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Abstract 

This experimental study examined spatial variation of ground 

level ozone (O3) in the city of Catania, Italy using thirty passive 

samplers deployed in a 500-m grid pattern. Significant spatial 

variation in ground level O3 concentrations (ranging from 12.8 

to 41.7 g/m3) was detected across Catania’s urban core and 

periphery. Biophysical measures derived from satellite imagery 

and built environment characteristics from GIS were evaluated 

as correlates of O3 concentrations. A land use regression model 

based on four variables (land surface temperature, building 

area, residential street length, and distance to the coast) 

explained 74% of the variance (adjusted R2) in measured O3. 

The results of the study suggest that biophysical remote sensing 

variables are worth further investigation as predictors of ground 

level O3 (and potentially other air pollutants) because they 

provide objective measurements that can be tested across 

multiple locations and over time. 

 

Nomenclature 

Variable Unit of 

Measure 

Description 

LST200sc ᵒK Land surface temperature mean 

in 200m semicircular buffer 

LST150sc ᵒK Land surface temperature mean 

in 150m semicircular buffer 

ALB200c Unitless Index Albedo mean in 200m circular 

buffer 

LST100sc Unitless Index Land surface temperature mean 

in 100m semicircular buffer 

ALB150c Unitless Index Albedo mean in 150m circular 

buffer 

ALB100c Unitless Index Albedo mean in 100m circular 

buffer 

ALB200sc Unitless Index Albedo mean in 200m 

semicircular buffer 

LST200c ᵒK Land surface temperature mean 

in 200m circular buffer 

LST150c ᵒK Land surface temperature mean 

in 150m circular buffer 

LST100c ᵒK Land surface temperature mean 

in 100m circular buffer 

LST50sc ᵒK Land surface temperature mean 

in 50m semicircular buffer 

ALB150sc Unitless Index Albedo mean in 150m 

semicircular buffer 

LST50c ᵒK Land surface temperature mean 

in 50m circular buffer 

Coast [m] Distance to coast  

Rlength50c [m] Residential road length in 50m 

circular buffer 

Buildings50c [m2] Buildings area in 50m circular 

buffer 

 

INTRODUCTION 

Urban air pollution negatively affects human health, quality of 

life, and ecosystem functions. Ground-level ozone (O3) is 

among the pollutants of concern because of its toxicity to lung 

tissue, exacerbation of bronchial inflammation and asthmatic 

symptoms, in addition to other health impacts (D’Amato et al., 

2010; Al-Heglan et al., 2011; Jerrett et al., 2017). Ground-level 

O3 can also decrease photosynthetic activity, thereby reducing 

ecosystem services of vegetation (Calfapietra et al., 2016).  

The current experimental study was conducted in the Italian 

city of Catania where changes in national and EU policies have 

led to a reduction in the number of continuous air quality 

monitoring stations. Seventeen continuous monitoring sites 

were active from 1992-2009. The number was reduced to six in 
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2010-11 and to only three in 2014 (Lanzafame et al., 2014 and 

Famoso et al., 2015). This decline in monitoring sites reduces 

the potential to examine spatial and temporal variations of 

intra-urban air quality and localized exposures to sensitive 

populations.  

Spatial variation in ground-level O3 was evaluated in the 

current study using a network of thirty passive samplers 

deployed in a 6x5 500m grid pattern covering sections of 

Catania’s urban core and periphery. Biophysical measures 

derived from satellite imagery and built environment 

characteristics from GIS sources were evaluated as correlates 

and used to develop a land use regression (LUR) model that 

explained 74% of the variation (adjusted R2) in measured O3 

concentration across the study area. 

 

BACKGROUND 

Study area 

Catania is the second largest city in Sicily, Italy with 

approximately 315,000 inhabitants in the city proper and of 

over 1 million in the metropolitan area. The city’s population 

density is about 1,745 people/km2 with the highest density 

occurring near the historic center (ISTAT population census 

2011). Geographically, Catania is situated at the base of Mt. 

Etna on the Ionian Sea, a setting that creates marine breezes and 

ventilation regimes that contribute to air pollutant dispersion 

for most days of the year (Lanzafame et al., 2014; Famoso et 

al., 2015). This compensates partially for the negative effects 

of the intense private vehicular traffic and old vehicle fleet. 

About 65,000 vehicles per day travel in the center of the city, 

creating chaotic traffic conditions that are exacerbated by a 

dense road pattern. Public transportation systems do not serve 

all parts of the metropolitan area therefore transportation 

demand is satisfied primarily by private vehicles. The result is 

frequent traffic congestion, peaking during morning and 

evening commutes. While Catania’s pollutions levels measured 

at the official monitoring do not usually exceed the limits set 

by European directive 2008/50 CE, deterioration of air quality 

during peak traffic is a constant problem in the city (Lanzafame 

et al., 2014; Lanzafame et al., 2015). 

 

Previous research 

Land use regression (LUR) models are commonly used to 

estimate spatial patterns of air pollutants based on measured 

values at sampling locations and a set of independent variables 

(Jerrett et al., 2005; Hoek et al., 2008; Adam-Poupart et al., 

2014). Recent review articles reveal a range of methodological 

variations and predictor variables (Ryan and LeMasters, 2007; 

Hoek, 2008; Gulliver 2012; Gulia et al., 2015). Variables 

related to motor vehicle traffic are common because it is a 

principal source of pollution in urban areas, though fixed-point 

sources (e.g., factories, refineries and powerplants) may 

contribute significantly in some contexts. Transportation 

variables including road class, length and density, traffic 

volume, and vehicle counts are common. Other variables 

commonly used include population density, land use and land 

cover, physical geography (e.g., altitude, latitude/longitude, 

distance to major water bodies), and meteorological or climatic 

variables. However, variables and their specific definitions can 

vary across studies as a result of differences in data availability, 

study objectives, and unique local characteristics.  

Direct measurement of air pollutants from satellites is an active 

area of research, but atmospheric optical properties and the 

spatial resolution of sensors designed specifically for air quality 

monitoring present challenges to spatially detailed intra-urban 

applications (Loughner et al., 2007; Martin, 2008; Knibbs et al., 

2014; Brauer et al., 2015; Van Doneklaar et al., 2015). Despite 

the common use of land use and land cover data derived from 

remote sensing technology in air pollution LUR models (e.g., 

Novotny et al., 2011; Beelen et al., 2013), objective biophysical 

measurements from moderate and high-resolution satellites, 

such as land surface temperature (LST), albedo, and spectral 

indexes have not been widely investigated as predictor 

variables, though a few studies are present in the literature. For 

example, Thiering (2016) concluded that the normalized 

difference vegetation index (NDVI) (an indicator of 

photosynthetic biomass) measured within 0.5 and 1km buffers 

around subjects’ residences was inversely associated with NO2 

and PM10 exposure. Mozumder et al. (2013) observed 

significant inverse relationships between air pollution index 

values when compared to near infrared reflectance and NDVI 

measured from satellite imagery. Dadvand et al. (2012) 

reported that NDVI had a significant inverse correlation with 

PM2.5 levels when measured in 100, 200 and 250m buffers 

around study participants’ home and work locations, but NDVI 

was not significantly associated with measured NOx exposure.  

Additional complexities in urban morphology that impact 

temperature and airflow including planimetric and 3D surface 

area of buildings, urban canyons, surface roughness, and 

predominant wind direction also affect pollutant concentration 

and dispersion (Oke, 1978; Souch and Grimmond, 2006; 

Krüger et al., 2011). For example, Su et al. (2008) reported that 

including building morphometric characteristics (height/width 

ratio of urban canyons) significantly improved LUR models, 

increasing the variance explained from 56% to 67% for NO2, 

and from 72% to 85% for NO. 

Another methodological issue associated with LUR models is 

defining the area of influence around sampling locations. A 

common approach is to use circular buffers at varying radii. For 

example, Madsen et al. (2007) used circular buffers ranging 

from 50 to 1000m to examine NOx at 80 passive sampling 

locations in Oslo, Norway. Hoek et al. (2008) suggested that 

buffers should account for measured declines in the effects of 

traffic on air quality at distances ranging from 100m for major 

roads to 500m for highways. Li et al. (2015) reported that LUR 

models using semicircular buffers oriented towards the 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 21 (2017) pp. 10551-10562 

© Research India Publications.  http://www.ripublication.com 

10553 

predominate wind direction resulted in significantly higher R2 

values when compared to models based on circular buffers.  

 

DATA AND METHODS 

Passive samplers and O3 measurement  

For this experimental study, passive samplers were deployed at 

30 sites for two, 2-week periods in December 2014 to estimate 

spatial variation in concentrations of ground-level O3. The 

samplers measure pollutant concentrations without forced air 

intake and were deployed in containers that permit exposure to 

ambient air, but provide protection from environmental factors 

such as rain, excessive irradiation, and wind (Plaisance et al., 

2004). The devices were located 2 to 3 m above the ground in 

sites free from obstacles. Samplers used in the current study 

were obtained from Passam Ag of Zurich, Switzerland who 

also conducted the laboratory analysis to determine O3 

concentrations. Technical aspects of the samplers are 

summarized in Table 1. 

 

Table 1: Technical characteristics of passive O3 samplers 

Technical 

Characteristics 

 Specifications 

Range [µg/m3]  1- 200 

Maximum 

exposure  

 10 days 

Limit reliability 

[µg/m3] 

 0.6 

External 

influences 

  

Wind  < 10% up to 4-5 m/s 

Temperature  No influence 5-40 °C 

Humidity  No influence 20-80% 

Uncertainty*  25% in 20-40 µg/m3 

* according GUM (ISO Guide to the expression of uncertainty 

in measurement) 

 

The samplers contained polypropylene or fiberglass phials 

treated with compounds that react with O3. Once the phial is 

opened a reaction between the compound and the air begins, 

creating a concentration differential between the interior and 

exterior. The physical principle is based on the passive 

diffusion of a gas toward an absorbent in accordance with 

Frick’s law (1): 

                (1) 

 

Where F is the molar flow rate, D is the diffusion coefficient, 

C is the concentration and L is the diffusion path [1]. The 

diffusion conditions are influenced by the length of the 

diffusion path, L [cm], and the transversal area, A [cm2]. The 

mean concentration of the gas is given by the equation (2): 

𝐶 =
𝑄∙𝐿

𝐷∙𝐴∙𝑡
                     (2) 

Where t [min] is the exposition time, Q [µg] is the total 

quantity of the absorbed gas by the phial (calculated with 

spectrophotometric analysis). 

 

Passive samplers are recognized by European legislation as 

exploratory devices despite the fact they provide precise 

measures (Krupa et al., 2000). Recent experiments have 

demonstrated significant correlation between air pollutant 

concentrations measures with passive samplers and those 

collected from official continuous monitoring stations in 

Catania (Lanzafame et al., 2016). The advantages of using 

passive samplers include ease of use, the opportunity to 

conduct surveys over a wide area, small size compared to active 

samplers, no need of electrical supply, and relatively low costs. 

While passive samplers do not substitute the authorized 

pollutant monitoring systems, they do present an ideal solution 

to measure pollutant distributions in a specific geographical 

area (Pfeffer et al., 2010). 

 

Remote sensing and GIS variables 

Circular buffers at 50, 100, 150 and 200m radii were generated 

around GPS coordinates for each of the 30 sampling locations. 

Semicircular buffers were created at the same radii in 2D and 

3D following the methods of Li et al. (2015) in which the 

orientation of the buffer is based on the predominant wind 

direction. Data on wind direction during the monitoring period 

were acquired from 31 weather stations distributed throughout 

the Catania metropolitan area. The average bearing was 

calculated across all weather stations for the monitoring period 

at 207.58 degrees. Semicircular 3D buffers oriented to this 

bearing were generated at height of 70m in order to encompass 

the tallest buildings in the study area (Figure 1). 

 

dL

dC
DF 
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Figure 1: Example of 2d circular buffers (50, 100, 150 & 200m) and a 3D semicircular buffer (200m) based on predominate wind 

direction (black arrow) with 3D building model. 

 

The US Geological Survey’s EarthExplorer website 

(https://earthexplorer.usgs.gov/) was searched to identify 

could-free Landsat imagery of the study area acquired as close 

as possible in time to the air quality monitoring period. A cloud-

free image captured by the Landsat 8 Operational Land Imager 

(OLI) and Thermal Infrared Sensor (TIRS) on 17 January 2015 

(19 days after the monitoring period) was used to derive the 

remote sensing variables evaluated as potential predictors of 

ground-level O3 (scene identifier: 

LC08_L1TP_188034_20150117_20170414_01_T1). 

Satellite image data were retrieved in the Landsat 8 surface 

reflectance product format, which is preprocessed so that pixel 

values represent surface reflectance for the 30-meter reflective 

bands (1-7 & 9) and top of atmosphere brightness temperature 

for the thermal bands (10 & 11) (USGS, 2017). The thermal 

bands are resampled from 100 to 30m to match the spatial 

resolution of the multispectral bands. An operational advantage 

to using the surface reflectance product format is that 

calibration procedures to correct for atmospheric scattering and 

absorption have already been applied based on data obtained 

from the MODIS sensor (Vermote et al., 2016).  

Several validated spectral indexes can be generated when 

retrieving Landsat 8 surface reflectance products. In the current 

study, an NDVI image was used to estimate spatial variation in 

vegetation density within the study area. Landsat 8 data cannot 

be used independently to derive precise measurements surface 

albedo because of the narrow field of view and the need to 

incorporate viewing geometries from different angles (Roy et 

al., 2014; Vermote et al., 2016). However, estimates of 

broadband albedo can be derived using methods developed by 

Liang (2000) for the Landsat 7 ETM+ sensor that were later 

adapted for the Landsat 8 OLI instrument (Makido et al., 2016; 

Naegeli et al., 2017). Band 10 data from the TIRS sensor was 

used estimate land surface temperature (LST) following the 

methods described by Estoque et al. (2017). Band 10 was 

selected because it records measurements in a lower 

atmospheric absorption region and is less affected by stray light 

artifacts compared to band 11 (Jiménez-Muñoz et al., 2014).  
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Figure 2: Biophysical remote sensing variables evaluated in LUR model. a) NDVI (normalized difference vegetation index), b) 

albedo, c) land surface temperature (LST). 

 

GIS data from OpenStreetMap (OSM) were used to estimate 

road length in three classes (primary, secondary, and 

residential). From the same source (OSM) other variables were 

examined including counts of schools, garbage collection 

locations, rail stations, and bus stops in buffers surrounding 

monitoring locations. Building footprint data for the study area 

were acquired from Italy’s National Geoportal 

(http://www.pcn.minambiente.it/). These data include a height 

attribute that was used in the current study to estimate 3D 

volume of buildings proximal to O3 monitoring locations. 

Estimates of population density within each building were 

obtained from the Urbanism and Territorial Management 

Department of Catania. 

Mean values of NDVI, albedo and LST were extracted within 

the circular and semicircular buffers around each monitoring 

location using zonal functions in a GIS. Similarly, GIS 

variables were summarized within the same buffers by count, 

total length, or area. Distance to the coast was defined as a 

continuous variable for each monitoring site. 

 

Analysis methods  

In total, 195 independent variables were generated when 

summarized in all buffer shapes and sizes. Similar to the 

methods applied by Briggs et al. (2000), Ross et. al (2007) and 

Meng et al. (2015), procedures in SPSS software were used to 

reduce the number of independent variables and find the best 

linear LUR model. First, a correlation matrix of the 

independent variables and the dependent variable was created. 

Variables with a correlation index < 0.20 were excluded. 

Preliminary collinearity tests were then applied to the 

remaining predictors by considering correlation indices > 0.50. 

The LUR model was developed using a stepwise approach. At 

each step, the independent variable not in the equation that had 

the smallest F statistic was entered. Variables already in the 

regression equation were removed if their F statistic became 

sufficiently large. As an entry F, “2” was used and as an as exit 

F “1” was used.  The modelling process consisted of the 

following steps: 

1. Exclude cases listwise. Only cases with valid values 

for all variables were included in the analyses. 

2. Test for normality using ANOVA. 

3. Test for collinearity between the independent 

variables. Eigenvalues of the scaled and uncentered 

cross-products matrix, condition indices, and 

variance-decomposition proportions were displayed 

along with variance inflation factors (VIF) and 

tolerances (T) for individual variables. T > 0.2 and 

VIF < 10 were used as thresholds.  

4. Apply Durbin-Watson test to detect autocorrelation of 

model residuals.  

The final model was selected by considering a combination of 

three parameters: Radjusted, SE and the number of independent 

variables.  

 

RESULTS 

Measurements O3 concentrations are shown in figure 3. The 

average was 26.55 µg/m3 with a SD of 6.9 µg/m3 (25.98%) 

demonstrating that the variation of was statistically significant. 

The overall pattern suggests higher concentrations in the 

peripheral areas of the city characterized by more open spaces 

and vegetation cover (see upper left inset), possibly due to 

increased solar insolation in these areas. None of the measured 

concentrations exceeded the official limit imposed by European 

Directive 2008/50/EC (Maximum daily 8-hour mean < 120 

µg/m3). Despite being below the official limits, some of the 

measured concentrations were relatively high for winter and 

were comparable to observations from other urban areas 

characterized by high air pollution, such as Delhi where winter 

values average around 40 µg/m3 (Sharma et. al., 2016).  

 

http://www.pcn.minambiente.it/
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Figure 3: Passive sampling locations with measured O3 concentrations (g/m3). 

 

Table 2 lists the independent variables that had Pearson 

correlation coefficients > 0.50 with measured O3 

concentrations. All of the highly correlated variables, except 

for distance from the coast, were derived from remote sensing 

imagery. In particular, land surface temperature (LST) in 

almost all buffer variations was highly correlated with O3 

concentrations. This may be due to the causal links between 

temperature and ozone production. Albedo was also 

significantly correlated with O3, possibly due to the relation 

between ultraviolet solar radiation and ozone formation. 

Several of the variables highly correlated with measured O3 

concentrations were derived within semicircular buffers rather 

than circular buffers, demonstrating the potential importance of 

considering predominant wind direction as suggested by Li et 

al. (2015).  

 

 

 

Table 2: Independent variables with correlation coefficients > 

0.50. 

 Ozone (O3) Pearson's r 

 LST200sc 0.734 

 LST150sc 0.706 

 ALB200c 0.686 

 LST100sc 0.651 

 ALB150c 0.632 

 ALB100c 0.630 

 ALB200sc 0.627 

 LST200c 0.614 

 LST150c 0.604 

 LST100c 0.564 

 LST50sc 0.558 

 ALB150sc 0.517 

 LST50c 0.513 

 Coast 0.506 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 21 (2017) pp. 10551-10562 

© Research India Publications.  http://www.ripublication.com 

10557 

Based on the regression methods described previously, the 

best linear model was derived using four variables and one 

constant: 
 

O3 concentration = -112.327 + 0.003 Coast + 0.021Rlength50c 

– 0.001 Buildings50c + 9.473LST200sc 

 

As shown by table 3, the dependent variables selected in the 

final LUR model did not exhibit significant collinearity. The 

correlation of them with Ozone is high in almost all cases, in 

particular the most correlated is LSTsc200 with a positive 

correlation very close to 1 (0.734).  The positive and high value 

demonstrates that the land surface temperature has a high 

impact in the formation of ozone.  

The Euclidean distance of sampling locations to the coast was 

another important predictor. The positive value (0.506) may be 

a function of more congested traffic areas that are located 

further from the coast. Moreover, the microclimatic changes 

that occur between the more humid zones close to the coast and 

the drier zones far from the coast may be another explanation.   

Given that ozone precursors are predominantly emitted during 

the combustion of fossil fuels, increased vehicular traffic is 

positively correlated with ozone. This is possibly reflected in 

the positive correlation (0.319) between total lengths of 

residential streets in 50m buffers around the sampling 

locations. Residential streets in the city are typically 

characterized by more congested traffic in urban canyons.  The 

last predictor in the model is the total area of buildings (m2) 

calculated in the buffer of 50 m. The negative Pearson 

coefficient observed may imply that ozone formation is more 

facilitated in higher insolation and less shadow effects of 

surrounding buildings.   

Table 4 summarizes characteristics of the LUR model. All 

variables presented low variance inflation factors (VIFs) and 

tolerance statistics, which further demonstrate low collinearity 

among predictor variables. The standardized coefficients 

suggest the most important variable was LST200sc with a β of 

0.657, almost three times higher than the other variables. 

Overall, the model was able to explain almost 80% the variation 

in measured O3 concentrations (R2=0.775, adjusted R2=0.739). 

The Durbin-Watson index of 2.188 indicated there is neither 

positive nor negative spatial autocorrelation between residuals 

and they follow a normal distribution (Figure 4).    

 

 

Table 3: Pearson correlation coefficients between significant variables in the final LUR model. 

Variables Ozone 

(O3) 

Coast 

distance 

Res 

length_c50 

buildings_c50 LST_sc200 

Ozone (O3) 1 0.506 0.319 -0.272 0.734 

Coast 

distance 

 1 0.178 -0.271 0.158 

Res 

length_c50 

  1 0.245 0.141 

buildings_c50    1 0.008 

LST_sc200     1 

 

Table 4: Summary of final land use model indices. 

Model predictors 

Unstandardized Coefficients 

Standardized 

Coefficients Collinearity Statistics 

β Std. Error β Tolerance VIF 

 Intercept -112.327 19.797    

Coast_Distance 0.003 0.001 0.290 0.847 1.180 

Res length_c50 0.021 0.009 0.238 0.866 1.155 

buildings_c50 -0.001 0.001 -0.257 0.837 1.194 

LST_sc200 9.473 1.397 0.657 0.962 1.040 

 

Model summary 
R R2 Adjusted R2 Std. Error of 

Estimate 

Durbin-

Watson 

0.88 0.775 0.739 3.531 2.188 

 

Residuals statistics 

Std. mean Error 

of predicted value 

 Mean Mahal. 

Distance 

Mean Cook’s 

Distance 
  

1.389 0.044 3.867   
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Figure 4:  Frequency distribution of residuals. 

 

 

Figure 5: Observed vs. predicted ozone concentrations (ug/m3). 
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Figure 6: Passive sampling locations with measured O3 and estimated O3 from land use regression model. 

 

CONCLUSIONS 

The results of this study suggest that testing the utility of 

biophysical remote sensing measurements as correlates of 

urban air pollutants is a potentially important methodological 

research direction. Standardized products like the Landsat 8 

surface reflectance imagery used in this study provide relevant 

data on biophysical parameters on a near global basis. The 

preprocessing also provides standardization that facilitates 

testing the transferability of models derived from these data to 

other spatial and temporal contexts. Importantly, image data to 

facilitate this research is freely accessible for most of the 

Earth’s surface through sources such as the Landsat and other 

image archives.  

Fewer studies have focused on measurement and modeling of 

intra-urban variations O3 as compared to particulate matter 

(PM) and nitrous oxides (NOx) (Malmqvist et al., 2014; 

Kerckhoffs et al., 2015).  

The results of this exploratory study suggest several directions 

for future research on intra-urban variations in ground-level O3. 

First, the monitoring results demonstrate that low-cost, passive 

samplers distributed in an objective grid pattern were able to 

detect significant spatial variation of O3 concentrations in an 

urban environment. Second, results of the land use regression 

model indicated that objective measurements of biophysical 

variables from satellite imagery contribute significantly to 

explaining spatial variations in intra-urban O3 concentrations. 

Additionally, independent variables summarized within 

semicircular buffers oriented to the prevailing wind direction 

tended to be more highly correlated with O3 concentrations as 

compared to the measures summarized within circular buffers. 

This is consistent with the findings reported Li et al. (2015). 

Limitations of this exploratory study included the short 

sampling period, the relatively small number of sampling 

locations, and lack of validation monitoring sites. However, the 

initial results suggest further examination of biophysical 

remote sensing variables as inputs to LUR models examining 

intra-urban patterns of ground-level O3 and potentially other 

pollutants are worthy of further investigation. Longer term 

sampling (i.e., repeated measures over the course of a year) 

integrating temporally coincident remote sensing data could 

strengthen the case for the results reported in the current study. 

The extendibility of these results also needs to tested in other 

locations and over time.   
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