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Introduction 

 

The use of stem cells in regenerative medicine and specifically in facial rejuvenation is thought 

provoking and controversial.  Stem cells have a natural ability to repair damaged tissue.  They 

are inherent in most tissues of the body and function in a restorative capacity in many tissues 

such as the skin, where stem cells facilitate a rejuvenation of epidermal basal cell layers every 

day and in the intestinal tract, where mucosal lining tissues are replaced approximately every 

four days.  In the case of degenerative diseases, these cells are not activated quickly enough to 

fully repair damaged tissue.  The process of extracting, concentrating, and administering these 

stem cells have been shown in clinical trials to exhibit beneficial effects in many degenerative 

conditions.  In addition, cellular therapies have shown great promise for skin rejuvenation, hair 

restoration, and many other clinical applications in other areas of medicine. 

Surgeons have previously believed that damaged or diseased human tissue could only be 

replaced by donor transplants or, in select cases, alloplastic implants.  Today there is increased 

emphasis on tissue engineering and regenerative medicine.  Tissue engineering provides a more 

advanced approach in which organs or tissues can be repaired, replaced, or regenerated for a 

more focused treatment approach.  Tissue engineering combines the principles of 

bioengineering, cell transplantation, biomaterial engineering, and surgery.     

 

 

Categories of Stem Cells 



 

Stem cells possessed two important characteristics–they can renew themselves and they can give 

rise to specialized cell types.  Essentially, there are two different classifications of stem cells - 

embryonic and adult.  Embryonic stem cells are isolated from the inner cell mass of blastocysts.  

Adult stem cells have been identified in many organs and tissues and reside in a specific area of 

each tissue called a "stem cell niche".  There are three different types of adult stem cells - 

pluripotent, multipotent, and unipotent.  Pluripotent stem cells, such as embryonic or induced 

pluripotent stem cells, have the capacity to generate into tissue from any of the three germ layers.  

The risk for potential teratoma formation has impacted their clinical use.  Multipotent stem cells, 

such as mesenchymal stromal cells, lack this negative effect and have the capacity to 

differentiate into a more limited number of closely related cells.  Unipotent stem cells, although 

retaining the ability to self–renew, can produce only one cell type.  This group plays a critical 

role in normal tissue homeostasis.  The stem cells we are talking about for clinical therapies are 

essentially the multipotent type of stem cells which are derived from mesoderm origin.(1-3) 

 

In the field of regenerative medicine, there is a need for  a reliable source of stem cells in 

addition to biomaterial scaffolds and cytokine growth factors.    Candidates include embryonic 

stem cells (ESCs), induced pluripotent stem cells (iPSCs), and postnatal adult stem cells.  

Embryonic stem cells and induced pluripotent stem cells have significant therapeutic potential, 

because of their auto reproducibility and their pluripotentiality.   However, ethical 

considerations, cell regulations, and genetic manipulation limit their practical use.  Postnatal 

adult stem cells are immunocompatible and are not fraught with ethical issues regarding their 

use.   Postnatal adult stem cells can be obtained from bone marrow stroma, adipose tissue, 



dentition, skin, and a multitude of other tissues.  They are termed mesenchymal stem cells 

(MSCs) and have adipogenic, osteogenic, chondrogenic, myogenic, and neurogenic potential.  

(2-5) 

 

 

Induced pluripotent stem cells 

 

Ethical concerns associated with the use of embryonic stem cells spurred research efforts that 

would convert adult stem cells into pluripotent cells.  In 2006, Shinya Yamanaka (Kyoto, Japan) 

altered the genes in specialized adult male cells to cause de-differentiation and return to an 

embryonic-like stem cell state.  The mouse somatic cells were reprogrammed to the activation of 

a combination of transcription factors.  The cells were termed "induced pluripotent stem cells" 

(iPSCs). Yamanaka was awarded the Noble Prize "for the discovery that mature cells could be 

reprogrammed to become pluripotent". In 2007 both Yamanaka and James Thomas (University 

of Wisconsin) independently developed techniques to reprogram human cells into induced 

pluripotent stem cells.  (6)  

Typically, viruses are used to genomically alter the cell to produce iPSCs.  There were concerns 

that this manipulation could trigger the expression of oncogenes (cancer-causing genes).  

However, in 2008 techniques were discovered that removed oncogenes after induction of 

pluripotency.  This opened the door for the potential use of iPSCs in human disease.(7)  (8)    

Considerable research into anti-aging  has focused on utilizing induced pluripotent stem cells to 

reprogram cell senescence.  However, it has been noted that altering of induced pluripotent stem 



cells at a cellular level also allows for the stimulation of collagen synthesis.  This potential for 

induced pluripotent stem cells to generate collagen has significant implications in the field of 

aesthetic surgery. (8)  

 

(Table or Side Bar) 

Stem Cells 

Stem cells have remarkable potential to develop into many different cell types.  

 Stem cells have two important characteristics:   

1 – They can renew themselves  

 2-They can give rise to specialized cell types.    

 

There are two types of stem cells:   

1-Embryonic stem cells are isolated from the inner cell mass of blastocysts  

 2-Adult stem cells – have been identified in many organs and tissues and reside in a specific area of each tissue 

called a “stem cell niche” 

 

The classic definition of a stem cell requires that it possess two properties: 

Self-renewal – ability to go through numerous cell divisions while maintaining the undifferentiated state 

 Potency – capacity to differential into specialized cell types 

Pluripotent – able to give rise to any mature cell type 



Multipotent –having the ability to develop into more than one cell type, buy only those of a closely related family of 

cells 

Unipotent- can produce only one cell type but have property of self-renewal 

(multipotent and unipotent progenitor cells are often referred to as stem cells) 

 

 

In the past, there was no standard nomenclature and no standard, accepted method for identifying 

stem cells.  For this reason, in 2006, the International Society for Cellular Therapy proposed a set 

of minimum criteria for identifying cells as stem cells. (9)   These cells needed to adhere to 

plastic in culture and express certain surface molecules while lacking expression of others.  In 

2013, additional surface markers were added that should be expressed over 80% of the time on 

the surface of stem cells, while certain negative markers should be expressed on less than 2% of 

the cells. ((10) (11) The viability of isolated cells needed to exceed 70% and have the presence of 

at least two positive and two negative markers for establishing a phenotype.  In addition, the cells 

must possess the ability to differentiate into osteoblasts, adipocytes, and chondroblasts.  The 

International Society for Cellular Therapy recommends calling these cells from any source 

“Multipotent Mesenchymal Stromal Cells”. 

 

Autologous (from the same organism) derived mesenchymal stromal cells require initial 

harvesting of tissue, which is usually via an invasive procedure.  In the case of adipose tissue, 

this is usually by means of a direct surgical resection of adipose tissue or through liposuction 

aspirate.  In the case of bone marrow derived tissue, this is by means of an invasive bone marrow 



biopsy.  In addition, the tissue has to be processed, taking several hours in the case of  supra-

vascular fraction (SVF) and days to weeks in the case of culturing and expanding cells.  

Allogenic (from multiple organisms within the same species) derived mesenchymal stromal cells 

raise immunomodulatory concerns such as graft vs. host disease (GVHD).  In addition, there are 

concerns over communicable disease being transferred from donors to recipient.   

In the case of adult stem cells, whether they are derived as autologous tissue from an individual 

patient or allogenically derived tissue from multiple donors, there is the concern of decreasing 

"stemness" of the cells.  Many feel that over time, the potency or the "stemness" of the cells 

decreases, such that cells derived from older patients are less robust and therefore less clinically 

effective than cells derived from younger individuals.(12, 13)  

Pluripotent stem cells have significant therapeutic potential, because of their ability to 

differentiate into virtually any cell type. Pluripotent stem cells are isolated in three ways: (1) 

directly from human embryos (embryonic stem cells; ESCs), (2) from cloned embryos through 

somatic cell nuclear transfer (SCNT), or (3) from adult cells reprogrammed to a pluripotent state 

– usual by means of a virus inserted into the cell DNA resulting in genetic “reprograming” of the 

cell (induced pluripotent stem cells; IPSCs).  Pluripotent stem cell work can involve the creation 

and destruction of embryos, and concerns have been raised regarding the potential for 

uncontrolled growth (such as teratomas). Their use has been complicated by not only significant 

technical challenges, but also due to serious ethical concerns. (1, 14, 15) 

 

Sources of Stem Cells 

 



Stem cells obtained from adult adipose tissue ( adipose-derived stem cells or “ASC” or “ADSC” 

as they are commonly designated) are one of the most popular adult stem cell populations 

currently being used in stem cell research.  This novel adult stem cell population isolated from 

adipose tissue was first described by UCLA researchers in 2002.  Their multilineage 

mesodermal, ectodermal, and endodermal potential conceivably make the adipose-derived stem 

cell an alternate to pluripotent ES cells in clinical applications.(16)  There are only two 

categories of stem cells: the embryonic stem cell (ES cell) and the postnatal stem cell (i.e., adult 

stem cell).  The embryonic stem cell is derived from the embryo’s blastocyst inner cell mass.  

The adult stem cell is derived from postnatal tissues and can include fetal derived stem cells and 

umbilical cord blood stem cells. (2, 3) (1)  

 Mizuno and others have shown that cells obtained from human liposuction fat aspirates 

can also differentiate into adipogenic, osteogenic, chondrogenic, and myogenic cells in a lineage-

specific culture medium.  Such cells are termed adipose-derived stem cells (ASCs). (15, 17)  

Multiple studies have shown that there is no difference in mesenchymal stem cells obtained from 

bone marrow or adipose tissue in regard to fibroblast-like morphology, immune phenotype, 

colony frequency, and differentiation capacity.(18)    

There are several of reasons to suggest  adipose-derived stem cells for regenerative-based soft-

tissue therapies.  First is their multipotentiality, especially their proclivity for adipose 

differentiation. It is relatively simple to achieve a high level of adipose differentiation of 

adipose-derived stem cells in vitro, and many studies have developed methods to use them in 

vivo.  Second, adipose- derived stem cells appear to potentiate angiogenesis and vasculogenesis. 

Third, surgeons have a significant familiarity and comfort level with the harvest and 

manipulation of adipose tissue. 



 

Structure and Cellular Composition of Skin as it Relates to Dermatologic Aging and 

Regenerative Medicine 

 

Mesenchymal stem cells derived from adipose tissue provide signaling to tissues which serves to 

adjust immune response, cell differentiation, migration, and enzymatic reactions.  Adipose 

derived stem cells play a significant role in the maintenance of dermal and epidermal 

homeostasis.(12) To better understand this phenomenon, it is important to have a knowledge of 

dermatologic aging as well as skin structure and cellular composition as it relates to regenerative 

medicine. 

Dermatological aging is a result of deficiencies in intrinsic cellular processes (DNA repair and 

instability, mitochondrial function, control over cellular metabolism, and control over cell cycle 

and apoptosis) and changes in epidermal homeostasis (integrity of extracellular matrix).  These 

physiological changes in the skin are exemplified by decreased skin elasticity, reduced barrier 

function, development of skin rhytids, epidermal and dermal thinning as well as pigmentary 

changes. (19, 20) Stem cells residing in various stem cell niches in the hair follicle, in inter-

follicular epidermis and in sebaceous glands have been shown to play an important role in the 

maintenance of skin homeostasis.(21-23)  

Our skin is the largest organ in our body and is responsible for a number of critical physiologic 

functions.  It varies in thickness from 0.05-2 mm and is composed of 4 main layers.  The 

outermost layer (stratum corneum) is 10-20 um.  There is a highly hydrophobic layer which 

consists of 10-15 layers of nonviable cells called corneocytes.  These hydrated corneocytes serve 



as a protective barrier and are held together by multiple lipid bio-layers composed of fatty acids, 

cholesterol and cholesterol esters, and ceramides. (24-26) The epidermis is the second layer and 

is subdivided into the stratum lucidium, stratum granulosum, stratum spinosum, and stratum 

germinatevum (basale).  The epidermis is composed of keratinocytes which are in various stages 

of differentiation.  Keratinocytes comprised 95% of the dermis.  Those in the stratum terminal 

type layer are often referred to as "basal cells".  While keratinocytes are the predominant 

epidermal cell, melanocytes, Merkel cells, Langerhans cells, dendritic T cells, and adipose cells 

are also present.  In addition, multiple catabolic enzymes such as proteases, nucleotides, 

esterases, phosphatases, and lipases are present in the intracellular spaces.  Mesenchymal stem 

cells residing in the skin  are responsible for cellular signaling which regulates keratinocyte 

differentiation and influences other cellular functions to regulate homeostasis.(27-29)  The 

basement membrane is attached to the dermis and provides a physical boundary between the 

epithelium and the dermis.  It is rich in extracellular matrix proteins and growth factors.  The 

dermis is composed of sebaceous glands, nerves, blood vessels, and hair follicles as well as 

adipose cells, mass cells, and infiltrating leukocytes.(30)  The final layer is the subcutaneous 

layer (hypodermis) which is composed primarily of adipose cells, mesenchymal stem cells, blood 

vessels, and lymphatics. 

Previously it was felt that the primary purpose of adipose tissue was to serve as a support 

structure and as a reservoir of energy in the form of triglycerides and as a storehouse for fat–

soluble vitamins.  However, numerous studies in recent years have demonstrated that adipose 

tissue provides significant influence on the cellular microenvironment by secretion of a wide–

range of bioactive factors with a diverse set of functions.  Lipid metabolism and insulin 

sensitivity appeared to be influenced, as is the regulation of angiogenesis, immunomodulation, 



and inflammatory response.  Adipose tissue secretory profile appears to influence tissue and 

organ homeostasis at the autocrine, paracrine, and endocrine levels.(31)  Studies have also 

revealed that they also appear to be involved in mediation and management of keratinocyte and 

fibroblast proliferation migration in order to ensure epidermal and dermal repair. (22, 32, 33) 

Thus, adipose tissue–resident mesenchymal stem cells can be viewed as "endogenous factories" 

producing trophic mediators able to support all of the functional skin layers to ensure skin 

homeostasis, regulation, and repair.(12)  

ASCs have been shown to secrete several growth factors – vascular endothelial growth factor 

(VEGF), hepatocyte growth factor (HGF), fibroblast growth factor 2 (FGF-2), and insulin-like 

growth factor 1 (IGF-1).   Travers and Spandu have reported on the role of IGF-1 in potentially 

reducing the incidence of skin cancer via its effect on keratinocytes. (34-37)  Preliminary studies 

by the author indicate that IGF-1 may also play a role in reducing cutaneous rhytids.(38)  

Gimbel et al have shown that ASCs introduced into injured tissue results in secretion of 

cytokines and growth factors that stimulate recovery in a paracrine manner.  Gimbel points out 

that  ASCs modulate the “stem cell niche” of the host by stimulating the recruitment of 

endogenous cytokines themselves to the site of injury and promote stem cell differentiation along 

the required lineage pathway.  It is theorized that ASCs could provide antioxidants, free radical 

scavengers, and chaperone/heat shock proteins at an ischemic site. Toxic substances released into 

the local cellular environment as a direct result of the injury would be removed, thus promoting 

cell recovery and survival. (39, 40) Thus, adipose derived stem cells appear to play a significant, 

yet not clearly defined role in such diverse processes as skin cancer prevention, wound healing,  

and anesthetic enhancement of aging skin. 



Dermatological aging is influenced by intrinsic and external factors.  Structural changes are a 

result of changes and alterations in biological molecules –proteins, glycosaminoglycan, and 

lipids.(41) (42)  With aging, the epidermis thins.  This is caused by  reduction in vascularity and 

hydration.   The thickness of the epidermis is reduced approximately 6.4% each decade with an 

associated decrease in the number of mast cells and fibroblasts.(41, 43, 44)  This reduction in 

total fibroblasts results in reduced production of collagen, elastin, glycosaminoglycans, and 

hyaluronic acid which leads to thinning of the dermis.(45)  

 

Various growth factors and cytokines influenced by stem cells have an impact on the aging 

process.  Recent studies have shown interleukins and interleukin receptors in the skin to play an 

important role in the  regulation of the inflammatory stage of wound healing and regeneration. 

(46) (47, 48)  Additional studies have shown low doses of interleukins to have an anti-aging 

effect. (49, 50)  Insulin Growth Factor (IGF–1) and its binding proteins have also been shown to 

have an impact on aging.  The ratio between Insulin Growth Factor I and Insulin Growth Factor 

Binding Protein 3 has been associated with facial aging and skin wrinkling by means of its 

influence on collagen biosynthesis.(51)   In addition, dermal adipocytes have been shown to 

secrete adipo-cytokines such as adiponectin and leptin, which results in increased production of 

hyaluronic acid and collagen by human dermal fibroblasts - promoting wound healing in the 

skin.(52, 53)  

Some clinicians have simply injected stem cells into the skin as a therapeutic modality to 

promote wound healing, tissue restoration, and skin rejuvenation.  However, work  by Zhu et al 

suggests that adipose-derived stem cells injected into the soft tissue or into a defect will not alone 

produce soft-tissue fill. (54, 55) They advocate using a tissue-engineering approach, combining 



cells stimulated with certain chemical compounds and placed into a matrix or scaffold to 

"manufacture" an implantable neoadipose construct.  In general, fillers currently on the market 

have not been successful in supporting an engineered tissue replacement therapy for defect repair 

or tissue restoration. Identifying the appropriate filler in combination with stem cells could 

provide an optimized microenvironment in which to create an engineered tissue that can be used 

as a semi-permanent filler material.   

 

 

Mosely et al have noted that biomaterials can serve as a scaffold support or matrix for infiltrating 

cells in the wound healing process.   These biomaterials have been combined with adipocyte 

precursors or dermal fibroblasts to produce engineered constructs for volume augmentation.  The 

limiting factor in this process appears to be the rapidity and extent of neovascularization of the 

construct.  It may take as long as five days for blood vessels from adjacent tissue  to infiltrate 

into the construct and provide appropriate vascularization.  This time delay can result in tissue 

necrosis and cell death.(56)  

Investigators have studied multiple potential scaffolds combined with cells to evaluate their 

utility for soft–tissue treatment.  Altman et al reported  that magnetic resonance imaging studies 

revealed a consistent and stable volume fill by adipose tissue derived stem cells and non-animal 

stabilized hyaluronic acid at three weeks.  Adipose tissue derived stem cells actively 

incorporated into the hyaluronic acid fill and showed an organized fibrovascular network at three 

weeks.  They concluded that the combination of adipose tissue derived stem cells and non-



animal stabilized hyaluronic acid shows promise as a vehicle with which to achieve lasting 

volume fill in reconstructive surgical soft tissue augmentation.(57)   

In another study, Stillaert et all compared the hyaluronic acid sponge, HYAFF 11, with collagen 

sponges augmented with adipose precursor cells.  HYAFF 11 was noted to be superior to 

collagen in supporting the differentiation and expansion of adipose precursor cells.(58)  

Chung et al have reported on using hyaluronic acid (HA) – immobilized porous biodegradable 

microspheres for producing injectable mesenchymal stem cell aggregates for adipose tissue 

regeneration.  They reported that HA-immobilized microspheres significantly enhanced cell 

differentiation and tissue regeneration when implanted in vivo, compared to unmodified porous 

microspheres.  Their studies showed that adipose tissue derived mesenchymal stem cell cellular 

aggregates prepared by using porous microspheres could be delivered in an injectable manner 

into the body and could have great therapeutic potential for soft tissue augmentation and 

reconstruction.(59)  

Studies by Woo et al demonstrated that beta-glucan and porous poly-lactide-co-glycoside 

(PLGA) membranes containing beta-glucans enhanced the cellular proliferation of adult human 

dermal fibroblasts (aHDF) and adipose derived stem cells (ADSC).  Their studies suggest that 

beta-glucan and porous PLGA membranes containing beta-glucan may be useful as a material 

for enhancing wound healing.(60)  

Deployment of stem cells with adipocytes serving as a carrier has increased in popularity.  Llull 

reported using autologous fat as a matrix and supplemented the transplant with adipose-derived 

stem cells. He noted that this resulted in long-term (over one year)  soft-tissue volume restoration 

in a patient with soft-tissue involution on the ulnar aspect of one hand. (61)  Zhu, Yoshimura and 



others have published on breast augmentation utilizing  stem cell enhanced adipocyte transfer 

and have noted 60% increased fat survival as compared to 35% with fat only.(62)   In the 

Yoshimura study, 40 patients had 270 cc injected into each breast with 60-80% of breast fat 

remaining after 2 years. (1) 

 

 

 

Acquisition, Culture, and Expansion of Adipose Derived Stem Cells 

 

Following the identification in 2006 of adipose tissue as a rich source of adult mesenchymal 

stem cells and subsequent realization of their regenerative potential and wound healing 

properties, there has been a stimulation in its use in a variety of clinical applications. (63-66)  

Adipose derived stem cells are typically obtained from lipo-aspirate which is harvested via 

tumescent abdominal liposuction techniques or by surgical resection of adipose tissue which is 

then diced into the smaller segments for processing.(67)   The adipose tissue, harvested either via 

lipo-aspiration or direct excision method, undergoes further processing using either enzymatic 

digestion(68) (69)  or via mechanical cell separation. (65, 70)  Despite the fact that there is 

extensive use of adipose tissue in clinical applications, there is no single standard protocol 

available for isolation and preparation of adipose tissue.(12)   However, most isolation protocols 

consist of four basic steps: (1) washing lipo-aspirate; (2) collagenase enzyme processing; (3) 

centrifugation;  and (4) removal of red blood cells .  This process results in the production of a 

small pellet which is a heterogenous collection of cells, approximately 5% of which are stem 



cells.  Based on laboratory experience, a volume of 500 cc of lipo-aspirate will provide nearly 1 

x 109 adipose drive stem cells.  This pellet is termed the "stromal vascular fraction" (SVF).  

Plating out the pellet produces adipose derived mesenchymal stem cells.  

 

Isolation of adipose derived stem cells is an extremely complex process which involves 

specialized equipment, specialized reagents ,and requires compliance with GMP/GCP practice 

guidelines.  The following are examples of  procedures for isolation and processing of adipose 

derived stem cells via stromal vascular fraction (SVF) (1) 

 

The process typically can take over eight hours.   However, Francis et al have reported on a 

technique for isolating viable populations of mesenchymal stem cells from lipo-aspirate  

fractions within thirty minutes.  Reducing acquisition time of adipose derived stem cells can 

have a significant positive impact on their use in tissue engineering and regenerative medicine. 

(71) 

A syringe filled with adipose tissue harvested by lipo-aspirate technique or by direct excision 

would be placed in a sterile blood baguette and washed three times with sterile Dulbecco's 

Phosphate Buffered saline (DPB) to eliminate erythrocytes.  The adipose tissue is then 

transferred to 60 ml sterile centrifuge containers followed by addition of a collagenase enzyme to 

disrupt the fibrous tissue ( 0.3mg/ml Liberase Blendzyme 1 using a 1:1 volume ratio). 

A shaker bath at 370 C.  could be used for thirty minutes until a milky solution is produced or 

centrifuge containers could be sealed and placed in the water bath for one hour, then  centrifuged 



for seven minutes at 300 rcf.  During centrifugation, the stromal cells form a pellet at the bottom 

of the container while the adipocyte layer and debris will remain suspended.   

The top layer is removed.  The next layer is a collagenase solution.  The “pellet”  is at the 

bottom.  The pellet is a heterogenous collection of cells, approximately 5% of which are stem 

cells.  The pellet is also termed the “ stromal vascular fraction” (SVF).  Plating out the pellet  

produces  mesenchymal stem cells. 

 

Protocols for isolation of ASCs from adipose tissue using enzymatic digestion have been broadly 

applied by many researchers.   In an alternative isolation technique, liposuction aspirate or finely 

minced adipose tissue is washed extensively with sterile phosphate buffered saline to remove 

blood cells, saline, and local anesthetics.  Extracellular matrix is digested with 0.075% 

collagenase at 370 C. for 30 minutes to release the cellular fraction.  Collagenase is inactivated 

with an equal volume of Dulbecco’s modified Eagle medium (DMEM) containing 10% fetal 

bovine serum (FBS).  The infranatant is centrifuged at 250 rcf for 10 minutes to obtain a high-

density cell pellet. The pellet is resuspended in DMEM and 10% FBS and plated in 100-mm 

tissue culture dishes at a density of 1 x 106 cells  per plate.  These cells are maintained in control 

medium (DMEM supplemented with 10% FBS and 1% antibiotic / antimycotic ) at 370 C. and 

5% CO2.  Attached cells exhibit a fibroblast-like appearance and the potential to differentiate 

into adipogenic, osteogenic, chondrogenic, myogenic, and neurogenic lineages under the 

appropriate culture conditions. (13) 

ASCs cultures under standard conditions exhibit an average population doubling time of sixty 

hours.   The age of the donor, the type of adipose tissue (white or brown adipose tissue), the type 



of surgical procedure for preparing the specimen, culturing conditions, plating density, and 

media formulations all can impact the rate of tissue growth. 

 

Stromal Vascular Fraction (SVF) 

Stromal vascular fraction (SVF) contains not only adipose derived stem cells (ADSCs), but also 

a mixed composition of cells which includes pre-adipocytes, adipocytes, macrophages, 

endothelial progenitor cells and growth factors.(10, 72)   SVF has been shown to be a rich source 

of growth factors such as PDGF-BB, VEGF, IGF-1, and bFGF. (73) 

Because of significant differences in protocols for harvesting, processing, and techniques for 

deployment of cells (injection techniques), it is extremely difficult to make comparisons of 

outcomes of clinical therapies.(74)  A recent review comparing isolation techniques and 

processing protocols found no significant differences and therapeutic benefits dependent on pre-

–operative site preparation, adipose tissue harvesting techniques, centrifugation speed, or 

cannula size for harvesting. (75)  However, additional studies and reviews are needed to 

substantiate these conclusions. 

 

 

Culturing of Adipose Derived Stem Cells 

 

Adipose derived stem cells can be expanded via culturing techniques.    This can result in a 

homogenous adipose derived stem cell population that expresses surface markers similar to 



bone–marrow mesenchymal stem cells–CD29, CV44, CD73, CD90, and CD105 while being 

negative for hematopoietic lineage markers CD 31, CD34 and CD45. (2)  Multiple studies have 

been conducted regarding secretory properties, cell surface expression markers, multipotent 

potential, and immunomodulatory properties of adipose drive stem cells and bone marrow 

derived mesenchymal stem cells.  These studies have concluded that secretory properties are 

similar for both adipose derived stem cells and bone marrow derived mesenchymal stem cells. 

(21) (31, 76-78) 

Various clinical studies have demonstrated that adipose derived stem cells accelerate wound 

closure, reduce scarring, promote collagen synthesis, promote angiogenesis, and improve wound 

tensile strength. (79) Adipose derived stem cells maintained in PRP–containing media have been 

shown to have a stimulatory effect on the proliferation and  migration of dermal fibroblasts and 

keratinocytes. (64, 80, 81)  This cellular influence of adipose derived stem cells is felt to be a 

result of a double paracrine loop which exemplifies the  intricate relationships between adipose 

derived stem cells in the various cellular components of the dermis and epidermis the are 

involved in tissue homeostasis. (21, 82) (11,27) 

While studies have shown a therapeutic effect from the use of adipose drive stem cell transplants 

or condition media, there is no reliable information regarding the impact donor age has regarding 

adipose drive stem cell regenerative or wound healing potential.  Conflicting data is available 

concerning the effects of donor age on adipose drive stem cell function.(31, 83, 84)   However, 

Kato at all recently reported data which showed that, while the treatment with adult bone marrow 

derived mesenchymal stem cells or adipose derived stem cells in cutaneous wounds facilitated 

wound healing and regeneration, both of these therapies were negatively impacted by advanced 

stem cell donor age.(33)   



 

It is important to note that prolonged ex vivo culturing of adipose drive stem cells can result in 

significant and measurable changes due to the process of replicative senescence.(31, 83, 85)   

This is manifested by loss of control of chromatin organization and activates a persistent DNA 

damage response which causes robust changes in transcriptional activity. (86, 87)   These 

changes result in both reduction of differentiation potential of adipose derived stem cells and 

changes in their secretory profile which impacts paracrine function and immunomodulation. (88, 

89) Gaur et al theorized that the role of senescence in aging of the adult stem cells is tightly 

linked to tissue maintenance and homeostasis and often viewed as an irreversible barrier to 

immobilization and tumorigenesis under the assumption that cellular senescence evolved  to 

suppress tumorigenesis.(12, 88, 89)   

 

 

Clinical Studies Regarding Adipose Derived Stem Cells and Associated Growth Factors 

and Cytokine and Current Therapeutic Applications 

 

In recent years, a multitude of studies have demonstrated that mesenchymal stem cells have anti-

aging effects.  Song et al ( Cytotherapy 2011) investigated the effects of ASCs on human dermal 

fibroblasts that were damaged through photo-aging due to UVB irradiation.  Photo-damaged 

human fibroblasts showed greater proliferation rates in the presence of ASCs and their secreted 

growth factors and cytokines.(90)  Metalloproteinase (MMP-1) is a known initiator of 

photodamage in the skin and is typically increased in fibroblasts after UV irradiation.  P16 is a 



gene that controls the cell cycle and acts as a marker of cellular senescence or aging.  ASCs 

reversed damage in photo-aged fibroblasts.  ASCs reduced the number of apoptotic cells and 

shifted the cell cycles from necrosis to late to early apoptosis.  Song’s study concluded that 

ASCs mediate their anti-aging effects through a paracrine function on fibroblasts and can reverse 

damage in photo-aged fibroblasts at both the cell cycle and genetic levels. 

Park et al previously demonstrated that ASCs stimulate collagen synthesis and migration of 

fibroblasts during wound healing.  In this study they verified the mechanisms of action and 

effects of ASCs on skin aging.(91)  Secretory factors of ASCs were investigated, and many 

growth factors were identified.  ASC therapy caused increased dermal thickening and collagen 

production.  In a case study, ASCs were injected intradermally (2 successive injections at 2-week 

internals).  After 2 months improved skin texture and increased dermal thickness were 

documented.  Park concluded that ASCs produce useful growth factors, increase collagen 

production and reverse skin aging. 

Anti-aging of the skin is mediated by a combination of the effects of time (intrinsic aging) and 

environmental factors (extrinsic aging) on cellular and extracellular infrastructure  These are two 

independent, clinically and biologically distinct, processes that affect the skin structure and 

function simultaneously.  Growing evidence now suggests that the two aging processes have 

converging biochemical and molecular pathways that lead to photoaging of skin.  The common 

mechanisms of the two aging processes may provide several unique opportunities to develop 

anti-aging therapies.  Recent advances in understanding the role of endogenous growth factors in 

the aging process provide one such opportunity to develop topical anti-aging products. (92)  

The use of growth factors and cytokines for skin rejuvenation and reversal of photoaging is 

emerging as a novel anti-aging treatment.  Soe and Kim showed that radio frequency created, 



microporated skin, actually created  micro-channels for the topical application of growth 

factors.(93)  One month after 3 treatment session, histological studies demonstrated increase in 

both dermal thickness and dermal collagen. Waible has recently reported similar finds and 

favorable results modifying cutaneous scaring by use lasers to recreate micro-channels to 

facilitate cutaneous absorption of topically applied stem cells and stem cell derived growth 

factors.(94-98) 

Park et al reported compelling results in a large scale study for adipose derived stem cell protein 

extract applied transdermally.  Park ( Korean J Dermatol- 2009)   Providing growth factors and 

cytokines to cells responsible for extracellular matrix production, appeared to stimulate 

rejuvenation of aging skin.(99)  

Brohem et al , compared fibroblasts with mesenchymal stem cells derived from bone marrow, 

skin, and adipose tissue to assess the differentiation potential of fibroblasts.(100)  Their studies 

showed that fibroblasts expressed the same cell immunophenotypic markers as stem cells and 

were able to differentiate into the three cell lineages–adipocytes, osteocytes, and chondrocytes. 

Fabi and Sundaram  noted growth factors and cytokines control skin growth, proliferation and 

differentiation by means of inter and intracellular signaling pathways. (101) They noted striking 

parallels between the pathways involved in skin wound healing and photo aging of skin.  They 

noted that topical application of growth factors and injection of growth factors contained in an 

autologous platelet rich plasma had a positive effect on skin regeneration and rejuvenation.  They 

noted that growth factors associated with stem cell proteins secreted by human dermal fibroblasts 

under hypoxic stress accelerated skin healing after laser resurfacing.   They also noted that  

platelet–rich fibrin matrix (PRFM) facilitated skin rejuvenation. 



Lee et al reported on efficacy of micro-needling plus human stem cell condition medium for skin 

rejuvenation and a randomized, control, blinded, split face study in twenty-five women.  Human 

embryonic stem cell condition medium was  applied topically with enhanced dermal presentation 

achieved by using a 0.25 mm micro-needle roller.(102)  Treatment sessions were repeated at 

two-week intervals.  Improvement was noted with both pigmentation and wrinkles.  Their 

conclusion was that secretory factors of endothelial precursor cells differentiated from human 

embryonic stem cells improved the signs of skin aging.   Sasaki has recently reported similar 

findings with micro-needling.(103, 104) 

Hussain et al reported on ultrastructural changes after the use of human growth factors and 

cytokines skin cream as a treatment for skin rejuvenation.(105)  They noted clinical, histologic, 

and ultrastructural changes observed after six months of application of a topical skin cream 

containing human growth factors and cytokines applied twice daily for six months. Clinical 

appearance and periorbital wrinkles improve by 33% and perioral wrinkling by 25%.   Histologic 

evaluation indicated moderate changes in epidermal thickness as well as increased fibroblast 

density in the superficial dermis.   Electron microscopy showed ultrastructural changes 

consistent with new collagen formation.  Their study collaborates previous studies by other 

researchers showing that topical application of growth factors and cytokines is beneficial in 

reducing signs of facial skin aging 

Sundaram et al showed topically applied physiologically balance growth factors, in spite of large 

molecular weight,  showed evidence suggesting that a small fraction of topical applied growth 

factors secreted by human fibroblasts grown in conditions resembling the physiological 

condition of the dermis and in high concentrations and in a stable formula penetrates into the 

deeper dermis and exhibits a physiological effect. (106) Clinical studies showed that topical 



application of product in high concentrations of physiologically balance mixture growth factors 

appears to reduce signs of skin aging. 

 

Several cosmeceutical products containing either a single human growth factor or a combination 

of multiple human growth factors and cytokines are currently being marketed for skin 

rejuvenation.  Clinical results for some of these products show that human growth factors, when 

applied topically, appear to provide beneficial effects in reducing the signs of facial aging.  

Fitzpatrick has reported on a proprietary mixture of growth factors and cytokines secreted by 

cultured neonatal human dermal fibroblasts. (92, 107)   Patients were treated twice daily for 60 

days.  Results showed a 12% reduction in periorbital wrinkling after sixty days.  Histologic 

studies showed 37% increase in Grenz-zone collagen and a 30% increase in dermal thickness. 

Hydrophilic molecules larger than 500 Da molecular weight have very little penetration through 

stratum corneum.  Growth factors and cytokines are large hydrophilic molecules, greater than  

15,000 Da molecular weight and are very unlikely to penetrate through the epidermis in amounts 

able to produce pharmacologic effects.  Despite this fact, results of clinical studies by Fitzpatrick 

and others show that topical application of these macro molecules may produce clinical benefits.  

The primary mechanism by which the growth factors and cytokines can potentially exert their 

effect on the dermal matrix, is by penetration through hair follicles, sweat glands, or 

compromised skin - followed by interaction with cells in the dermis, such as keratinocytes, to 

produce signaling cytokines that affect cells (such as fibroblasts) that are deeper in the dermis.  

Skin may contain small imperfections resulting from dryness, scratching, or use of products 

containing irritating chemicals that may allow small amounts of these macro molecules to 

penetrate into the viable portions of the epidermis.  Addition of lipophilic penetration enhancers 



or  barrier–alternating peptides, may also increase penetration of these proteins through intact 

skin.  Recent studies have shown that vaccines can exert immunologic response when applied 

topically.  This probably results from penetration of a very small amount of protein through 

intact skin. Similar extent of penetration may also be sufficient for topically applied  growth 

factors to produce an effect on epidermal cells.  Epidermal–dermal communications appear to 

mediate the effects of topically applied growth factors and cytokines.  Evidence strongly 

suggests the  presence of a double paracrine loop where keratinocytes stimulate fibroblasts to 

synthesize growth factors - that in turn stimulate keratinocyte proliferation - which results in 

amplification of the initial effect of topical growth factors.  Keratinocytes have surface receptors 

for many growth factors and cytokines–some of which are present in cosmetic products. 

Penetration of small amounts of these molecules into the viable portion of the epidermis after 

topical application can induce keratinocytes to produce growth factors  (PDGF ,IL-1,TGF-a, & 

TGF-B) which have been shown to exert a paracrine effect on proliferation and activation of 

dermal fibroblasts which leads to regeneration and remodeling of the dermal extracellular matrix.  

Although it is unclear how large proteins, such as growth factors,  are able to penetrate the skin 

and become pharmacologically effective - early objective clinical studies and subjective 

observations indicate that these cosmeceutical products may potentially reduce signs of facial 

aging. 

 

 

 Skin Regeneration and Wound Healing  

 



Pitanguy and colleagues have pointed out that restoring skin would require extensive self-

renewing stem cells.  This is because of the fact that skin is characterized by an extensive self-

renewal process. They noted that progenitor cells represented in a keratinocyte culture would be 

capable of generating epidermal grafts.(108)  The basal layer contains two types of proliferative 

keratinocytes: stem cells, which have unlimited self -renewal capacity, and transit amplifying 

cells, “daughters” of stem cells that will terminally differentiate after a few rounds of division. 

Cells for a skin substitute can be derived from local, systemic, and progenitor cell populations. 

Fibroblasts, keratinocytes, melanocytes, adipocytes, and hair follicles cells can be sourced 

locally and could be used for skin tissue engineering. Systemic cells are populations of cells that 

reside in the blood or bone marrow (such as fibrocytes) and are known to play an important role 

in skin wound healing. Progenitor cells are located in stem cell niches such as the hair follicle 

and also reside in the bone marrow.(109) 

Garcia-Olmo et al reported on using adipose derived stem cells to treat non-healing fistula tracts 

in patients with Crohn’s Disease.  Following liposuction, stem cells were isolated and expanded 

in  culture. These adipose derived stem cells were then deployed into the fistula tracts of patients 

with Crohn's disease.  A 75% closure rate was noted.[47]  Garcia-Olmo then came back and used 

the pellet (the stromal vascular fraction) that was obtained at the time of surgery. When this was 

injected in the fistulous tract, they obtained a 25% fistula closure rate.[47] Thus, in this study, the 

cultured (expanded) mesenchymal stem cells were three times as effective in promoting wound 

healing in contaminated wounds as were the stromal vascular fractions.   They concluded that 

cultured or manipulated stem cells secrete more growth factors or more specific cytokines to 

positively influence wound healing.(110)  



Autologous adipose derived stem cells have been used for the regenerative treatment of 

traumatic calvarial bone defects using autologous cancellous iliac bone in combination with 

autologous stem cells and fibrin glue. Postoperative computed tomography studies have 

demonstrated new bone formation with good clinical results in a limited number of cases.(111) 

 

 

 

 

 

 

Stem Cell Augmentation of Adipose Tissue Grafts – Cell Assisted Lipo-transfer (CAL) 

 

Soft tissue defects represent a reconstructive challenge.  Rubin  and Marra reported in 2011 that 

over 5.6 million procedures performed in the  United States regarding this problem.(112)  While 

the majority of cases arise from tumor extraction and the sequelae of adjunctive radiation 

therapy, defects of soft tissue occur from congenital abnormalities, following trauma, and are 

being addressed with volumization procedures for aesthetic concerns. 

In cell assisted lipoma transfer (CAL), adipose derived stem cells are harvested from lipo-

aspirate and are used to supplement fat grafts to enhance reconstruction of facial asymmetries, 

post cancer radiation effects, traumatic wounds, and aesthetic concerns.(113) 



Yoshimura 2006 - noted that aspirated fat was relatively stem cells–deficient and the mechanical 

disruption of the adipose tissue during liposuction was thought to contribute to this loss of stem 

cells. (114) Yoshimura in 2008 noted improved graft retention with the supplementation of fat 

cells with additional adipose stem cells.(111, 115)  Animal studies by Matsumoto in 2006 with 

subcutaneous implantation of human CAL ( cell assisted lipo transfer ) fat grafts into 

immunodeficiency mice demonstrated 35% increased volume retention when compared to 

conventional lipo transfer. (114) Tanikawa in 2013 conducted a randomized study on patients 

with cranial facial microsomia.(116)  CAL ( cell assisted lipo transfer) was found to enhance fat 

volume retention compared to supplemental fat grafts.  CT scans six months following grafting 

revealed 80% survival among patients with CAL fat grafts compared to 54% for controls, 

suggesting this to be an effective  treatment modality for facial recontouring.  Showing similar 

clinical support for this technique, Kolle in 2013 performed a blinded, placebo controlled trial 

where 30 cc fat grafts with and without the addition of 20 million expanded ASCs per ml of fat 

were injected into the upper arm.(117)  After 4 months,  CAL fat grafts exhibited a 64.6% 

increased volume.  Subsequent clinical and preclinical trials by Garza (2014),  Tanikawa (2013), 

Yoshimura (2008) and others have confirmed enhanced fat graft retention when enriched with 

ASCs.(116, 118, 119) 

Ischemia is inherent in the process of grafting tissue.  Suga in 2010 showed that ASCs appeared 

to be relatively resistant to hypoxic conditions and contribute to adipose tissue 

regeneration.(120)  There is a notion that ASCs may undergo adipogenic differentiation and 

assist in regeneration of fat. (121)  However, more recent studies, by Dong in 2015 and Garza in 

2014, have suggested only transient retention of supplemental ASCs within fat grafts, and that 

the regions of necrosis are ultimately replaced by recipient site–derived adipocytes.(118, 119, 



122, 123)  Both of these observations argue against the substantial contribution of ASCs to 

mature adipocyte tissue.  Alternatively, adipose tissue is known to be rich in microvasculature 

and ASCs which reside around capillaries and vessels have been shown to be capable of in- vitro 

differentiation into the vascular endothelial cells.(124)   

Matsumoto (2006) performed studies using labeled ASCs implanted with fat and showed that 

they subsequently stained positive for von Willebrand factor, suggesting their ability to  

differentiate into vascular endothelial cells and contribute to vasculogenesis in the acute phase 

following transplantation.(114)  However, recent studies by Garza ( 2014) and Dong ( 2015) 

argue against a direct role of ASCs in early revascularization.(118)  Nevertheless, ASCs likely 

exhibit a paracrine effect and have been shown to release androgenic growth factors.  Zhu (2010) 

reported high levels of expression in ASCs of multiple pro-androgenic growth factors and noted 

increased capillary density within fat grafts supplemented with ASCs.(54)  Garza (2014) in 

studies retrieved supplemental ASCs following fat grafting and noted significant up regulation of 

angiogenic gene expression.(118)  All of these studies support a paracrine role for ASCs, 

promoting early revascularization of ischemic fat grafts to reduce adipocyte apoptosis and 

enhance long–term retention. 

The critical question is how many cells are necessary to affect a meaningful (positive) change in 

fat graft retention.  Historically, a majority of studies report employing  a 1:1 approach  - using 

1/2 of the harvested specimen for the actual adipose tissue graft and processing the other 1/2 to 

obtain the material to serve as "supplement" for the graft.(115, 116, 125)   

Paik ( 2015) reported performing  titration studies regarding the number of ASCs added to 

autologous human fat and found that 1x105  supplemental cells per 200 ml fat graft produced the 

greatest improvement in volume retention and vascularity.(126)  Interestingly, significantly 



greater numbers of supplemental ASCs resulted in decreased fat graft retention–thought to be 

secondary to cell–cell competition between ASCs and fat graft adipocytes for the scarce 

resources in the hypoxic environment. 

 

Current Trends for Clinical Research and Questions that Remain to be Answered  

 

There is functional heterogeneity among ASCs.  Whether these differences in ASC behavior are 

due to the actions of different ASC subpopulations or the effects of the tissue micro-environment 

on cell activity remains unknown.  ASCs are heterogeneous with subpopulations of both pro-

angiogenic and pro-adipogenic ASCs.  In addition, Chung (2013) and Levi (2011) have pointed 

out that there may also be pro-osteogenic fractions. (127, 128) (129-132)Thus, differences in the 

physical microenvironment of ASCs may account for the lack of adipogenic signaling observed 

in supplemental ASCs in CAL.  These cells are simply mixed in solution with lipo-aspirate.   

Ongoing research by Karam , Sivan , Zhang  and others continues to investigate the use of 

artificial niches to direct differentiation of ASCs into keratinocytes, cardio- myocytes, 

osteoblasts, and other cell types.(133-136) 

There are four key questions which future research must answer in order for adipose derived 

stem cell to become uniformly accepted treatment modalities: 

 

1.What subpopulations of ASCs exist? 



    Adipose derived stem cells prepared from human liposuction aspirate from different studies 

exhibit differences in purity and molecular phenotype.  Many studies show that cell preparations 

likely contain heterogenous populations of cells, which makes it uncertain whether the adipose 

derived stem cells themselves are actually responsible for the observed effects. 

  

 

2.What are the parameters that define the ASC niche? 

 

3.What  potential pro-and anti-tumorigenic properties of ASCs can best be titrated  to 

maximize the potential of using ASCs in the setting of reconstructive  and aesthetic 

surgery? 

Immunologic and angiogenic properties of adipose derived stem cells raises questions of the 

relationship of the cells with promoting cancer.  There are several contrary studies which been 

published, some reports demonstrating that adipose derived stem cells could promote tumor 

growth. Conversely, other studies support that adipose derived stem cells can have a tumor 

suppressive affect. 

In 2005 a priority report was published in the Journal Cancer Research from scientists in Spain 

and United Kingdom as the first report of spontaneous malignant transformation of human adult 

stem cells, supporting the hypothesis of cancer stem cell origin.  They noted that while there 

were clinical trials that reported the safety of human adult stem cells, showing them to be highly 

resistant to malignant transformation, there were clear similarities between stem cells and cancer 



stem cell genetic makeup.  They noted that although cells could be managed safely during the 

standard ex vivo expansion of 6–8 weeks, human mesenchymal stem cells could undergo 

spontaneous malignant transformation following long–term in vitro culture of 4-5 months.  This 

report obviously garnered significant attention, with the result that others were unable to 

duplicate the reported findings.  The authors and Journal subsequently retracted the paper in 

2010.(137) 

Breast cancer - The Journal Stem Cell International (2015) reported on a review of  breast 

cancer and stem cells.  Their conclusion was the majority of experimental studies tend to support 

the propensity of mesenchymal stem cells and adipose derived stem cells in promoting growth 

and progression and metastatic spread of residual or de novo breast cancer after resection.  In 

contrast, however, only a few clinical case series and trials actually reflected this.  Overall, they 

felt that most the studies did not support using autologous stem cell enhanced grafts, whereas 

they felt that whole fat grafting appeared to be safe in most circumstances.   

While mesenchymal stromal cells represent a heterogenous population of multi-potent cells with 

beneficial properties for regenerative processes and with therapeutic benefit for patients being 

demonstrated in a wide range of severe pathologic conditions, mesenchymal stromal cell therapy 

may also be associated with adverse effects such as an increased recurrence rate for  hematologic 

malignancies.(138)  

Human mesenchymal stromal cells were shown to be non-tumorigenic.  However, there have 

been reports of their capability to modulate tumor microenvironment, thus having an impact on 

the tumor behavior.  There is increasing evidence that mesenchymal stromal cells might play a 

role in tumor pathogenesis and progression.  Kucerova et al demonstrated tumor-promoting 



effect of adipose tissue derived mesenchymal stromal cells on human melanoma A375 

cells.(139)  

Rubio et al have reported that human ASCs can undergo malignant transformation with 

prolonged passaging over more than four months. Some feel that this may indicate that freshly 

isolated ASCs could possibly be a safer and a more practical source then cultured ASCs  for 

clinical use. (137)  

Mesenchymal stromal cells produce cytokines and can give rise to endothelial-like cells 

contributing to tumor vascular formation.  Mesenchymal stromal cells were noted to have the 

capability to differentiate into carcinoma associated fibroblasts when under the influence of 

tumor-cell produced soluble factors.  Manipulated human mesenchymal stromal cells were 

shown to have increased metastatic potential for breast cancer cells rather than significant tumor 

growth.(140, 141)  

 

4.What are the ongoing concerns regarding adipose derived stem cells in the clinical 

setting? 

 

 

Research Trends and FDA Oversight 

In February 2014, the FDA Commissioner, the FDA Center for Biologics and Evaluation 

Research, and the Office of Cellular, Tissue and Gene Therapy published the FDA perspective 

on mesenchymal stromal cell (MSC) based clinical trials.(142)   There are 4 basic parameters 



which the FDA feels influence the final stem cell product - fetal bovine serum; atmospheric 

oxygen; cryopreservation; and cell banking.  In the last decade there has been a 300% increase in 

the number of Investigational New Drug trials (INDs) regarding mesenchymal stem cells 

(MSCs).   The majority of these clinical trials ( 73% in 2012 ) were with allogeneic donors.  

Bone morrow was the leading source for stem cells in the US  - accounting for 55% of cases in 

2013.  This is in contrast to world wide data which shows bone morrow derived stem cells 

comprising less than half of all studies.  Adipose tissue was the third most common stem cell 

source.   However, it should be noted that there was a 3 fold increase in adipose tissue studies 

from 2011-2012.   Over 80% of the trials used stem cells cultured in fetal bovine serum, with the 

average concentration being 10%.  It is important to point out that approximately 11% of the 

population have a bovine related allergy and there has been a move away from these products.  

However, they still comprise a significant majority of the current stem cell studies.  There has 

been considerable discussion in the medical literature, advocated by Yoshumoro and others, 

regarding increased activity of stem cells when cultured in a hypoxic environment.  However, 

90% of US studies are using atmospheric oxygen.  Cryopreservation is used by 80% to store and 

transport the final product with the product being thawed within a few hours of patient infusion.  

Most protocols call for post-thaw cell viability to exceed 70%.  Thirty-five per cent (35%) of 

studies use cell banking, meaning that they bank the sample and expand the cell culture through 

multiple passages.  Cardiovascular was the leading area for clinical stem cell trials followed by 

neurological and then orthopedics.  While multiple routes of administration are used, over 50% 

of the clinical trials call for the stem cells to be administered intravenously.   Currently, 7 

phenotypic cell markers are commonly used to monitor stem cells.  However, the FDA is 



encouraging expanding this number, pointing out that markers can predict potential therapeutic 

benefits. 

 

Gir et al  conducted a review of the literature regarding the basic science evidence of ongoing 

clinical trials involving the use of adipose derived stem cells in regenerative medicine.(143)  

Only 33 clinical trial studies based on adipose derived stem cell therapy were identified.  The 

majority of the studies were performed in Spain and in Korea with only three trials in United 

States.  In all published cases, there were no major adverse events (AEs) reported and results 

regarding soft tissue augmentation and wound healing were noted to be very encouraging.  The 

authors noted that there were no standards or protocols for adipose derived stem cell (ADSC) use 

and that further basic science experimental studies with standardized protocols and larger, 

randomized controlled trials were called for. 

 

To provide a more contemporary assessment of current clinical studies, a review of Clinical 

Trials.Gov registered studies as of April 30, 2016 was conducted.  Regarding adipose derived or 

bone marrow derived stem cells – a total of 164 studies were registered.  Only 1 study was noted 

in the hair restoration area and 4 studies were noted pertaining to photo-aging and wound 

healing.  A review of clinical studies dealing with hair was conducted.   Eleven studies dealing in 

some degree with hair growth or hair stimulation were noted.   Most studies were using platelet 

rich plasma (PRP).  The others studies utilized adipose tissue–mainly adipose derived stromal 

vascular fraction (SVF).  A review of clinical studies dealing with photo-aging was conducted.  

Seven studies were noted that dealt with photo-aging.    One study employed bone marrow 

derived stem cells to be administered IV for photo-aging.  One study utilized adipose derived 



stem cells plus hyaluronic acid as a dermal filler.  Others photo-aging studies were mainly using 

platelet rich plasma (PRP)   Two studies employed the use of adipose tissue derived  SVF plus 

fat for enhanced fat graft viability. 

 

 

 

 

Status of FDA Oversight and Regulations - Cellular and Tissue Therapies 

 

 

Scientific and technological advances in stem cell biology and tissue engineering have led to the 

increased use of human cells and tissues for the treatment of various diseases, injuries, and 

aesthetic concerns.  The regulatory environment for cell and tissue therapy products is rapidly 

evolving, with various drug regulatory agencies in many countries implementing regulatory 

controls in the last several years.  In the United States that responsibility is under the auspices of 

the Food and Drug Administration (FDA) and more specifically, the Center for Biologics 

Evaluation and Research (CBER). (144, 145) 

 

In the United States stem cells are considered source material and fall under FDA Human Cells, 

Tissues, and Cellular and Tissue - Based Products (HCT/Ps) regulation for transplantable tissues 

and are regulated by the FDA Center for Biologics and Evaluation Research, and the Office of 

Cellular, Tissue and Gene Therapy. In general, the FDA has five major concerns relating to this 

area: (1) transmission of communicable disease, (2) processing control to prevent contamination 



and preserve product integrity and function, (3) clinical safety and efficacy, (4) promotional 

claims and labeling, and (5) how best to monitor and educate industry. 

 

Human cells, tissue, and cellular and tissue related products (HCT/Ps) are under the jurisdiction 

of the FDA for the regulation of transplantable tissues.  When human tissues serve as "source 

material", the cellular products fall under the auspices of the FDA (Title 21 - Food and Drugs ; 

Chapter I - Food and Drug Administration; Subchapter L Regulations–Section 1271.3 –human 

cells, tissues, and cellular in tissue–based products).   Two specific sections are applicable to 

HCT/PS.  Section 361 regulates tissues (such as adipose tissue) and notes them to be exempt 

from regulation as HCT/Ps biological drugs if: 

 

1) cells or cellular material are "minimally manipulated" 

2) cells or cellular material are not combined with any other agent (except water, crystalloids, or 

sterilizing, preserving, or storage agents are permitted) 

3) cells or cellular material are for homologous use in the same individual ("Homologous use” is 

defined as the repair, reconstruction, replacement or supplementation of a recipient's cells or 

tissues with a HCT/P that performs the same basic function or functions in the recipient as in the 

donor.)  

4) cells or cellular material are collected and delivered at the "same surgical setting" 

 

Section 351 applies to all other tissues, and processes are strictly regulated by the FDA.  Cell 

culturing (expansion) would fall into this category, as would tissues that are more than minimally 

manipulated; tissues for uses not “homologous”; and when there are “additives” used in the 



preparation or extraction of the cells or tissues.  In such cases, these “cellular products” are 

subject to the regulations for high risk HCT/P’s which include requiring the filing of a biologics 

license application; requesting permission from the FDA before proceeding to FDA-supervised 

clinical trials; and obtaining FDA approval prior to marketing the cellular therapy to the public.  

For example, harvesting autologous adipose tissue, extracting the stem cells by enzymatic 

digestion followed by centrifugation, and injecting the cells into non-fatty tissues (such as a joint, 

the heart, retina, or brain) would be considered a non-homologous use of highly manipulated 

cellular materials.  In this example, the FDA would consider the cellular materials to be biologic 

drugs, regulated under Section 351.  

 

In response to the 21st Century Cures Act passed by Congress, in November 2017 the FDA's 

Center for Biologics and Research (CBER) released its new guidelines for Regenerative 

Medicine.  They included implementing a program designated as Regenerative Medicine 

Advanced Therapy (RMAT).  This program is available for certain cell therapies, therapeutic 

tissue engineering products, and certain combined products and closely mirrors accelerated 

pathways available for investigative drugs designed to meet serious unmet medical needs.  The 

FDA also noted that, in an effort to modernize its regulatory framework to facilitate these 

scientific advances, they would consider real world evidence of safety and efficacy, as opposed 

to strict requirement for such data to be drawn from prospective, randomized clinical trials. 

 

At this time, the FDA also released Guidance Documents clarifying its intention to regulate 

manipulated cellular materials as biologic drugs.  They clarified that "same surgical procedure" 

exemption extended only to rinsing, cleansing, sizing, and shaping of cells or tissue biomaterials.  



They also defined "minimal manipulation" as being processes that do not alter cells’ structure or 

biological properties and "nonhomologous use" as functions different from those ordinarily 

exhibited by the same cells in Vivo. 

 

In recent years there has been a plethora of stem cell clinics that have evolved.  Some the been 

focused on primarily aesthetic concerns, while others have proactively marketed unproven stem 

cell “cures” for an extraordinary array of medical conditions.  For this reason, there have been 

calls from many sectors for the FDA to increase its regulatory authority regarding stem cell 

therapies.  

 

The FDA has taken some enforcement action in the adipose stem cell space.  The November 

2017 Guidance Documents could also be used by State Attorneys General to stop stem cell 

clinics.  More severe would be the impact upon the plaintiffs’ bar.  Plaintiff attorneys could use 

final guidance documents as the basis to bring claims (even class actions) against stem cell 

clinics operating outside of an Investigation New Drug Study. Offering stem cell therapies that 

do not comply with FDA regulations could also void professional liability insurance coverage.  

In short, the potential implications flowing from the FDA’s final guidance documents could have 

major impacts for physicians using stem cell therapies for aesthetic purposes. 

 

 

There are  4 key areas that  the FDA feels must have validation for future therapeutic uses of 

stem cells to be permitted: (1) Safety – must have disease screening of all donors and also insure 

any agents used in manufacturing process have no deleterious effect.  (2) Potency – must have 



validation assays to insure consistency of processes and reactive agents so know the resultant 

reactions are reproducible.  (3) Purity – look at flow cytometry and genetic analysis – want to be 

sure all cells are human (culture has not become contaminated and essentially that the cells are 

the type of cells that you think they are).  If stem cell cultures are highly expanded, karyotyping 

is important to be sure there are no mutations.  Typically, one would perform 3 passages – any 

pluripotent cells would have been removed in the process and you would be left with only 

multipotent cells (safer).  (4) Efficacy -  which is essentially outcome measurement. 

 

There have been 2 main problems hampering stem cell therapy:  (1) need to expand cells in fetal 

bovine serum and (2) purity of culture lines.   Cell expansion required culturing on a fetal bovine 

serum medium.  For an estimated 10%–11% of the population, this is a potential allergen.   New 

techniques to culture and expand cells in one's own blood and also in a human platelet lysate 

extract eliminates this problem.   Initial studies seem to indicate that human platelet lysate (HPL) 

cytokines may actually enhance both expansion rate for stem cells and their clinical efficacy.  

Regarding purity of cell cultures, it has been shown that there is functional heterogeneity among 

mesenchymal stromal cells (MSCs).  Whether these differences in MSC behavior are due to the 

actions of different MSC subpopulations or the effects of the tissue micro-environment on cell 

activity remains unknown. MSCs are heterogeneous with subpopulations of both pro–angiogenic 

and pro- adipogenic MSCs.  There is ongoing research investigating the use of artificial niches to 

direct differentiation of MSCs into keratinocytes, cardio myocytes, osteoblasts, and other cells. 

Future stem cell research needs to focus on answering 3 key questions: (1) What subpopulations 

of stem cells exist?  (2) What are the parameters that define the stem cell niche?  (3) What 



potential pro-and anti-tumorigenic properties of stem cells can best be titrated to maximize the 

benefit and potential of using stem cells in reconstructive and aesthetic surgery? 

 

Presently, adipose derived stem cells appear to be the stem cells used most frequently in aesthetic 

and soft tissue reconstructive procedures.  What are the ongoing concerns regarding adipose 

derived stem cells in the clinical setting which need to be addressed with future research efforts?  

(1) Adipose derived stem cells prepared from human liposuction aspirate from different studies 

exhibit differences in purity and molecular phenotype. Many studies show that cell preparations 

likely contain heterogenous populations of cells, which makes it uncertain whether the adipose 

derived stem cells themselves are actually responsible for the observed effects.  (2) Immunologic 

and angiogenic properties of adipose derived stem cells raises questions regarding the 

relationship of the cells with promoting cancer.  There are several contrary studies which been 

published -  some reports demonstrating that adipose derived stem cells could promote tumor 

growth and other studies supporting that adipose derived stem cells can have a tumor suppressive 

affect.  Answers to the question remain unknown and further studies are necessary. 

 

 

Future Trends 

 

 Because of the volume of research compared to other cellular therapies; the impressive clinical 

outcomes reported in many studies; and the fact that that it is easy to obtain with minimal 

morbidity; adipose tissue derived stem cells appear to be the focus of the majority of research 



efforts and clinical studies for cellular therapies in the anesthetic realm.  Adipose tissue is 

currently recognized as an accessible and abundant source for adult stem cells which are suitable 

for tissue engineering and regenerative medicine applications.  The importance of adipose tissue 

in  future advanced cellular therapies is bolstered by the fact that adipose tissue can be 

cryopreserved with resultant viability of adipose drive stem cells obtained from the preserved 

tissue.  Studies have shown that adipose tissue frozen at -80°C exhibited a cellular viability of 

87% after more than 1 year of cryopreservation. (146)  

This opens the door to patients undergoing elective aesthetic procedures requesting that their 

adipose tissue be harvested and tissue banked, similar to the cryopreservation of infant cord 

blood and the banking of extracted wisdom teeth by oral surgeons for the preservation of dental 

derived stem cells.  This is based on the premise that the discovery of induced pluripotent stem 

cells (iPSCs) and their potential to function in a capacity similar to that of embryonic stem cells, 

will unable patients who lost the opportunity to have their cord blood preserved as newborns to 

take advantage of this "second chance" and have tissue preserved for therapeutic and 

regenerative treatments that are yet to be discovered. (1) 

 

 

While there have been significant  advances  made in the use of adipose derived stem cells in 

tissue engineering, there are two main obstacles which continue to hinder  the progress of tissue 

engineering - neovascularization  and matrix scaffold.  Biologic structures larger than 200 µ in 

diameter require a vascular system for nutritional support.  A limited number of materials are 

available that can serve as scaffold which can foster tissue in growth.  Innovative synthetic 

materials, such as poly-peptides or novel biodegradable polymers are needed that will control 



tissue topology and have surface modifications to stimulate cell attachment, differentiation and 

growth. (1, 109)  The delivery of growth factors and chemical substance to guide tissue 

formation from stem cells encapsulated in biocompatible polymer scaffolds holds great promise 

for significant advances in aesthetic surgery.   

Cellular therapies and tissue engineering are still in their infancy, and additional basic science 

and pre-clinical studies are needed before cosmetic and reconstructive surgical applications can 

be routinely undertaken and satisfactory levels of patient safety achieved.(3)   However, 

significant advances continue to be made in the cellular therapies and tissue injury.  Innovations 

on the horizon include:  development of xeno-free and enzyme-free culturing and manufacturing 

capabilities and cellular therapies derived from specific cell niches such as skin basal cell layer, 

hair bulb, and body tissues.  All are exciting research areas that hold great promise. 

From a historical perspective, new and emerging therapies and technologies have usually been 

met with skepticism, even those which have later become mainstay clinical therapies.  In the late 

1960s, a South Carolina surgeon was widely criticized for using a gastric bypass surgical 

technique for weight control.  Today, that same therapy is viewed as the most effective treatment 

for morbid obesity and is the recommended treatment for those with a BMI of 40 or above.  

Using fecal implants to treat C. Diff certainly was met with significant skepticism and was 

considered "over the top" when first proposed.  Today, fecal microbiota transplant is considered 

a main line treatment, and pharmaceutical companies have invested millions of dollars in the 

development of fecal bacteriotherapy.  It is important that as physician scientists, we keep an 

open mind, maintain an evidenced based perspective, and hold the safety of our patients as 

paramount importance.    
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