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Abstract 

Enzyme-mediated in situ forming hydrogels are attractive for many biomedical 

applications because gelation afforded by the enzymatic reactions can be readily controlled not 

only by tuning macromer compositions, but also by adjusting enzyme kinetics. For example, 

horseradish peroxidase (HRP) has been used extensively for in situ crosslinking of macromers 

containing hydroxyl-phenol groups. The use of HRP on initiating thiol-allylether polymerization 

has also been reported, yet no prior study has demonstrated enzymatic initiation of thiol-

norbornene gelation. In this study, we discovered that HRP can generate thiyl radicals needed for 

initiating thiol-norbornene hydrogelation, which has only been demonstrated previously using 

photopolymerization. Enzymatic thiol-norbornene gelation not only overcomes light attenuation 

issue commonly observed in photopolymerized hydrogels, but also preserves modularity of the 

crosslinking. In particular, we prepared modular hydrogels from two sets of norbornene-modified 

macromers, 8-arm poly(ethylene glycol)-norbornene (PEG8NB) and gelatin-norbornene (GelNB). 

Bis-cysteine-containing peptides or PEG-tetra-thiol (PEG4SH) were used as crosslinkers for 

forming enzymatically and orthogonally polymerized hydrogels. For HRP-initiated PEG-peptide 

hydrogel crosslinking, gelation efficiency was significantly improved via adding tyrosine residues 

on the peptide crosslinkers. Interestingly, these additional tyrosine residues did not form 

permanent dityrosine crosslinks following HRP-induced gelation. As a result, they remained 

available for tyrosinase-mediated secondary crosslinking, which dynamically increases hydrogel 

stiffness. In addition to material characterizations, we also found that both PEG- and gelatin-

based hydrogels provide excellent cytocompatibility for dynamic 3D cell culture. The enzymatic 

thiol-norbornene gelation scheme presented here offers a new crosslinking mechanism for 

preparing modularly and dynamically crosslinked hydrogels. 

Keywords: Dynamic hydrogels, Horseradish peroxidase, Glucose oxidase, Thiol-norbornene 

click chemistry.
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1. Introduction

Hydrogels prepared from orthogonal crosslinking methods have tremendous potential in 

drug delivery and tissue engineering applications.[1-3] In particular, thiol-norbornene click 

reaction is advantageous in hydrogel crosslinking owing to the rapid and quantitative reactivity 

between thiol- and norbornene-functionalized macromers.[4-9] The modular and orthogonal 

reactivity of thiol-norbornene click reaction has been used to fabricate a diverse array of 

biomaterials, including bulk hydrogel,[10-12] colloidal gel,[13, 14] as well as cell surface 

coating.[15] Current modular thiol-norbornene hydrogels are exclusively prepared from 

photopolymerizations initiated by ultraviolet (UV) light, visible light, or two photon irradiation.[4, 5, 

9, 16-20] While photopolymerization affords spatial-temporal control in crosslinking, hydrogels 

formed by photochemistry are typically limited in thickness/depth due to light attenuation in 

thick/dark samples. For clinical applications, UV light absorption by the skin also reduces the utility 

of photopolymerized hydrogels.[21] It will be ideal if the synthetically simple thiol-norbornene 

hydrogels could be prepared with high injectability and any given sizes and shapes without 

sacrificing modularity of the crosslinking. 

The light attenuation issue of photopolymerization can be overcome by exploiting 

enzymatic reaction capable of generating thiyl radicals needed for the initiation of thiol-norbornene 

reaction.[22] The use of enzyme to catalyze thiol-norbornene click reaction also has the 

advantage of independent and modular controls over gelation kinetics and final gel properties. 

This is particularly important as gelation speed and final gel properties are often coupled together 

in conventional click hydrogels (i.e., higher macromer contents/functionalities are required for 

faster gelation, which leads to higher degree of gel crosslinking). To this end, horseradish 

peroxidase (HRP) has emerged as a highly useful enzyme for in situ crosslinking of hydroxyl-

phenol (e.g., hydroxyphenylacetic acid (HPA), tyramine, or tyrosine) or vinyl-modified polymers 

into hydrogels.[23-25] HRP initiates hydrogel crosslinking by generating radical species in the 
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presence of hydrogen peroxide (H2O2), which is provided either through exogenous addition or 

generated in situ through tandem enzymatic reactions (i.e., HRP with Glucose oxidase (GOX) 

and glucose).[26] For example, Kim et al. used HRP/GOX initiated crosslinking to form gelatin-

based hydrogel with tunable mechanical property and gelation time.[27] These hydrogels also 

exhibited high cytocompatibility for encapsulation of human dermal fibroblasts. More recently, 

Gantumur and colleagues reported a crosslinking mechanism in which HRP was used as both 

the catalyst and the supplier of H2O2.[28] It was hypothesized that HRP oxidizes thiol moieties on 

itself to generate H2O2. This self-oxidization process was accelerated with high concentration of 

glucose and HRP. In addition to catalyzing crosslinking of hydroxyl-phenol-modified polymers into 

hydrogels, HRP was recently used to catalyze Reversible Addition-Fragmentation chain Transfer 

(RAFT) polymerization,[29] as well as thiol-allyether[22] and tetrazine-norbornene hydrogel 

crosslinking.[30] As demonstrated by Zavada et al., PEG diallyl ether (PEGDAE) and ethoxylated 

trimethylolpropane tri(3-mercaptopropionate) (ETTMP) can be successfully crosslinked to form 

hydrogels with HRP and H2O2.[22] However, the gel points for HPR-initiated thiol-allylether 

gelation were on the order of 10 minutes using moderately high HRP concentrations (~100-300 

U/mL).[22] Nevertheless, HRP provides diverse routes for preparing hydrogels suitable for various 

biomedical applications. To the best of our knowledge, however, no prior study has utilized HRP 

or other enzyme to initiate the crosslinking of modular and dynamic thiol-norbornene hydrogels 

under ambient and aqueous conditions.

In this contribution, we present the use of HRP to initiate crosslinking of modular thiol-

norbornene hydrogels. Differing from the crosslinking of hydroxyl-phenyl (e.g., tyramine) 

containing macromers into hydrogels, HPR-initiated thiol-norbornene hydrogelation exhibits 

characteristic modularity in hydrogel crosslinking. Specifically, we used 8-arm PEG-norbornene 

(PEG8NB) or gelatin-norbornene (GelNB) as the norbornene-modified macromers for 

crosslinking with multi-functional thiols (e.g., dithiothreitol (DTT), 4-arm PEG-thiol (PEG4SH), or 
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bis-cysteine-bearing peptide) into step-growth hydrogels. H2O2 needed for activating HRP was 

supplied either exogenously or generated in situ via GOX and glucose. In addition to studying the 

parameters critical for initiating enzymatic reaction, we examined the effect of tyrosine residue on 

crosslinking efficiency and post-gelation dynamic stiffening of PEG-peptide hydrogels. Similar to 

other HRP-based hydrogel crosslinking, the system exhibits high cytocompatibility for in situ cell 

encapsulation under proper reaction conditions. Finally, we explored the additional tyrosine 

residues on the peptide linker for enzyme-mediated dynamic gel stiffening. 

2. Material and Methods:

2.1 Materials

8-arm poly(ethylene glycol) (PEG-OH) (20 kDa) was purchased from JenKem Technology; 

HRP (220 U/mg) and mushroom tyrosinase (MT, 845 U/mg)  were purchased from Worthington. 

GOX (111 U/mg) was acquired from Amresco. All other chemicals were purchased from Fischer 

Scientific and used without further purification unless otherwise stated. 8-arm PEG-ester-

norbornene (PEG8NB, ~95% substitution) and photoinitiator lithium aryl phosphinate (LAP) were 

synthesized as described previously.[5, 31, 32]  

2.2 Peptide synthesis and purification

All peptides were synthesized using standard solid-phase peptide synthesis in an 

automated microwave-assisted peptide synthesizer (CEM Liberty 1) using Fmoc-protected amino 

acids. Peptide cleavage was performed using a cleavage cocktail containing 7.6 mL trifluoroacetic 

acid (TFA), 0.2 mL triisopropylsilane (TIS), 400 mg phenol, and 0.2 mL double distilled water. The 

peptides were cleaved from the resin for ∼3 h at room temperature and precipitated in cold ethyl 

ether. The cleaved peptides were dried in vacuo and purified by reverse phase HPLC 

(PerkinElmer Flexar system) using 95%/5% (v/v) water/acetonitrile with trace (0.1vol.%) of TFA 

as the starting solvent mobile phase. A linear gradient of acetonitrile was used to separate the 

products through a semi-prep scale peptide C18 column at 5 mL/min flow rate. The separation 
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processes were monitored with a UV/vis detector at 280 nm (for peptides with tyrosine residue) 

or 220 nm (for peptides without tyrosine residue). Purified peptides were characterized with liquid 

chromatography coupled with mass spectrometry (Agilent Technologies, 1200 series LC/MS 

system).

2.3 Hydrogel fabrication

To fabricate HRP/H2O2 mediated thiol-norbornene hydrogel, macromer PEG8NB was 

crosslinked with either DTT or bis-cysteine-bearing peptides (i.e. CGGGC, CYGGGYC, 

CGGYGGC, KCYGGYGGYCK). Specifically, to make a 1:1 thiol-to-norbornene ratio (Rthiol/ene =1) 

of PEG8NB-KCYGGYGGYCCK hydrogel, 2.5 wt% of PEG8NB and 10 mM of KCYGGYGGYCK 

(final concentrations) were dissolved in phosphate buffer solution (PBS) at pH 7.4. HRP (1 U/ml) 

and H2O2 (0.5 mM) were added to the solution, followed by vortexing for ~5 seconds. The 

precursor solution was immediately pipetted in between two glass slides separated by 1-mm-thick 

spacers. Gelation occurred within 5 minutes at room temperature. The hydrogels crosslinked from 

PEG8NB and tyrosine-free linker (CGGGC or DTT) or with GelNB and PEG4SH were also 

prepared following the same procedure but with a more concentrated HRP (100 to 200 U/ml). 

For dual enzyme (HRP/GOX)-mediated gelation, PEG8NB-DTT and PEG8NB-peptide 

hydrogels were prepared following the similar procedures described above. Briefly, 3 wt% 

PEG8NB and 12 mM (final concentrations) DTT or peptides were dissolved in PBS with 1 U/ml 

(for tyrosine-containing peptides), or 200 U/ml HRP (for CGGGC or DTT), 1 U/ml GOX, and 10 

mM glucose. The solution was vortexed for ~5 seconds before pipetted in a Teflon mold with 8-

mm diameter cavities. Hydrogel discs were obtained after 5 minutes of gelation.

To stiffen hydrogels using mushroom tyrosinase (MT), PEG8NB hydrogels were 

crosslinked by tyrosine-containing peptide (thiol to norbornene ratio was fixed at 1). Prior to MT-

mediated stiffening, hydrogels were swollen in PBS for 24 hrs to wash off un-crosslinked species. 

To induce dynamic stiffening, hydrogels were submerged in 1 kU/ml MT for 6 hrs. Afterwards, MT 
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was removed via swelling hydrogels in PBS for 24 hrs, followed by rheological measurements of 

hydrogel shear modulus. 

2.4 Rheometry

Rheological measurements were conducted with circular hydrogel discs fabricated 

between two glass slides. Gel discs were punched out with an 8 mm biopsy punch. The hydrogels 

were carefully transferred to the rheometer platform prior to initiating the measurements. Storage 

and loss moduli (G’ and G”) of the hydrogels were determined using a Bohlin CVO 100 digital 

rheometer fitted with an 8-mm diameter parallel geometry. Frequency sweep was first performed 

to determine the frequency at which the viscoelastic properties are independent of the imposed 

stress or strain (i.e., linear viscoelastic (LVE) region). For most covalently crosslinked hydrogels, 

a frequency of 1 Hz typically falls within the LVE region. The rheological measurements were 

performed in strain-sweep mode with the strain ranging from 0.1% to 5%, and the oscillation 

frequency was kept constant at 1 Hz.

For in situ gelation experiments, precursor PEG8NB solution containing thiol crosslinkers, 

HRP, H2O2 (or GOX and glucose) were mixed and vortexed for 5 seconds. Immediately after 

vortexing, 7 µL of the mixture was placed on the lower plate and the geometry was lowered to 90 

µm. A layer of mineral oil was applied on the edge of the plate geometry head to prevent 

dehydration. 

2.5 Norbornene and Thiol Consumption 

The thiol conversion study was conducted with precursor solutions containing linear 

PEGNB, DTT, HRP and H2O2. Briefly, 3.5 wt% PEGNB, 14 mM DTT, 200 U/ml HRP, and 1.5 mM 

of H2O2 were mixed together and portions of the solution (25 µL) were collected immediately after 

mixing and at intervals of every 2 minutes afterward. Remaining thiol contents were determined 

using Ellman’s reagent (5,5-dithio-bis-(2-nitrobenzoic acid. ThermoFisher Scientific) following the 
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manufacturer’s protocol. The thiol concentration left at each specific time point was used to 

calculate the amount of thiol that had been consumed. 

As for norbornene consumption, mixtures of linear PEGNB, DTT, HRP, H2O2 at different 

thiol to norbornene ratios (keeping PEGNB concentration constant at 3.5 wt%) were mixed in 

deuterium oxide for 10 minutes. Polymer samples for 1H NMR analysis were prepared at a 

concentration of 20 mg/ml. The reaction mixtures were then subjected to analysis using Bruker 

Avance III 500 Hz NMR. The amount of norbornene left after the reaction for each Rthiol/ene ratio 

was calculated using the ratio of the integration of the norbornene peaks at 6.00 to 6.36 ppm over 

the integration of the PEG backbone region from 4.21 – 4.37 ppm. 

2.6 Characterization of gel fraction 

Hydrogels were formed with PEG8NB, DTT, HRP and H2O2 (or GOX/glucose); each gel 

was prepared from 45 μL of precursor solution. Immediately after gelation, hydrogels were dried 

in vacuo and weighed to obtain first dried weight (W1st dried). The dried gels were incubated in 

ddH2O at 37 °C overnight to remove un-crosslinked species. Afterwards, swollen weights were 

obtained; swollen gels were dried and weighed again to obtain the second dried weight (W2nd dried). 

Gel fraction (Equation 1) was determined by the ratio of the 2nd dried weight over the 1st dried 

weight: 

           (1)Gel fraction =  
W2nd dried

W1st dried

Hydrogel mass swelling ratios (q, Equation 2) were calculated using the following equation:

 (2)𝑞 =
𝑊𝑠𝑤𝑜𝑙𝑙𝑒𝑛

𝑊2𝑛𝑑 𝑑𝑟𝑖𝑒𝑑 

2.7 In-gel oxygen measurements

A needle-type oxygen probe connected to Microx4 oxygen sensor (PreSens Precision 

Sensing GmbH) was used to obtain the oxygen concentrations within the gels. The needle of the 

oxygen probe was inserted into the gel at specified time points. After needle penetration, the 
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optical fiber of the probe was extended to the tip of the needle so that it was exposed to the gel 

but remained housed within the needle.

2.8 NIH/3T3 fibroblast encapsulation

Cytocompatibility of the enzymatically crosslinked thiol-norbornene hydrogel was evaluated 

using murine NIH/3T3 fibroblasts acquired from American Type Culture Collection (ATCC). Cells 

were maintained in high glucose Dulbecco’s modified eagle medium (DMEM) containing 10% 

fetal bovine serum and 1% penicillin-streptomycin before performing cell encapsulation. All 

macromer components used for cell encapsulation were sterilized by passing through sterile 0.22 

μm syringe filter. For cell encapsulation, a solution of 3 wt% PEG8NB, 13 mM KCYGGYGGYCK 

peptide, 1 mM CRGDS peptide, 1 U/ml HRP, and 0.5 mM H2O2 were mixed together, followed by 

gently suspending NIH/3T3 cells into the precursor solution (final cell density: 2  106 cells/ml). 

The mixture was then added to 1 mL syringes (with the top cut open) and allowed to gel for 5 

minutes. After that, cell-laden gels were transferred into a 24-well plate. GelNB-PEG4SH cell-

laden hydrogels were prepared following similar steps but with a higher HRP concentration (100 

U/ml) and without the addition of CRGDS. To evaluate cell viability after encapsulation and 

throughout culturing period, the encapsulated cells were stained with NucBlue®, which labels 

nuclei of all cells, and NucGreen®, which stains cells with compromised plasma membranes (i.e., 

dead cells). The numbers of live (all cells minus dead cells) and dead cells were imaged with a 

confocal microscope and counted using ImageJ software. 

2.9 Dynamic stiffening of enzymatically crosslinked PEG-peptide hydrogels

MT were used to induce dynamic stiffening of PEG8NB-peptide hydrogels. 24 hrs after 

cell encapsulation, the gels were incubated in 1 kU/ml MT for 6 hours to induce stiffening. 

Afterwards the enzyme was removed via swelling in culture media for 24 hrs. To observe the 

effect of matrix stiffening on cell morphology and cytoskeletal organization, cell-laden hydrogels 

were fixed and stained for cell nuclei and F-actin. Specifically, at predetermined time points after 
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encapsulation, cell-laden hydrogels were fixed with 4% paraformaldehyde and permeabalized 

with saponin solution following a published protocol.[33, 34] Next, rhodamine phalloidin and DAPI 

were used to stain for F-actin and nuclei, respectively. Live/Dead and immunofluorescence 

stained samples were imaged with Olympus Fluoview FV100 laser scanning microscopy. 

Live/Dead images were captured at 10x objective, with Z-stacked of 10 slices and 10 µm per slice. 

Immunofluorescence images were captured at 20x objective, with Z-stacked of 10 slices and 2 

µm per slice.

2.10 Statistics

All experiments were performed independently for three times and with a minimum of three 

samples per conditions. Statistical significance was evaluated using a two-tail t-test in Prism 5 

software. Single, double, and triple asterisks represent p<0.05, 0.01, and 0.001 respectively. 

3. Results and Discussion

3.1 Characterization of HRP-mediated thiol-norbornene gelation

While HRP has been previously used to initiated crosslinking of thiol-allylether 

hydrogels,[22] its utility on initiating thiol-norbornene gelation has not been reported. We reasoned 

that thiyl radicals generated by HRP can propagate to the strained norbornene bond, creating a 

carbon-center radical to abstract hydrogen from another thiol group. A stable thioether bond is 

subsequently formed, thus completing the step-growth cycle (Fig. 1A). To test this hypothesis, 

we first mixed PEG8NB (20 kDa), DTT, HRP, and H2O2 in test tubes and evaluated gelation speed 

using a simple tilt-test. As shown in Fig. 1B, gelation occurred within a few minutes only when all 

four components (PEG8NB, DTT, HRP, H2O2) were included. The crosslinking was clearly 

triggered by enzymatic reaction because gelation did not occur without HPR or H2O2. 

Furthermore, gelation was not due to norbornene homo-polymerization (i.e., no DTT) or entirely 

by HRP-mediated disulfide bond formation (i.e., no PEG8NB groups). To ensure that gelation was 

a result of HRP-mediated thiol-norbornene reaction, we performed thiol and norbornene 
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consumption tests using linear PEGNB, DTT, HRP, and H2O2. Linear PEGNB was used to prevent 

crosslinking while permitting solution-based assay since not all formulations formed hydrogels, 

especially at early reaction time points (in thiol consumption test) and low thiol/ene ratios (in 

norbornene consumption test). Fig. 1C shows that a time-dependent depletion of thiols only 

occurred in the presence of all necessary components (i.e., PEGNB, DTT, and HRP/H2O2). 

Limited thiol consumption (~30%) was detected in the presence of DTT and HRP, which could be 

attributed to HRP-catalyzed disulfide bond formation. It should be noted that, in the absence of 

HRP, no thiol consumption was detected (Fig. 1C. No HRP group), suggesting that un-catalyzed 

disulfide bond formation was not a concern within the 15 minutes reaction time. 

Using proton NMR, we analyzed chemical shifts of norbornene group (Fig. 1D) and 

established a linear and quantitative relationship of norbornene consumption as a function of thiol-

to-norbornene ratio (Rthiol/ene). It is worth noting that there was an incomplete norbornene 

consumption even when Rthiol/ene reached unity. The lower than expected and incomplete 

norbornene consumption could be a result of the HRP reactivity towards thiol groups (Fig 1C. No 

PEGNB group). Since the Rthiol/ene values were calculated based on the amounts of thiol and 

norbornene groups added in the solutions, partial consumption of thiol by HRP would reduce the 

actual thiol-to-norbornene ratio, which could explain why a lower than expected norbornene 

consumption was obtained.  

Using in situ rheometry, we demonstrated a rapid gelation kinetics, which was on par with 

the visible light initiated thiol-norbornene gelation system (gel point ~80 s, Fig. 2A).[16] Enzymatic 

crosslinking of DTT and PEG8NB into hydrogels required relatively low concentration of HRP 

(~100 U/mL, Fig. 2B) and H2O2 (~0.5 mM, Fig. 2C). Through adjusting PEG8NB macromer 

contents (i.e., 3.5, 4, and 4.5 wt%), gel crosslinking density and modulus (G’ ~ 1 to 3 kPa, Fig. 

2D) could be readily tuned in a range relevant to many normal and diseased tissues, including 

stem cell differentiation,[35-37] tumor progression,[34, 38-41] and fibrosis.[42, 43] More 

importantly, unlike light-mediated photochemistry that has light attenuation issue, especially in 
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dark samples, we showed that HRP-catalyzed thiol-norbornene hydrogels can be used to form 

hydrogels with higher depth/thickness since enzymatic reactions occurs simultaneously 

throughout the dimension of the vessel (Fig. 2E). Thiol-norbornene hydrogels crosslinked by the 

HRP/H2O2 system also appeared to maintain good fidelity of the syringe mold. In principle, this 

enzymatic crosslinking scheme can be adapted for injectable delivery of thiol-norbornene 

hydrogels, which have an ideal network structure and can conform the size and shape of the 

delivery site.  

3.2 Tyrosine-assisted enzymatic crosslinking of PEG-peptide hydrogels 

After demonstrating the feasibility of HRP-initiated thiol-norbornene hydrogel crosslinking 

using DTT as a crosslinker, we asked if bis-cysteine peptide linkers can be used to form PEG-

peptide hydrogels. Peptide crosslinkers are advantageous in promoting cell fate processes, such 

as protease-mediated matrix cleavage. As a proof-of-concept, we designed a model peptide linker 

containing only terminal cysteines and internal glycine residues (i.e., CGGGC) and tested gelation 

under 1 mM H2O2 and a range of HRP concentrations (i.e., 1 to 200 U/mL). While gelation 

occurred at high HRP concentrations (100-200 U/mL) as expected, no sol-gel transition was 

observed when HRP concentration was lower to 5 U/mL even after 30 minutes (data not shown). 

We then examined whether adding soluble tyrosine could promote HRP-mediated thiol-

norbornene gelation as this approach was reported to improve HRP-induced crosslinking of 

thiolated polymers,[44] as well as the gelation efficiency of photopolymerized thiol-norbornene 

hydrogels.[45] Unfortunately, soluble tyrosine also did not assist thiol-norbornene PEG-peptide 

gelation using 5 U/mL HRP (data not shown). 

We next tested whether placing tyrosine residue on the cysteine-containing peptide linkers 

would enhance HRP-mediated thiyl radical generation. This approach was inspired by another 

recent work where tyrosine/cysteine dually labeled protein was used to facilitate HRP-mediated 

di-thiol crosslinks formation.[46] Fig. 3A illustrates the potential mechanism of tyrosine-assisted 
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thiyl radical generation. Experimentally, we used a tyrosine containing model peptide CYGGGYC 

for HRP-mediated thiol-norbornene gelation tests. Surprisingly, immediate gelation was obtained 

at 5 U/mL HRP and 1 mM H2O2, suggesting that adding tyrosine residues on the peptide sequence 

improved thiyl radical generation and hence thiol-norbornene gelation. It is worth noting that 

gelation was not due to HRP-mediated di-tyrosine crosslinking or norbornene-tyrosine reaction, 

as control experiments using a cysteine-free peptide (i.e., KGYGGYGGYGK) did not yield 

hydrogel crosslinking (data not shown). In order to obtain gelation in a more manageable 

timeframe, we intentionally reduced the concentration of HRP and H2O2 to 1 U/mL and 0.5 mM, 

respectively. Under these conditions, PEG-peptide thiol-norbornene hydrogels could be 

crosslinked within 10 minutes and shear moduli of these hydrogels (as characterized by strain-

sweep rheometry) were higher when using peptide linker containing more tyrosine residues (Fig. 

3B). Additional gelation tests using off-stoichiometric ratios of thiol/norbornene led to gels with 

tunable moduli (Fig. 3C), a typical characteristic of modularly crosslinked PEG-peptide thiol-

norbornene hydrogels. It should also be noted that the above results were obtained without 

altering the concentrations of PEG8NB macromer (i.e., 3 wt%), HRP (i.e., 1 U/mL), or H2O2 (i.e., 

0.5 mM), further providing flexibility in preparing hydrogels with highly tunable properties.

3.3 HRP/GOX dual enzymatic thiol-norbornene gelation

Next, we explored whether thiol-norbornene gelation could be achieved using enzyme-

catalyzed tandem reactions. Specifically, H2O2 needed for HRP-catalyzed thiol-norbornene 

gelation was generated in tandem by GOX, glucose, and dissolved oxygen (Fig. 4A). Gelation of 

PEG8NB and CYGGGYC peptide using this scheme was successful and the degree of hydrogel 

crosslinking was dose-dependently and almost linearly tuned in the presence of 1 to 10 mM 

glucose (Fig. 4B). However, when glucose concentration was raised to above 10 mM, hydrogels 

were formed with lower moduli, suggesting a reduced crosslinking efficiency. This was likely due 

to an inhibition effect of higher H2O2 to HRP and/or GOX (i.e., more H2O2 would be generated at 
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higher glucose concentrations).[47, 48] We further compared crosslinking efficiency of enzymatic 

thiol-norbornene hydrogels to that of UV crosslinked gels with the same macromer compositions. 

In terms of gel fraction (Fig. 4C), hydrogels crosslinked by the HRP/GOX/glucose system (87.4 ± 

2.1) were comparable to that of UV crosslinked gels (87.8 ± 2.4), suggesting high crosslinking 

efficiency of the HRP-mediated thiol-norbornene reactions. However, when gels were crosslinked 

by the HRP/H2O2 system, a slightly lower gel fraction (77.5 ± 1.0) was obtained, which could be 

attributed to HRP inactivation caused by bolus addition of H2O2.[49-51] Further characterizations 

of mass swelling ratio (q) and shear modulus (G’) of the hydrogels confirmed a lower crosslinking 

efficiency in gels formed by the HRP/H2O2 system when comparing to gels formed by HRP/GOX 

tandem enzymatic reactions (i.e., higher q and lower G’ Fig. 4D).   

To gain insights into the effect of tandem HRP/GOX enzymatic thiol-norbornene reactions 

on the oxygen contents during gelation, we used a needle-type oxygen probe to detect 

concentrations of dissolved oxygen inside the two groups of hydrogels at various time points post-

gelation (0-24 hr). Hydrogels were placed in PBS immediately after gelation. As shown in Fig. 4E, 

oxygen contents inside the hydrogels formed by HRP/H2O2-initiated gelation remained close to 

normoxia after gelation. This is not surprising, as no dissolved oxygen was needed in HRP/H2O2-

mediated reaction. However, in the HRP/GOX/glucose gelation system, severe hypoxia (~ 1%) 

was detected within one hour post-gelation. After 5 hours, O2 content in hydrogel increased to 

~6%. Oxygen level in the hydrogel returned to almost normoxia after 24 hours, presumably due 

to oxygen diffusion into the gel over time. The increased ‘in-gel oxygen’ results suggested that no 

GOX was permanently trapped in the hydrogel after crosslinking. The highly efficient enzyme-

initiated PEG-peptide thiol-norbornene hydrogel system is advantageous as injectable cell-

responsive matrices for tissue engineering applications. Furthermore, the transient hypoxia 

occurred within the dual enzyme-crosslinked thiol-norbornene hydrogels may be exploited to 
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improve 3D vascularization and cytokine secretion from mesenchymal stem cells in the future.[52, 

53] 

3.4 Enzymatically crosslinked gelatin-based thiol-norbornene hydrogels

To demonstrate the versatility of the HRP mediated gelation, hydrogels were formed with 

norbornene-modified gelatin (GelNB),[54] an attractive macromer used extensively in many 

biomedical applications due to its intrinsic biocompatibility and degradability.[39, 55-57] Because 

GelNB and PEG4SH were both multifunctional macromers, HRP concentration was lowered to 

~100 U/ml (instead of 200 U/ml for PEG8NB) to achieve a more manageable gelation time. GelNB 

and PEG4SH readily crosslinked into hydrogels with highly tunable stiffness. Gel moduli were 

controlled by adjusting either gelatin content (Fig. 5A) or thiol to norbornene ratio (Fig. 5B). 

Hypothetically, GOX/glucose system is more ideal for cell encapsulation because GOX-generated 

H2O2 would be consumed by HRP soon after its production. On the other hand, exogenously 

added H2O2 would present a much higher initial H2O2 concentration for the encapsulated cells. 

However, the in-gel oxygen measurements results shown in Fig. 4C demonstrated an extremely 

low oxygen level within the first hour of gelation (<1%), which might not be ideal for cells survival. 

Other potential challenges with the HRP/GOX/glucose system as a mean to supply H2O2 lie in the 

fact that the remaining GOX within the hydrogel can continuously consume glucose within the 

culture media to generate gluconic acid. In addition, the remaining HRP, GOX and glucose could 

also crosslink the pH indicator phenol red in the media, which may hinder its buffering effect on 

pH changes. Therefore, we chose HRP/H2O2 system for cell encapsulation studies. To minimize 

potential cytotoxicity, H2O2 concentration was lowered to 0.5 mM. A recent study on HRP/H2O2 

enzymatic reaction reported by Park et al. has concluded that any initial H2O2 concentration below 

0.063 wt% (~18 mM) is a safe level for cell culture and almost all residual H2O2 would be converted 

to water and oxygen by HRP.[58] By quantifying the numbers of live and dead cells using live/dead 

staining and confocal imaging, we found that enzymatically crosslinked GelNB-PEG4SH 
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hydrogels displayed good cytocompatibility with above 85% of the encapsulated cells remained 

alive after 24 hours of encapsulation (Fig. 5C). Moreover, encapsulated cells proliferated 

significantly after 8 days of culture (Fig. 5D). Since gelatin is susceptible to protease-mediated 

degradation, the encapsulated cells were able to form extensive and interconnected network 

following local matrix degradation. All in all, the enzymatically crosslinked GelNB-PEG4SH 

hydrogels are capable of supporting long term cell survival as well as providing favorable platform 

for cell expanding and proliferation. 

3.5 Dynamic stiffening of enzymatically crosslinked PEG-peptide hydrogels

Fig. 3 has clearly shown that tyrosine residues on bis-cysteine peptide linker facilitate thiyl 

radical generation and thiol-norbornene hydrogel crosslinking. One potential mechanism 

responsible for this gelation is that the hydroxyl and thiol groups are in close proximity on the 

peptide linker. It is likely that the hydroxyl group on tyrosine residue regains its hydrogen atom 

following thiyl radical generation (Fig. 2A). We then asked if hydroxyl side group on tyrosine 

residues can be exploited for mushroom tyrosinase (MT)-mediated post-gelation dynamic 

stiffening (Fig. 6A). We have previously developed similar strategies to dynamically stiffen PEG-

peptide hydrogels for controlling cell fate processes.[39, 40] We found that the enzymatically 

crosslinked thiol-norbornene PEG-peptide hydrogels could indeed be dynamically stiffened using 

exogenously added MT (incubation for 6 hours. Fig. 6B, 6C), suggesting that the hydroxyl-phenol 

groups on tyrosine remained protonated following HRP-mediated gelation. Upon the addition of 

MT, these tyrosine residues were catalyzed to DOPA dimers that exhibit characteristic 

yellow/brown color as shown in Fig. 6B.[33, 39, 40] These additional DOPA dimers resulted in 

increased gel crosslinking density and shear modulus (Fig. 6C). Enzymatic stiffening occurred in 

hydrogels crosslinked by peptides with two or three tyrosine residues, as well as gels crosslinked 

with HRP/H2O2 or HRP/GOX/glucose systems. Most importantly, the degrees of stiffening (from 

2 to 5 kPa) were relevant to the mechanics of many normal and diseased tissues.[59-62]  

Page 16 of 31

ACS Paragon Plus Environment

ACS Biomaterials Science & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



17

3.6 Cell encapsulation and dynamic stiffening of cell-laden hydrogels 

Fibroblast has been known to play a critical role during normal wound healing, where the 

stiffness of the ECM increases significantly.[63] Our enzyme-mediated matrix stiffening strategy 

can be used to mimic this process and examine how matrix stiffening would regulate fibroblasts 

behavior. To investigate how dynamic stiffening affects cell fate, we encapsulated NIH/3T3 

fibroblasts in PEG8NB-peptide hydrogels, with the peptide crosslinkers susceptible to mushroom 

tyrosinase (MT)-mediated on-demand stiffening. The PEG8NB-peptide hydrogels were divided 

into two groups: the control group, which received no MT treatment and the stiffened group, which 

underwent dynamic stiffening (i.e., treated with 1 kU/ml MT for 6 hours). Live/dead staining results 

show that both groups displayed good cytocompatibility, with 90% or more cell survived the 

enzymatic encapsulation process. (Fig. 6D). On day 1, the cells exhibited rounded morphology in 

both groups (Fig. 6E). However, after 8 days of culturing, immunofluorescence staining results 

show distinct differences in cell morphology between the soft and stiffened hydrogels. While cells 

cultured in the non-treated (or soft) gels exhibited extensive and significant cell spreading with 

many cells connected to each other, those in the stiffened hydrogels remained mostly as single 

cells. The extensive spreading in the soft group was similar to that observed in cells encapsulated 

within soft GelNB-PEG4SH gels (Fig. 5D). On the other hand, while the PEG8NB-peptdie 

hydrogels used here did not contain protease-sensitive linkers, some cells in the stiffened gels 

still exhibited spreading and/or irregular protrusions after 8 days of culture (Fig. 6E). We reasoned 

that these cell protrusions were permitted by network defects and/or gradual hydrolysis of ester 

bonds located between the norbornene moiety and the PEG backbone. We have previously 

shown that hydrolysis of ester bonds in gels composed of ‘PEG-ester-NB’ macromer encouraged 

a higher degree of cell spreading when compared with gels formed by ‘PEG-amide-NB’.[64] 

Nonetheless, these results suggested that soft gels exhibited appropriate mechanical strength to 

allow for more cell spreading. Due to the additional di-tyrosine crosslinks within the stiffened gels 

network, the mesh sizes of these hydrogels were smaller and could impose physical strain to 
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restrict gel degradation and cell spreading. This behavior is likely not exclusive to NIH/3T3 cells, 

our result agreed with previous studies where soft gels were also shown to allow more spreading 

than stiffened ones.[39] It is also important to note that, the minimal cell spreading behavior within 

the stiffened group was mainly due to matrix stiffening and not due to cell death, because 

pronounced increased in cell density were seen in both groups after 8 days. Cell density increase 

indicated that NIH/3T3 fibroblasts were viable and able to proliferate even in stiffened hydrogels. 

While we did not perform rheological measurements for cell-laden hydrogels, all hydrogels 

underwent MT-mediated stiffening changed their color to dark brown (data not shown. Similar to 

Fig. 6B), indicating that the gels were indeed stiffened. Future studies may be conducted to 

correlate the degree of enzymatic matrix stiffening and mechanotransduciton in the encapsulated 

cells. Nonetheless, our stiffening experiments (Fig. 6) have also that the tyrosine residues not 

only facilitated HRP-mediated thiol-norbornene gel crosslinking, but were also available for MT-

mediated stiffening to dynamically affect cell fate processes.  

Another important issue to note is that cell viability was slightly lower in the GelNB-

PEG4SH gels (Fig. 5C) than in the PEG-peptide gels. We reasoned that this was due to the 

higher concentration of HRP used (i.e., 100 U/mL for GelNB-PEG4SH gels and 1 U/mL for PEG-

peptide gels) during encapsulation process, which could have adverse effect on fibroblasts. 

Although less likely, the differences in radical generation mechanism of the HRP-mediated thiol-

norbornene system with and without the incorporation of tyrosine residues could also be a reason 

for the viability discrepancy. Regardless of the macromers used, we have shown that cell-laden 

thiol-norbornene hydrogels could be readily crosslinked enzymatically via HRP. Uniquely, the 

PEG8NB-peptide hydrogel system exhibited additional dynamic and enzymatic stiffening feature 

that has not been reported in other HRP-crosslinked gels. If desired, these tyrosine residues can 

be explored for labeling/patterning of receptor binding ligands, a strategy reported recently by our 

group.[33] Overall, the enzymatically crosslinked thiol-norbornene hydrogels address the 

limitation of light attenuation issue in photopolymerization while retaining the modularity of the 
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thiol-norbornene crosslinking. The enzyme-mediated crosslinking mechanism can be utilized in a 

wide range of applications ranging from injectable cell-laden hydrogels to in vitro dynamic cell 

culture platforms. 

4. Conclusion

In summary, we have developed the first orthogonal enzymatic thiol-norbornene click 

reaction suitable for forming modularly crosslinked hydrogels under ambient conditions. 

Furthermore, we discovered that HRP can be used to initiate gelation of macromers other than 

those containing hydroxyl-phenyl groups. Most importantly, the hydrogels can be dynamically 

stiffened by means of tyrosinase-mediated crosslinking owing to the preservation of tyrosine 

residues following the initial thiol-norbornene click gel reaction. The modular and dynamic 

hydrogels described in this contribution offer researchers an attractive alternative to form 

modularly crosslink and dynamic hydrogels without the concerns of light attenuation in thick 

samples or potential cell damage caused by UV light irradiation.  
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Figure 1. HRP-mediated crosslinking of thiol-norbornene click reactions. (A) Schematic of 

HRP/H2O2-induced thiyl radical generation and subsequent thiol-norbornene crosslinking. (B) 

Gelation tilt-test. All components: 200 U/mL HRP, 0.5 mM H2O2, 3.5 wt% PEG8NB, and 14 mM 

DTT. (C) Thiol consumption as a function of reaction time. (D) Norbornene consumption as a 

function of thiol-norbornene ratio (i.e., Thiol/Ene Ratio, calculated using the actual molarity of thiol 

and norbornene groups added to the reactions).
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Figure 2. Characterization of HRP-mediated thiol-norbornene hydrogelation. (A) In situ 

rheometry of HRP-initiated thiol-norbornene gelation (all components: 3.5 wt% PEG8NB, 14 mM 

DTT, 200 U/ml HRP, 0.5 mM H2O2).  Effect of (B) HRP concentrations and (C) H2O2 concentration 

on shear moduli of PEG8NB-DTT hydrogels. Gelation was formed with 3.5 wt% PEG8NB, and 14 

mM DTT, Rthiol/ene=1. N = 3, mean ± SEM. ***p<0.001). (D) Strain-sweep rheometry of thiol-

norbornene hydrogels formed with different macromer contents (Circles, triangles, and diamonds 

represent 3.5, 4, and 4.5 wt% PEG8NB, respectively. Rthiol/ene = 1). (E) HRP-crosslinked thiol-

norbornene hydrogel with a diameter of ~4 mm and a length of ~15 mm (200 U/mL HRP, 0.5 mM 

H2O2, 3.5 wt% PEG8NB, and 14 mM DTT).
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Figure 3. Effect of tyrosine residue on HRP-mediated crosslinking of thiol-norbornene 

PEG-peptide hydrogels. (A) Proposed schematic of thiyl radical generation via tyrosine 

residues. Effect of (B) tyrosine concentration and (C) thiol to norbornene ratio on the shear moduli 

of hydrogels (n=3, Mean  SEM, ***p<0.001).
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Figure 4. Thiol-norbornene gelation initiated by tandem enzymatic reactions. (A) Schematic 

of thiol-norbornene hydrogel formation via GOX and HRP-mediated crosslinking. (B) Effect of 

glucose concentration on shear moduli of dual enzyme-crosslinked thiol-norbornene hydrogels (1 

U/mL HRP, 10 U/ml GOX, 3 wt% PEG8NB, and 12 mM CYGGGYC). (C) Gel fraction of hydrogels 

formed by HRP/H2O2, HRP/GOX, and UV light-mediated thiol-norbornene polymerization. 

Enzyme-crosslinked gels were prepared with 3.5 wt.% PEG8NB and 14mM DTT using HRP (200 

U/mL), H2O2 (1 mM), or with HRP (200 U/mL), GOX (10 U/ml), and glucose (10 mM). UV (365 

nm) light-polymerized gels were formed with 1 mM LAP with light irradiation for 2 minutes. (D) 

Swelling ratio (q) and shear modulus (G’) of the hydrogels as described in (C). (E) Oxygen 

contents within hydrogels formed by HRP/GOX (1 U/ml HRP, 1 U/mL GOX, 10 mM glucose) and 

HRP/H2O2 (1 U/mL HRP, 0.5 mM H2O2). In the HRP/H2O2 group, data were recorded only at 0 

and 1-hr since O2 levels were close to normoxia in both measurements (All experiments: n=3, 

Mean  SEM, *p<0.05 ***p<0.001).
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Figure 5. Cytocompatibility of HRP-mediated GelNB-PEG4SH hydrogels. Effect of gelatin 

content (A) and thiol-to-norbornene ratio (B) on shear moduli of GelNB-PEG4SH hydrogels (100 

U/ml HRP, 10 U/ml GOX, 10 mM glucose. n>=3, Mean  SEM). (C) Live/Dead staining images of 

NIH/3T3 fibroblasts cultured in GelNB-PEG4SH hydrogels 24 hrs after encapsulation. (D) 

Fluorescence staining images of F-actin and nuclei in the encapsulated NIH/3T3 fibroblasts. Cell-

laden gels were formed with 1.5 wt% GelNB-PEG4SH, 100 U/ml, and 0.5 mM H2O2.
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Figure 6. Orthogonal enzymatic reactions for crosslinking and dynamic stiffening of PEG-

peptide hydrogels. (A) Schematic of MT-induced post-gelation dynamic crosslinking. (B) 

Photographs of enzymatically crosslinked PEG-peptide (2.5 wt% PEG8NB and KCYGGYGGYCK 

(3Y) thiol-norbornene hydrogels pre- and post-stiffening. Gel crosslinking was initiated by 1 U/mL 

HRP, 10 U/mL GOX, and 10mM glucose. Stiffening was induced by incubating the swollen gels 

in PBS containing 1 kU/mL MT. (C) Shear moduli of hydrogels pre- and post-stiffening. HRP = 1 

u/ml, HRP/H2O2 hydrogels were made with 3 wt% PEG8NB, while HRP/GOX-glucose were made 

with 2.5 wt% PEG8NB (n=3, Mean  SEM, ***p<0.001). (D) Live/dead staining images 48 hrs 

after encapsulation. Stiffened group were treated with 1 kU/ml MT for 6 hours on day 1. Hydrogels 

were made with 3 wt% PEG8NB-KCYGGYGGYCK (1 U/ml HRP, 0.5 mM H2O2, G’ ~ 1,500 Pa). 

(E) F-actin and nuclei staining of NIH/3T3 fibroblasts encapsulated in soft or MT-stiffened gels.
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