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ABSTRACT

Objective: To test the hypothesis that cortical and hippocampal volumes, measured in vivo from
volumetric MRI (vMRI) scans, could be used to identify variant subtypes of Alzheimer disease
(AD) and to prospectively predict the rate of clinical decline.

Methods: Amyloid-positive participants with AD from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) 1 and ADNI2 with baseline MRI scans (n 5 229) and 2-year clinical follow-up (n 5 100)
were included. AD subtypes (hippocampal sparing [HpSpMRI], limbic predominant [LPMRI], typical AD
[tADMRI]) were defined according to an algorithm analogous to one recently proposed for tau neuro-
pathology. Relationships between baseline hippocampal volume to cortical volume ratio (HV:CTV)
and clinical variables were examined by both continuous regression and categorical models.

Results: When participants were divided categorically, the HpSpMRI group showed significantly
more AD-like hypometabolism on 18F-fluorodeoxyglucose-PET (p , 0.05) and poorer baseline
executive function (p , 0.001). Other baseline clinical measures did not differ across the
3 groups. Participants with HpSpMRI also showed faster subsequent clinical decline than
participants with LPMRI on the Alzheimer’s Disease Assessment Scale, 13-Item Subscale
(ADAS-Cog13), Mini-Mental State Examination (MMSE), and Functional Assessment Questionnaire
(all p, 0.05) and tADMRI on the MMSE and Clinical Dementia Rating Sum of Boxes (CDR-SB) (both
p , 0.05). Finally, a larger HV:CTV was associated with poorer baseline executive function and a
faster slope of decline in CDR-SB, MMSE, and ADAS-Cog13 score (p , 0.05). These associations
were driven mostly by the amount of cortical rather than hippocampal atrophy.

Conclusions: AD subtypes with phenotypes consistent with those observed with tau neuropathol-
ogy can be identified in vivo with vMRI. An increased HV:CTV ratio was predictive of faster clinical
decline in participants with AD who were clinically indistinguishable at baseline except for
a greater dysexecutive presentation. Neurology® 2017;89:2176–2186

GLOSSARY
Ab 5 b-amyloid; AD 5 Alzheimer disease; ADAS-Cog13 5 Alzheimer’s Disease Assessment Scale, 13-Item Subscale;
ADNI 5 Alzheimer’s Disease Neuroimaging Initiative; CDR-SB 5 Clinical Dementia Rating Sum of Boxes; CTV 5 cortical
total volume; EOAD5 early-onset Alzheimer disease; FAQ5 Functional Assessment Questionnaire; FDG5 18F-fluorodeoxy-
glucose; GMV 5 gray matter volume; HCI 5 hypometabolic convergence index; HpSp 5 hippocampal sparing; HV 5 hippo-
campal volume; LOAD 5 late-onset Alzheimer disease; LP 5 limbic predominant; MMSE 5 Mini-Mental State Examination;
NFT 5 neurofibrillary tangle; tAD 5 typical Alzheimer disease; TMT 5 Trail Making Test; vMRI 5 volumetric MRI.

When tracked longitudinally with cognitive or functional instruments, people with Alzheimer
disease (AD) exhibit varying rates of clinical decline. Emerging evidence links this heterogeneity
to differences in the underlying biomarker and neuropathology profiles. Recent neuropathology
studies have sought to formalize one aspect of this variability by defining AD subtypes on the
basis of the different relative densities of pathologic tau deposits in cortical and hippocampal
regions of participants with equivalently staged AD.1,2 These categorical Murray-Dickson sub-
types, called hippocampal sparing (HpSp), typical AD (tAD), and limbic predominant (LP),
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were associated with differences in age at diag-
nosis and death, clinical presentation, and rate
of antemortem clinical progression, with indi-
viduals with the HpSp variant being younger,
more commonly showing an atypical clinical
presentation, and declining faster.1,2 In vivo
brain atrophy measurements have shown vary-
ing anatomic patterns and degree of atrophy
across participants, with increased cortical
atrophy in a subgroup associated with more
executive dysfunction reminiscent of the
HpSp subtype.3–5 Moreover, a within-
participant comparison demonstrated that
the ratio of cortical to hippocampal volumes
(HVs) from antemortem volumetric MRI
(vMRI) correlates with the postmortem tau
neuropathologic variant.6

The goal of this study was to test the
hypothesis that measures of regional cortical
and HV, measured in vivo from vMRI, can
be used to define disease subtypes with pheno-
types consistent with those based on tau neuro-
pathology and that these features would
prospectively predict differential clinical pre-
sentations and rates of clinical decline in partic-
ipants with AD, explaining part of the
variability in symptomatology and progression.

METHODS Participant sample. Data used in the prepara-

tion of this article were obtained from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.

edu). Appendix e-1 and table e-1 at Neurology.org, http://www.

adni-info.org, http://adni.loni.usc.edu, and previous reports7–20

give more information.

Standard protocol approvals, registrations, and patient
consents. Written informed consent was obtained according to

the Declaration of Helsinki, and procedures were approved by

site-specific Institutional Review Boards for the Protection of

Human Subjects.

We selected amyloid-positive participants with AD from ADNI,

diagnosed as previously described (http://www.adni-info.org), with

baseline 3-dimensional T1 magnetization-prepared rapid acquisition

gradient echo vMRI scans (n 5 229). Amyloid positivity was

defined as having a CSF b-amyloid1-42 (Ab1-42) ,192 pg/mL

on the University of Pennsylvania assay.21 If CSF was not avail-

able, a 18F-florbetapir-PET cortical standardized uptake value

ratio.1.11 based on the University of California, Berkeley quan-

tification was used.22 This cohort was used to define the AD

subtypes and to assess baseline demographics, age at onset, mem-

ory, and executive function.23,24 In addition, the mean hypome-

tabolic convergence index (HCI),25 a measure of the severity of an

AD-like hypometabolism pattern on 18F-fluorodeoxyglucose

(FDG)-PET provided in the ADNI database, was assessed.

To characterize longitudinal changes, we also evaluated a sub-

cohort of participants with AD with 2-year clinical follow-up

scores on the Mini-Mental State Examination (MMSE), Alz-

heimer’s Disease Assessment Scale, 13-Item Subscale (ADAS-

Cog13), Clinical Dementia Rating Sum of Boxes (CDR-SB),

executive and memory composite, and Functional Assessment

Questionnaire (FAQ). These tests were administered as previ-

ously described (http://www.adni-info.org). The rate of change

in these scales was estimated as the slope of change from baseline

to the 2-year visit, including all intermediate visits. Longitudinal

analyses were completed only for those who had complete data (at

baseline and 6, 12, and 24 months), including n5 100 for CDR-

SB and FAQ, n5 99 for MMSE and memory composite, n5 97

for executive function composite, and n5 88 participants for the

ADAS-Cog13. Those excluded from the longitudinal analysis for

missing data (n 5 119) were not different from those included

except they had a higher baseline ADAS-Cog13 and a shorter

disease duration and were more likely not to be non-Hispanic

white (p , 0.05, data not shown).

CSF measures. CSF amyloid and tau analytes were collected

and processed as described15 and downloaded from the Labora-

tory of Neuro Imaging site (http://adni.loni.usc.edu).

vMRI analysis and endpoints. Volumetric measures were

calculated from the 3-dimensional T1 images with Free-

Surfer (version 5.1). Specifically, left and right gray matter

volumes (GMVs) from lateral frontal (caudal and rostral

midfrontal, pars opercularis, pars triangularis), superior tem-

poral, and lateral parietal (inferior parietal, superior parietal,

supramarginal) cortices in both cerebral hemispheres were

summed to provide a measure of bilateral cortical total volume

(CTV)1,6 (appendix e-1, Freesurfer Regions). HVs were also

summed to create a bilateral total. Both the CTV and HV

measures were preadjusted for the effects of intracranial vol-

ume, scanner strength (1.5T vs 3T), age, and sex with b co-

efficients estimated with a regression model estimated on all

amyloid-negative, stable, cognitively normal controls from

ADNI (see appendix e-1, Pre-adjustment Formula for Volu-

metric Measures). The residual values for CTV and HV were

then used to calculate the HV:CTV ratio (see appendix e-1,

equation 3).

Definition of AD subtypes. In the original presentation of the
subtype algorithm, the HpSp, tAD, and LP subtypes were

defined with a 2-step procedure based on the neurofibrillary

tangle (NFT) counts in the hippocampus and cortical regions.1 In

our study, the HV:CTV ratio was first split (stage 1) at the 25th

and 75th percentiles. Participants with HV:CTV ratios below the

25th percentile were provisionally designated as having LPMRI

(HV:CTV ratio #0.0408, n 5 57); those with HV:CTV ratios

above the 75th percentile were provisionally designated as having

HpSpMRI (HV:CTV ratio$0.0501, n5 57); and the remainder

were considered to have tADMRI (n 5 115). In a second step

(stage 2), only participants with HpSpMRI whose HV was greater

than the median adjusted HV (median 5 5,726.20 cm3) and

CTV was less than the median adjusted CTV (median 5

128,916.82 cm3) were considered as definitively having HpSpMRI

(n 5 33). Furthermore, only participants with LPMRI whose

CTV was greater than the median adjusted CTV and HV was less

than the median adjusted HV were retained as having LPMRI

(n 5 38). The remainder of participants were reclassified as

tADMRI (n 5 158). Note that in our study, designations are

reversed to reflect that MRI volumes decrease with disease

severity, in contrast to counts of NFT pathology, which increase.

Figure 1A displays the relative hippocampal to cortical atrophy in

the 3 subtypes.

Because a single-step procedure would be logistically simpler

to operationalize and because in a direct comparison of antemor-

tem MRI to postmortem pathologic subtypes the simple ratio of

Neurology 89 November 21, 2017 2177

ª 2017 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
http://neurology.org/lookup/doi/10.1212/WNL.0000000000004670
http://www.adni-info.org/
http://www.adni-info.org/
http://adni.loni.usc.edu
http://www.adni-info.org/
http://www.adni-info.org/
http://adni.loni.usc.edu/


hippocampal-to-cortical GMWwas found to significantly predict

the postmortem neuropathologic tau subtype,6 we also assessed

the subgroups obtained after stage 1 only of the algorithm.

Statistical analyses. Relationships between subtype categories

and age at onset, continuous demographic variables, and baseline

clinical, cognitive, CSF Ab1-42, total tau, and phosphorylated

tau181 and FDG HCI variables were assessed with a 1-way

analysis of covariance. The relationship between subtype cate-

gory and 2-year change on clinical and cognitive measures was

assessed with a repeated-measures analysis of covariance with

correction for sphericity. The relationships of subtype category

and categorical demographic and genetic variables were evaluated

with a x2 test. Finally, the linear relationships between baseline

HV, CTV, or HV:CTV as continuous variables and slope of the

2-year change in clinical and cognitive measures were assessed

with a stepwise linear regression model. Significant associations

between HV:CTV and clinical and cognitive measures were then

evaluated with a partial Pearson correlation. Age, sex, and years of

education were included in all models when appropriate.

A threshold of a 5 0.05 was used for statistical significance, and

post hoc pairwise comparisons between categories were corrected

for multiple comparisons with Bonferroni adjustment. SPSS

version 24.0 (SPSS Inc, Chicago, IL) was used for all statistical

analyses.

RESULTS Demographics. The characteristics of the
sample by atrophy subtypes are summarized in table 1.
The prevalence of the atypical subtypes was 31%
(14.4% for HpSpMRI and 16.6% for LPMRI) after
stage 2 of the algorithm. People assigned to the
HpSpMRI subtype were on average younger than

Figure 1 Difference in baseline memory, executive function, and HCI between baseline atrophy subtypes

(A) Relative atrophy in the hippocampus and cortex is represented as a z score relative to the amyloid-negative cognitively normal population from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI). The limbic predominant (LPMRI; blue) subtype shows substantial hippocampal atrophy and limited cortical
atrophy. The hippocampal sparing (HpSpMRI; red) subtype shows the opposite pattern, with greater cortical atrophy than hippocampal atrophy. The typical
Alzheimer disease presentation (tADMRI; green) shows nearly equal relative atrophy in both the hippocampus and cortex. (B) A significant difference by
subtype is also observed for the 18F-fluorodeoxyglucose hypometabolic convergence index (HCI), a measure of hypometabolism in typical AD cortical regions
(p 5 0.008). In particular, the HpSpMRI subtype shows the greatest level of hypometabolism on this measure relative to the other subtypes (LP, tAD,
p , 0.05). (C) Finally, the atrophy subtypes (LPMRI, tADMRI, and HpSpMRI) do not show significant differences in memory performance at baseline
(p . 0.05). (D) However, the HpSpMRI subtype is associated with significantly reduced baseline executive function relative to the tADMRI or LPMRI subtype
(p , 0.001). *p , 0.05, **p , 0.01.
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Table 1 Baseline and clinical change characteristics of overall sample and categorical Murray-Dickson subtypes determined from MRI volumetry (mean 6 SD)

Baseline sample (n 5 229) Longitudinal sample (n 5 100)

LPMRI tADMRI HpSpMRI p Value
Pairwise
(p < 0.05) LPMRI tADMRI HpSpMRI p Value

Pairwise
(p < 0.05)

n 33 158 38 NA 14 67 19 NA

Female, % 30.3 47.5 34.2 0.097 NA 28.6 50.7 36.8 NS NA

Age, y 75.5 6 7.2 74.3 6 7.7 71.1 6 9.2 0.043 None 73.9 6 7.3 75.3 6 7.6 69.7 6 8.4 0.023 tADMRI .
HpSpMRI

Education, y 15.3 6 2.2 15.3 6 3.1 16.4 6 2.6 NS None 15.5 6 2.3 14.7 6 3.3 16.8 6 2.6 0.034 HpSpMRI .
tADMRI

Non-Hispanic white, % 93.9 90.5 86.8 NS NA 100 95.5 94.7 NS NA

Age at onset, ya 72.9 6 7.7 72.0 6 8.0 69.2 6 9.9 NS None 70.0 6 7.9 72.3 6 8.1 67.2 6 9.2 0.062 NA

EOAD (<65 y), %a 9.4 18.4 36.8 0.01 NA 15.4 17.9 42.1 0.067 NA

Time since onset, ya 3.0 6 2.6 2.8 6 2.7 2.3 6 2.1 NS None 4.2 6 3.1 3.6 6 2.8 2.9 6 2.4 NS None

APOE e41, %b 81.8 76.9 52.8 0.006 NA 92.9 85.1 52.6 0.003 NA

% MAPT H1/H1c,d 61.3 70.3 57.6 NS NA 50.0 75.4 63.1 NS NA

Follow-up time, y 2.1 6 0.1 2.1 6 0.1 2.2 6 0.1 NS NA

CSF Ab1-42, pg/mLe,f 126.5 6 26.6 131.4 6 20.8 128.7 6 23.0 NS NA 121.0 6 28.6 131.2 6 20.8 134.6 6 21.5 NS NA

CSF total tau, pg/mLg,h 129.6 6 51.7 131.0 6 62.0 130.8 6 67.8 NS NA 123.4 6 44.6 127.4 6 56.7 129.1 6 66.8 NS NA

CSF p-tau181, pg/mLe,f 56.3 6 35.5 54.0 6 31.7 47.8 6 17.7 NS NA 50.5 6 22.6 51.6 6 30.5 43.3 6 17.1 NS NA

Mean global cortical
18F-florbetapir SUVRi,j

1.4 6 0.2 1.4 6 0.2 1.4 6 0.2 NS NA 1.3 6 0.1 1.5 6 0.1 1.3 6 0.4 0.014 tADMRI .
LPMRI

CDR-SB score 4.4 6 1.9 4.5 6 1.6 4.2 6 1.3 NS None 4.2 6 1.5 4.3 6 1.6 4.1 6 1.4 NS None

D CDR-SB score 1.4 6 1.5 1.4 6 1.1 2.5 6 1.6 0.010 HpSpMRI .
tADMRI

FAQ scorek 13.0 6 6.8 13.0 6 6.8 12.9 6 6.7 NS None 13.9 6 7.0 12.1 6 6.8 10.9 6 6.7 NS None

D FAQ score 2.2 6 2.3 3.6 6 2.4 4.9 6 2.5 0.012 HpSpMRI .
LPMRI

MMSE score 23.4 6 1.6 23.2 6 2.1 23.0 6 2.2 NS None 23.7 6 1.5 23.2 6 2.0 23.2 6 1.6 NS None

D MMSE scorel 21.8 6 3.0 21.8 6 2.0 23.9 6 2.5 0.003 LPMRI,
tADMRI .
HpSpMRI

ADAS-Cog13 scorem,n 29.3 6 6.2 30.5 6 8.3 31.6 6 9.9 NS None 26.8 6 6.1 28.8 6 6.7 30.4 6 9.1 NS None

D ADAS-Cog13 scoreo 2.2 6 3.3 4.7 6 3.9 7.2 6 3.9 0.004 HpSpMRI .
LPMRI

Memory composite
score

20.8 6 0.4 20.9 6 0.5 21.0 6 0.7 NS None 20.8 6 0.3 20.8 6 0.5 20.9 6 0.7 NS None
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Table 1 Continued

Baseline sample (n 5 229) Longitudinal sample (n 5 100)

LPMRI tADMRI HpSpMRI p Value
Pairwise
(p < 0.05) LPMRI tADMRI HpSpMRI p Value

Pairwise
(p < 0.05)

D Memory composite
scorep

20.1 6 0.2 20.2 6 0.2 20.3 6 0.2 0.041 None

Executive function
composite score

20.4 6 0.8 20.8 6 0.8 21.6 6 0.7 ,0.001 LPMRI .
tADMRI .
HpSpMRI

20.3 6 1.0 20.8 6 0.7 21.5 6 0.7 ,0.001 LPMRI,
tADMRI .
HpSpMRI

D Executive function
composite scoreq

20.2 6 0.3 20.3 6 0.3 20.3 6 0.3 NS None

Abbreviations: Ab 5 b-amyloid; ADAS-Cog13 5 Alzheimer’s Disease Assessment Scale–13-Item Subscale; APOE 5 apolipoprotein E; CDR-SB 5 Clinical Dementia Rating Scale–Sum of Boxes; EOAD 5 early-onset
Alzheimer disease (age ,65 years); FAQ 5 Functional Assessment Questionnaire; HpSpMRI 5 hippocampal sparing; LPMRI 5 limbic predominant; MAPT 5 microtubule associated protein tau; MMSE 5 Mini-Mental
State Examination; NA 5 not available; p-tau181 5 tau phosphorylated at threonine 181; SUVR 5 standardized uptake value ratio (normalized to whole cerebellum); tADMRI 5 typical AD.
For p values: female, non-Hispanic white, APOE e41, and MAPT haplotype based on x2 test; all others based on analysis of covariance.
aOne participant missing age at onset, percent EOAD, and years since onset from both cross-sectional (CS) and longitudinal analysis (1 LPMRI).
b Four participants missing APOE genotype from CS analysis (2 tADMRI, 2 HpSpMRI).
c Seventeen participants missing MAPT genotype from CS analysis (1 LPMRI, 10 tADMRI, 5 HpSpMRI).
d Two participants missing MAPT genotype from longitudinal analysis (2 tADMRI).
e Fifteen participants missing CSF Ab1-42 and p-tau from CS analysis (2 LPMRI, 9 tADMRI, 4 HpSpMRI).
f One participant missing CSF Ab1-42 and p-tau from longitudinal analysis (1 tADMRI).
g Twenty-two participants missing CSF total tau from CS analysis (5 LPMRI, 13 tADMRI, 4 HpSpMRI).
h Three participants missing CSF total tau from longitudinal analysis (1 LPMRI, 2 tADMRI).
i Ninety-five participants missing 18F-florbetapir SUVR from CS analysis (10 LPMRI, 63 tADMRI, 12 HpSpMRI).
j Seventy-four participants missing 18F-florbetapir SUVR from longitudinal analysis (8 LPMRI, 49 tADMRI, 17 HpSpMRI).
kOne participant missing baseline FAQ from CS analysis (1 LPMRI).
l One participant missing Δ MMSE from longitudinal analysis (1 HpSpMRI).
mFour participants missing baseline ADAS-Cog13 from CS analysis (3 tADMRI, 1 HpSpMRI).
nOne participant missing baseline ADAS-Cog13 from longitudinal analysis (1 tADMRI).
o Seven participants missing Δ ADAS-Cog13 from longitudinal analysis (2 LPMRI, 2 tADMRI, 3 HpSpMRI).
pOne participant missing Δ memory composite from longitudinal analysis (1 LPMRI).
q Three participants missing Δ executive function composite from longitudinal analysis (1 tADMRI, 2 HpSpMRI).
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those in both the tADMRI and LPMRI subtypes. The
prevalence of APOE e4 was significantly lower in the
HpSpMRI subtype, while MAPT H1/H1 haplotype
prevalence was not different between subtypes.
Finally, the HpSpMRI subtype tended to have an
earlier age at onset, but this difference was not signif-
icant. However, the percentage of individuals classi-
fied as having early-onset AD (EOAD; onset before
65 years of age) was different across the groups in the
cross-sectional sample, with the HpSpMRI group
showing the highest percentage of individuals with
EOAD (table 1).

Cross-sectional analyses. Baseline CSF measures of
Ab1-42, total tau, and phosphorylated tau181 were
not different between groups (table 1). Furthermore,

no differences between subtypes were observed at
baseline in the MMSE, ADAS-Cog13, CDR-SB,
FAQ, or memory composite score (table 1 and
figure 2C), but the HpSpMRI subtype scored worse
on the executive function composite (table 1 and
figure 2D). The FDG HCI, an index of AD-like
hypometabolism, was different between atrophy
subtypes, with HpSpMRI showing a greater hypo-
metabolic pattern (figure 2B).

Longitudinal analyses. Mean follow-up time was not
different across groups (table 1). Subtype category
was associated with 2-year decline on the CDR-SB,
FAQ, ADAS-Cog13, and MMSE (table 1 and figure
3) but not in the memory or executive function
composite scores. In post hoc comparisons, the

Figure 2 Relationship between baseline atrophy subtype and subsequent 2-year change in clinical and cognitive measures

Two-year changes in clinical and cognitive measures differed significantly between the atrophy subtypes (limbic predominant [LPMRI], typical AD [tADMRI],
and hippocampal sparing [HpSpMRI]). Participants with HpSp decline more quickly than those with the other subtypes, including a significantly greater rate of
increasing (A) clinical dementia severity (Clinical Dementia Rating [CDR] Sum of Boxes, p 5 0.013) and (B) functional impairment (Functional Assessment
Questionnaire [FAQ], p 5 0.020), as well as (C) faster cognitive decline on the Mini-Mental State Examination (MMSE ) (p 5 0.002) and (D) Alzheimer’s
Disease Assessment Scale, 13-Item Subscale (ADAS-Cog13, p , 0.001). a 5 ΔHpSp . ΔtAD, p , 0.05; b 5 ΔHpSp . ΔLP, p , 0.05; c 5 LP, tAD . HpSp,
p , 0.05; d 5 ΔtAD, ΔLP . ΔHpSp, p , 0.05; and e 5 HpSp . LP, p , 0.01.
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HpSpMRI group declined more rapidly than the
LPMRI group on the FAQ, ADAS-Cog13, and MMSE
and more rapidly than the tADMRI group on the
CDR-SB and MMSE (p , 0.05).

We repeated all analyses using stage 1 definitions
of the classification algorithm. The results were very
similar to those with stage 2 classification (table e-1).

Regression analyses. Finally, we examined associations
between HV:CTV and clinical phenotypes. At base-
line, HV:CTV was not associated with any of the
global scales (MMSE, ADAS-Cog13, CDR-SB, or
FAQ) or the memory composite score but was asso-
ciated with the executive function composite score,
for which a higher HV:CTV ratio (reflecting

increased cortical relative to hippocampal atrophy)
was associated with poorer executive function (figure
3A and table 2).

The HV:CTV ratio was also associated with
2-year change on the CDR-SB, MMSE, and
ADAS-Cog13, with higher HV:CTV ratio associated
with a faster rate of decline (figure 3, B–D, and table
2). Two-year change in the FAQ was not associated
with either HV:CTV or any demographic variable,
while 2-year change in the memory and executive
composite scores was associated only with age and
sex, respectively (table 2).

When HV and CTV were entered into the models
as additional independent predictors, each was each
independently associated with baseline CDR-SB,

Figure 3 Relationship between HV:CTV ratio and baseline and 2-year change in clinical and cognitive measures

Significant linear relationships between the hippocampal volume to cortical volume (HV:CTV) ratio and baseline executive function and 2-year change in
clinical and cognitive measures were observed. (A) Specifically, baseline HV:CTV ratio was significantly associated with baseline executive function
(rp 5 20.294, p , 0.001). Baseline HV:CTV ratio was associated with (B) a faster 2-year increase in Clinical Dementia Rating Sum of Boxes (CDR-SB,
rp 5 0.283, p 5 0.003) score, (C) a faster decline in Mini-Mental State Examination (MMSE, rp 5 20.303, p 5 0.001) score, and (D) a faster increase in
Alzheimer’s Disease Assessment Scale, 13-Item Subscale (ADAS-Cog13) score (rp 5 0.370, p, 0.001). Dotted lines represent the atrophy subtype cutoffs
for LPMRI vs tADMRI (lower bound) and HpSpMRI vs tADMRI (higher bound).
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ADAS-Cog13, and MMSE scores, with decreased vol-
umes associated with an increased CDR-SB and
ADAS-Cog13 and decreased MMSE scores (table 2).
CTV alone was independently associated with the
baseline FAQ score and the executive function com-
posite (and in this case HV:CTV was no longer sig-
nificant), with decreased CTV associated with
increased FAQ and reduced executive function score
(table 2). Both CTV and the HV:CTV ratio were
independently associated with the baseline memory
composite, with a lower CTV and lower HV:CTV
ratio associated with poorer memory (table 2). In the
assessment of 2-year change and with HV and CTV
included in the model, the HV:CTV ratio remained
significantly independently associated with increasing
clinical dementia severity (CDR-SB), with an
increased HV:CTV ratio associated with a faster

increase in CDR-SB score (table 2). Two-year change
in ADAS-Cog13 score was independently associated
with both CTV and HV (table 2), while change in
MMSE score was associated only with CTV (table 2).
Similar to the findings in the models including only
HV:CTV, the slope of change in FAQ score was not
associated with any atrophy or demographic variable
and change in the memory and executive function
composite scores was associated only with age and
sex, respectively (table 2).

DISCUSSION We found that subtypes of AD consis-
tent with those identified with postmortem NFT
counts1 could be identified in vivo from vMRI in
cases with relatively mild dementia (mean MMSE
[SD] score 23.2 [2.0], range 19–27). Specifically,
an analog of the Murray-Dickson algorithm,

Table 2 Associations between continuous atrophy metrics and clinical and cognitive performance

R2

Variable 1 Variable 2 Variable 3

Name b p Value Name b p Value Name b p Value

Including demographic variables and HV:CTV ratio only

Baseline CDR-SB score NA None

Baseline FAQ score NA None

Baseline ADAS-Cog13 score NA None

Baseline MMSE score NA None

Baseline memory score NA None

Baseline executive function score 0.102 HV:CTV 233.704 ,0.001 Educ 0.035 0.047 NA

Slope of D in CDR-SB score 0.080 HV:CTV 46.351 0.004 NA NA

Slope of D in FAQ score NA None

Slope of D in ADAS-Cog13 score 0.195 HV:CTV 164.998 0.002 Age 20.124 0.013 NA

Slope of D in MMSE score 0.092 HV:CTV 289.170 0.002 NA NA

Slope of D in memory score 0.166 Age 0.011 ,0.001 NA NA

Slope of D in executive function score 0.042 Sex 20.121 0.044 NA NA

Including demographic variables, HV, CTV, and HV:CTV ratio

Baseline CDR-SB score 0.069 HV 23.9 3 1024 0.003 CTV 21.7 3 1025 0.036 NA

Baseline FAQ score 0.038 CTV 21.0 3 1024 0.003 NA NA

Baseline ADAS-Cog13 score 0.193 CTV 22.8 3 1024 ,0.001 Age 0.251 0.001 HV 20.002 0.005

Baseline MMSE score 0.102 CTV 5.0 3 1025 ,0.001 Age 20.059 0.001 HV 23.6 3 1024 0.029

Baseline memory score 0.122 CTV 2.0 3 1025 ,0.001 HV:CTV 16.147 0.002 Age 20.014 0.003

Baseline executive function score 0.296 CTV 3.9 3 1025 ,0.001 Age 20.025 ,0.001 Educ 0.033 0.039

Slope of D in CDR-SB score 0.080 HV:CTV 46.351 0.004 NA NA

Slope of D in FAQ score NA None

Slope of D in ADAS-Cog13 score 0.244 CTV 21.7 3 1024 ,0.001 HV 0.001 0.041 NA

Slope of D in MMSE score 0.181 CTV 8.6 3 1025 ,0.001 NA NA

Slope of D in memory score 0.166 Age 0.011 ,0.001 NA NA

Slope of D in executive function score 0.041 Sex 20.121 0.044 NA NA

Abbreviations: ADAS-Cog135 Alzheimer’s Disease Assessment Scale–13-Item Subscale; CDR-SB5 Clinical Dementia Rating Scale–Sum of Boxes; CTV5

cortical volume; Educ 5 education; FAQ 5 Functional Assessment Questionnaire; HV 5 hippocampal volume; MMSE 5 Mini-Mental State Examination; NA
5 not available.
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applied to hippocampal and cortical GMV to define
HpSpMRI, tADMRI, and LPMRI subtypes, yielded
clinical phenotypes consistent with those reported in
the autopsy study.1 The HpSpMRI group was younger
and declined more rapidly than both the tADMRI and
LPMRI groups on measures of global cognition despite
comparable cognition at baseline. Moreover, the
HpSpMRI subtype performed more poorly on a com-
posite measure of executive function. When modeled
as continuous variables, smaller CTV relative to HV
was predictive of decreased baseline executive func-
tion and more 2-year clinical decline. When HV and
CTV were modeled independently, CTV emerged as
the main driver of the baseline performance and dif-
ferential rates of decline across the cohort, although
the ratio was independently predictive of 2-year
change in dementia severity. Overall, given that the
patterns of AD subtypes and associated clinical
phenotypes were similar between those defined with
atrophy measures from MRI and those defined with
postmortem NFT counts, these findings suggest
a localized association between the amount of tau
pathology and the loss in GM consistent with a pre-
vious report.6 Future studies with tau PET will help
to further elucidate this relationship.

Unlike at baseline, subtype did not affect 2-year
decline in the executive function composite score.
However, this finding may be due to a floor effect.
Major components of the executive function score
are Trail Making Test (TMT) A and B, which have
maximal scores for noncompletion (150 seconds for
TMT A, 300 seconds for TMT B). Thus, if an
individual could not complete the TMT at baseline
or at follow-up, decline in executive function could
not be captured.

The atrophy signature and cognitive profiles asso-
ciated with the different subtypes identified in the
present study are similar to those associated with spo-
radic EOAD. Specifically, increased cortical atrophy,
especially in lateral and medial parietal areas, and
a higher prevalence of atypical (dysexecutive, visuo-
spatial) cognitive presentations have been reported
in EOAD, in contrast to atrophy predominantly in
the hippocampus and an amnestic cognitive profile
in late-onset AD (LOAD).26–28 Thus, the HpSpMRI

subtype shows features similar to EOAD, whereas
LOAD features are more similar to those of LPMRI.
The fact that the subtype (or the continuous GMV)
remained significantly associated with clinical presen-
tation only when age was included in the statistical
model and was a stronger predictor than age itself
suggests that while an EOAD/LOAD age cut point
provides a simple diagnostic rule, the clinical profile
and trajectory are driven by the different underlying
patterns of neurodegeneration, which may provide
a more biologically driven basis for segregating

patients with AD into subtypes. Whereas a typical
AD sequence of atrophy, similar to the stereotypical
progression of tau pathology,29,30 would show hippo-
campal atrophy preceding a more widespread decrease
in cortical GMV, the HpSpMRI group appears to
show the reversed sequence, with cortical atrophy
preceding that of the hippocampus. The presence of
distinct atrophy patterns in mild cognitive impair-
ment and AD and the profiles of the subtypes iden-
tified in the present study are also consistent with
data-driven cluster analyses, which identified differ-
ential brain atrophy patterns that were dominated
either by medial temporal atrophy or by widespread
cortical atrophy.3,31–33

The prevalence of the atypical Murray-Dickson
subtypes found in the present study (14.4%
HpSpMRI, 16.6% LPMRI) was comparable to that
found in the original, substantially larger, autopsy
study.1 Subtypes defined solely after stage 1 of the
Murray-Dickson algorithm (i.e., defined solely on
the basis of the HV:CTV ratio) exhibited phenotypic
relationships very similar to those obtained after
stage 2. In particular, the HpSpMRI group (stage 1)
progressed more rapidly and performed worse on
executive relative to memory tasks. This finding is
also consistent with the direct comparison of ante-
mortem MRI to pathologic subtypes determined
postmortem, in which the simple HV:GMV ratio
(i.e., corresponding to step 1 of the algorithm) was
found to significantly predict the postmortem neuro-
pathologic tau subtype.6

To avoid selection bias, we calculated the subtype
cutoffs from baseline data independently of whether
the participants had follow-up data. If the subtypes
were calculated just on the subset of participants who
had 2-year follow-up data on all scales, the distribution
of participants across the 3 subtypes was maintained
and the findings were not substantially altered (only
4 participants showed different subtype categorization
in stage 1 or 2). Thus, the cutoff values to determine
subtype in the present study appear to be fairly consis-
tent within the study population, supporting the pres-
ence of phenotypic differences within the AD cohort.

One drawback of the Murray-Dickson algorithm
is that it requires subdividing a cohort of patients
(when applied to vMRI) on the basis of the distribu-
tion of their hippocampal and cortical GMV and
their ratio. Thus, this technique is not per se directly
applicable prospectively to individual participants.
However, the quartile and median values reported
in the present study may provide suitable cut points
for a decision tree to assign a subtype prospectively
to new participants with mild AD with vMRI scans
processed with the same processing pipeline and seg-
mentation software. This hypothesis remains to be
determined with replication in independent samples.
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A few other limitations of the present study exist.
Although AD pathology likely develops in preclinical
and prodromal stages over many years, we focused
only on patients with clinical AD in this study. Future
studies in prodromal populations (mild cognitive
impairment, particularly amnestic vs nonamnestic),
as well as preclinical AD, are warranted. Furthermore,
the ADNI study recruits from primarily academic
medical institutions and may not be reflective of the
broader AD community. In addition, the study has
age (55–90 years only) and severity (mild AD or less)
inclusion criteria and does not include atypical pre-
sentations of AD. However, the fact that we saw
differences by atrophy subtype despite the relatively
strict enrollment criteria suggests that these effects are
robust and generalizable. Future studies in a broader
AD population would help to better characterize
these differential atrophy profiles.

AD subtypes based on brain atrophy defined with
an algorithm originally derived from postmortem
NFT counts identified participants with varying clin-
ical profiles, genetic background, and differential rates
of cognitive decline, consistent with those observed in
the original autopsy study. In particular, patients with
the HpSpMRI subtype, reflecting increased cortical
rather than hippocampal atrophy, were generally
younger, were less likely to be APOE e4 positive,
and had both a more dysexecutive cognitive profile
and a more rapid rate of clinical decline. The rate of
cognitive decline was driven primarily by cortical
GMV loss. The ability to distinguish these subtypes
and to determine neurodegenerative predictors of
decline with in vivo imaging methods enables clinical
trajectories to be predicted more accurately in living
patients and points to the utility of considering atro-
phy patterns beyond the hippocampus in the assess-
ment of patients with AD.
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