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Abstract 

This study identified LIMK2 kinase as a disease-specific target in castration resistant prostate 

cancer (CRPC) pathogenesis, which is upregulated in response to androgen deprivation therapy, 

the current standard of treatment for prostate cancer. Surgical castration increases LIMK2 

expression in mouse prostates due to increased hypoxia. Similarly, human clinical specimens 

showed highest LIMK2 levels in CRPC tissues compared to other stages, while minimal LIMK2 

was observed in normal prostates. Most notably, inducible knockdown of LIMK2 fully reverses 

CRPC tumorigenesis in castrated mice, underscoring its potential as a clinical target for CRPC. 

We also identified TWIST1 as a direct substrate of LIMK2, which uncovered the molecular 

mechanism of LIMK2-induced malignancy. TWIST1 is strongly associated with CRPC 

initiation, progression and poor prognosis. LIMK2 increases TWIST1 transcription upon 

hypoxia; and stabilizes TWIST1 by direct phosphorylation. TWIST1 also stabilizes LIMK2 by 

inhibiting its ubiquitylation. Phosphorylation-dead TWIST1 acts as dominant negative and fully 

prevents EMT and tumor formation in vivo, thereby highlighting the significance of LIMK2-

TWIST1 signaling axis in CRPC. As LIMK2 null mice are viable, targeting LIMK2 should have 

minimal collateral toxicity, thereby improving the overall survival of CRPC patients. 
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Highlights:  

• LIMK2 was identified as a disease-specific target in CRPC. 

• We show that LIMK2 is upregulated in castrated prostates due to increased hypoxia. 

• Inducible knockdown of LIMK2 fully reverses CRPC tumorigenesis in castrated mice. 

• TWIST1 was identified as a direct target of LIMK2. 

• LIMK2 inhibitor shows very high synergy with docetaxel. 

 

 

 

Running Title: Multifaceted Regulation of TWIST1 by LIMK2 in CRPC 
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Abstract 

This study identified LIMK2 kinase as a disease-specific target in castration resistant prostate 

cancer (CRPC) pathogenesis, which is upregulated in response to androgen deprivation therapy, 

the current standard of treatment for prostate cancer. Surgical castration increases LIMK2 

expression in mouse prostates due to increased hypoxia. Similarly, human clinical specimens 

showed highest LIMK2 levels in CRPC tissues compared to other stages, while minimal LIMK2 

was observed in normal prostates. Most notably, inducible knockdown of LIMK2 fully reverses 

CRPC tumorigenesis in castrated mice, underscoring its potential as a clinical target for CRPC. 

We also identified TWIST1 as a direct substrate of LIMK2, which uncovered the molecular 

mechanism of LIMK2-induced malignancy. TWIST1 is strongly associated with CRPC 

initiation, progression and poor prognosis. LIMK2 increases TWIST1 mRNA levels upon 

hypoxia; and stabilizes TWIST1 by direct phosphorylation. TWIST1 also stabilizes LIMK2 by 

inhibiting its ubiquitylation. Phosphorylation-dead TWIST1 acts as dominant negative and fully 

prevents EMT and tumor formation in vivo, thereby highlighting the significance of LIMK2-

TWIST1 signaling axis in CRPC. As LIMK2 null mice are viable, targeting LIMK2 should have 

minimal collateral toxicity, thereby improving the overall survival of CRPC patients. 
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1. Introduction 

Prostate cancer (PCa) ranks second in terms of cancer-related deaths among men in the US [1]. 

The primary cause is the emergence of castration-resistant prostate cancer (CRPC), and 

subsequent metastasis and chemoresistance for which there is no known cure [2]. Early stage 

prostate tumors can be treated by surgery, radiation, and/or androgen-deprivation therapy (ADT). 

Treatment failure typically occurs within 2-3 years in almost all patients, giving rise to CRPC. 

Second generation ADT agents, abiraterone and enzalutamide, and docetaxel or cabazitaxel 

based chemotherapy regimens are next in line treatments, however, CRPC tumors are either 

intrinsically resistant or rapidly develop resistance to these agents, causing fatality in vast 

majority of patients. Therefore, an urgent need exists to identify specific molecular targets that 

prevent the emergence of CRPC or selectively abrogate castration-resistant (CR) tumors, and/or 

render these tumors highly sensitive to chemotherapy, thereby improving overall survival in 

patients. 

This study focuses on LIM-domain kinase-2 (LIMK2) as a potential clinical target for the 

prevention and treatment of CRPC. LIMK2 regulates actin dynamics in normal cells [3, 4]. 

LIMK2 promotes metastasis in fibrosarcoma, and metastasis and angiogenesis in pancreatic 

cancer [5, 6]. We have demonstrated that LIMK2 is a crucial oncogenic regulator and effector of 

Aurora A kinase (AURKA) in breast cancer [7]. AURKA and LIMK2 positively regulate each 

other’s protein levels, triggering a feedback loop that promotes oncogenesis. Although LIMK2 

has not been explored as a therapeutic target in PCa, AURKA is overexpressed in 96% of high-

grade prostate intraepithelial neoplasia and 98% of PCa lesions [8, 9]. AURKA is also 

significantly overexpressed in CRPC [10], suggesting that LIMK2 may be concurrently 

expressed in these tissues. AURKA inhibition sensitizes CRPC cells to radiation, underscoring 
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its critical role in CRPC [11]. Despite these encouraging findings, AURKA inhibition in Phase II 

clinical trials has been associated with several adverse side effects, suggesting that collateral 

inhibition of AURKA in rapidly proliferating normal tissues is responsible for the undesirable 

side effects. These findings indicate that selective targeting of oncogenic targets of AURKA in 

PCa may be a superior option for developing effective drugs and combating collateral toxicity. 

To this end, we identified LIMK2 as a highly oncogenic target of AURKA, ablation of which 

completely abrogates tumorigenesis in nude mice [7]. Importantly, unlike AURKA, LIMK2 null 

mice are viable [12], suggesting that LIMK2 inhibition should cause minimal collateral toxicity 

in patients.  

 

2. Materials and Methods  

2.1. Antibodies 

Validated antibodies against LIMK2, Actin, and TWIST1 were purchased from Santa Cruz 

Biotech (Santa Cruz, CA). Snail, Slug, N-cadherin and CD44 antibodies were purchased from 

One World Lab (San Diego, CA). Antibodies against Vimentin, E-cadherin and MMP-2 were 

purchased from Bioss (Woburn, MA). All antibodies are validated and were used at 1-1000 

dilution. Antibody details are provided in Supplementary Table 1. 

 

2.2. LIMK2 and TWIST1 shRNAs 

LIMK2 shRNAs in pLKO vector were generated in our previous study [7]. The sequences and 

vectors of inducible LIMK2 shRNAs and TWIST1 shRNAs are provided in Supplementary 

information (section 2) and Supplementary Table 2.  
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2.3. In vitro Kinase Assays 

Kinase assays were conducted as described before [14]. The details are included in 

Supplementary section 4. 

 

2.4. Immunofluorescence 

Immunofluorescence is described in Supplementary section 6 [15]. 

 

2.5. Semi-quantitative PCR and Real-Time qPCR 

The details are included in Supplementary section 7 and Supplementary Table 3. 

 

2.6. Immunohistochemistry 

The protocol is included in Supplementary section 8. 

 

2.7. LIMK2 Reporters and Luciferase Assay 

The generation of LIMK2-luciferase plasmids and reporter assay is included in Supplementary 

section 9. 

 

2.8. Prostatosphere Assay, Soft agar colony formation, Ubiquitylation, Chemotaxis and 

MTT assays 
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These assays were conducted as reported before [16-24]. The details are included in 

Supplementary sections 10-14. 

 

2.9. LIMK2 CRISPR plasmid and LIMK2 CRISPR C4-2 cell line 

The details are included in Supplementary sections 15. 

 

2.10. In vivo xenograft in nude mice: 

The details are included in Supplementary sections 16. Animal care was in accordance with 

institution guidelines. 

 

Statistical analysis 

Data are expressed as mean±s.e.m. and were statistically evaluated with oneway ANOVA 

followed by the Bonferroni post hoc test using GraphPad Prism 5.04 software (GraphPad 

Software). P<0.05 was considered statistically significant. 

 

3. Results 

3.1. LIMK2 levels increase upon castration in mice 

It would be ideal to target an oncogenic driver of CRPC that is specifically upregulated by cancer 

cells in response to ADT, the current standard of treatment. Therefore, we analyzed how LIMK2  

levels might be modulated upon castration in mice. LIMK2 levels were analyzed in mouse 

prostates on different days post-castration. LIMK2 levels steadily increased after castration with 
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~4-fold increase on day 7 (Figure 1A). We also investigated IL-6 level (positive control), which 

is increased in untreated CRPC patients compared with healthy controls or patients with 

localized disease [25, 26]. Figure 1B shows average LIMK2 and IL6 levels from three mice for 

every time point.   

 We further examined LIMK2 levels using immunohistochemistry in prostate tissues 

isolated from mice on day 0, 5, 14 and 28 days post-castration. LIMK2 levels increased steadily 

in castrated prostates with significantly high levels after 14 days, confirming that LIMK2 

increases upon castration (Figure 1C). 

 

3.2. LIMK2 is a direct target of hypoxia 

Castration in non-malignant prostate tissues increases hypoxia [27-30]. Thus, we investigated 

whether LIMK2 is upregulated due to hypoxia. Initially, we used cobalt chloride (CoCl2) to 

mimic hypoxia in castration-resistant C4-2 cells [31], which resulted in ~2-fold increase in 

LIMK2 levels. As a positive control, TWIST1 was analyzed, which increases upon hypoxia [32]. 

TWIST1 levels also increased ~2-fold upon exposure to CoCl2 (Figure 1D, 1E).  

LIMK2 protein was next analyzed in hypoxia-exposed C4-2 cells, which confirmed a 2-

3-fold increase in LIMK2 and TWIST1 levels (Figures 1F, 1G). To determine whether this 

upregulation was due to increased LIMK2 mRNA levels, we measured them using real-time 

qPCR in hypoxia-exposed cells, which revealed a 2-fold increase in 18h (Figure 1H). Increase in 

TWIST1 mRNA levels upon hypoxia served as the positive control.  

We next generated four luciferase reporter constructs containing genomic fragments 

upstream from the LIMK2 open reading frame (-360, -600, -900 and -1038). Exposure of C4-2 
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cells to 100 µM CoCl2 triggered significant increase in LIMK2 promoter luciferase activity. 

Particularly, pGL3-600 luc-plasmid showed >7-fold increase after 24h (Figure 1I), indicating 

that CoCl2 activates LIMK2 promoter. LIMK2 promoter activity was subsequently examined in 

hypoxia-treated cells, which also revealed robust activation (Figure 1J). To further examine 

whether LIMK2 upregulation was HIF1α or HIF2α-dependent, we ectopically expressed these 

proteins, which resulted in strong upregulation of LIMK2 (Supplementary Figure 1A). Together, 

these results strongly support that hypoxia increases LIMK2 levels. As castration leads to 

hypoxia, we postulate that increased hypoxia is one of the mechanisms by which LIMK2 is 

upregulated upon castration.  

We next examined whether LIMK2 levels are regulated upon androgen-deprivation in 

cells. Androgen-sensitive LNCaP cells were exposed to charcoal-stripped androgen-deprived 

media for 12h, which did not change LIMK2 levels significantly (Figure 1K, 1L). This is 

presumably because tissue culture cells do not experience hypoxia under regular growth 

conditions despite androgen depletion, further indicating that hypoxia is a key mechanism that 

upregulates LIMK2 upon androgen depletion in vivo.  

 

3.3. LIMK2 increases TWIST1 mRNA levels under hypoxic conditions 

LIMK2 has not been linked to hypoxia. Thus, we investigated whether LIMK2 and TWIST1  

regulate each other mRNA levels under normoxia and/or hypoxia. Surprisingly, LIMK2 

depletion using LIMK2 shRNA decreased TWIST1 mRNA levels under hypoxia, but not under 

normoxia (Figure 2A). In contrast, TWIST1 protein was significantly reduced both under 
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hypoxia and normoxia upon LIMK2 ablation, indicating LIMK2 regulates TWIST1 protein also 

(Figures 2B, 2C).   

 To validate these results, we generated LIMK2 knockout C4-2 cells using CRISPR and 

analyzed TWIST1 transcript levels. LIMK2 knockout decreased TWIST1 levels significantly 

under hypoxia, although a marginal decrease was also observed under normoxia, which was 

statistically insignificant (Figure 2D). As before, TWIST1 protein was significantly decreased 

both under normoxia and hypoxia in LIMK2 knockout cells (Figure 2E, F), confirming that 

LIMK2 upregulates TWIST1 both at mRNA and protein levels. 

 

3.4. TWIST1 does not regulate LIMK2 mRNA levels 

To investigate whether TWIST1 regulates LIMK2 mRNA levels in a feedback mechanism, we 

ablated TWIST1 under normoxic and hypoxic conditions, which revealed minimal changes in 

LIMK2 mRNA levels (Figure 2G). We also analyzed LIMK2 protein in TWIST1-ablated cells 

under normoxia and hypoxia. Interestingly, TWIST1 ablation decreased LIMK2 protein under 

normoxia (Figure 2H, I), indicating that TWIST1 does not regulate LIMK2 mRNA levels, but 

regulates LIMK2 protein. 

 

3.5. LIMK2 expression increases with disease progression in PCa clinical specimens 

LIMK2 has not been analyzed in PCa tissues. We analyzed LIMK2 levels in normal prostate (n = 

8), benign prostatic hyperplasia (n = 16), localized PCa (n = 13) and CRPC tissues (n = 7) 

obtained from biopsy from IU Pathology Archives. Additionally, we analyzed LIMK2 levels in a 

prostatic carcinoma TMA containing 92 cores and PCa clinical specimens obtained from CHTN 
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bank (20 specimens). In normal prostate and stage II tissues, minimal LIMK2 was present 

(Figure 3A). In stage 3 PCa tissues, some stromal LIMK2 immunostaining was detected. The 

immunostaining was seen as positive brown staining (localized to stroma) surrounding the 

islands composed of tightly packed back to back small glands of PCa. The distribution of hand 

count staining was as follows: no staining 0, mild staining 3-6, moderate staining 7-14, and 

strong staining 14-28. Stage III and IV were moderate to strong strainers, while stage I and II had 

zero to moderate staining (Figure 3B). Importantly, CRPC cases exhibited strong epithelial and 

stromal staining compared to the other groups (>95% cases). Together, these results show 

LIMK2 is minimally present in normal prostates; however, its upregulation occurs early in PCa 

progression and increases with disease severity. Furthermore, LIMK2 is significantly 

upregulated in the epithelial cells and stroma of CRPC tissues. 

 

3.6. Inducible LIMK2 knockdown reverses tumorigenesis in mice 

Castration increased LIMK2 levels in mice. Further, LIMK2 expression was highest in CRPC 

specimens. Therefore, we determined whether LIMK2 knockdown affects tumorigenesis in 

castrated mice. We generated two inducible LIMK2 shRNAs expressing C4-2 cells, each of 

which contained a different shRNA in a different inducible vector (Tet-pLKO.1 and LT3GEPI, 

33 and Supplementary Table 2). Both of these cell lines expressed similar levels of LIMK2 as 

compared to control C4-2 cells in the absence of doxycycline (Figure 3B).  Doxycycline 

treatment for 48h resulted in >90% knockdown in both LIMK2-shRNA containing cells, with no 

effect in control cells. These results show that Tet-pLKO.1-LIMK2 shRNA and LT3GEPI-

LIMK2 shRNA containing cells specifically and potently downregulate LIMK2 in a 

doxycycline-inducible manner (Figure 3B).  
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These cells along with control cells were subcutaneously injected on the shoulders of 

castrated nude mice (n=3 for each group).  All cell lines exhibited similar tumorigenic potential 

and formed similar size tumors. On day 24, each set of mice showed ~1500 mm3 tumor size, at 

which point doxycycline treatment was initiated in all three sets. Inducible knockdown of 

LIMK2 in Tet-pLKO.1-LIMK2 shRNA and LT3GEPI-LIMK2 shRNA xenografts caused a rapid 

and potent regression of tumors in all mice, whereas C4-2 xenografts increased rapidly as time 

progressed (Figure 3C, D). All sets of mice were euthanized on day 45. C4-2 xenografts formed 

larger than 2800 mm3 tumors, whereas in LIMK2 knockdown xenografts, the tumor regressed 

from a size of 1500 mm3 to less than 100 mm3 (Figure 3D, E). These results strongly support the 

therapeutic potential of LIMK2 as a clinical target for CRPC.  

 

3.7. TWIST1 is a direct LIMK2 substrate 

The robust reversal of tumorigenesis observed upon LIMK2 downregulation prompted us to 

investigate the molecular mechanism by which it promotes oncogenesis. To date, cofilin, and 

MT1-MMP are the only known LIMK2 substrates. LIMK2 regulates actin dynamics via cofilin 

[3]. LIMK2 regulates tumor growth and cell migration through MT1-MMP phosphorylation in 

breast cancer cells [34]. LIMK2-mediated upregulation of TWIST1 mRNA encouraged us to 

investigate whether it also regulates TWIST1 post-translationally via phosphorylation. TWIST1 

upregulation is strongly associated with CRPC initiation and progression [35, 36]. We generated 

6x-His-TWIST1 and subjected it to a kinase assay. LIMK2 directly phosphorylated TWIST1, 

indicating that LIMK2 also regulates TWIST1 post-translationally (Figure 4A).  
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3.8. LIMK2 phosphorylates TWIST1 at four sites 

Protein kinases predominantly recognize and phosphorylate their substrates by docking 

interactions and the linear consensus motif near the phosphosite [37, 38]. A recent study showed 

that LIMK1 (LIMK2 family member) recognizes cofilin by docking interactions, but does not 

have extensive interactions with cofilin near the phosphosite [39]. This conclusion is supported 

by another study, which revealed no optimal sequence specificity for LIMK1 in a peptide array 

screening [40]. LIMK2 peptide specificity has not been analyzed. LIMK2 phosphorylates cofilin 

and ADF at Ser3, which is followed by an alanine. Therefore, we initially focused on all Ser 

residues on TWIST1 that were followed by either an alanine or a glycine. We chose five putative 

sites as potential LIMK2 sites (S31, S45, S78, S95 and S199) on TWIST1 and generated the 

corresponding phosphorylation-dead single mutants. Among these, S45, S78, S95 and S199 were 

phosphorylated by LIMK2 (Figure 4B, C). In contrast, S31A-TWIST1 mutant showed no 

reduction in phosphorylation compared with wild-type (WT) TWIST1, suggesting this site is not 

phosphorylated by LIMK2 (data not shown). Furthermore, the corresponding phosphorylation-

dead quadruple mutant (denoted as 4A) was not phosphorylated by LIMK2, confirming that S45, 

S78, S95 and S199 are the only LIMK2 sites on TWIST1 (Figure 4D).  

 

3.9. LIMK2 does not regulate TWIST1 subcellular localization  

We observed that LIMK2 was predominantly cytoplasmic with some nuclear localization, 

whereas TWIST1 was mainly nuclear in C4-2 cells (Supplementary Figures 1B and 1C 

respectively). LIMK2 knockdown did not affect TWIST1 localization (Figure 4E). We also 

stably expressed WT and phospho-dead 4A-TWIST1 in C4-2 cells and analyzed their subcellular 

localization using HA antibody, both of which exhibited similar localization as endogenous 
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TWIST1 (Figure 4F, G). These results were further confirmed using subcellular fractionation, 

which confirmed that LIMK2 does not affect the subcellular localization of TWIST1 (Figure 

4H).  

 

3.10. LIMK2 positively regulates TWIST1 protein levels  

LIMK2 overexpression increased, and LIMK2 knockdown decreased TWIST1 levels both in C4-

2 (Figure 5A-D) and 22Rv1 cells (Supplementary Figure 1D, E). As LIMK2 increases TWIST1 

mRNA levels, these results were expected. Therefore, to investigate whether LIMK2 regulates 

TWIST1 post-translationally, we generated LIMK2-C4-2 cells, exposed them to cycloheximide 

to prevent further protein synthesis, and analyzed TWIST1 degradation profile. LIMK2 

overexpression reduced TWIST1 degradation, indicating that LIMK2 regulates TWIST1 protein 

(Figures 5E-G). We also expressed 6x-His-ubiquitin in C4-2 and LIMK2-depleted-C4-2 cells, 

and analyzed the ubiquitylation of TWIST1. LIMK2 knockdown led to increased TWIST1 

ubiquitylation (Figure 5H), thus confirming that LIMK2 stabilizes TWIST1 levels by inhibiting 

its ubiquitin-mediated degradation.  

 

3.11. LIMK2 prevents TWIST1 degradation via phosphorylation 

To examine whether LIMK2-mediated phosphorylation of TWIST1 prevents its degradation, 

WT and 4A-TWIST1 were stably expressed in C4-2 cells and their levels analyzed. WT 

TWIST1 levels were significantly higher compared to 4A-TWIST1, suggesting that LIMK2-

mediated phosphorylation of TWIST1 stabilizes it (Figure 5I).  
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We next examined whether 4A-TWIST1 was resistant to LIMK2-mediated protein 

stabilization. We transiently depleted LIMK2 from TWIST1-C4-2 and 4A-TWIST1-C4-2 cells 

and analyzed their relative ubiquitylation. While WT-TWIST1 was significantly ubiquitylated 

upon LIMK2 depletion, 4A-TWIST1 showed little ubiquitylation suggesting that LIMK2-

mediated phosphorylation stabilizes TWIST1 (Figure 5J). 

 To determine the individual contribution of each of the phosphorylation site to protein 

stabilization, we infected HA-tagged WT and phospho-dead single mutants of TWIST1 in C4-2 

cells and examined their levels. While S45A level was slightly reduced compared to WT, S75A, 

S96A and S199A mutants displayed much reduced protein levels (Figures 5K, 5L). We 

confirmed these findings by examining the ubiquitylation of each of the single mutant ± LIMK2 

depletion. As expected, S45A-TWIST1 showed slightly less ubiquitylation compared to WT,  

whereas other mutants were significantly less ubiquitylated upon LIMK2 depletion, indicating 

that phosphorylation of TWIST1 increases its stability (Figure 5M).  

 

3.12. TWIST1 positively regulates LIMK2 protein 

TWIST1 depletion under normoxia decreases LIMK2 protein but not its mRNA (compare 

Figures 2G and 2H). Similarly, 4A-TWIST1 expressing cells revealed significantly lower 

LIMK2 compared to control C4-2 and WT-TWIST1-C4-2 cells (Figure 5K), suggesting that 

TWIST1 regulates LIMK2 protein. Thus, we overexpressed TWIST1, which increased LIMK2 

levels (Figure 6A, B) and TWIST1 knockdown significantly decreased LIMK2 levels (Figure 

6C, D). Similar results were obtained in 22Rv1 cells, confirming the feedback loop between 

TWIST1 and LIMK2 (Supplementary Figure 2A, B).  
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We examined whether TWIST1 increases LIMK2 levels by inhibiting its degradation. 

TWIST1 overexpression significantly reduced LIMK2 degradation in cycloheximide-treated 

cells, confirming that TWIST1 stabilizes LIMK2 (Figures 6E-G). We further observed increased 

ubiquitylation of LIMK2 upon TWIST1 depletion (Figure 6H), indicating that TWIST1 increases 

LIMK2 levels by preventing its degradation thereby eliciting a positive feedback loop.  

 

3.13. TWIST1 and LIMK2 feedback loop promotes aggressive cancer phenotypes 

Ectopic expression of either LIMK2 or TWIST1 increased cellular proliferation (Figure 7A). In 

contrast, expression of 4A-TWIST1 significantly inhibited cell proliferation, which was lower 

than C4-2 cells. In addition, LIMK2 depletion substantially reduced, and its overexpression 

significantly increased proliferation in TWIST1-C4-2 cells, but not in 4A-TWIST1-C4-2 cells. 

These results indicate that the TWIST1-mediated increase in cell proliferation is predominantly 

due to LIMK2-mediated phosphorylation (Figures 7B, 7C). Similar results were obtained in 

22Rv1 cells, where LIMK2 knockdown decreased, and its overexpression increased cell 

proliferation in 22Rv1 and TWIST1-22Rv1 cells, but not in 4A-TWIST1-22Rv1 cells 

(Supplementary Figures 3A-C). These results show that LIMK2-mediated phosphorylation of 

TWIST1 contributes significantly to increased cell proliferation.  

The effect of TWIST1 phosphorylation was also examined under anchorage-independent 

conditions. TWIST1 expression considerably increased colony formation in C4-2 and 22Rv1 

cells, compared to control cells (Figure 7D and Supplementary Figure 3D, respectively). In 

contrast, 4A-TWIST1 acted as dominant negative and exhibited minimal number of colonies, 

indicating that LIMK2-mediated phosphorylation of TWIST1 promotes cell proliferation both 

under attached and anchorage-independent conditions.  
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3.14. TWIST1 and LIMK2 feedback loop increases cell migration 

TWIST1 overexpression led to a robust increase in cell motility as expected (Figure 7E, F). By 

contrast, 4A-TWIST1 overexpression considerably impaired chemotaxis compared to C4-2 cells, 

confirming that 4A-TWIST1 acts as dominant-negative and inhibits cell motility. Similarly, 

LIMK2 knockdown decreased; and its overexpression increased cell motility in TWIST1-C4-2 

cells, but not in 4A-C4-2 cells (Figures 7G-J) and 22Rv1 cells (Supplementary Figure 3E-J). 

These results corroborate that LIMK2-mediated phosphorylation of TWIST1 is crucial for cell 

motility in CRPC cells.  

 

3.15. LIMK2 promotes Epithelial-to-mesenchymal Transition (EMT) via TWIST1 

EMT and cancer stem cells (CSCs) play crucial roles during the development of CRPC [41]. 

Castration can cause EMT, which increases the stemness of CSCs, leading to metastasis. 

TWIST1 is a key driver for EMT and drug resistance. We thus examined whether LIMK2 

knockdown inhibits EMT and CSC.  TWIST1 expression downregulates E-cadherin, an 

epithelial marker, but upregulates mesenchymal markers N-cadherin, CD44, Slug and Snail [42, 

43].  

Ectopic expression of TWIST1 decreased E-cadherin, but increased the EMT markers as 

expected (Figure 7K). 4A-TWIST1 not only prevented the increase in EMT markers, it displayed 

even lower levels than parental cells. In addition, 4A-TWIST1 expression increased E-cadherin 

level, further confirming that LIMK2-mediated phosphorylation plays a crucial role in TWIST1-

mediated EMT phenotype. 
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We also conducted a sphere-forming assay to measure the self-renewal capacity of C4-2, 

TWIST1-C4-2 and 4A-TWIST1-C4-2 cells. CSCs grow in suspension under ultra-low 

attachment conditions and form independent spheres. When subjected to these conditions, C4-2 

formed aggregates of cells but no prostatosphere formation (Figure7L). In contrast, TWIST1 

overexpression induced large prostatosphere formation. 4A-TWIST1-C4-2 cells showed no 

prostatosphere formation either, thereby confirming that LIMK2-mediated phosphorylation of 

TWIST1 contributes to CSC phenotype.   

 

3.16. Significance of TWIST1 phosphorylation in drug resistance and cell viability 

As EMT contributes to drug resistance, we examined doxorubicin sensitivity in C4-2 cells, and 

observed ~40% loss in cell viability in 24h. TWIST1 expression offered resistance to 

doxorubicin (~20% loss), whereas 4A-TWIST1 expression rendered these cells highly sensitive 

to doxorubicin -induced toxicity (~57% loss) (Figure 7M). Thus, concurrent inhibition of LIMK2 

and TWIST1 may act synergistically in targeting highly chemoresistant CRPC. 

 

3.17. LIMK2-mediated TWIST1 phosphorylation is crucial for tumorigenesis in vivo 

Male nude mice were subcutaneously inoculated with C4-2 and TWIST1-C4-2 cells on the left 

and right shoulders, respectively. While TWIST1-C4-2 cells formed robust tumors, C4-2 cells 

displayed very small tumor formation (Fig. 8A, B). To investigate the contribution of LIMK2-

mediated phosphorylation, we also subcutaneously inoculated another set of nude mice with 

TWIST1-C4-2 cells and 4A-TWIST1-C4-2 cells on right and left shoulders, respectively. While 

TWIST1-C4-2 cells formed robust tumors, 4A-TWIST1-C4-2 cells showed absolutely no tumor 
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formation (Fig. 8C, D). These results confirm that phosphorylation of TWIST1 by LIMK2 is 

crucial for its tumorigenic potential in vivo. 

 

3.18. TWIST1-C4-2 xenografts express high levels of EMT markers 

We further examined the levels of E-cadherin and EMT markers in C4-2 and TWIST1-C4-2 

xenografts. As 4A-TWIST1-C4-2 cells did not form any tumor, they could not be analyzed in 

vivo. One-half of the tumor was snap-frozen for immunoblot analysis and other half was used to 

generate paraffin-embedded slides for immunohistochemistry. E-cadherin levels were lower in 

TWIST1-C4-2 xenograft, compared to C4-2 xenografts (Figure 8E, F). In contrast, LIMK2, N-

cadherin, Vimentin, MMP-2, CD44, Slug and Snail levels were significantly higher in TWIST1-

C4-2 compared to C4-2 xenograft. Increase in LIMK2 levels in TWIST1 xenograft further 

confirms the feedback loop in vivo.  

The immunohistochemistry data supported the immunoblot findings and exhibited robust 

expression of LIMK2, CD44, MMP2, Slug and Snail in TWIST1 overexpressing xenografts, 

compared to parental cells xenograft. Similarly, E-cadherin was absent in TWIST1-C4-2 

xenografts, but abundantly expressed in C4-2 xenografts (Figure 8G-L). These findings further 

confirm that TWIST1 promotes EMT in CRPC cells in vivo.  

 

3.19. LIMK2 Inhibition shows high synergy with Docetaxel 

Docetaxel is the first line treatment for CRPC, however, these tumors rapidly develop resistance 

to chemotherapy. We investigated whether LIMK2 inhibition sensitizes CRPC cells to docetaxel. 

We synthesized an allosteric LIMK2 inhibitor (LI) (IC50 39 nM), which shows 100-fold 
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selectivity over its closest relative LIMK1 [44]. C4-2 cells were treated with varying doses of LI 

and docetaxel for 48h and cell death analyzed. When either 10 nM docetaxel or 10 µM LI was 

used, 2-3% cell death was observed, which increased to ~7% when they were used in 

combination (Figure 8M). However, when cells were pre-treated with docetaxel for 12h, 

followed by LI treatment, it showed extremely high synergy (combination-index of 0.15), 

indicating that LIMK2 inhibition should be highly effective in sensitizing CRPC cells to 

docetaxel-induced therapy. 

 

4. Discussion 

LIMK2 upregulation and activation occurs in several cancers [6, 7, 45-49]. TGFβ and bone 

morphogenetic protein receptor-2 activate LIMK2 by Rho/ROCK pathway [49, 50]. In SCLC, a 

long non-coding RNA-TUG1 regulates the expression of LIMK2b (a splice variant), which leads 

to cell growth and chemoresistance [51]. However, the downstream substrates by which LIMK2 

promotes tumorigenesis, metastasis, chemoresistance and angiogenesis remain unknown. 

LIMK2’s levels or its role in PCa has not been analyzed to date. 

This study revealed that LIMK2 is upregulated upon castration in mice. This finding was 

supported by human clinical prostate tissues analysis, which showed negligible expression in 

normal prostates, but the levels increase with disease severity, with the highest levels in CRPC. 

Notably, the significance of LIMK2 as a potential clinical target was shown by its inducible 

knockdown, which fully reversed tumorigenesis in nude mice. These findings strongly 

underscore a key role of LIMK2 in promoting CRPC pathogenesis.  
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We identified hypoxia as a key mechanism that leads to LIMK2 upregulation. ADT 

exacerbates hypoxic stress in PCa, which subsequently promotes androgen receptor (AR)-

dependent and independent pathways leading to CRPC [52, 53]. Tumor-hypoxia is associated 

with increased angiogenesis, metabolic reprogramming, EMT, metastasis, CSC phenotype, 

immune evasion, and resistance to chemotherapy and radiation therapy [54]. Thus, hypoxia is 

associated with poor prognosis in CRPC [55, 56]. Our data suggest that LIMK2 upregulation 

triggered by hypoxia contributes to aggressive oncogenic phenotypes in CRPC. 

We further identified TWIST1 as a direct LIMK2 substrate. TWIST1 is essential for 

embryonic development and organogenesis. Postnatally, TWIST1 expression is limited to 

quiescent adult stem cells located in mesenchymal tissues. Repeated neoadjuvant chemotherapy 

triggers TWIST1 upregulation, which correlates with extreme chemoresistance [57]. TWIST1 is 

upregulated following ADT in PCa tissues [58], which causes AR transcription, chemoresistance 

and invasion [34, 59].  Thus, our finding identifying LIMK2 as both an upstream regulator and a 

downstream effector of TWIST1 has significant implications for CRPC therapy (Figure 8N).  

Acquisition of drug-resistance and metastatic phenotype via EMT are both critical steps 

towards the progression of CRPC. ADT increases TGFβ signaling (18), which promotes 

TWIST1 and AR expression, causing EMT and PCa growth [60]. As TGFβ activates LIMK2, we 

postulate that TGFβ-mediated increase in LIMK2 activity may be critical for subsequent increase 

in TWIST1 levels in CRPC. We show that LIMK2-mediated phosphorylation of TWIST1 and its 

subsequent stabilization is one of the vital mechanisms by which EMT phenotype is acquired in 

CRPC. 4A-TWIST1 mutant acts as dominant-negative, which decreases the levels of 

endogenous TWIST1 in cells, which in turn reduces LIMK2 levels due to the positive feedback 

loop (Figure 5I). Accordingly, 4A-TWIST1 expression reverses EMT and CSC phenotypes in 
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CRPC cells (Figure 7K). This finding is further strengthened by in vivo data, showing the 

incompetency of 4A-TWIST1 cells to form any tumors in mice.  

LIMK2 and TWIST1 are involved in a reciprocal feedback loop, where each stabilizes 

the other’s protein level. This finding is important for two reasons: first, LIMK2 inhibition 

provides a potent tool to reduce TWIST1 levels, which is highly desirable for CRPC prevention 

and therapy. Second, the reciprocal loop between TWIST1 and LIMK2 ensures that their 

concurrent inhibition will be highly synergistic in inhibiting CRPC tumorigenesis, 

chemoresistance and metastasis.  

 In summary, this study reveals the oncogenic potential of LIMK2 as a prospective 

clinical target in CRPC. We postulate that targeting LIMK2 will likely be beneficial in inhibiting 

PCa, including its progression towards CRPC. LIMK2 null mice are viable suggesting that 

targeting LIMK2 will have minimal collateral toxicity. Also, LIMK2 inhibition is expected to 

sensitize CRPC tumors to chemotherapy, improving overall survival of CRPC patients.  
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Figure legends: 

Figure 1: (A) LIMK2 levels increase upon castration in mice prostate. LIMK2 and IL6 levels 

were analyzed in C57BL/6N mice post-castration (day 0, 3, 5, 7). Three mice were included in 

each group. (B) Relative protein levels of LIMK2 (ratio of LIMK2/actin) and IL6 (ratio of 

IL6/actin) from castrated mice on different days. The data shown are mean ± SEM of three 

independent experiments. (C) LIMK2 levels were analyzed using IHC in mouse prostates 

isolated on different days following castration. (D) LIMK2 and TWIST1 levels were upregulated 

when C4-2 cells were treated with 100 µM cobalt chloride for 24 h. LIMK2 and TWIST1 levels 

represent the ratios of (LIMK2 or TWIST1)/Actin. (E) LIMK2 and TWIST1 levels in C4-2 cells 

treated with cobalt chloride. The data shown are mean ± SEM of three independent experiments. 

*P <0.05 compared to control cells. (F) LIMK2 and TWIST1 are upregulated in hypoxia-

exposed C4-2 cells treated for 12h and 18h. LIMK2 and TWIST1 levels represent the ratios of 

(LIMK2 or TWIST1)/Actin. (G) LIMK2 and TWIST1 protein levels in hypoxia-induced C4-2 

cells. Data shown are mean ± SEM of three independent experiments. *P <0.05 compared to 

control cells. (H) LIMK2 and TWIST1 mRNA levels increase in hypoxia-exposed C4-2 cells as 

analyzed by qPCR. (I) Increase in LIMK2 promoter activity following 12h and 24h of cobalt 

chloride exposure. Four different LIMK2 promoter fused to luciferase were created. 360, 600, 

900 and 1038 are upstream positions from the start site for LIMK2. (J) LIMK2 promoter is 

activated upon hypoxia as tested by 4 different LIMK2-luciferase plasmids. (K) LIMK2 levels 

do not change upon androgen depletion in LNCaP cells. The cells were treated with charcoal-

stripped media for 12h, and LIMK2 levels analyzed. (E) Bar graph showing LIMK2 levels under 

normal and androgen depleted media. The data shown are mean ± SEM of six independent 

experiments.   
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Figure 2: LIMK2 regulates TWIST1 levels. (A) LIMK2 ablation using specific shRNA decrease 

TWIST1 mRNA levels under hypoxic conditions (12h and 18h). LIMK2 and TWIST1 mRNA 

levels were measured using qPCR. (B) LIMK2 ablation using specific shRNA decrease TWIST1 

protein levels under hypoxic and normoxic conditions. (C) LIMK2 and TWIST1 protein levels in 

control and LIMK2-shRNA treated cells. Data shown are mean ± SEM of three independent 

experiments. *P <0.05 compared to control cells and #P <0.05 compared to hypoxic cells. (D) 

TWIST1 mRNA levels in LIMK2-CRISPR C4-2 cells under normoxic and hypoxic conditions 

(12h and 18h treatments), measured using qPCR. (E) TWIST1 protein levels in LIMK2-CRISPR 

C4-2 cells under normoxic and hypoxic conditions. (F) TWIST1 protein levels in LIMK2-

CRISPR C4-2 cells under normoxic and hypoxic conditions. Data shown are mean ± SEM of 

three independent experiments. *P <0.05 compared to control cells and #P <0.05 compared to 

hypoxic cells. (G) TWIST1 does not regulate LIMK2 mRNA levels. LIMK2 mRNA levels in 

TWIST1 shRNA treated C4-2 cells under normoxic and hypoxic conditions. (H) TWIST1 

ablation decreases LIMK2 protein levels under normoxic conditions, but not under hypoxic 

conditions. (I) TWIST1 ablation decreases LIMK2 levels under normoxic conditions, but not 

under hypoxic conditions. Data shown are mean ± SEM of three independent experiments. *P 

<0.05 compared to control cells and #P <0.05 compared to hypoxic cells. 

 

Figure 3:  LIMK2 levels increase with prostate cancer progression with highest levels in CRPC 

clinical specimens. (A) Immunohistochemical micrographs representing LIMK2 specificity in 

normal prostate, stages II and III prostate cancer, and castration resistant prostate cancer with 

annotations of staining localization. All images are at 40x magnification. (B) C4-2 cells were 
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stably transfected with pTet-pLKO-LIMK2 shRNA and miR-LIMK2 shRNA, which encodes a 

doxycycline (Dox)-inducible LIMK2shRNA. The stable cells were generated in which 

endogenous LIMK2 levels could be downregulated by treatment with doxycycline. The figure 

shows LIMK2 downregulation in these stable cells after 72h of doxycycline treatment. (C)  C4-

2-pTet-pLKO-LIMK2 shRNA and C4-2-miR-LIMK2 shRNA cells were injected subcutaneously 

into the flank region of castrated nude mice (n = 3 in each group). The mice were fed with 

normal diet and water until subcutaneous tumors reached an average volume of ~1500  mm3. The 

mice were supplied with doxycycline in drinking water. Tumor volumes were measured twice a 

week until 45 days post injection. (D) Representative images of mice bearing tumors taken 45 

days after injection. (E) Gross images of dissected tumors.  

 

Figure 4:  TWIST1 is a direct substrate of LIMK2. (A) TWIST1 is directly phosphorylated by 

LIMK2. Lane 1 contains [32P]ATP and LIMK2,  lane 2 contains 6x-His-TWIST1, LIMK2 and 

[32P]ATP, and lane 3 contains 6x-His-TWIST1 with [32P]ATP. Kinase assay was conducted for 

15 minutes. The lower panel shows LIMK2 and TWIST1 ponceau stain. (B) LIMK2 

phosphorylates TWIST1 at S45, S78, S95 and S199. The corresponding phospho-resistant single 

mutants (S45A, S78A, S95A and S199A) were generated and subjected to in vitro kinase assay 

using LIMK2. The top panel shows autoradiography, second panel shows TWIST1 ponceau 

stain, and third panel shows LIMK2 ponceau stain. (C) Bar graph showing the phospho-levels of 

WT and phospho-resistant single mutants of TWIST1. (D) LIMK2 only phosphorylates TWIST1 

at these 4 sites (S45, S78, S95 and S199), as the corresponding 4A- phospho-resistant mutant 

shows no phosphorylation, when subjected to in vitro kinase assay with LIMK2. (E) Subcellular 

localization of TWIST1 in C4-2 cells treated with scrambled or LIMK2 shRNA for 30 h. (F) 4A-
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mutant shows similar subcellular localization as wild-type TWIST1. HA-tagged 4A-TWIST1 

was expressed in C4-2 cells and its subcellular localization was analyzed using HA antibody. (G) 

Subcellular localization of WT and 4A TWIST1 mutant in C4-2 cells. (H) Subcellular 

fractionation of TWIST1 in C42, LIMK2-CRISPR C4-2 and LIMK2 shRNA-treated C4-2 cells. 

Alpha-tubulin is the cytoplasmic marker and lamin A is the nuclear marker. N, nuclear fraction; 

C, cytoplasmic fraction. 

 

Figure 5: LIMK2 positively regulates TWIST1 protein levels. (A) LIMK2 overexpression 

increases TWIST1 levels in C4-2 cells. LIMK2 and TWIST1 levels were analyzed in WT HA–

LIMK2-expressing C4-2 and vector infected cells. (B) Histogram shows relative band intensities 

normalized to the corresponding tubulin level. Data are expressed as fold change relative to 

control; values shown as mean ± SEM of three independent experiments. * and # indicate 

statistically significant differences with respect to controls for TWIST1 and LIMK2 proteins, 

respectively. p < 0.05 analyzed by two-way analysis of variance. (C) LIMK2 ablation depletes 

TWIST1 in C4-2 cells. Cells were infected with scrambled shRNA, or LIMK2-shRNA-1, -2 or -

3, and LIMK2 and TWIST1 levels analyzed. (D) Histogram shows relative band intensities 

normalized to the corresponding tubulin level. Data shown as mean ± SEM of three independent 

experiment. * and # indicate statistically significant differences with respect to controls for 

TWIST1 and LIMK2 proteins, respectively. p < 0.05 analyzed by two-way analysis of variance 

(E) LIMK2 inhibits TWIST1 degradation. LIMK2 C4-2 and C4-2 cells were treated with 

cycloheximide (CHX, 10 µM) for 2h and 4h, and LIMK2 and TWIST1 levels analyzed. (F) 

Graphical representation of LIMK2 degradation rate in cells treated as in E. The results of 

densitometric scanning are shown graphically with the LIMK2 signal normalized to actin signal. 
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(G) Graphical representation of TWIST1 degradation rate. (H) LIMK2 stabilizes TWIST1 by 

inhibiting its ubiquitylation. Cells were co-transfected with LIMK2 shRNA along with 6x-His–

ubiquitin (6x-His-Ub). Ubiquitylated proteins were immunoprecipitated and TWIST1 was 

analyzed. Each experiment was performed at least three independent times. Representative data 

are shown. (I) 4A-TWIST1 is less stable than WT TWIST1 in C4-2 cells. WT and 4A-TWIST1 

were stably expressed in C4-2 cells and their expression analyzed. (J) TWIST1 is rapidly 

ubiquitylated upon LIMK2 compared to 4A-TWIST1 in C4-2 cells. (K) Levels of TWIST1 in 

stable cell lines expressing either WT, 4A-TWIST1 or any of the single phospho-resistant 

mutant. (L) Same data as Figure F, except datashown are mean ± SEM of three independent 

experiments. *P <0.05 compared to control cells. (M) Ubiquitylation pattern of WT and all 

single phospho-resistant mutant with and without LIMK2 ablation.  

 

Figure 6: TWIST1 positively regulates LIMK2 protein levels. (A) Overexpression of WT HA-

tagged TWIST1 increases LIMK2 levels in C4-2 cells. (B) Histogram shows relative band 

intensities normalized to the corresponding tubulin level. Data shown are mean ± SEM of three 

independent experiments. * and # indicate statistically significant differences with respect to 

controls for TWIST1 and LIMK2 proteins, respectively. p < 0.05 analyzed by two-way analysis 

of variance. (C) TWIST1 ablation depletes LIMK2 in C4-2 cells. (D) Histogram shows relative 

band intensities normalized to the corresponding tubulin level. Data shown as mean ± SEM of 

three independent experiment. (E) TWIST1 inhibits LIMK2 degradation. TWIST1-C4-2 and C4-

2 cells were treated with cycloheximide (CHX) for 2 h and 4 h, and LIMK2 and TWIST1 levels 

analyzed. (F) Graphical representation of TWIST1 degradation rate. (G) Graphical representation 
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of LIMK2 degradation rate. (H) TWIST1 stabilizes LIMK2 by inhibiting its ubiquitylation. Each 

experiment was performed at least three independent times. Representative data are shown. 

 

Figure 7: LIMK2-mediated TWIST1 phosphorylation contributes to aggressive oncogenic 

phenotypes. (A) TWIST1 promotes cell proliferation in C4-2 cells. C4-2, LIMK2-C4-2, 

TWIST1-C4-2, and 4A-TWIST1-C4-2 cells were plated in 96-well plates and cultured for 24, 

48, and 72 h. At the end of the incubation, an MTT assay was performed. (B) LIMK2 depletion 

decreases cell proliferation in TWIST1-C4-2 cells, but not in phospho-resistant 4A-TWIST1-C4-

2 cells. MTT assay was performed after 48h. (C) LIMK2 overexpression increases cell 

proliferation in TWIST1-C4-2 cells, but not in 4A- TWIST1-C4-2 cells. (D) TWIST1 promotes 

colony formation in a soft agar assay in C4-2 cells. *p < 0.05 compared to vector-expressing 

control analyzed by two-way analysis of variance. (E) TWIST1 promotes cell motility in C4-2 

cells. Chemotaxis assay was performed in C4-2, TWIST1-C4-2 and 4A-TWIST1-C4-2 cells 

using Boyden chambers. These experiments were performed three independent times. 

Representative data are shown. Magnification, 200× (F) Histogram shows mean ± SEM of three 

independent experiments. **p < 0.05 compared to vector-expressing control analyzed by two-

way analysis of variance. (G and H) LIMK2 depletion inhibits cell motility in TWIST1-C4-2 

cells, but not in phospho-resistant 4A-TWIST1-C4-2 cells. (I and J) LIMK2 overexpression 

increases cell motility in TWIST1-C4-2 cells, but not in 4A-TWIST1-C4-2 cells. (K) TWIST1 

expression increases the levels of EMT and CSC markers but decreases E-cadherin levels. 4A-

TWIST1expression decreases the levels of EMT and CSC markers but increases E-cadherin. (L) 

TWIST1 overexpression increases the sphere-forming ability in C4-2 cells. (M) TWIST1 

overexpression increases drug resistance in C4-2 cells. C4-2 cells and C4-2 cells expressing WT 
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TWIST1 and 4A-TWIST1, were plated in 96-well plates overnight. Doxorubicin (1 µM) was 

added and cells were cultured for another 24, 48 or 72 h. 

 

Figure 8: The TWIST1–LIMK2 axis regulates EMT in vivo. (A) TWIST1overexpression 

increases tumorigenesis in vivo. Five male NRG-SCID mice were inoculated with C4-2 cells and 

TWIST1-C4-2 cells on left and right shoulder, respectively. (B) NRG-SCID mouse were injected 

with control C4-2 cells and TWIST1-C4-2 cells on the left and right shoulder, respectively. The 

pictures were taken 23 days following inoculation. A representative image is shown. (C) Effect 

of 4A-TWIST1 expression on subcutaneous tumor growth in athymic nude mice. Three nude 

mice were inoculated with TWIST1-C4-2 cells and 4A-TWIST1-C4-2 cells on the right and left 

shoulder, respectively. (D) Athymic nude mouse injected with TWIST1-C4-2 cells and 4A-

TWIST1- C4-2 cells on right and left shoulder. The pictures were taken 23 days following 

inoculation. A representative image is shown. (E) Immunoblot analysis to show the expression of 

levels of LIMK2, EMT and CSC markers in the tumors of NRG-SCID mouse originating from 

control C4-2 and TWIST1-C4-2 cells. (F) Histogram shows relative band intensities normalized 

to the corresponding Actin level. Data shown as mean ± SEM of three independent experiments. 

* indicates statistically significant differences with respect to controls. p < 0.05 analyzed by two-

way analysis of variance. (G) E-cadherin immunohistochemistry of C4-2 and TWIST1-C4-2 

xenografts. (H) LIMK2 immunohistochemistry of C4-2 and TWIST1-C4-2 xenografts. (I) 

MMP2 immunohistochemistry of C4-2 and TWIST1-C4-2 xenografts. (J) CD44 

immunohistochemistry of C4-2 and TWIST1-C4-2 xenografts. (K) Snail immunohistochemistry 

of C4-2 and TWIST1-C4-2 xenografts. (L) Slug immunohistochemistry of C4-2 and TWIST1-

C4-2 xenografts. (M) Pre-treatment with 10 nM Docetaxel followed by 10 µM LIMK2 inhibitor 
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for next 48 h sensitizes C4-2 cells to docetaxel-induced cell death. Combination Index generated 

using CompuSyn software. 

Data shown are mean ± SEM of three independent experiments. *P <0.05 compared to control 

cells. (N) Our model showing the contribution of LIMK2 and TWIST1 in CRPC progression and 

aggressive phenotypes. 
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Highlights:  

• LIMK2 was identified as a disease-specific target in CRPC. 

• We show that LIMK2 is upregulated in castrated prostates due to increased hypoxia. 

• Inducible knockdown of LIMK2 fully reverses CRPC tumorigenesis in castrated mice. 

• TWIST1 was identified a direct target of LIMK2. 

• LIMK2 inhibitor shows very high synergy with docetaxel. 
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