD 20814, Tech. Rep., 2010, (Last accessed: 05/21/2019).
[Online]. Available: https://aspe.hhs.gov/system/files/pdf/75991/report.pdf

[116] NORC at the University of Chicago, “Literature review and environmental
scan,” U.S. Department of Health and Human Services, 4350 East
West Highway, Suite 800Bethesda, MD 20814, Tech. Rep., 2010, (Last
accessed: 05/30/2019). [Online]. Available: https://aspe.hhs.gov/system/files/
pdf/177721/litreview.pdf

[117] “2018 report to congress: Annual update on the adoption of a nationwide
system for the electronic use and exchange of health information,” Office
of the National Coordinator for Health Information Technology, 2018, (Last
accessed: 06/03/2019). [Online]. Available: https://www.healthit.gov/sites/
default/files/page/2018-12/2018-HITECH-report-to-congress.pdf

[118] Office of the National Coordinator for Health Information Technol-
ogy, “Connecting health and carefor the nationa shared nationwide
interoperability roadmap,” 2019, (Last accessed: 03/28/2019). [On-
line]. Available: https://www.healthit.gov/sites/default/files/nationwide-
interoperability-roadmap-draft-version-1.0.pdf

[119] “Health it certification program overview,” The Office of the National
Coordinator for Health Information Technology, March 2019, (Last accessed:
05/21/2019). [Online]. Available: https://www.healthit.gov/sites/default/
files/PUBLICHealthITCertificationProgramOverview.pdf

[120] “What information does an electronic health record (ehr) contain?” Office
of the National Coordinator for Helath Information Technology, 2019, (Last
accessed: 05/07/2019). [Online]. Available: https://www.healthit.gov/faq/
what-information-does-electronic-health-record-ehr-contain

[121] A. Omicini and E. Denti, “From tuple spaces to tuple centres,” Science
of Computer Programming, vol. 41, no. 3, pp. 277 – 294, 2001, (Last
accessed: 05/30/2019). [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0167642301000119

[122] D. Ongaro and J. Ousterhout, “In Search of an Understandable Consensus
Algorithm,” in Proceedings of the 2014 USENIX Conference on USENIX
Annual Technical Conference, ser. USENIX ATC’14. Berkeley, CA, USA:
USENIX Association, 2014, (Last accessed: 03/05/2019), pp. 305–320.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2643634.2643666

[123] “Openehr deplyed solutions,” OpenEHR, 2019, (Last accessed: 05/21/2019),
list of users of openEHR. [Online]. Available: https://www.openehr.org/
openehr in use/deployed solutions/

[124] “openehr,” openEHR Foundation, 2019, (Last accessed: 04/04/2019),
organization website. [Online]. Available: https://www.openehr.org/

114

[125] A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochastic Pro-
cesses, 4th ed. 1221 Avenue of the Americas, New York, NY 10020: McGraw-
Hill, 2002.

[126] “patientslikeme,” PatientsLikeMe, 2019, (Last accessed: 05/07/2019). [Online].
Available: https://www.patientslikeme.com/

[127] S. Peacock, A. Reddy, S. G. Leveille, J. Walker, T. H. Payne, N. V. Oster,
and J. G. Elmore, “Patient portals and personal health information online:
perception, access, and use by US adults,” Journal of the American Medical
Informatics Association, vol. 24, no. e1, pp. e173–e177, 07 2016, (Last accessed:
06/01/2019). [Online]. Available: https://doi.org/10.1093/jamia/ocw095

[128] T. Pham, T. Tran, D. Phung, and S. Venkatesh, “Predicting healthcare
trajectories from medical records: A deep learning approach,” Journal
of Biomedical Informatics, vol. 69, pp. 218 – 229, 2017, (Last accessed:
09/18/2018). [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1532046417300710

[129] N. Popper and T. Hsu, “Bitcoin plummets more than 30 percent in less
than a day,” New York Times, 12 2017, (Last accessed: 06/07/2019).
[Online]. Available: https://www.nytimes.com/2017/12/22/business/bitcoin-
plunges-more-than-25-percent-in-24-hours.html

[130] J. Postel, “User datagram protocol,” Internet Engineering Task Force, 1980,
(Last accessed: 05/07/2019). [Online]. Available: https://tools.ietf.org/html/
rfc768

[131] J. Postel, “File transfer protocol,” Internet Engineering Task Force,
June 1980, (Last accessed: 05/10/2019). [Online]. Available: https:
//tools.ietf.org/html/rfc765

[132] “Python,” Python Software Foundation, 2019, (Last accessed: 02/20/2019),
programming language. [Online]. Available: https://www.python.org

[133] pickle - Python object serialization, 3rd ed., Python Software Foundation,
2019, (Last accessed: 05/07/2019). [Online]. Available: https://docs.python.
org/3/library/pickle.html

[134] M. Ripeanu, “Peer-to-peer architecture case study: Gnutella network,” in Pro-
ceedings First International Conference on Peer-to-Peer Computing, Aug 2001,
pp. 99–100.

[135] A. Roehrs, C. A. da Costa, and R. da Rosa Righi, “Omniphr: A
distributed architecture model to integrate personal health records,” Journal
of Biomedical Informatics, vol. 71, pp. 70 – 81, 2017, (Last accessed:
03/25/2019). [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1532046417301089

[136] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed.
Upper Saddle River, New Jersey: Pearson, 2010.

[137] “Sas university edition,” SAS Institute Inc., 2018, (Last accessed: 08/31/2018).
[Online]. Available: https://www.sas.com/en us/software/university-edition.
html

115

[138] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Comput. Surv., vol. 22, no. 4,
pp. 299–319, Dec. 1990, (Last accessed: 03/09/2019). [Online]. Available:
http://doi.acm.org/10.1145/98163.98167

[139] K. Schorsch, “Rauner ends struggling health care initiative,” Crain’s
Chicago Business, September 2015, (Last accessed: 06/03/2019). [Online].
Available: https://www.chicagobusiness.com/article/20150922/NEWS03/
150929963/gov-bruce-rauner-ends-struggling-illinois-health-information-
exchange-initiative

[140] P. H. Schwartz, K. Caine, S. A. Alpert, E. M. Meslin, A. E. Carroll, and
W. M. Tierney, “Patient preferences in controlling access to their electronic
health records: a prospective cohort study in primary care,” Journal of
general internal medicine, vol. 30 Suppl 1, no. Suppl 1, pp. S25–S30,
Jan 2015, (Last accessed: 05/21/2019), 25480721[pmid]. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pubmed/25480721

[141] “1.9. naive bayes,” scikitlearn.org, 2017, (Last accessed: 09/01/2018). [Online].
Available: http://scikit-learn.org/stable/modules/svm.html

[142] M. Scrimshire, “Bluebutton fhir api,” HHS IDEA Lab and CMS, 2019, (Last
accessed: 05/29/2019). [Online]. Available: https://github.com/ekivemark/
BlueButtonFHIR API

[143] F. L. Seixas, B. Zadrozny, J. Laks, A. Conci, and D. C. M. Saade, “A bayesian
network decision model for supporting the diagnosis of dementia, alzheimers
disease and mild cognitive impairment,” Computers in Biology and Medicine,
vol. 51, pp. 140 – 158, 2014, (Last accessed: 09/18/2018). [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0010482514000961

[144] S. Shah, D. C. Kaelber, A. Vincent, E. C. Pan, D. Johnston, and
B. Middleton, “A cost model for personal health records (phrs),” AMIA ...
Annual Symposium proceedings. AMIA Symposium, vol. 2008, pp. 657–661,
2008, (Last accessed: 06/01/2019), 18998988[pmid]. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pubmed/18998988

[145] C. Showell, “Barriers to the use of personal health records by patients: a
structured review,” PeerJ, vol. 5, pp. e3268–e3268, Apr 2017, (Last accessed:
06/01/2019), 28462058[pmid]. [Online]. Available: https://www.ncbi.nlm.nih.
gov/pubmed/28462058

[146] P. Srisuresh, B. Ford, and D. Kegel, “State of peer-to-peer (p2p) communication
across network address translators (nats),” IETF, 2008, (Last accessed:
03/21/2019). [Online]. Available: https://tools.ietf.org/rfc/rfc5128.txt

[147] P. C. Tang, J. S. Ash, D. W. Bates, J. M. Overhage, and D. Z. Sands, “Personal
health records: definitions, benefits, and strategies for overcoming barriers to
adoption,” Journal of the American Medical Informatics Association : JAMIA,
vol. 13, no. 2, pp. 121–126, 2006, (Last accessed: 05/21/2019), 16357345[pmid].
[Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/16357345

[148] The Linux Foundation, “Hyperledger architecture,” 2019, (Last accessed:
03/27/2019). [Online]. Available: https://www.hyperledger.org/wp-content/
uploads/2017/08/Hyperledger Arch WG Paper 1 Consensus.pdf

116

[149] The Office of the National Coordinator for Health Information Technology,
“2015 edition market readiness for hospitals and clinicians,” U.S. Department
of Health and Human Services, March 2019, (Last accessed: 05/21/2019),
health IT Quick-Stat 55. [Online]. Available: https://dashboard.healthit.gov/
quickstats/pages/2015-edition-market-readiness-hospitals-clinicians.php

[150] The Sequoia Project, “Fhir improves health it interoperability,” 2018,
(Last accessed: 03/21/2019). [Online]. Available: https://sequoiaproject.org/
resources/fhir/

[151] The Skype Team, “Skype the journey weve been on,” Microsoft,
July 2016, (Last accessed: 05/09/2019), blog post. [Online]. Available:
https://blogs.skype.com/news/2016/07/20/skype-the-journey-weve-been-on/

[152] W. M. Tierney, S. A. Alpert, A. Byrket, K. Caine, J. C. Leventhal, E. M.
Meslin, and P. H. Schwartz, “Provider responses to patients controlling access
to their electronic health records: a prospective cohort study in primary care,”
Journal of general internal medicine, vol. 30 Suppl 1, no. Suppl 1, pp. S31–S37,
Jan 2015, (Last accessed: 05/21/2019), 25480720[pmid]. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pubmed/25480720

[153] “My healthevet,” United States Department of Veterans Affairs, 2019, (Last
accessed: 05/29/2019). [Online]. Available: https://www.myhealth.va.gov/
mhv-portal-web/web/myhealthevet/home

[154] United States National Library of Medicine, “Snomed ct,” 2019, (Last
accessed: 03/28/2019). [Online]. Available: https://www.nlm.nih.gov/
healthit/snomedct/

[155] V. Urovi, A. C. Olivieri, S. Bromuri, N. Fornara, and M. I. Schumacher,
“A peer to peer agent coordination framework for ihe based cross-community
health record exchange,” in Proceedings of the 28th Annual ACM Symposium
on Applied Computing, ser. SAC ’13. New York, NY, USA: ACM,
2013, (Last accessed: 05/29/2019), pp. 1355–1362. [Online]. Available:
http://doi.acm.org/10.1145/2480362.2480617

[156] “Summary of the hipaa privacy rule,” US Department of Health and Human
Services, 2013, (Last accessed: 09/13/2018). [Online]. Available: https:
//www.hhs.gov/hipaa/for-professionals/privacy/laws-regulations/index.html

[157] “Unified medical language system,” U.S. National Library of Medicine, 2019,
(Last accessed: 03/21/2019). [Online]. Available: https://www.nlm.nih.gov/
research/umls/

[158] N. G. Weiskopf, G. Hripcsak, S. Swaminathan, and C. Weng, “Defining
and measuring completeness of electronic health records for secondary
use,” J Biomed Inform, vol. 46, no. 5, pp. 830–836, Oct 2013,
, (Last accessed: 09/18/2018), 23820016[pmid]. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pubmed/23820016

[159] N. G. Weiskopf and C. Weng, “Methods and dimensions of electronic
health record data quality assessment: enabling reuse for clinical
research,” J Am Med Inform Assoc, vol. 20, no. 1, pp. 144–151,
2013, (Last accessed: 09/13/2018), 22733976[pmid]. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pubmed/22733976

117

[160] P. Wicks, M. Massagli, J. Frost, C. Brownstein, S. Okun, T. Vaughan,
R. Bradley, and J. Heywood, “Sharing health data for better outcomes
on patientslikeme,” J Med Internet Res, vol. 12, no. 2, pp. e19–e19, Jun
2010, (Last accessed: 05/07/2019), 20542858[pmid]. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pubmed/20542858

[161] C. Williams, F. Mostashari, K. Mertz, E. Hogin, and P. Atwal, “From
the office of the national coordinator: The strategy for advancing the
exchange of health information,” Health Affairs, vol. 31, no. 3, pp. 527–536,
2012, (Last accessed: 05/10/2019), pMID: 22392663. [Online]. Available:
https://doi.org/10.1377/hlthaff.2011.1314

[162] “Medi-span generic product identifier (gpi),” Wolters Kluwer, 2019, (Last
accessed: 05/07/2019). [Online]. Available: https://www.wolterskluwercdi.
com/drug-data/gpi/

[163] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger byzantium,” 2019, (Last accessed: 03/10/2019). [Online]. Available:
https://ethereum.github.io/yellowpaper/paper.pdf

[164] World Health Organization, International classification of diseases : [9th]
ninth revision, basic tabulation list with alphabetic index. World Health
Organization, 1978, , (Last accessed: 05/10/2019). [Online]. Available:
https://apps.who.int/iris/handle/10665/39473

[165] World Health Organization, “International statistical classification of diseases
and related health problems 10th revision,” 2016, (Last accessed: 03/27/2019).
[Online]. Available: https://icd.who.int/browse10/2016/en

[166] A. Wright, E. G. Poon, J. Wald, J. Feblowitz, J. E. Pang, J. L. Schnipper,
R. W. Grant, T. K. Gandhi, L. A. Volk, A. Bloom, D. H. Williams,
K. Gardner, M. Epstein, L. Nelson, A. Businger, Q. Li, D. W. Bates, and
B. Middleton, “Randomized controlled trial of health maintenance reminders
provided directly to patients through an electronic phr,” Journal of General
Internal Medicine, vol. 27, no. 1, pp. 85–92, Jan 2012 (Last accessed:
05/29/2019). [Online]. Available: https://doi.org/10.1007/s11606-011-1859-6

[167] Q. Xia, E. B. Sifah, A. Smahi, S. Amofa, and X. Zhang, “Bbds: Blockchain-
based data sharing for electronic medical records in cloud environments,”
Information, vol. 8, no. 2, 2017, (Last accessed: 01/24/2019). [Online].
Available: http://www.mdpi.com/2078-2489/8/2/44

[168] Y. Xu, Y. Xu, and S. Saria, “A bayesian nonparametic approach
for estimating individualized treatment-response curves,” CoRR, vol.
abs/1608.05182, 2016, (Last accessed: 09/18/2018). [Online]. Available:
http://arxiv.org/abs/1608.05182

[169] P. Yadav, M. Steinbach, V. Kumar, and G. Simon, “Mining electronic
health records (ehrs): A survey,” ACM Comput. Surv., vol. 50, no. 6,
pp. 85:1–85:40, Jan. 2018, (Last accessed: 09/18/2018). [Online]. Available:
http://doi.acm.org/10.1145/3127881

118

[170] C. L. Yocom, “Health information technology,” U.S. Goverment Accountabilty
Office, 441 G St., NW Washington, DC 20548 4350 East West Highway, Suite
800Bethesda, MD 20814, Tech. Rep., March 2017, (Last accessed: 06/01/2019).
[Online]. Available: https://aspe.hhs.gov/system/files/pdf/177721/litreview.
pdf

APPENDIX

119

APPENDIX A: Hypertension Survey Info

1 Type Heartsurvey Struct {
2 Age string ‘json:"AGELAST" bson:"AGELAST"‘
3 Sex string ‘json:"SEX" bson:"SEX"‘
4 Race string ‘json:"RACEV1X" bson:"RACEV1X"‘
5 Highbloodpressure string ‘json:"HIBPDX" bson:"HIBPDX"‘
6 Agina string ‘json:"ANGIDX" bson:"ANGIDX"‘
7 Coroneyheartdisease string ‘json:"CHDDX" bson:"CHDDX"‘
8 Heartattack string ‘json:"MIDX" bson:"MIDX"‘
9 Otherheart string ‘json:"OHRTDX" bson:"OHRTDX"‘

10 Stroke string ‘json:"STRKDX" bson:"STRKDX"‘
11 Emphysema string ‘json:"EMPHDX" bson:"EMPHDX"‘
12 Highcholesterol string ‘json:"CHOLDX" bson:"CHOLDX"‘
13 Diabetes string ‘json:"DIABDX" bson:"DIABDX"‘
14 Smoke string ‘json:"ADSMOK42" bson:"ADSMOK42"‘
15 Restrictfood string ‘json:"NOFAT53" bson:"NOFAT53"‘
16 Moreexercise string ‘json:"EXRCIS53" bson:"EXRCIS53"‘
17 Bmi string ‘json:"BMINDX53" bson:"BMINDX53"‘
18 Poverty string ‘json:"POVCAT" bson:"POVCAT"‘
19 C410 string ‘json:"410" bson:"410"‘
20 C413 string ‘json:"413" bson:"413"‘
21 C414 string ‘json:"414" bson:"414"‘
22 C424 string ‘json:"424" bson:"424"‘
23 C425 string ‘json:"425" bson:"425"‘
24 C426 string ‘json:"426" bson:"426"‘
25 C427 string ‘json:"427" bson:"427"‘
26 C428 string ‘json:"428" bson:"428"‘
27 C429 string ‘json:"429" bson:"429"‘
28 C436 string ‘json:"436" bson:"436"‘
29 C437 string ‘json:"437" bson:"437"‘
30 C440 string ‘json:"440" bson:"440"‘
31 C441 string ‘json:"441" bson:"441"‘
32 C442 string ‘json:"442" bson:"442"‘
33 C443 string ‘json:"443" bson:"443"‘
34 C444 string ‘json:"444" bson:"444"‘
35 C447 string ‘json:"447" bson:"447"‘
36 C453 string ‘json:"453" bson:"453"‘
37 C454 string ‘json:"454" bson:"454"‘
38 C455 string ‘json:"455" bson:"455"‘
39 C458 string ‘json:"458" bson:"458"‘
40 C459 string ‘json:"459" bson:"459"‘
41 C490 string ‘json:"490" bson:"490"‘
42 C491 string ‘json:"491" bson:"491"‘
43 C492 string ‘json:"492" bson:"492"‘
44 C493 string ‘json:"493" bson:"493"‘
45 C496 string ‘json:"496" bson:"496"‘
46 C514 string ‘json:"514" bson:"514"‘
47 C518 string ‘json:"518" bson:"518"‘
48 C519 string ‘json:"519" bson:"519"‘

120

49 }

Algorithm A.1: Hypertension Survey Info

121

APPENDIX B: Hypertension Survey Info

Table B.1.: Feature Vector

header values

401 0

410 0

413 0

414 0

424 0

425 1

426 0

427 0

428 0

429 0

436 0

437 0

440 0

441 0

442 0

443 0

444 0

447 0

453 0

454 0

455 0

continued on next page

122

Table B.1.: continued

header values

458 0

459 0

490 0

491 0

492 0

493 0

496 0

514 0

518 0

519 0

ADSMOK42 1

AGELAST 2

ANGIDX 2

BMINDX53 2

CHDDX 2

CHOLDX 1

DIABDX 2

DUPERSID 26974101

EMPHDX 2

EXRCIS53 1

HIBPDX 2

l401 0

MIDX 2

NOFAT53 1

OHRTDX 1

continued on next page

123

Table B.1.: continued

header values

POVCAT 1

RACEV1X 1

SEX 2

STRKDX 2

124

APPENDIX C: Example Client Usage of System

Fig. C.1.: Welcome Page

125

Fig. C.2.: Patient Registration

Fig. C.3.: Patient Login

126

Fig. C.4.: Network Page

Fig. C.5.: Portal Selection

127

Fig. C.6.: Downloading Records from a Registered Portal

128

Fig. C.7.: Viewing Records

129

Fig. C.8.: FHIR Data for a Single Record and Posting to Network

130

C.1 Provider Requesting a Patient Health Record

Fig. C.9.: Provider: Network Records

Fig. C.10.: Provider: Selecting Patient Record for a Transaction

131

Fig. C.11.: Provider: Sending Request for Get Transaction

Fig. C.12.: Patient/Provider: Transaction Waiting for Approval

132

Fig. C.13.: Patient: Approving Transaction

Fig. C.14.: Provider/Patient: Transaction Complete

133

Fig. C.15.: Provider: Viewing Peer Records

Fig. C.16.: Provider: Transferred Peer Record

134

C.2 Patient Requesting the Hypertension Service

Fig. C.17.: Patient Filling out Survey for Service

135

Fig. C.18.: Survey as a Record

Fig. C.19.: Survey Posted to Network

136

Fig. C.20.: Selecting Service Transaction

Fig. C.21.: Requesting Service Transaction

137

Fig. C.22.: Service Transaction Finished

Fig. C.23.: Hypertension Service Result

