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Abstract

This paper considers hypothesis testing problems for a low-dimensional coefficient
vector in a high-dimensional linear model with heteroscedastic variance. Heteroscedas-
ticity is a commonly observed phenomenon in many applications including finance
and genomic studies. Several statistical inference procedures have been proposed for
low-dimensional coefficients in a high-dimensional linear model with homoscedastic
variance. However, existing procedures designed for homoscedastic variance are not
applicable for models with heteroscedastic variance and the heterscedasticity issue has
been rarely investigated and studied. We propose a simple inference procedure based
on empirical likelihood to overcome the heteroscedasticity issue. The proposed method
is able to make valid inference even when the conditional variance of random error is an
unknown function of high-dimensional predictors. We apply our inference procedure to
three recently proposed estimating equations and establish the asymptotic distributions
of the proposed methods. Simulation studies and real data analyses are conducted to
demonstrate the proposed methods.

1 Introduction

In the last two decades, rapid progress has been made in high dimensional statistics. In
particular, high-dimensional linear regression models have received tremendous attention.
Many regularization methods have been proposed for simultaneous estimation and variable
selection in linear models which include LASSO (Tibshirani, 1996), SCAD (Fan and Li,
2001), MCP (Zhang, 2010), among others. A vast majority of existing literature has focused
on the estimation for coefficients in linear models with homoscedastic random errors. An
excellent review can be found in Bühlmann and Van De Geer (2011).

The issue of heteroscedasticity is commonly seen in practice. However, it has not received
much attention in high dimensional statistics literature. Wang et al. (2012) analyzed the
heteroscedasticity in high dimensional case by using quantile regression. Daye et al. (2012)
proposed a method that allows nonconstant error variances for high dimensional estimation
but with a parametric form of the variance function. More recently, Belloni et al. (2014)
came up with a self-tuning square root Lasso estimation method that solved this important
problem in high dimensional regression analysis.

Although significant advancements have been made towards understanding the estimation
theory for high dimensional models, less has been done for statistical inference for regression
coefficients in a high dimensional model. Recently, important progresses have been achieved
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for the inference about low dimensional parameters in a high dimensional model, including
Zhang and Zhang (2014), Bühlmann (2013), Javanmard and Montanari (2013), van de Geer
et al. (2013), Lan et al. (2016), and Ning and Liu (2014).

All the above inference procedures assume homoscedasticity for the error term. More
specifically, the conditional variance of the error is a constant. This is essential for their
inference procedure to be valid since most existing methods require an accurate estimation of
the variance of the proposed estimators. However, we find that, the variances of these existing
estimators are very complex and difficult to estimate under the heteroscedasticity case.
In addition, homoscedasticity hardly holds in practice. Similarly there is rarely sufficient
information to accurately specify a correct variance function. Using incorrect variance models
will, in general, lead to inferences that are not asymptotically valid (Belsley, 2002). Wagener
and Dette (2012) generalized the asymptotic results of Knight and Fu (2000) for the case of a
fixed dimension under heteroscedasitic errors. But there is little work in statistical inference
dealing with heteroscedasticity under the high dimensional setting except that Dezeure et al.
(2016) recently proposed bootstrap methods for inference under high dimensional linear
models with heteroscedastic errors.

This paper proposes to use Empirical Likelihood (EL) to test statistical hypotheses and
construct confidence regions for low dimensional components in high dimensional liner mod-
els with heteroscedastic noise. EL (Owen, 2001) is a nonparametric approach for deriving
estimations and confidence regions for unknown parameters, which shares the most well
known merit of parametric likelihood, the Wilks property (Owen, 1990, 2001). Professor
Peter Hall made fundamental contribution to EL. He showed that EL is Bartlett correctable
(Hall, 1990; DiCiccio et al., 1991) and produces confidence regions with natural shape and
orientation (Hall and La Scala, 1990). As EL is a data-driven nonparametric method, it does
not need distribution assumptions except some moment conditions. EL based methods have
been used for statistical inferences with heteroscedasiticity in low dimensional case. Tsao
and Wu (2006) conducted EL inference for a common mean in the presence of heteroscedas-
ticity. Chen and Qin (2003) considered the EL based point-wise confidence intervals for a
nonparametric regression function with the heteroscedastic errors. Lu (2009) and Zhou et al.
(2012) discussed EL analysis for heteroscedastic partially linear models and heteroscedastic
accelerated failure time models respectively. However, EL based method has not been used
for the problem considered in this paper. A comprehensive overview of the EL methods
can be found in Owen (2001) and a survey of recent developments is referred to Chen and
Van Keilegom (2009).

Different from the existing methods, our proposed procedure does not need to estimate
the variance explicitly due to the internal studentizing ability of EL. This makes our pro-
cedure attractive especially under the heteroscedasticity setting, even when the conditional
variance of the error term is an unknown function of high dimensional predictors. The
proposed EL-based method is a general unified framework suitable for various estimating
equations as long as they satisfy some conditions specified later. Thus our EL-based infer-
ence procedure is widely applicable and hence useful in practice.

The paper is organized as follows. In section 3, we study the asymptotic normality of
Wald type statistic for the existing methods under the heteroscedastic noise. In section
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4, we introduce a general empirical likelihood based method for the problems considered
in this paper. In addition, we provide explicit examples of the general EL-based method.
Section 5 provides numerical results and Section 6 shows some real data analysis, followed
by discussions in Section 7. We relegate all the technical proofs to the Appendix.

2 Basic setup and notations

We consider the following linear regression model,

Y = Xβ0 + ε, (2.1)

where Y = (Y1, Y2, · · · , Yn)ᵀ ∈ Rn is the response vector, ε = (ε1, ε2, · · · , εn)ᵀ ∈ Rn is
the vector of noise, X = ((Xij)) ∈ Rn×p is the random design matrix with p columns
{Xj ∈ Rn×1}pj=1 and n rows {Xᵀ

i ∈ R1×p}ni=1. The row vectors are assumed to be independent
and identically distributed (IID) with E(Xi) = 0 and Var(Xi) = Σ = ((σjl))1≤j,l≤p, and
β0 ∈ Rp is a vector of unknown true regression coefficients. The independent error terms
satisfy E(εi|Xi) = 0, and Var(εi) = σ2

i . This is the commonly seen heteroscedastic model
(White, 1980; Li and Yao, 2015; Daye et al., 2012; Bai et al., 2016; Dezeure et al., 2016). Let
Zi = εiXi be a random vector. Note that with these assumptions, Xi and εi are uncorrelated,
i.e., E(Zi) = 0. In addition, marginally we assume Var(ε2i ) = κi. We denote the covariance
matrix of Zi by Θi = ((θi;jk)).

In practice, among thousands of regressors, investigators might want to test whether some
target coefficients are significant or not. For example, one may want to know if treatment
effects are significant after accounting for the effects of many other variables. This paper
focuses on assessing the significance of a single coefficient. We test the following hypothesis
for any given j ∈ {1, 2, · · · , p},

H0 : β0
j = 0 vs. H1 : β0

j 6= 0, (2.2)

in (2.1) with p� n assuming heteroscedastic errors.
The following notations are adopted throughout the paper. For v = (v1, v2, · · · , vd)ᵀ ∈

Rd, we define ‖v‖q = (
∑d

i=1 |vi|q)1/q for 0 < q < ∞, ‖v‖0 = |supp(v)| where supp(v) =
{j : vj 6= 0} and |A| is the cardinality of a set A, and ‖v‖∞ = max1≤j≤d |vi|. We denote Id
as a d × d identity matrix. If the dimension is obvious from the context, we just omit the
subscript d. For S ⊆ {1, 2 · · · , d}, let vS = {vj : j ∈ S} be a subvector of v. And for any
k ∈ {1, 2, · · · , d}, let MjS = {Mjl, l ∈ S} as a row vector and MSj = {Mlj : l ∈ S} as a
column vector. Denote \k = {1, 2, · · · , k − 1, k + 1, · · · , d} as the (d − 1)-dim vector with

the k−th component removed. For a sequence of random variables Xn, we use Xn
d→ X to

denote the convergence in distribution, and use Xn
p→ a to denote convergence in probability.

Let s = ‖β0‖0 be the number of non-zeros of β0 and we assume sparsity with s < n.

3

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



3 Asymptotic properties of some existing methods un-

der heteroscedasticity

To motivate our proposed method, we first study three existing methods and derive their
asymptotic properties for these estimators under the heteroscedastic linear model (2.1). Note
that these methods were only studied under the homogeneous linear models, i.e. Var(εi|Xi) =
σ2
ε for all i = 1, 2, · · · , n. We generalize these results to the heteroscedasticity case.

3.1 Low-dimensional projection method

In this subsection, we introduce the low dimensional projection method proposed by Zhang
and Zhang (2014). Under model (2.1) and the low dimensional scenario with p < n, the
ordinary least square (OLS) estimator for β0

j ,

β̂j =
(X⊥j )ᵀY
(X⊥j )ᵀXj

=
(Q\jXj)

ᵀY
(Q\jXj)ᵀXj

=
(Q\jXj)

ᵀ(Q\jY)

(Q\jXj)ᵀ(Q\jXj)
=

Xᵀ
jQ\jY

Xᵀ
jQ\jXj

, (3.1)

where X⊥j is the projection of Xj to the orthogonal complement of the column space spanned
by {X\j}, and Q\j is defined below for any general QS with S ⊆ {1, 2 · · · , p} and |S| < n,
QS = I−PS = I−XS(Xᵀ

SXS)−Xᵀ
S ∈ Rn×n, where (Xᵀ

SXS)− is a generalized inverse of Xᵀ
SXS .

In the high-dimensional linear model with p > n, the OLS estimator in (3.1) is no longer
valid because Q\jY and Q\jXj are always 0. To resolve the issue in the high-dimensional
case, Zhang and Zhang (2014) proposed a de-biased estimator. We briefly introduce their
idea here. Let Zj be an n× 1 projection vector. A simple estimate of β0

j is

β̂
(lin)
j =

Zᵀ
jY

Zᵀ
jXj

= β0
j +

Zᵀ
jε

Zᵀ
jXj

+ Bias(β̂
(lin)
j ), (3.2)

where Bias(β̂
(lin)
j ) =

∑
k 6=j Z

ᵀ
jXkβ

0
k/Z

ᵀ
jXj is a bias term. The second term in (3.2) has mean

zero and at the order 1/
√
n. Because of the bias term is not ignorable, β̂

(lin)
j is not directly

useful for inference. To make β̂
(lin)
j useful for inference, we need to reduce the order of the

bias term Bias(β̂
(lin)
j ) to op(1/

√
n). To reduce the order of the bias of β̂

(lin)
j , Zhang and Zhang

(2014) proposed the following de-biased estimator,

β̂
(de)
j =

Zᵀ
jY−

∑
k 6=j Z

ᵀ
jXkβ̂

(0)
k

Zᵀ
jXj

, (3.3)

where β̂
(0)

is some initial regularized estimator of β0 so that ‖β̂
(0)
− β0‖1 = o(an) for some

an → 0. Then the bias of β̂
(de)
j is controlled by

|
∑
k 6=j

Zᵀ
jXk(β

0
k − β̂

(0)
k )/Zᵀ

jXj| ≤ ‖β̂
(0)
− β0‖1 max

k 6=j
|Zᵀ

jXk/Zᵀ
jXj|.
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Note that, to make the right hand side of the above inequality to be of order op(1/
√
n),

only removing the bias using β̂
(0)
− β0 is not enough because ‖β̂

0
− β0‖1 is typically of

order Op(s
√

log p/n) (Belloni et al., 2014). Therefore, we need to make maxk 6=j |Zᵀ
jXk| small

enough. Ideally, if Zj is orthogonal to all Xk, k 6= j, then maxk 6=j |Zᵀ
jXk| is 0. However, this

is impossible if p > n. Therefore, a key problem is on selecting projection vector Zj.
In Zhang and Zhang (2014), van de Geer et al. (2013), and Ning and Liu (2014), they used

the linear sparse regularized regression procedure such as LASSO to select the projection
vector. Define ηij := Xij −Xᵀ

i,\jΣ
−1
\j,\jΣ\j,j, that is

Xij = Xᵀ
i,\jw

0
j + ηij, with w0

j = Σ−1\j,\jΣ\j,j, for i = 1, 2, · · · , n.

This leads to a de-biased version of (3.3) with Zj = Xj − X\jŵj with ŵj as an regularized
estimator of w0

j .
Under the homoscedastic case, as discussed in Zhang and Zhang (2014) and van de Geer

et al. (2013), the inference procedure can be bulit on asymptotic normality of β̂
(de)
j , which

requires to estimate the asymptotic variance σ2
ε/(σjj−Σj,\jΣ

−1
\j,\jΣ\j,j). In Zhang and Zhang

(2014) and Dezeure et al. (2016), they used σ̂2
ε‖Zj‖22/|Z

ᵀ
jXj|2 with σ̂2

ε estimated from scaled
LASSO-LSE (Zhang and Zhang, 2014) or from the recommended method in Reid et al.
(2016). Under the heteroscedastic noise, we can also establish the asymptotic normality but
with much more complicated asymptotic variance than the homoscedastic case. Let us firstly
define the asymptotic variance of β̂

(de)
j as following

σ2
n,lasso =

1

n

n∑
i=1

θi;jj − 2Σj,\jΣ
−1
\j,\jΘi;j,\j + Σj,\jΣ

−1
\j,\jΘi;\j,\jΣ

−1
\j,\jΣ\j,j

(σjj −Σj,\jΣ
−1
\j,\jΣ\j,j)

2
. (3.4)

As a special case, if εi and Xi are independent and the error term is homoscedastic, then
σ2
n,lasso can be simplified to σ2

ε/{σjj−Σj,\jΣ
−1
\j,\jΣ\j,j}, which is the same as the result obtained

by Zhang and Zhang (2014).

Proposition 1. Under model (2.1) with heteroscedastic noise, if Assumption 1 in the ap-
pendix holds, we have

√
n(β̂

(de)
j − β0

j )
d→ N(0, σ2

lasso), (3.5)

where σ2
lasso is the asymptotic variance and σ2

lasso = limn→∞ σ
2
n,lasso.

The complex asymptotic variance (3.4) makes it hard to use Wald type inference pro-
cedure in practice since it is difficult to get a good estimate for the asymptotic variance.
Thus, using the Wald type test procedure proposed by Zhang and Zhang (2014) in the het-
eroscedastic case will lead to invalid results, which will be demonstrated in the simulation
study in Section 5.

5

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



3.2 KFC projection

Lan et al. (2016) proposed another way to construct an asymptotically unbiased estimator.
The idea is similar to the low dimensional projection method proposed by Zhang and Zhang
(2014). In the estimator considered in (3.1), one project Xj to all the variables except the
j-th variable. The main idea of Lan et al. (2016) is to project Xj onto the so-called KFC
set S = {l 6= j : |σjl| > c} for some pre-specified threshold value c > 0. That is essentially
the set of all key confounders associated with Xj. Assume |S| ≤ m for some m depending
on the sample size n. After excluding the covariates that are highly correlated with Xj,
an approximate estimate of βj can be obtained by the marginal regression of the profiled
response Ỹ = QSY on the profiled covariates X̃j = QSXj, namely

β̂
(kfc)
j =

X̃ᵀ
j Ỹ

X̃ᵀ
j X̃j

=
Xᵀ
jQSY

Xᵀ
jQSXj

. (3.6)

Based on the de-biasing idea, we propose the following de-biased KFC estimator

β̂
(kfc-de)
j =

Xᵀ
jQSY−

∑
k∈S∗ X

ᵀ
jQSXkβ̂k

Xᵀ
jQSXj

, (3.7)

where S∗ = S+c, i.e., the complement of S+ := {j}∪S, and β̂S∗ is an initial estimator. The

key difference between β̂
(kfc-de)
j and β̂

(de)
j is the selection approach of the low dimensional

projection space spanned by the subsets of covariates. β̂
(de)
j is based on the lasso approach

while β̂
(kfc-de)
j is based on the screening approach to find the low dimensional projection

space.
If we assume εi and Xi are independent, the simple asymptotic variance of β̂

(kfc-de)
j is

σ2
ε/(σjj − ΣjSΣ

−1
SSΣSj) as discussed in Lan et al. (2016). Under model (2.1) with het-

eroscedastic errors, the following Proposition 2 proves the asymptotic normality of the de-
biased estimator β̂

(kfc-de)
j ,

Proposition 2. Under the Assumption 3 in the appendix, we have

√
n(β̂

(kfc-de)
j − β0

j )
d→ N(0, σ2

kfc), (3.8)

where the asymptotic variance is defined as

σ2
kfc = lim

n→∞

1

n

n∑
i=1

θi;jj − 2ΣjSΣ
−1
SSΘi;jS + ΣjSΣ

−1
SSΘi;SSΣ

−1
SSΣSj

(σjj −ΣjSΣ
−1
SSΣSj)

2
. (3.9)

Note that if we assume independence between εi and Xi and homoscedasticity for the
error terms, we have σ2

kfc = limn→∞ σ
2
ε/{σjj − ΣjSΣ

−1
SSΣSj}, whose consistent estimator is

discussed in Lan et al. (2016). However, based on the findings in Proposition 2, we can see
that the adjusted KFC estimator is not easy to be implemented under the heteroscedastic
linear models. This again motivates us to develop new methods under heteroscedastic linear
models.

6

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



3.3 Inverse projection

In the last two subsections, the test statistics are constructed based on the asymptotically
unbiased estimator for β0

j . However, to conduct the hypothesis testing problem (2.2), Liu
and Luo (2014) proposed an equivalent test based on the projection of Xij onto (Yi,X

ᵀ
i,\j)

ᵀ,

Xij = (Yi,X
ᵀ
i,\j)γ

0
j + ηij,y, (3.10)

where ηij,y satisfies Eηij,y = 0,Cov{ηij,y, (Yi,Xᵀ
i,\j)} = 0. Under the linear model (2.1) with

heteroscedastic noise, as long as Cov(Xi, ε) = 0, we can still show that the vector γ0
j satisfies

γ0
j = −σ2

ηj,y

(
− β0

j /σ
2
ε , β

0
jβ

0ᵀ
\j/σ

2
ε + Ω\j,j

)ᵀ
, where σ2

ηj,y
= Var(ηij,y) = {(β0

j )
2 + wjj}−1 with

Ω = Σ−1 = ((wjk)). Because Cov(εi,Xi) = 0, with γ0j1 as the first element of γ0
j , we have

Cov(εi, ηij,y) = γ0j1Cov(εi,−Yi) = −σ2
ηj,y
β0
j := −b0j . (3.11)

Hence to test (2.2) is equivalent to test H0 : b0j = 0 because σ2
ηj,y

> 0. Based on the idea

proposed in Liu and Luo (2014), we can estimate b0j using

b̂j = − 1

n

n∑
i=1

{
Yi −Xᵀ

i β̂
}{
Xij − (Yi,X

ᵀ
i,\j)γ̂j

}
, (3.12)

where β̂ and γ̂j are some initial regularized estimators of β0 and γ0
j .

The asymptotic normality with possibly heteroscedastic noise is stated in the following
proposition, although the asymptotic variance is difficult to estimate. Define

σ2
i;n,inv = θi;jj + (γ0j1)

2β0ᵀΘiβ
0 + (γ0j1)

2κi + γ0ᵀ
j,\1Θi;\j,\jγ

0
j,\1 − 2γ0j1β

0ᵀΘi;·,j − 2γ0j1$i;j

− 2γ0ᵀ
j,\1Θi;\j,j + 2(γ0j1)

2β0ᵀ$i + 2γ0j1β
0ᵀΘi;·,\jγ

0
j,\1 + 2γ0j1γ

0ᵀ
j,\1$i;\j,

where $i = Cov(ε2i ,Zi) with Zi = εiXi.

Proposition 3. Under Assumption 2 in the appendix, we have

√
n(b̂j − b0j)

d→ N(0, σ2
inv), (3.13)

where σ2
inv = limn→∞(1/n)

∑n
i=1 σ

2
i;n,inv.

4 EL based approaches

The key of our proposed method is based on the fact that all the estimators in Section 3
can be considered as the solution of estimating equations

∑n
i=1mni(βj) = 0. In addition,

mni(β
0
j ) admits the following asymptotic decompositions when it is evaluated at the true

value β0
j :

mni(β
0
j ) := mn(Xi, Yi, β

0
j , β̂\j, θ̂) := Wni +Rni, (4.1)
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where the nuisance parameters β\j and the other nuisance parameters denoted as θ are re-

placed by their estimators β̂\j and θ̂. Moreover, {Wni}ni=1 are independent random variables,
and {Rni}ni=1 satisfy the following conditions:

(C0) P
(

min1≤i≤nmni < 0 < max1≤i≤nmni

)
→ 1;

(C1) Wni’s are independent with mean 0 and finite variance σ2
i;n such that s2n/n→ σ2

w where
s2n =

∑n
i=1 σ

2
i;n;

(C2) n−1/2
∑n

i=1Rni = op(1) and max1≤i≤n |Rni| = op(n
1/2).

Condition (C0) implies that 0 is inside of the convex hull of “data points” mni’s, which
ensures EL can be appropriately defined and computed. Condition (C1) and (C2), respec-
tively, impose some conditions on the leading order term Wni and small order term Rni in
the decomposition of mni(β

0
j ) so that the Wilks’ theorem can be established for the EL ratio

statistic based on mni’s. In particular, the condition (C2) implies that the errors due to the
plug-in estimators of nuisance parameters β̂\j, θ̂ are ignorable.

According to Owen (2001), with estimating equations, we can construct EL statistic to
make the inference. Define the following EL ratio function for the target parameter βj

ELn(βj) = max
{ n∏
i=1

npi : pi > 0,
n∑
i=1

pi = 1,
n∑
i=1

pimni(βj) = 0
}
. (4.2)

Under this unified framework with the above general conditions, we have the following pow-
erful Wilks’ theorem.

Theorem 1. If (C0)-(C2) hold, then −2 log ELn(β0
j )

d→ χ2
1.

Based on Theorem 1, an asymptotic α level test is given by rejectingH0 if−2 log ELn(β0
j ) >

χ2
1,α where χ2

1,α is the upper α quantile of χ2
1. We can also construct a (1−α)100% confidence

interval for βj as CIα = {βj : −2 log ELn(βj) < χ2
1,α}. Based on Proposition 1, 2 and 3, we

see that Wald type inference procedure is hard to implement due to the complex asymptotic
variance. Since the asymptotic distribution is chi-square, we do not need to estimate any
additional parameters, such as the asymptotic variance. This is a great advantage of the
proposed method, especially under the heteroscedastic linear regression models.

To apply Theorem 1 in practice, we need to find estimating equations mni(β
0
j ) for β0

j

that admit the decompositions that satisfied the conditions in Theorem 1. The following
subsections outline three EL methods based on the estimators proposed in Sections 3.1, 3.2
and 3.3.

4.1 EL method based on low dimensional projection

In fact, the de-biased estimator (3.3) can be regarded as the solution to the following esti-
mating equation

n∑
i=1

m
(lasso)
ni (βj) :=

n∑
i=1

{
Xij −Xᵀ

i,\jŵj

}{
Yi −Xijβj −Xᵀ

i,\jβ̂\j
}

= 0. (4.3)
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Here β̂0
\j is the estimation of p − 1 dimensional vector with all its elements from the initial

estimator β̂ except the j-th one. Note that the corresponding population counterpart of
(4.3) is ηijεi =

{
Xij − E(Xij|Xi,\j)

}{
Yi − Xᵀ

iβ
0
}

. Simple algebra implies that m
(lasso)
ni (βj)

has the following decomposition

m
(lasso)
ni (β0

j ) = εiηij︸︷︷︸
W

(lasso)
ni

+ ηij(β
0
\j − β̂\j)ᵀXi,\j + (w0

j − ŵj)
ᵀXi,\j

{
Yi −Xijβ

0
j −Xi\jβ̂\j

}︸ ︷︷ ︸
R

(lasso)
ni

.

For a fully understanding of the effect of heteroscedasticity, we study the asymptotics of
m

(lasso)
ni (β0

j ) in the following. The following proposition provides the asymptotic variance of

the leading term W
(lasso)
ni .

Proposition 4. Under model (2.1), W
(lasso)
ni has mean 0 and variance

E[(W
(lasso)
ni )2] = θi;jj − 2Σj,\jΣ

−1
\j,\jΘi;j,\j + Σj,\jΣ

−1
\j,\jΘi;\j,\jΣ

−1
\j,\jΣ\j,j. (4.4)

Here θi;jj, Θi;j,\j and Θi;\j,\j are from the covariance matrix Θi = ((θi;jk)) of Zi = εiXi. Fur-

thermore, if εi and Xi are independent and the error term is homoscedastic, then E[(W
(lasso)
ni )2] =

σ2
ε (σjj −Σj,\jΣ

−1
\j,\jΣ\j,j).

The comparison of the variances in Proposition 4 shows the difference between our het-
eroscedastic case and the homoscedastic case.

Let EL(lasso)
n (βj) be the EL ratio test statistic defined by (4.2) using m

(lasso)
ni (βj) to replace

mni(βj). The following Theorem demonstrates that the EL ratio test statistic EL(lasso)
n (βj)

constructed based on the estimating equations (4.3) is asymptotically chi-square distributed.

Theorem 2. Under some regularity conditions for the initial estimators as in Assumption 1
in the appendix and assume that Xi and εi are both sub-Gaussian. As long as s log p/

√
n =

o(1), the conditions (C0)-(C2) are satisfied. Assume σ2
n,lasso → σ2

lasso for some σ2
lasso < ∞,

and then we have −2 log EL(lasso)
n (β0

j )
d→ χ2

1.

Remark 1. Assumption 1 is needed to control the order of the remainder term R
(lasso)
ni so that

it satisfies the condition (C2). By applying appropriate inequalities, the order of remainder
term is dominated by the orders of estimation errors of initial estimators, and some quantities
related to εi and Xi, which can be, respectively, controlled by choosing appropriate initial
regularized estimators (such as LASSO, SCAD and MCP) for β0 and w0

j , and the sub-
Gaussian assumptions for εi and Xi. For details, please refer to the proof of Theorem 2.

Notice that under the homoscedastic noise case, Zhang and Zhang (2014) and van de
Geer et al. (2013) used the Wald type test statistic for testing H0 based on the de-biased

estimator β̂
(de)
j . Ning and Liu (2014) consider the Score test statistic for testing H0 based

on the same estimating equation (4.3). The Score test statistic and the Wald type test
statistics are asymptotically equivalent. There still exist some differences between these two
methods as pointed out by Ning and Liu (2014). Our method constructs likelihood ratio tests
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based on the same estimating equation, thus it enjoys the nice properties of likelihood based
methods. Since we are using empirical likelihood, it not only enjoys the Wilk’s phenomenon,
but also has other nice properties, such as the shape of the confidence interval is data driven
and our procedure is more robust to the distribution assumption for the error term since it
only requires moment assumptions. The key advantage of our method is that the proposed
method can be easily implemented under heteroscedasticity linear models due to the self
studentization property of EL. Please refer to the empirical studies in the simulation section
for the performance comparison of our method with the Wald type test and Score test.

4.2 EL method based on KFC method

The de-biased KFC estimator can be also represented as the solution to the estimating
equation based on the population subject ηij,Sεi :=

{
Xij −E(Xij|XiS)

}{
Yi−Xᵀ

iβ
0
}

, that is

n∑
i=1

m
(kfc)
ni (βj) :=

n∑
i=1

(Ỹi − X̃ijβj − X̃ᵀ
iS∗β̂S∗)X̃ij = 0, (4.5)

where m
(kfc)
n (β0

j ) can be decomposed as, asymptotically,

m
(kfc)
ni (β0

j ) = εiηij,S +
{
ΣjSΣ

−1
SSXiS −Xij

}
Xᵀ
iS(Xᵀ

SXS)−1Xᵀ
Sε

+
{
εi −Xᵀ

iS(Xᵀ
SXS)−1Xᵀ

Sε
}{

ΣjSΣ
−1
SSXiS − Xᵀ

jXS(Xᵀ
SXS)−1XiS

}
+
{
Xij − Xᵀ

jXS(Xᵀ
SXS)−1XiS

}{
Xᵀ
iS∗ −Xᵀ

iS(Xᵀ
SXS)−1Xᵀ

SXS∗
}

[β0
S∗ − β̂S∗ ].

We denote the first term as W
(kfc)
ni and all the others are denoted by R

(kfc)
ni . For simplicity

we assume the normality of Xi ∼ N(0,Σ) for the KFC projection section. Now W
(kfc)
ni =

{εi(Xij −ΣjSΣ
−1
SSXiS)}ni=1 are independent with EW

(kfc)
ni = 0, and similarly as Proposition

4, it follows that E[(W
(kfc)
ni )2] = θi;jj − 2ΣjSΣ

−1
SSΘi;jS + ΣjSΣ

−1
SSΘi;SSΣ

−1
SSΣSj. Note that if

we assume independence between εi and Xi and homoscedasticity for the error terms, we
have E[(W

(kfc)
ni )2] = σ2

ε (σjj −ΣjSΣ
−1
SSΣSj).

Let EL(kfc)
n (βj) be the empirical likelihood ratio test statistic defined by 4.2 with m

(kfc)
ni (βj)

replaced by mni(βj). The following Theorem demonstrates that the EL ratio test statistic
EL(kcf)

n (βj) constructed based on the estimating equations (4.5) is asymptotically chi-square
distributed.

Theorem 3. Under Assumption 3 in the appendix, the conditions (C0)-(C2) can be verified.

Assume σ2
n,kfc → σ2

kfc for some σ2
kfc <∞, and then we have −2 log EL(kfc)

n (β0
j )

d→ χ2
1.

Remark 2. Similar to the discussion in Remark 1, to make the remainder term R
(kfc)
ni

satisfies (C2), we need to control the error due to the initial estimators and assume sub-
Gaussianian for both ε and X. In addition, for the KFC method, we need to control the
partial correlation between Xj and any covariates that are not in the KFC set.
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One of the key steps in the above procedure is the selection of the KFC set, we propose
the following procedure. Based on normality assumption of the predictors, we have the well
known conditional distribution result for any give subset S:

ρjk(S) := Corr(Xij, Xik|XiS) = σjk −Σᵀ
SjΣ

−1
SSΣSk.

The sample partial correlation can be evaluated by, ρ̂jk(S) = X̃ᵀ
j X̃k/n. For testing whether

a partial correlation is zero or not, we could apply Fisher’s z-transformation

F̂jk =
1

2
log

{
1 + ρ̂jk(S)

1− ρ̂jk(S)

}
.

Classical decision theory yields then the following rule when using the significance level α.
Reject the null hypothesis H0 : ρjk(S) = 0 against the two-sided alternative Ha : ρjk(S) 6= 0
if √

n− |S| − 3|F̂jk| > zα/2.

So we could then select the smallest size of S such that

max
k∈S∗

√
n− |S| − 3|F̂jk| < zα/2.

And in order to make this KFC set selection more stable, we adopt the stability selection
proposed by Meinshausen and Bühlmann (2010) and Shah and Samworth (2013). According
to Shah and Samworth (2013), we split the data into half for B times and select the final
KFC set with variables shown at least 50% of those 2B KFC sets.

4.3 EL method based on the inverse method

Note that b̂j is the solution to the following estimating equation

n∑
i=1

m
(inv)
ni (bj) :=

n∑
i=1

{
Yi −Xᵀ

i β̂
}{
Xij − (Yi,X

ᵀ
i,\j)γ̂j

}
+ nbj = 0. (4.6)

Simple algebra immediately yields the following decomposition of m
(inv)
ni (bj),

m
(inv)
ni (b0j) = {εiηij,y + b0j}︸ ︷︷ ︸

W
(inv)
ni

+ εi(Yi,X
ᵀ
i,\j)(γ

0
j − γ̂j) + Xᵀ

i (β
0 − β̂)

{
Xij − (Yi,X

ᵀ
i,\j)γ̂j

}︸ ︷︷ ︸
R

(inv)
ni

.

The following proposition about the variance of the dominant term W
(inv)
ni under different

situations shows the complexity brought by the heteroscedastic noise.

Proposition 5. Under model (2.1), we have W
(inv)
ni mean 0 and E[(W

(inv)
ni )2] = σ2

i;n,inv. Fur-

thermore, if εi and Xi are independent, then E[(W
(inv)
ni )2] = Var(εi)Var(ηij,y)+(γ0j1)

2{Var(ε2i )−
Var2(εi)}. With additional assumption of homoscedasticity and normality for εi, we further

have E[(W
(inv)
ni )2] = σ2

εσ
2
ηj ,y

+ (β0
j )

2σ4
ηj ,y

.
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Let EL(inv)
n (βj) be the empirical likelihood ratio test statistic defined by 4.2 with m

(inv)
ni (βj)

replaced by mni(βj). The following Theorem demonstrates that the EL ratio test statistic
EL(inv)

n (βj) constructed based on the estimating equations (4.6) is asymptotically chi-square
distributed.

Theorem 4. Under some conditions for the initial estimators as in Assumption 2 in the
appendix, and assume (Xᵀ

i , εi)
ᵀ is sub-Gaussian. As long as s log p/

√
n = o(1), the conditions

(C0)-(C2) are satisfied. Assume (1/n)
∑n

i=1 σ
2
i;n,inv → σ2

inv for some σ2
inv <∞, then we have

−2 log EL(inv)
n (b0j)

d→ χ2
1.

5 Simulation studies

In this section, we conducted simulation studies to investigate the finite sample performance
of the proposed EL ratio tests, as well as comparing the performance with methods proposed
in the existing literature.

We generated random samples according to model (2.1). The covariates were generated
from a multivariate Gaussian distribution with mean 0 and covariance Σ. To compare the
performance under different dependence structures, we considered three different covariance
matrices for Σ = ((σjk)): banded matrix with σjk = ρ|j−k|1(|j − k| < 2), Toeplitz matrix
with σjk = ρ|j−k| and block diagonal matrix with Σ = I[p/3] ⊗ B(ρ) where B(ρ) is a 3 × 3
matrix with the (i, j) component ρ|i−j|. We set ρ = 0.2 and 0.5 in our simulation.

We also considered five scenarios for the error distribution: standard normal N(0, 1),
mixture normal distribution 0.7N(0, 1) + 0.3N(0, 52), t distribution with degrees of freedom
3, and two heteroscedastic distributions 0.7X1Z and X1Z

∑p
j=2Xj−1Xj/(p− 1) where Z ∼

N(0, 1) independent of X. Note that for the two heteroscedastic distributions, ε is not
independent of X. For the first heteroscedastic case the conditional variance only depends
on a low dimensional covariate (the first component of the covariates X). But the conditional
variance for the second heteroscedastic case depends on the the entire vector of covariates.
Our goal is to test if the first coefficient is zero or not. Namely,

H0 : β0
1 = 0, v.s. H1 : β0

1 6= 0.

The first component of the true coefficients β0
1 was set to 0, 0.1, 0.2, 0.3, 0.4 and 0.5. Here

0 was used to evaluate the empirical size and the non-zero values were used to evaluate the
power of the proposed methods. In addition, we set β0

4 = 1.5, β0
7 = 2 and all others are 0.

We chose p = 100, 200, 500 and n = 200, 400. The number of simulation replicates was 500.
We compared five methods: three proposed methods and two existing methods. Specif-

ically, we considered three EL based methods proposed in Section 4. In particular, “EL-
LASSO”, “EL-KFC” and “EL-INV”, respectively, corresponds to the proposed method in-
troduced in Section 4.1, 4.2 and 4.3. We compared them with two existing methods: the
Wald type test proposed in Zhang and Zhang (2014) and and van de Geer et al. (2013)
(denoted by “Wald”) and the Score type test (denoted by “Score”) proposed in Ning and
Liu (2014) with Lasso estimation for ŵ1. For the initial estimators such as β̂, γ̂1 and ŵ1,
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we applied the scaled Lasso proposed by Sun and Zhang (2012), which has the advantage of
being tuning insensitive. And for the “EL-KFC”, in order to stabilize the KFC set selection,
we used the stability selection procedure through sub-sampling proposed by Meinshausen
and Bühlmann (2010) and Shah and Samworth (2013). According to Shah and Samworth
(2013), we splited the data into half for 10 times and select the final KFC set with variables
shown at least 50% of those 20 KFC sets.

For the scenarios with normally distributed random errors, we observed that all the
procedures were able to control type I error around nominal level at 5%. The proposed
EL based approach with different estimating equations had very similar power. In general,
the EL based tests had better power performance than the existing methods, especially in
the low sample size situation. Due to the limited space, please refer to the Supplemental
material for the simulation results in these cases.

Our main interest is to evaluate the performance of the proposed methods and some
existing methods under the heteroscedastic linear regression model. Table 1 summarizes
the results for the scenario with X generated by multivariate normal distribution with the
Toeplitz covariance matrix (ρ = 0.2) and the heteroscedastic error distribution 0.7X1N(0, 1).
Under this case, it is clear that all of the EL based inference procedures, namely “EL- KFC”,
“ EL- INV” and “EL-LASSO” were asymptotically valid because they can control the type
I errors reasonably well. But for the existing methods “Wald” and “Score”, their type I er-
rors were largely inflated, which indicates that these two procedures are invalid. This is not
surprising because these two procedures were designed for linear models with homogeneous
variance. Similarly, in Table 2, we summarize the empirical size and power under another
scenario with heteroscedastic error distribution whose conditional error variance depends
on high dimensional covariates generated according to X1

∑p
j=2Xj−1XjN(0, 1)/(p− 1). Al-

though the error variance depends on a high dimensional covariates, our proposed methods
were still able to control the type I error well under the null hypothesis. However, the existing
methods “Wald” and “Score” had size distortion under the heteroscedastic error distribution.
This further confirms the advantages of our proposed EL based inference procedures.

6 An empirical study

We applied the proposed methods to study the association between gene expression and copy
number alternation using a real data set collected at multiple cancer centers (Feng et al.,
2010). The data set contains gene expression and copy number alternation measured through
primary breast tumor specimens in a few recent breast cancer cohort studies. In cells with
cancer, mutations can cause a gene to be either deleted or duplicated on a chromosome,
which leads to loss or gain of DNA copies of a gene. Comparative Genomic Hybridization
(CGH) is a technique for measuring DNA copy numbers of genes of interest on the genome.
The CGH array experiments return log2 ratio between the number of DNA copies of a
gene in the tumor cells and that in the reference cells. A positive (negative) measurement
suggests a possible copy number gain (loss). After proper normalization, among a number
of algorithms, cghFLasso (Tibshirani and Wang, 2008) was used to estimate the underlying
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Table 1: Empirical size and power of the proposed EL-based test procedures and two existing
procedures under the heteroscedastic error case. In this table, covariates are generated by
a multivariate normal distribution with covariance given by a Toeplitz matrix with ρ = 0.2,
and the random error are generated according to 0.7X1N(0, 1).

β0
1

Method p n 0 0.1 0.2 0.3 0.4 0.5
EL-KFC 100 200 0.062 0.244 0.624 0.924 0.986 1.000

400 0.040 0.366 0.916 0.998 1.000 1.000
200 200 0.070 0.230 0.652 0.920 0.990 1.000

400 0.076 0.350 0.890 0.990 1.000 1.000
500 200 0.060 0.254 0.636 0.900 0.986 0.996

400 0.058 0.402 0.902 0.992 1.000 1.000
EL-INV 100 200 0.058 0.230 0.620 0.910 0.986 1.000

400 0.040 0.356 0.918 0.998 1.000 1.000
200 200 0.058 0.222 0.652 0.910 0.988 1.000

400 0.066 0.342 0.880 0.990 1.000 1.000
500 200 0.060 0.236 0.624 0.898 0.980 0.996

400 0.050 0.402 0.902 0.992 1.000 1.000
EL-LASSO 100 200 0.056 0.244 0.634 0.922 0.988 1.000

400 0.046 0.376 0.926 1.000 1.000 1.000
200 200 0.062 0.232 0.668 0.926 0.990 1.000

400 0.072 0.356 0.890 0.988 1.000 1.000
500 200 0.068 0.250 0.640 0.912 0.986 0.996

400 0.052 0.412 0.902 0.992 1.000 1.000
Wald 100 200 0.256 0.496 0.860 0.986 1.000 1.000

400 0.210 0.706 0.986 1.000 1.000 1.000
200 200 0.234 0.464 0.848 0.980 1.000 1.000

400 0.236 0.680 0.968 1.000 1.000 1.000
500 200 0.208 0.516 0.874 0.978 1.000 1.000

400 0.234 0.736 0.986 1.000 1.000 1.000
Score 100 200 0.256 0.490 0.860 0.986 1.000 1.000

400 0.218 0.700 0.986 1.000 1.000 1.000
200 200 0.234 0.470 0.846 0.980 1.000 1.000

400 0.234 0.672 0.968 1.000 1.000 1.000
500 200 0.204 0.518 0.870 0.978 1.000 1.000

400 0.230 0.728 0.984 1.000 1.000 1.000

DNA copy numbers based on array outputs. Then, the copy number alteration intervals
(CNAIs), which are defined as basic CNA units (genome regions) in which all genes tend to
be duplicated or deleted simultaneously, were estimated by using some clustering method
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Table 2: Empirical size and power of the proposed EL-based test procedures and two existing
procedures under the heteroscedastic error case. In this table, covariates are generated by
a multivariate normal distribution with covariance given by a Toeplitz matrix with ρ = 0.2,
and the random error are generated according to X1

∑p
j=2Xj−1XjN(0, 1)/(p− 1).

β0
1

Method p n 0 0.1 0.2 0.3 0.4 0.5
EL-KFC 100 200 0.066 0.886 0.998 1.000 1.000 1.000

400 0.048 0.988 1.000 1.000 1.000 1.000
200 200 0.076 0.932 1.000 1.000 1.000 1.000

400 0.068 0.988 1.000 1.000 1.000 1.000
500 200 0.060 0.942 1.000 1.000 1.000 1.000

400 0.054 1.000 1.000 1.000 1.000 1.000
EL-INV 100 200 0.062 0.872 0.998 1.000 1.000 1.000

400 0.038 0.988 1.000 1.000 1.000 1.000
200 200 0.074 0.936 1.000 1.000 1.000 1.000

400 0.064 0.988 1.000 1.000 1.000 1.000
500 200 0.056 0.938 1.000 1.000 1.000 1.000

400 0.042 1.000 1.000 1.000 1.000 1.000
EL-LASSO 100 200 0.066 0.876 0.998 1.000 1.000 1.000

400 0.046 0.988 1.000 1.000 1.000 1.000
200 200 0.078 0.934 1.000 1.000 1.000 1.000

400 0.064 0.988 1.000 1.000 1.000 1.000
500 200 0.064 0.944 1.000 1.000 1.000 1.000

400 0.046 1.000 1.000 1.000 1.000 1.000
Wald 100 200 0.222 0.982 1.000 1.000 1.000 1.000

400 0.214 1.000 1.000 1.000 1.000 1.000
200 200 0.244 0.990 1.000 1.000 1.000 1.000

400 0.214 0.998 1.000 1.000 1.000 1.000
500 200 0.260 0.990 1.000 1.000 1.000 1.000

400 0.240 1.000 1.000 1.000 1.000 1.000
Score 100 200 0.226 0.984 1.000 1.000 1.000 1.000

400 0.208 1.000 1.000 1.000 1.000 1.000
200 200 0.236 0.990 1.000 1.000 1.000 1.000

400 0.206 0.998 1.000 1.000 1.000 1.000
500 200 0.260 0.990 1.000 1.000 1.000 1.000

400 0.232 1.000 1.000 1.000 1.000 1.000

based on the DNA copy numbers estimation. The gene expression data were collected by
microarray expression experiments.

In our study, we used data collected from a total of 172 specimens with both cDNA
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expression microarray and CGH array measurements. For each CNAI, the mean value of the
estimated copy numbers of the genes falling into this CNAI was calculated. This resulted in
a 172 (samples) by 384 (CNAIs) numeric matrix. We focused on a set of 654 breast cancer
related genes, which was derived based on seven published breast cancer gene lists. This
resulted in a 172 (samples) by 654 (genes) numeric matrix. Please refer to Peng et al. (2010)
for more details about the data preprocessing.

We studied the association between gene expression and DNA copy numbers through a
high dimensional linear regression model. In the linear regression model, gene expression
data for a given gene were used as response, and the DNA copy numbers were used as
predictors. Namely, each of the 654 gene expression was used as response variable, and the
DNA copy numbers were used as predictors. For illustration purpose, we focused on the
genes with heteroscedastic error variance. To this end, we first conducted a test to identify
genes with heteroscedastic variance.

We tested for the presence of heteroscedasticity for each of the 654 genes using two test
procedures proposed by Li and Yao (2015), i.e. the approximate likelihood-ratio test (ALRT)
and coefficient-of-variation test (CVT). These two test procedures were constructed using

the residuals obtained by Y − Xβ̂
0

where β̂
0

is the ordinary least squares (OLS) estimate
of β0. Although both the dimension of covariates and the sample size are allowed to grow
to infinity simultaneously in their proposed test procedures, the covariates dimension needs
to be less than the sample size. In our data set, the sample size is n = 172 and covariates
dimension is p = 384. As a result, their proposed procedure was not directly applicable.

In order to apply the above test procedures, for each of the 654 gene expressions, we first
selected variables by feature screening via distance correlation learning approach proposed by
Li et al. (2012), which was implemented in package grpss. This procedure was demonstrated
nice performance under heteroscedastic setting in Li et al. (2012) The p-values obtained by
the above two test procedures are summarized, respectively, in Figure 1 (a) and (b). To adjust
for the multiplicity, we applied the Bonferroni method to control the family-wise error rate.
After the Bonferroni correction, 33 genes were declared to have significant heteroscedasticity
based on the ALRT procedure, and 155 genes had significant heteroscedasticity based on the
CVT procedure. These results demonstrate that heteroscedasticity exists for many genes in
this data set.

For further analysis and illustration purpose, we selected the top four genes with sig-
nificant heteroscedasticity from the ALRT procedure among the common genes selected by
both of ALRT and CVT for further analysis. The reason to choose ALRT here is due its
robustness which has been confirmed in Li and Yao (2015). The four selected genes are the
279-th gene named “SEMA3C” on Chr7, the 433-th gene named “POLR2F” on Chr22, the
493-th gene named “C18orf21” on Chr18 and the 610-th gene called “FOXA1” on Chr14.

We applied the proposed EL based approaches to the four genes selected above, and
compared them with the “Wald” test and the “Score” test describled in the simulation
studies. The results are demonstrated in Figure 2. For each test procedure (EL-bassed
approaches, “Wald” and “Score”), we can obtain a sequence of p-values {pj}pj=1, where
pj is the p-value for testing H0j : β0

j = 0 vs H1j : β0
j 6= 0 for j = 1, · · · , p. Then we

ordered p-values in an increasing order, p(1) ≤ p(2) ≤ · · · ≤ p(j) ≤ · · · ≤ p(p), and applied
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Figure 1: p values for testing heteroscedasticity. From ALRT, we got 33 genes with
significant heteroscedasticity. And from CVT, we got 155 genes with significant heteroscedas-
ticity. The horizontal red line represents the Bonferoni threshold.

the Benjamini-Hochberg (BH) to identify the significant hypotheses. Rejecting the null
hypotheses H0j : β0

j = 0 means that the j-th CNAI are significantly associated with the gene
expression.

It is interesting to find that as shown in Figure 2d, for the gene “FOXA1” on chro-
mosome 14, the 114-th and 258-th CNAIs were significant using all the EL-based test
procedures and the existing “Wald” and “Score” test procedures. However, for the gene
“C18orf21” on chromosome 18, the 161-th CNAI was detected by all the EL based meth-
ods as illustrated in Figure (2c) but not detected by the “Score” test and “Wald” tests.
The 161-th CNAI corresponds to Cytoband 8p22. In the studies conducted by Tsuneizumi
et al. (2002) and Voeghtly et al. (2012), it was found that the allelic loss in Cytoband
8p22 is closely related to the risk of breast cancer. Specifically, patients with tumors lost
an allele at 8p22 had significantly higher risks of mortality than those with tumors re-
taining both alleles at those loci. In another study on the Human Protein Atlas (http:
//www.proteinatlas.org/ENSG00000141428-C18orf21/cancer), it was found that sev-
eral cases of breast cancers exhibited moderate nuclear/nucleolar positivity of the gene
“C18orf21”. Finding the significant association between the expression of gene “C18orf21”
and the CNA in Cytoband 8p22 can improve our understanding of the relationship between
the discoveries in above studies. More importantly, it provided us some insight about the
underlying disease mechanism of breast cancer. This shows the advantage of the EL based
proposed methods, and the necessarily of considering heteroscedasticity in this data set.
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Figure 2: Manhattan Plot for Top 4 Genes with heteroscedastic.

7 Discussion

In this paper, we studied inference problem for low-dimensional parameters in a high-
dimensional heteroscedastic linear model. The asymptotic normalities of the existing es-
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timators were established under the heteroscedastic linear model. However, the asymptotic
normalities were found to be difficult to be used in practice due to the complicated asymp-
totic variance. To address the issue, we proposed three EL based approaches, which avoids
the explicit estimation of the variance. The key advantage of our proposed EL based meth-
ods comparing with others such as Wald type method and Score based method is that it can
allow heteroscedastic error noise. This is largely due to the self normalization property of the
empirical likelihood. More interestingly, the conditional variance of random error is allowed
to depend on the high dimensional covariates. It can be used to test statistical hypothesis
and construct confidence intervals, which have more natural data driven shape. Moreover,
we do not need to assume independence between the error term and the covariates, which
is a common assumption in the existing literature. We only required the error term and the
covariates to be uncorrelated. The method we proposed provides a unified framework for
testing low-dimensional coefficients in high dimensional linear models when the estimating
equations can be established and satisfy the conditions specified in Theorem 1. Our proce-
dure is simple to apply in practice because we do not need to derive the asymptotic variances
for estimators based on different estimating equations.

A Technical assumptions

For a symmetric matrix M = ((Mjk)), λmin(M) and λmax(M) are the minimal and maximal
eigenvalues of M. For any matrix M = ((Mjk)), let ‖M‖max = maxj,k |Mjk|, ‖M‖1 =

maxk
∑

j |Mjk|, ‖M‖2 =
√
λmax(MᵀM), and ‖M‖∞ = maxj

∑
k |Mjk|.

Assumption 1. (1) Assume the initial estimator β̂ satisfying ‖β̂−β0‖1 = Op(s
√

log p/n).

(2) Suppose the initial estimators ŵj satisfy max1≤j≤p ‖ŵj −w0
j‖1 = Op(an), where an =

o(1/
√

log p).

(3) The prediction errors satisfy ‖X(β̂−β0)‖22/n = Op(s log p/n) and max1≤j≤p ‖X\j(ŵj−
w0
j )‖22/n = Op(bn), where X\j is the design matrix X with the j-th column deleted and

bn = o(1/
√
n).

(4) Xi and εi are all sub-Gaussian.

(5) s log p/
√
n = o(1).

Remark 3. 1. With (4) that Xi and εi are all sub-Gaussian, we have Xikεi sub-exponential
with E(εiXik) = 0. By Bernstein inequality Vershynin (2010) and union bound inequal-
ity, we have

P(
∥∥ 1

n

n∑
i=1

Xiεi
∥∥
∞ ≥ t) ≤ C1p exp(−C min(t2/C2, t/C3)n).
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By taking t = C ′
√

log p/n for some positive constant C ′ such that CC
′2 > C2, we have

‖ 1

n

n∑
i=1

Xiεi‖∞ = Op(
√

log p/n). (A.1)

2. For ηij = Xij − E(Xij|Xi,\j), we have ηij sub-gaussian since Xi is sub-gaussian.
And for any k 6= j, we have E(Xikηij) = E{Xik[Xij − E(Xij|Xi,\j)]} = E{XikXij −
E[XikXij|Xi,\j]} = 0. Similarly, we have for any t > 0 and 1 ≤ j 6= k ≤ p,

P(
∣∣ 1
n

n∑
i=1

Xikηij
∣∣ ≥ t) ≤ C1p exp(−C min(t2/C2, t/C3)n),

which leads to ∥∥∥ 1

n

n∑
i=1

ηijXi,\j

∥∥∥
∞

= Op(
√

log p/n). (A.2)

3. For the properties of the initial estimators in (1), (2) and (3) under the heteroscedasitic
noise case, we can use the

√
Lasso estimator as in Belloni et al. (2014). According to

Theorem 7 in Belloni et al. (2014), we have that the
√

Lasso estimators under certain
conditions have these properties satisfied.

Assumption 2. (1) Assume the same assumption as Lasso projection case for the initial
estimator ‖β̂ − β0‖1 = Op(s

√
log p/n).

(2) Assume similar assumption as Lasso projection case for the initial estimators γ̂j, i.e.,
max1≤j≤p ‖γ̂j − γ0

j‖1 = Op(an), where an = o(1/
√

log p).

(3) Assume similar assumption as Lasso projection case for the prediction errors, i.e.,
‖X(β̂ − β0)‖22/n = Op(s log p/n) and max1≤j≤p ‖(Y,X\j)(γ̂j − γ0

j)‖22/n = Op(bn) and
bn = o(1/

√
n).

(4) (Xᵀ
i , εi)

ᵀ is sub-Gaussian.

(5) s log p/
√
n = o(1).

Remark 4. For the condition (2) above, if we assume a = max1≤j≤p sj with sj = ‖γ0
j‖0

and then the
√

Lasso estimators for γ0
j satisfy this condition with an = a

√
log p/n. For

the condition (3) above, since we assume that (Xᵀ
i , εi)

ᵀ is sub-Gaussian (which makes β0ᵀXi

also sub-Gaussian), then due to Cov(β0ᵀXi, εi) = E(εiβ
0ᵀXi) = 0, we have εiβ

0ᵀXi sub-
exponential and by the Bernstein inequality, we have for any t > 0,

P(
∣∣ 1
n

n∑
i=1

Xᵀ
iβ

0εi
∣∣ ≥ t) ≤ 2 exp{−C1nmin(t2/C2

2 , t/C2)}.
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This also leads to

1

n

n∑
i=1

Xᵀ
iβ

0εi = Op(
√

log p/n), (A.3)

as long as log p/n→ 0. And with the same argument, we have

1

n

n∑
i=1

Xikηij,y = Op(
√

log p/n), (A.4)

1

n

n∑
i=1

(Yi,X
ᵀ
i,\j)γ

0
jηij,y = Op(

√
log p/n). (A.5)

Assumption 3. (1) For the eigenvalues of Σ, there exist some constants λmin and λmax

such that 0 < λmin < λmin(Σ) ≤ λmax(Σ) < λmax <∞.

(2) Assume Xi ∼ N(0,Σ) and εi to be sub-Gaussian.

(3) The initial estimator β̂ (e.g., LASSO) satisfies ‖β̂ − β0‖1 = Op(s
√

log p/n).

(4) s
√

(log p)2m3/n = o(1) and s
√

(log p)3m2/n2 = o(1) where m is the upper bound of
the size of KFC set |S|.

(5) Assume s
√

log p supS:|S|≤m maxk∈S∗
∣∣σjk −ΣjSΣ

−1
SSΣSk

∣∣ = o(1).

Remark 5. Condition (1) is a mild condition that assures the asymptotic identifiability of
the model (Fan and Lv, 2008; Wang, 2009, 2012). Condition (2) is a common condition
used for simplification of theoretical proofs in high dimensional setup; see for example, Wang
(2009) and Zhang and Zhang (2014). Condition (3) was also used in Assumptions 1 and 2.
Condition (4) is for controlling the size of the KFC set |S|, and Condition (5) controls the
partial correlation between the target covariate Xij and XiS∗.
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Peter Bühlmann. Statistical significance in high-dimensional linear models. Bernoulli, 19
(4):1212–1242, 2013.
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