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Abstract: Currently, white spot syndrome virus (WSSV) is one of the most serious pathogens that 

impacts shrimp farming around the world. A WSSV vaccine provides a significant protective benefit to 

the host shrimp. Although various types of vaccines against WSSV have emerged, the immune effects 

among them were not compared, and it remains unclear which type of vaccine has the strongest 

protective effect. Meanwhile, due to the lack of effective routes of administration and immunization 

programs, WSSV vaccines have been greatly limited in the actual shrimp farming. To answer these 

questions, this study conducted a comprehensive meta-analysis over dozens of studies and compared 

all types WSSV vaccines, which include sub-unit protein vaccines, whole virus inactivated vaccines, 

DNA vaccines and RNA-based vaccines. The results showed that the RNA-based vaccine had the 

highest protection rate over the other three types of vaccines. Among the various sub-unit protein 

vaccines, VP26 vaccine had the best protective effects than other sub-unit protein vaccines. Moreover, 

this study demonstrated that vaccines expressed in eukaryotic hosts had higher protection rates than 

that of prokaryotic systems. Among the three immunization modes (oral administration, immersion and 

injection) used in monovalent protein vaccines, oral administration had the highest protection rate. In 

natural conditions, shrimp are mostly infected by the virus orally. These results provide a guide for 

exploration of a novel WSSV vaccine and help facilitate the application of WSSV vaccines in shrimp 

farming. 
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1. Introduction 

Since the outbreak in shrimp in the 1990s, white spot syndrome virus (WSSV) has become the 

most virulent pathogen in the industry and impacts shrimp farming globally each year [1]. As a result, 

the development of viral vaccine has become one of intense focus of research in this field. So far, 

research in WSSV vaccine has made great progress and a variety types of vaccines have emerged, such 

as sub-unit protein vaccine [2], inactivated whole virus vaccine [3], DNA vaccine [4], RNA-based 

vaccine [5] and so on. These vaccines have proven that they can significantly enhance the immune 

response of the host shrimp and provide a significant protective effect in shrimp [6–9]. However, the 

protection rate among vaccines has not been compared. For the same viral protein, taking VP28 as an 

example, different types of vaccines have different immune effects in the host [10–12]. Additionally, 

even with same vaccine, different modes of immunization have different immune protective effects in 

animals [7, 8, 13]. Furthermore, different immunization times or attack times also result in different 

immune effects for the same protein vaccine [14, 15]. Conflicting conclusions were also observed 

between different studies [16, 17]. Furthermore, the immunization program, which includes the 

immune time and length, time of virus attack, mode of virus attacks and so on has a decisive effect on 

the immune effects. Although a WSSV vaccine has the potential significantly benefit the host shrimp, 

its practical application is heavily hindered by the lack of efficient and uniform immunization programs. 

To solve these above-mentioned issues, this study conducted a comprehensive meta-analysis for all 

kinds of current WSSV vaccines.  

 

2. Materials and Methods 

 

2.1 Search strategy and data retrieval 

All the relevant studies were retrieved using the search keywords of ‘white spot syndrome virus’ 

plus ‘vaccine’, or ‘immune’, or ‘protection’, or ‘antiviral’, or ‘control’, or ‘prevention’ etc. Search 

domains came from the English scientific publication databases such as the PubMed, SCI database, 

Elsevier, and the Springer; Chinese scientific databases like the CQVIP database, Wanfang database, 

China national knowledge infrastructure (CNKI), Chinese science citation database (CSCD), and also 



from the other public search engines, such as Google scholar and Web of Science. There were 178 

articles related to these keywords in which 98 references were determined to be relevant after review. 

After analysis, 54 publications containing protective effects fit the criteria for inclusion. All the data 

used in this study were extracted from the results of these original research papers. The WSSV 

vaccines were divided into four main categories; viral sub-unit vaccines, inactivated whole virus 

vaccines, DNA vaccines, and RNA-based vaccines. The characteristics of each vaccine were 

summarized respectively in supplementary data 1–4, with regard to the different types of vaccine, 

forms of the protein subunits, modes of administration, protection rate, and other relevant data [3–10, 

12–14, 16–55]. 

 

2.2 Statistical analysis 

 

    The outcome used in this study was the proportion of protection rate against WSSV infection 

among the different types and modes of vaccines. A Freeman-Tukey transformation [56] was applied to 

the protection rate to stabilize the variance and make the 0 to 1 ranged proportion more suitable for the 

statistical comparisons among groups. Heterogeneity was assessed using the Cochran’s Q statistics, and 

subset and regression analysis were conducted to explore potential sources of heterogeneity. A 

multivariate logistic regression was conducted to model the effects of different types of vaccines and 

virus attack modes. The analyses were conducted in statistical environment R (version 3.4.0) using 

metafor package [57]. 

 

3. Results 

 

3.1 Meta-analysis of overall protection rates for main types of vaccines 

To estimate the average protective effects for each type of vaccine, we first applied the 

meta-analysis random-effects model to protection rates of studies in the four main vaccine subtypes 

separately. Figure 1 shows the forest plot for protective rates of each study, and the weighted estimate 

of average protection rates in the context of a random-effects model for each subtype of vaccines. The 

weighted protection rates for each one of those four subtypes of vaccines, ranking from high to low, are 

RNA-based vaccine (Fig 1D, 80.18%), inactivated whole virus vaccine (Fig 1B, 65.29%), DNA 



vaccine (Fig 1C, 59.00%) and sub-unit protein vaccine (Fig 1A bottom, 55.88%) respectively. The 

monovalent (Fig 1A top) and polyvalent (Fig 1A middle) sub-unit protein vaccines have average 

protection rates 56.12% and 55.20%, respectively. Among those types of vaccines, the RNA-based 

vaccine has the highest protection rates and the smallest heterogeneity. Conversely, monovalent protein 

vaccines (Fig 1A top) and DNA vaccines (Fig 1C) have a very large heterogeneity (p<0.001), and 

polyvalent vaccines (Fig 1A middle) have the lowest average protection rate (55.20%). Figure 1E 

wholly shows the side by side comparison of the estimated protection rates for monovalent, polyvalent, 

while virus, DNA vaccine and RNA-based vaccines. 



 

Fig. 1. Forest plot of protective rates for four main vaccine types and the weighted estimated average protection rates. (1A) 

Subunit vaccines (top: monovalent vaccines; middle: polyvalent vaccines; bottom: estimated average protection rate for subunit 

vaccines); (1B) Whole virus inactivated vaccines; (1C) DNA vaccines; (1D) RNA technology-based vaccines; (1E) Estimated 

protection rates with confidence intervals for each type of vaccine. 

 



3.2 Monovalent Vaccines 

3.2.1 Subgroup analysis 

Among the subtype of vaccines, monovalent vaccines have the largest number of published 

studies (n=39) and the greatest heterogeneity. 64% of monovalent vaccine studies were conducted with 

the protein VP28 (Fig 2A), with an average protection rate of 63.21%, while still a high level of 

heterogeneity (p<0.001). There are only 3 studies conducted with VP26 protein (Fig 2B), which had 

the highest estimated protection rate (80.48%). 7 studies using VP19 proteins revealed the lowest 

average protection rate of 28.49% (Fig 2C). Beyond those three proteins, little publish research has 

been conducted (Fig 2D) and that data was not meta-analyzed here. Among the 25 studies using VP28, 

14 of them expressed this protein in E. coli had relatively low estimated protection rate (52.32%) and 

high heterogeneity; on the contrary, 11 studies using other expression hosts such as B. subtilis and 

Baculovirus had a higher estimated protection rate (75.73%, Fig. 3).The meta-analysis above showed 

that the type of proteins used in vaccines and expression host contributed to part of the heterogeneity 

(Fig 2 and Fig 3).  

 

 

Fig. 2. Forest plot of average protection rates for different monovalent vaccines. (2A) Monovalent VP28 vaccine; (2B) 

Monovalent VP26 vaccine; (2C) Monovalent VP19 vaccine; (2D) Monovalent other WSSV envelope vaccines. 



 

 

Fig. 3. Forest plot of average protection rates for monovalent vaccine studies. (Left) shown that conducted on the host of E. 

coli; (Right) shown that conducted on the host of non-E. coli.  

3.2.2 Regression analysis 

The logistic regression was applied to the monovalent vaccine data including 39 studies and 2,205 

experimental units. Univariate regression analysis confirmed that all five factors are significantly 

associated with protection rates (Table 1), while in the multivariate analysis, protein form, 

immunization mode, and virus attack mode were no longer significantly associated with protection 

rates because of the collinearity among them (Table 2). From the univariate analysis, VP26 had a 

higher protection rate than protein VP28, while VP19 and VP466 had relatively low protection rates 

compared to VP28. VP292 also had an inferior protection rate compared to VP28 , while VP24 was not 

different from VP28.  

Table 1 Univariate analysis of factors that associate with protection rate 

Variables P value 

Protein (VP28, VP19, VP24, VP26, VP292 and VP466) P<2.2×10-16 

Proteins Form (Purified, Transgenic and Others) 2.8×10-15 

Expression host (E. coli and Others) 4.0×10-8 

Immunization mode (Oral, Immersion and Injection) 2.4×10-8 

Virus attack mode (Oral, Immersion and Injection) 7.5×10-6 



 

Table 2 Multivariate analysis of factors associate with protection rate 

Variables remain significant P value 

Protein (VP28, VP19, VP24, VP26, VP292 and VP466) P<2.2×10-16 

Expression host (E. coli and Others) P<2.2×10-16 

 

The mentioned-above trends can also be found in the boxplot of protection rates against every 

protein (Fig 4A). Among three protein forms, purified protein has a significantly lower protection rate 

than transgenic or other forms (Fig 4B). Fig 4C suggests that protein vaccines expressed in E. coli had 

lower protection rate than other expression hosts. As to the effect of immunization modes, Fig 4D 

shows that oral differs significant from immersion and injection in protection rates, which had the 

highest protection rate among the three immunization modes. On the contrary, regarding the impact of 

virus attack mode, oral attack had inferior protection rate compared to immersion, but was not 

significantly different from injection ( Fig 4E). 

 

 

 

 

 

Fig. 4. Box plot of protection rates for studies grouped by different factors. (4A) Proteins; (4B) Protein forms; (4C) 

Expression hosts; (4D) Immunization mode; (4E) Virus attack mode. 

 

3.3 The best practices for RNA-based vaccine 

    Compared to other types of vaccines, RNA-based vaccines had the best protection rate and were 

homogeneous across studies (Fig 1D and 1E). To find the best practices for RNA vaccines, a logistic 

regression mode was adopted to further investigate the impact of dsRNA target genes, immunization 

mode, and virus attack mode on protection rate of RNA-based vaccines. Compared to other genes, the 

Fig 4A Fig 4B Fig 4C Fig 4D Fig 4E 



combination of PmRab7 and rr2 genes has the best protection rate of 95%. However, the differences in 

protective effects between PmRab7+rr2 and other genes investigated in those studies were not 

statistically significantly (p=0.10). Oral immunization performed significantly worse than injection 

(p=0.03) in immunization mode, while there was no significant difference observed between oral and 

injection virus attack mode (p=0.3). 

 

4. Discussion 

Through the first-time analysis with the meta tool, this study not only compared the protection 

rates of different types of vaccines, but also analyzed the protective effects of different protein subunit 

vaccines. Among the four types of vaccines, RNA-based vaccines have the highest protection rates 

over the other types of vaccines. The reason for this may be that RNA-based vaccines work directly at 

the transcriptional level, which targets the early stages of viral replication, not at the DNA or protein 

level [51, 52, 58]. Among the various subunit proteins vaccines, VP26 vaccine showed the best 

protective effect, not the most studied VP28 vaccine as might be expected. This may be due to the 

heterogeneity among studies of VP28 vaccine, as some studies had relatively lower protection rates and 

make the overall estimated average protection rate low. Multiple factors could have contributed to the 

variation of protection rate, e.g. immunization time, vaccine dose, and immunization route. However, 

the source of heterogeneity cannot be fully elucidated due to the limited details in the reports. This 

result needs to be further investigated by more comprehensive comparison that make the all other 

conditions consistent in the future vaccine studies. 

Due to the fact of lack of effective routes of administration and immunization program, WSSV 

vaccine still has not been fully utilized in the actual production of aquaculture.For this reason, this 

study further investigates effects of some factors that potentially impact vaccine protection rate. 

Through comparison of eukaryotic system and prokaryotic system, the results demonstrated that 

protein vaccines expressed in eukaryotic hosts had a higher protection rate than that in prokaryotic E. 

coli [10, 25, 26]. Among the three immunization modes used in subunit vaccines, oral mode differs 

significantly from immersion and injection, and has the highest protection rate. This mode is also more 

suitable for operation and application of a vaccine in the practical breeding of shrimp. As to the virus 

attack mode, the results showed that the mortality caused by oral infection is similar to that of the 

injection route, but worse than that of the immersion mode of virus attack [7, 16, 17]. So, it implies that 

shrimps are primarily infected with the virus by oral means under natural conditions. Furthermore, it 

suggests that disinfecting the water environment is conducive to the prevention and control of WSSV. 



In addition, the immunization dose of vaccine and the challenge dose of the virus have a crucial 

effect on the immune effect. However, since the specific immune dose or challenge dose is not well 

stated [14, 25, 55], or the unit of measurement is not consistent in many references [59, 60], these 

factors were not taken into account in the current study. With more comprehensive statistical data, the 

study can further investigate in more details. In general, establishment of a high-efficiency immune 

program could advance the progress of actual application of WSSV vaccines in shrimp farming, and 

provide reference for the control of other viral diseases in crustaceans. 
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