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Abstract

Drug-drug interactions (DDIs) are a common cause of adverse drug events (ADEs). The electronic 

medical record (EMR) database and the FDA's Adverse Event Reporting System (FAERS) 

database are the major data sources for mining and testing the ADE associated DDI signals. Most 

DDI data mining methods focus on pair-wise drug interactions, and methods to detect high-

dimensional DDIs in medical databases are lacking. In this paper, we propose two novel mixture 

drug-count response models for detecting high dimensional drug combinations that induce 

myopathy. The “count” indicates the number of drugs in a combination. One model is called fixed 

probability mixture drug-count response model with a maximum risk threshold (FMDRM-MRT). 

The other model is called count-dependent probability mixture drug-count response model with a 
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maximum risk threshold (CMDRM-MRT), in which the mixture probability is count-dependent. 

Compared to the previous mixture drug-count response model (MDRM) developed by our group, 

these two new models show a better likelihood in detecting high dimensional drug combinatory 

effects on myopathy. CMDRM-MRT identified and validated (54; 374; 637; 442; 131) 2-way to 6-

way drug interactions, respectively, which induce myopathy in both EMR and FAERS databases. 

We further demonstrate FAERS data capture much higher maximum myopathy risk than EMR 

data do. The consistency of two mixture models’ parameters and local false discovery rate 

estimates are evaluated through statistical simulation studies.
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1. Introduction

Adverse drug events (ADEs) are a significant cause of morbidity and mortality. ADEs lead 

to 125,000 hospital admissions each year; prolong hospital stays by nearly 1.7 to 4.6 days 

[1]; and result in as many as 4.6% of deaths in the United States [2]. It has been reported that 

26% to 59.1% of ADEs are related to DDIs [3–5]. DDIs occur due to pharmacokinetic or 

pharmacodynamic interactions between co-administrated drugs. The risk of DDI-induced 

ADEs increases exponentially with the number of drugs taken by a patient [6]. A study from 

National Center for Health statistics (NCHS) showed that the number of patients taking 

more than 3 drugs and 5 drugs has increased 1.8- and 2.5-fold in the past decade, 

respectively [7]. Therefore, the evaluation of DDIs’ clinical impact, especially for high 

dimensional drug interactions, is an important issue. Some pre-marketing clinical trials focus 

on two-way drug interactions and often are limited to specific populations, in which adverse 

drug events are usually not primary hypotheses. In addition, the clinical trial data collected 

during the premarketing phase 3 trials are typically not large enough to capture less common 

combinations of drugs. Routinely, researchers rely on pharmaco-epidemiology studies on 

large-scale health record databases to investigate drug interactions [8]. The spontaneous 

reporting system (SRS) and the electronic medical record (EMR) are two major types of 

health record data sources for post-marketing pharmacovigilance [9–12]. Recently, as these 

big health record data sets become increasingly available to the general research community, 

novel data mining algorithms have shown promise in detecting potential drug- or DDI-

induced ADEs [13–15].

Most data mining methods were developed to identify single drug induced ADEs. The 

salient examples include the information component (IC), a Bayesian confidence 

propagation neural network [16] used by World Health Organization (WHO), and the 

empirical Bayes geometric mean (EBGM) [17], which has been adopted by the United 

States Food and Drug Administration (FDA). There have been some recent developments in 

studying DDI induced ADEs. Noren et al. [18] developed a Ω shrinkage measure approach 

to screen potential pair-wise DDIs in the entire WHO database. It calculates a shrinked 

observed to expected ratio of disproportionality for a DDI induced ADE relative report rates. 
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Huang et al. [19] proposed a likelihood ratio test method (LRT) for detecting ADE signals 

from the FAERS database. Later, in order to handle the extensive zeros in the FAERS 

database, a zero-inflated Poisson model based LRT (ZIP_LRT) was proposed [20]. LRT and 

its extension can be used to detect signals for single drug (or ADE) or signals including a 

class of drugs (or ADEs) [21, 22]. Though these methods were originally developed to 

analyze the FAERS database, their extensions were derived to analyze longitudinal drug 

safety data (longitudinal LRT) as well [23]. LRT and its extensions can control the type-I 

error and false discovery rate (FDR) while retaining good power and sensitive for identifying 

signals. Thakrar et al. [24] proposed multiplicative and additive models to detect DDIs in the 

FDA’s Adverse Event Reporting System (FAERS) database. These two model assumptions 

characterize the relationship between the relative risk of the two-drug combination and the 

relative risk from two single drugs. In the DDI detecting algorithm outlined by Tatonetti et 
al. [25], they considered and adjusted the confounding variables by using propensity score 

derived from logistic regression analysis. Harpaz et al. [26] applied an association rule 

mining (ARM) to detect the multi-item ADE associations in the FAERS. In order to 

overcome the computational challenge of the ARM, Xiang et al. [27] proposed a Frequent 

Closed Item set Mining and filtering (FCI-filter) based on UMLS mapping for mining 

multiple drug interactions; and FCI-filter has been applied to FAERS data as well.

Data mining methods to detect the single drug and two-drug DDI induced ADEs cannot be 

easily expanded to evaluate high-dimensional drug interactions. In our FAERS and EMR 

database, the report frequency for most of 5-way to 6- way drug combinations is no more 

than 20. Although ARM and FCI-filter methods have the advantage of handling high-

dimensional drug and ADE combinations freely, they are indeed constructed and limited to 

ADE cases only drugs/ADEs combinations. These structural limited methods cannot easily 

be expanded to handle drug combinations whose ADE frequencies are moderate or low.

To address these challenges in detecting high-dimensional drug interactions, our group 

proposed a drug-count response model [28], where “count” indicates the number of drugs in 

a combination, and in which the same dimensionality of drug combinations shared the same 

ADE risk model. In this risk model, the same dimensionality of drug combinations either 

share the baseline risk that doesn’t depend on the dimensionality of combination drugs, or 

follows a drug-count response model that depends on the dimensionality of combination 

drugs. This model allows high-dimensional drug combinations share their ADE risks, such 

that they can borrow data strength from each other and make up the small sample size 

deficiency. Using the empirical Bayes mixture model framework, this model will give each 

drug combination a probability of belonging to a constant risk model, and a probability of 

following the drug-count response model. This drug combination specific probability allows 

us to evaluate, interpret and rank the high dimensional drug interaction evidence from the 

data. This probability also has a local discovery rate interpretation. Using the EMR data, we 

successfully identified 2- to 6-way drug combinations that increased myopathy risk at a low 

local false discovery rate [28]. However, while this model is highly powerful in detecting 

high dimensional drug interactions, it possesses intrinsic deficiencies and needs further 

improvement. Statistically, the baseline model and drug-count response model do not meet 

continuity when the number of drug equals to one. Also, the mixture probability (i.e. the 

proportion of drug combinations belonging to the drug-count response model) is fixed and 
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assumed to be the same regardless of the number of drug combinations. From the pharmaco-

vigilance point of view, the drug-count response model was tested in only one EMR 

database, and it was not externally validated. Thus, the top ranked myopathy associated 

high-dimensional drug interactions identified by the method were not yet validated. In this 

paper, our novel mixture drug-count response models address these statistical and 

pharmacology challenges. In order to identify which drug combination follows the drug-

count response model or constant risk model, we use both EMR and FAERS datasets to 

derive their drug-count response models, and evaluate and validate top myopathy associated 

high-dimensional drug interactions.

2. Methods

2.1 Data Sources

The data sources used in this analysis are the FDA’s Adverse Event Reporting System 

(FAERS) and the Indiana Network of Patient Care data, which is an Electronic Medical 

Record (EMR) database.

2.1.1 FAERS Data Set—FAERS contains spontaneous adverse drug event reports from 

healthcare professionals, consumers, and pharmaceutical manufactures. The data used in this 

paper were from the FAERS 2004Q1 to 2012Q3. Duplicated reports that had the same 

primary record ID were removed. ADEs in the FAERS were annotated using MedDRA’s PT 

code [29]. The drug names in the FAERS may contain abbreviations, brand names, 

synonyms, and sometimes contain spell mistakes. Therefore, they were normalized through 

a drug name mapping scheme implemented in the DrugBank. Un-mapable names due to 

spelling errors (i.e. drug names that are only one letter different from a generic name, a 

brand name, or a synonym) and with the reporting frequency greater than 1000 were 

manually checked and mapped. After data clean-up, the FAERS dataset contained 4,280,322 

reports with 1,753 generic drug names and 15,445 MedDRA PT ADE names.

2.1.2 Indiana Network of Patient Care Data Set—Indiana Network for Patient Care 

(INPC) is a local health information infrastructure that has been approved as exempt 

research by institutional review board (IRB) [30]. A subset of INPC called Common Data 

Model (CDM) are de-identified and extracted. This data set contains coded prescription 

medications, diagnoses, and lab tests for 2.2 million patients between 2004 and 2009. The 

CDM data have been processed with the Observational Medical Outcomes Partnership 

Common Data Model [31].

2.2 Case and Control Definitions

2.2.1 Myopathy Case and Control Definitions in FAERS—From 4,280,322 reports 

in the FAERS dataset, we defined myopathy “cases” as those reports listing myositis, 

myoglobinuria, muscle fatigue, muscle spasms, myalgia, muscle injury, muscular weakness, 

polymyositis and rhabdomyolysis (Table S1). All other reports that do not contain these 

ADEs are defined as controls. Based on this definition, we identified 140,071 cases and 

4,140,251 controls in the FAERS database.
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2.2.2 Myopathy Case and Control Definitions in INPC—The myopathy cases (Table 

S1) in the INPC are similar to the myopathy cases defined in the FAERS.

For the EMR database, we defined two types of myopathy events: 1) the first event of 

myopathy that occurs more than 6 months after the start of the database (01/01/2004), and 2) 

any additional myopathy event(s) that occur(s) more than 6 months after the previous 

myopathy event. In another word, for patients with multiple myopathy events, a 6-month 

myopathy free window was used for selecting any additional myopathy event(s).

Patients who experienced a myopathy event are considered cases. For each case, a drug 

exposure window is set as 1 month prior to the index event, and the drug(s) prescribed 

during this time period are classified as being associated with myopathy. For the control 

group, we randomly selected 50 patients who did not experience a myopathy event during 

the same time interval as the case. Drugs prescribed to these patients during the one month 

period before the index date are classified as not being associated with myopathy [32, 33].

2.3 Drug and Drug Combination Selections

For this analysis, we limited the number of drugs studied to the 20 most frequent drugs 

associated with myopathy in the EMR dataset (Table S2) [28]. Among these 20 drugs, 17 are 

associated with myopathy (the myopathy definition are shown in the Table S1) side effect in 

the Side Effect Resource database [34].

For the 20 drugs, we selected all their possible 2-way to 6-way drug combinations in EMR 

and FAERS resulting in 60,460 possible drug combinations. To avoid false positive signals, 

both the FAERS and EMR datasets were filtered so that only those drug combinations with a 

total report number (case number plus control number) greater than 4 (nij > 4) were 

evaluated. This filtering step reduced the number of drug combinations in the EMR to 

20,161 and FAERS to 31,476 combinations (Figure S1).

2.4 Mixture Drug-Count Response Models

2.4.1. Previously Defined Drug-Count Response Model—Our group has previously 

described a mixture drug-count response model (MDRM) [28] for identifying myopathy 

induced by high-dimensional drug interactions. In this model, “count” indicates the number 

of drug combinations. The primary novelty of this model was a mixture of two model 

components: one component represents a constant myopathy risk regardless of the 

dimensionality of drug combinations while the other component characterizes an increasing 

drug-count response relationship between the dimensionality of drug combinations and the 

myopathy risk.

In the mixture drug-count response model, i indicates the number of drugs for i-way drug 

combinations; j is the jth i-way drug combinations; Nij is the total number of patients taking 

jth i-way drug combination; and Yij is the number of cases among those Nij patients. 

Additionally, let Zij be the underlying binary random variable. Specifically, if Yij follows the 

drug-count response model, Zij equals to 1; otherwise Zij equals to 0 when Yij follows the 

constant model. The joint distribution of (Yij, Zij) is
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(1)

Where π is the proportion of drug combinations that follow the drug-count response 

component;  represents the constant ADE risk; and 

represents the drug-count response ADE risk. Then, the marginal distribution of Yij can be 

written as a two-component mixture distribution (2):

(2)

2.4.2 Novel Mixture Drug-Count Response Models—Here, we propose two novel 

drug-count response models to identify the myopathy risk induced by high-dimensional drug 

combinations: a fixed probability mixture drug-count response model with a maximum risk 

threshold (FMDRM-MRT) model, and a count-dependent probability mixture drug-count 

response model with a maximum risk threshold (CMDRM-MRT) model. As in our previous 

model, “count” indicates the number of drug combinations.

Fixed Probability Mixture Drug-Count Response Model with a Maximum Risk 
Threshold (FMDRM-MRT): In the FMDRM-MRT, the definitions of i (1<i<6) and j; the 

random variables, Nij, Yij and Zij; and the parameter π are the same as in the MDRM. We 

also assume that the marginal distribution function of Yij follows a two-component mixture 

distribution (same as equation 1). However, in the FMDRM-MRT model q0 and q1 are 

defined as:  and .

The FMDRM-MRT has two noticeable differences from the MDRM. First, the β1(i − 1) is 

revised on the β1i in the MDRM, when i = 1, q0 and q1 are equal. This follows a continuity 

assumption. Second the maximum ADE risk of FMDRM-MRT is bounded by c, while the 

maximum risk of MDRM is 1.

Under FMDRM-MRT, the joint distribution function of (Yij, Zij) can be written as

(3)

The marginal distribution function of Yij is
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(4)

The log-likelihood function based on (4) is

(5)

Count-dependent Probability Mixture Drug-Count Response Model with a Maximum 
Risk Threshold (CMDRM-MRT): In this model, we assume that the proportion of drug 

combinations following the drug-count response model will depend on the dimensionality of 

drug combinations. Therefore, the joint distribution function of (Yij, Zij) changes to (6).

(6)

where πi (i = 1,2, …, 6 and 0 < πi < 1) is the proportion of i-way drug combinations that 

follow the drug-count response component. The marginal distribution function for (6) is

(7)

The log-likelihood function for (7) can be written as

(8)

2.5 Expectation-Maximization Algorithm

As Zij is not observed, the maximum likelihood estimators (MLEs) of parameters in 

equations (3) and (6) can be obtained through an expectation-maximization (EM) algorithm. 

Hence, we define l(nij, yij, zij; θ) = ΣiΣj log P(yij, zij) as the log-likelihood for equations (3) 

and (6). The EM algorithm is an iterative method and after the tth iteration, θt is the 

estimator of θ. First, in the E-step, Q(nij, yij, wij; θ) = EZ|Y[l(nij, yij, zij; θ)|yij, θt] is 

computed, and wij is the estimator of Zij.

For CMDRM-MRT, the wij can be written as
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(9)

Correspondingly, for DMDRM-MRT wij is

(10)

Second, we find θt+1 in the M-step, where .

In this study, the maximization is carried out by using the R function nlminb, which is an 

unconstrained and box-constrained optimization using PORT routines which is a Newton-

like method.[35]

2.6 Local False Discovery Rate

The local false discovery rate (lfdr) was introduced by Efron et al. [36] for analyzing data 

from microarray experiments, and was defined as the posterior probability of a gene’s 

expression belonging to “null distribution” [37]. In both FMDRM-MRT and CMDRM-MRT, 

drug combinations have either a constant myopathy risk (“null distribution”) or a drug-count 

response risk. Thus, both models follow the same model framework of Efron et al. [37]. The 

lfdrs for FMDRM-MRT and CMDRM-MRT are defined in (11) and (12), respectively:

(11)

(12)

lfdrs in (11) and (12) represent the posterior probabilities that a drug combination has a 

constant myopathy risk; i.e. lfdr represents the odds that myopathy risk will be constant as 

the dimensionality of drug combination increases.

2.7 Likelihood Ratio Test

Because FMDRM-MRT and CMDRM-MRT are nested models, the likelihood-ratio test is 

used to test and compare the goodness of fit between two models. Let the FMDRM-MRT be 

considered the null model, and the CMDRM-MRT be the alternative model. The likelihood 

ratio can then be defined as
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(13)

According to Wilks’ theorem [38], the test statistic −2log(Λ) can be assumed to follow a chi-

squared distribution. Our model has 4 degrees of freedom.

(14)

2.8 Simulation Study

To evaluate the performance of our models, a simulation study was conducted to assess local 

false discovery rate estimates. In the simulation, λi is the mean of Nij in i-way drug 

combinations, and ki is the number of i-way drug combinations in the simulation. Nij is the 

number of patients taking the jth i-way drug combinations and it follows a Poisson 

distribution with the mean equals to λi. Yij is the number of drug combinations with 

myopathy cases in Nij. Let Zij be the random binary variable. Specifically, Zij = 1 if Yij 

follows a drug-count response myopathy risk, otherwise Zij = 0 when Yij has a constant 

myopathy risk. Zij is generated using a Bernoulli distribution with a probability πi. Given 

Nij, we assume Yij follows a binomial distribution with size Nij and probability equal to q0 

or q1, it depends on the value of Zij, either follows the drug-count response myopathy risk or 

the constant myopathy risk.

In order to assess the consistency of the lfdr estimate, we calculate the model based 

estimate and the empirical lfdrij estimate in the simulation study. The simulation data {nij, 

yij, zij, }, are divided into 100 intervals according to the value of nij and yij/nij. In each 

interval, we calculate the model based lfdr which is defined as the mean of  and the 

empirical lfdr which is the proportion of zij = 0.

3. Results

3.1 Model Performance Comparisons among CMDRM-MRT, FMDRM-MRT and MDRM

All three models are fitted to the EMR dataset and FAERS dataset. Their parameter 

estimates are shown in Table I. In fitting the EMR data, CMDRM-MRT shows an increasing 

trend of probability, i.e. from π1 to π6, (0.50, 0.67, 0.73, 0.82, 0.90, 0.94) respectively, that 

drug combinations follow drug-count response model (Figure 1). The likelihood ratio test 

between CMDRM-MRT to FMDRM-MRT has a p-value of 8.3 × 10−35 suggesting that 

CMDRM-MRT fit the data better than FMDRM-MRT. This is a piece of strong evidence 

that the mixture probability of drug-count response model is indeed drug-count dependent. 

Both CMDRM-MRT and FMDRM-MRT models show comparable maximum myopathy 

risk, 0.448 vs 0.460 (Table I, Figure 1 and 2), respectively. On the other hand, MDRM 

shows a relatively higher mixture probability of drug-count response compared to the other 

models. This is likely because the MDRM allows a discontinuous drug-count response 

Wang et al. Page 9

Stat Med. Author manuscript; available in PMC 2019 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



model and the constant risk model for the single drug, and drug-count response model has a 

higher myopathy risk than the constant risk model (Figure 3).

In fitting the FAERS data, CMDRM-MRT also shows an increasing trend of probability of 

drug-count response model when the drug combination goes from 1 to 3, i.e. (0.50, 0.53, 

0.78) respectively, and this probability stabilizes around 0.80 when the drug combination 

goes from 4 to 6 (Figure 1). The likelihood ratio test between CMDRM-MRT to FMDRM-

MRT has a p-value of 1.9 × 10−6, suggesting that CMDRM-MRT fits the data better than 

FMDRM-MRT does. The mixture probability of drug-count response model thus appears 

drug-count dependent in FAERS. Comparing CMDRM-MRT to FMDRM-MRT, both 

models show the same maximum myopathy risk, 0.999 (Table I, Figure 1 and 2). However, 

MDRM shows lower mixture probability of drug-count response model than the other 

models. Because the MDRM allows a discontinuous drug-count response model and the 

constant risk model for the single drug, the drug-count response model has a lower 

myopathy risk than the constant risk model. (Figure 3).

Comparing CMDRM-MRT’s fitting and performance between FAERS and EMR data sets 

(Figure 1), FAERS’s drug-count response model shows a much steeper increase of 

myopathy risk than EMR’s drug-count response model does. FAERS has a much higher 

maximum myopathy risk, 0.999 than the EMR has (i.e. 0.448) when drug count goes high. 

Similarly, both EMR and FAERS have the similar increasing trend of mixture probability of 

drug count response model.

3.2 Common Myopathy Associated Drug Combinations Identified from EMR and FAERS 
Data Sets

Using an lfdr threshold of 0.00001, significant drug combinations are selected from both 

EMR and FAERS data sets. Figure 4 displays the overlapped drug combinations with 

lfdr<0.00001 (red dots) and lfdr>0.00001 (black dots) between two data sets. CMDRM-

MRT and FMDRM-MRT have very similar pattern, while MDRM shows different trend. As 

shown in Figure 5, MDRM identifies more two-way drug combinations than the other two 

models, but fewer high-dimensional drug combinations (3-way to 5-way). This is mainly 

because of the mis-specified discontinuity assumption between drug-count response model 

and constant risk model in the MDRM.

3.3 Common Myopathy Associated 6-Way Drug Combinations

Using the CMDRM-MRT model, 131 six-way drug combinations were identified in both the 

FAERS and EMR databases with lfdr < 0.00001. The FMDRM-MRT model yielded 97 six-

way drug combinations with lfdr < 0.00001. Table II presents several examples of the 6-way 

drug combinations detected by CMDRM-MRT model that were associated with increased 

myopathy risk in both the FAERS and EMR databases. Myopathy risk associated with these 

combinations ranged from 0.38 to 0.73 in the EMR and 0.43 to 0.76 in the FAERS analyses. 

Only one of the 14 drugs that are presented in these 6-way drug combinations have not been 

shown to have myopathy risk in the SIDER database [34]. Of note, three of these 6-way 

combinations include simvastatin or atorvastatin and drugs known to inhibit their 

metabolism. These combinations can lead to increased exposure of the statin drugs, which 
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are commonly known to cause myopathy. Considering the baseline risk estimated from the 

constant risk model in CMDRM-MRT, these 6-way drug combinations have 3.45- to 10.85-

fold increase in myopathy risk.

3.4 Assess lfdr Estimate through A Simulation Study

The CMDRM-MRT was further evaluated in a simulation study. Parameter values were 

selected using estimates from the FAERS data analysis. In the simulation, 15 drugs were 

used to generate the drug combinations, resulting in 105 2-way combinations; 455 3-way 

combinations; 1,365 4-way combinations; 3,003 5-way combinations, and 5,005 6-way 

combinations. 500 simulated data sets were generated. Each time, the EM algorithm was 

used to estimate the parameters in the CMDRM-MRT. Table III presents the model-based 

estimates, their SDs, 95% CI, SD/estimates and relative biases. The relative biases of these 

estimates ranged from 0 to 1%. The SDs estimated from the simulations are also very small 

compared to the estimates, suggesting a high confidence on these parameter estimates. 

Figure 6 further demonstrates the consistency of the model based lfdr estimate (y-axis) and 

empirical lfdr estimate (x-axis) estimated from the simulation data.

4. Discussion

In this article, we propose two novel mixture drug-count response models, FMDRM-MRT 

and CMDRM-MRT to characterize relationship between the counts of drug combinations 

and the myopathy risks. Unlike MDRM [28], these two models speculate the maximum 

myopathy risk as one model parameter, and allow drug-count response model and constant 

risk model share the same myopathy risk when drug count is 1. In addition, CMDRM-MRT 

further allows the mixture probability to be drug count dependent. Using EMR and FAERS 

datasets, we demonstrate that CMDRM-MRT fits data better than FMDRM-MRT, p =8.3 × 

10−35 and 1.9 × 10−6, respectively. Interestedly, both CMDRM-MRT and FMDRM-MRT 

suggest that maximum myopathy risk reaches to 0.999 in FAERS and 0.45 in EMR when the 

drug counts in drug combinations goes high. This difference of maximum myopathy risk 

between two databases make sense, because FAERS is designed to capture the adverse drug 

events, while EMR keeps tracks all the medical info for patients. Nevertheless, these 

maximum myopathy risk estimates are strikingly high, comparing to the background 

myopathy risk estimated from the constant risk model (q0), which are 0.11 and 0.07 in EMR 

and FAERS, respectively.

Due to the accuracy of the high dimensional drug interactions that detected by our models 

can be improved by combining the FAERS database and EMR database [39], all the 

myopathy associated 2-way to 6-way drug interactions are validated between two databases. 

Based on an lfdr threshold of 0.00001, we further select six 6-way drug combinations among 

atorvastatin, simvastatin, ondansetron, escitalopram, omeprazole, venlafaxine, zolpidem, 

promethazine, acetaminophen, hydrocodone, alprazolam, oxycodone, duloxetine, tramadol. 

Among these drugs, only ondansetron does not have myopathy side effect in SIDER 

database [34]. It should also be noted that a number of the drugs identified in our six-way 

drug combinations may also be used to treat pain associated with myopathy (e.g. 

acetaminophen, hydrocodone, oxycodone, tramadol). Since the FAERS database does not 
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distinguish between drugs taken prior to the diagnosis of myopathy and those taken after the 

diagnosis of myopathy, we do not know whether these drugs lead to the myopathy event or if 

they were given as treatment for the event. However, the EMR database is capable of 

separating drugs prescribed before the myopathy event from those administered as treatment 

for myopathy. As this data set also supports the correlation between pain relievers and 

myopathy, the co-administration of these drugs is likely to be associated with increased risk 

of myopathy. Considering their 6-way drug interaction induced myopathy risk ranging from 

0.38 to 0.76 in two databases, it is essential to recognize that these risks are 3.45 to 10.85 

fold higher than the background risk. Therefore, for the first time, in population level (i.e. 

considering all the drug combinations) and individual level (i.e. drug combination specific), 

our newly proposed drug-count response models characterize and select the high 

dimensional drug interactions and estimate their myopathy risks. Our follow-up simulation 

studies further show the consistency of parameters and lfdr estimates.

FMDRM-MRT and CMDRM-MRT, however, have not been able to incorporate the other 

confounding variables in the current mixture model framework. Therefore, the interpretation 

of the data needs to be cautious before it can be done. As the number of drug combinations 

will increase exponentially as the number of drug rise, computation is another limiting factor 

that we right now can not apply our models to all 1000 plus drugs in EMR and FAERS 

databases. Another interesting issue is that some patients take extreme high number of co-

medications. For examples, we have observed patients who took >90 drugs in the FAERS 

database. Each of these patients will contribution a great number of drug combinations, and 

the usage of this patient data will be tremendously out-weight some drug combinations that 

are only taken by a few patients. This issue needs to be further addressed more carefully and 

systemically in the future.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The CMDRM-MRT fit myopathy risks, distribution of the proportion of drug combinations 

that follow the drug-count response component (πi) and the number of drug combinations in 

the EMR and FAERS datasets.
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Figure 2. 
The FMDRM-MRT fit myopathy risks in the EMR and FAERS datasets.
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Figure 3. 
The MDRD fit myopathy risks in the EMR and FAERS datasets.
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Figure 4. 
The distribution of −log10 (lfdr) for the 2 way to 6 way common drug combinations in the 

EMR and FAERS datasets. The purple line is a threshold with −log10 (lfdr) =5 (lfdr 

=0.00001), red plot means the common drug combinations with the condition of −log10 

(lfdr) > 5 (lfdr <0.00001) in two datasets.
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Figure 5. 
Statistic the number of common drug combinations for 2 way to 6 way drug combinations in 

the EMR and FAERS dataset with the condition of lfdr<0.00001 for the three models, 

respectively.
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Figure 6. 
Comparison of the model based lfdr and the empirical lfdr.
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Table I

Parameters estimated for CMDRM-MRT, FMDRM-MRT and MDRM using EMR and FAERS dataset. {π1, 

π2, π3, π4, π5, π6} are the proportions of 2 way to 6 way drug combinations that follow drug-count response 

component. c is the maximum Myopathy risk.

a.

Dataset EMR

Parameter CMDRM-MRT [95%CI] FMDRM-MRT [95% CI] MDRM [95% CI]

π1 - 0.869 [0.858, 0.880] 0.929 [0.920, 0.939]

π2 0.667 [0.564, 0.770] 0.869 [0.858, 0.880] 0.929 [0.920, 0.939]

π3 0.726 [0.683, 0.768] 0.869 [0.858, 0.880] 0.929 [0.920, 0.939]

π4 0.823 [0.801, 0.845] 0.869 [0.858, 0.880] 0.929 [0.920, 0.939]

π5 0.904 [0.890, 0.919] 0.869 [0.858, 0.880] 0.929 [0.920, 0.939]

π6 0.937 [0.920, 0.952] 0.869 [0.858, 0.880] 0.929 [0.920, 0.939]

c 0.448 [0.441, 0.456] 0.460 [0.443, 0.478] -

β0 −1.084 [−1.107, −1.060] −1.120 [−1.168, −1.072] −2.269 [−2.284, −2.254]

β1 0.843 [0.820, 0.866] 0.810 [0.767, 0.853] −1.908 [−1.926, −1.889]

β2 - - 0.304 [0.298, 0.309]

b.

Dataset FAERS

Parameter CMDRM-MRT [95% CI] FMDRM-MRT [95% CI] MDRM [95% CI]

π1 - 0.798 [0.791, 0.805] 0.675 [0.667, 0.684]

π2 0.532 [0.423, 0.641] 0.798 [0.791, 0.805] 0.675 [0.667, 0.684]

π3 0.781 [0.742, 0.821] 0.798 [0.791, 0.805] 0.675 [0.667, 0.684]

π4 0.808 [0.788, 0.827] 0.798 [0.791, 0.805] 0.675 [0.667, 0.684]

π5 0.790 [0.778, 0.803] 0.798 [0.791, 0.805] 0.675 [0.667, 0.684]

π6 0.803 [0.793, 0.813] 0.798 [0.791, 0.805] 0.675 [0.667, 0.684]

c 0.999 [0.989, 1.000] 0.999 [0.991, 1.000] -

β0 −2.554 [−2.567, −2.541] −2.562 [−2.579, −2.546] −1.594 [−1.605, −1.583]

β1 0.695 [0.691, 0.699] 0.697 [0.693, 0.700] −3.874 [−3.886, −3.862]

β2 - - 0.881 [0.877, 0.884]
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