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Abstract

Many smartphone apps routinely gather various private user data and send them to ad-

vertisers. Despite recent study on protection mechanisms and analysis on apps’ behavior, the

understanding about the consequences of such privacy losses remains limited. In this paper, we

investigate how much an advertiser can infer about users’ social and community relationships.

After one month’s user study involving about 190 most popular Android apps, we find that

an advertiser can infer 90% of the social relationships. We further propose a privacy leakage

inference framework and use real mobility traces and Foursquare data to quantify the conse-

quences of privacy leakage. We find that achieving 90% inference accuracy of the social and

community relationships requires merely 3 weeks’ user data. Finally, we present a real-time

privacy leakage visualization tool that captures and displays the spatial-temporal characteris-

tics of the leakages. The discoveries underscore the importance of early adoption of privacy

protection mechanisms.
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1. Introduction

The huge success of smartphones is largely fueled by the availability of millions of phone

apps that provide functions covering all aspects of our lives. A large portion of these apps are

free. Their developers get financial support from advertisers by embedding their advertisement

libraries to display mobile advertisements to users. Many advertisers exist and some of the
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major players include Google, DoubleClick and AdMob [1, 2]. To gain better understanding of

user habits and behaviors for accurate ad targeting, these apps customarily scavenge private

user data, ranging from the phone’s IMEI number, MAC addresses of nearby access points,

the user’s location, even the contact list, and send it to advertisers [3, 4]. Ultimately, these

“free” apps are not entirely free: users pay the price of their privacy.

There has been quite some recent work that investigates the privacy leakage and potential

defense mechanisms. TaintDroid [3] can track the flow of different kinds of private information

(e.g., IMEI, location) within an app and log the leaking of such information through network

interfaces. Barrera et al. [5] and Felt et al. [6] examined permissions requested by about 1,000

apps and found requests for unnecessary permissions commonly exist. A number of tools [7, 8]

can help users manage permissions granted to apps such that they do not have access to

certain private information. Sowayway [9] and Kirin [10] can detect over-privileged apps or

identify requests of dangerous combinations of permissions. Beresford et al. and Zhou et al.

proposed MockDroid [11] and TISSA [12] respectively to obfuscate private information so that

adversaries only receive empty, fake or anonymized information. Agarwal et al. [13] proposed

a crowdsourcing based mechanism to help users decide proper privacy settings.

In this paper, we seek to answer an important but different question: how much does the ad-

vertiser know about the user, in particular, her social and community relationship (e.g.,family,

colleagues and friends) from the leaked private data? This is motivated by a couple obser-

vations. First, there is only limited study of apps’ dynamic leakage behavior at run-time.

Existing study [14, 9, 4, 11, 15, 12, 5, 6] is mostly on the static aspects of apps’ permissions.

TaintDroid [3] can be used to log the leaking activities but the paper did not focus on a sys-

tematic study on the destinations, frequencies and types of apps’ run-time privacy leakages.

Second, the consequences of such leakage, especially when an advertiser gathers such private

data from many users and across many apps, is not known either. It is easy to conjecture that

the advertiser may gain additional information when cross-examining private data, but exactly

what can be learnt, remains an open issue.

We focus on one important aspect of that perspective, the social and community relation-

ships of a user, such as her family, colleagues and friends. Such knowledge is an important

channel for the advertiser to push relevant advertisements since people tend to take note on

things their acquaintances have done (e.g., bought). For example Facebook has largely relied

on people voluntarily publicizing such relationship. However, many real world relationships

are not publicized online yet they are equally important to advertisers; and there is a trend for
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Facebook users of various age groups to go for other “small-circle” social networks, or become

less and less active due to privacy concerns [16, 17].

In particular, we quantify to what extent an advertiser can learn and infer users’ relation-

ships by developing a privacy leakage inference framework. Our systematic study on privacy

leakage inference involves both real experiments with multiple volunteers as well as trace-driven

studies with human mobility traces obtained from two data sets, namely MIT reality trace [18]

and Foursquare trace [19]. By examining the privacy leakages of participants from a diverse

background ranging from academia to city environments (i.e., our real experiments and the

MIT trace are academia whereas the Foursquare trace represents a city environment), we dis-

cover that the privacy leakage enables an advertiser to infer a significant portion of a user’s real

world relationships that have physical interactions. Our privacy leakage model and inference

framework could server as a foundation for estimating the potential social relationship leakage

of a particular user based on his/her app usage.

Specifically, we make the following contributions:

• We conduct a manual study of the frequencies, destinations and types of the run-time

privacy leakages of nearly 200 most popular apps across 19 categories in Google Play.

We discover that major advertisers can easily gather all types of private data in short

time from many users.

• We model the relationship inference process in a three-layer framework and define the

concept of connection, which is exemplified by two users sharing similar patterns in

their leaked data (e.g., common Wi-Fi access points). We conduct a one-month real

experiment of 10 participants of family, colleague and friend relationships, using various

apps in their daily lives. We find that by aggregating data across users and apps, an

advertiser can infer over 90% of the relationships from the “connections”.

• We further propose two models for users’ temporal privacy leakage profiles based on the

experimental study. To verify the generality of findings from the real experiments based

on privacy leakage inference, we conduct trace-driven studies by populating the derived

user profiles to the human mobility traces in the MIT reality [18] and the Foursquare

datasets [19]. We find that the advertiser can infer 80-95% of a regular user’s relation in

academic and city environments after gathering only 3 weeks of private data.

• Finally we build a visualization tool that captures and displays the spatial-temporal

statistics of different types of privacy leakage on both per app and per destination basis
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Figure 1: We take a four-step approach to understand the advertiser’s perspective on users’ social and community

relationships.

in real time, which helps users gain better insights on the scope and degree of privacy

losses. This tool can serve as a complement to recommendation-based user privacy

protection mechanisms [13].

2. Approach Overview

To facilitate the understanding on the consequences of privacy leakages, we take a four-step

approach: run-time privacy leakage study, privacy leakage inference and profile modeling via

experimental study, inference framework evaluation via trace-driven study, and user privacy

leakage visualization, as depicted in Figure 1.

From the advertiser’s perspective, we study two types of relations: social relationship and

social community. The social relationship is defined as a pair-wise relationship between two

users with certain kind of physical interactions such as colleagues, families, and friends (not

virtual friends from online social networks). Whereas a social community involves more than

two users, who usually appear at a location during the same time period for certain common

interests. For example, a group of students taking the same class twice every week or peo-

ple eating in the same restaurant every Tuesday. We believe identification of both kinds of

relationships help advertisers design better targeted advertising strategies.

Run-Time Privacy Leakage Study. First we want to systematically understand the

destinations, frequencies and types of the leaking behavior of apps to understand the flow of

common practice of privacy leakages in apps. We study their spatial and temporal privacy

leakage characteristics to complement the existing work, which focuses on static aspects of

permissions [12, 7, 20], or provides the capability of logging the leakage but stops short of

a systematic study [3]. The Wall Street Journal (WSJ) study [21] in 2010 investigated the

types of leakages for about 50 most popular apps, but not destinations and frequencies, and
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it was a bit outdated given the fast pace of the mobile market. Thus we conduct a series of

experiments over a about two-month period to obtain the most up-to-date picture of privacy

leakages, where we also find changes in the types of leakages for about half of the apps studied

in [21].

Privacy Leakage Modeling. To understand the consequences of privacy leakages when

an advertiser combines the data received from different users, we develop a three-layer privacy

leakage inference framework (as depicted in Figure 1) including Privacy Leakage Aggregation,

User Connection Derivation and Relation Inference.

We introduce an important concept connection, which exists when two users share similari-

ties in leaked data. The connection helps bridge the gap between raw privacy leakage data and

higher level relationship inference. The intuition is that each type of particular relationship

has certain temporal-spatial patterns in users’ physical interactions, which can be captured by

connection. For example, two family members usually stay together at home during late night

and early morning; while classmates encounter each other frequently in classrooms during the

daytime of weekdays. Although exceptions to such patterns exist, it can usually identify most

relationships and is the standard practice widely adopted in social community inference [22, 23].

We conduct an additional experimental study with 10 participants for over one-month time

period to confirm the effectiveness of our privacy leakage model, which also reveal that the

temporal-spatial similarities between people who have friend relationship is not as regular as

that between people of other relationships that have repetitive interactions (e.g., colleagues

and families).

Evaluation of User Privacy Inference. To understand whether the above observations

can be generalized to larger scale user population with various backgrounds, we extract user

privacy leakage profiles, apply them to user mobility traces generated from two datasets with

over 500 participants. We verify that using 3 weeks of private data, an advertiser can infer

colleague-based relationships of regular users at around 90% accuracy in an academia environ-

ment, and friend-based relationships above 95% in a city environment. When an advertiser

uses hierarchical clustering to infer social communities, 80− 90% of those of regular users’ are

revealed in academia environments, and over 80% in a city environment.

User Privacy Leakage Visualization. Finally, we believe that explicit presentation of

privacy leakages to users will help them gain better understanding of the privacy loss. As a

starting step, we leverage TaintDroid [3] to develop a tool that visualizes the temporal and

spatial characteristics of the leakages in real-time on a mobile device. We note that the privacy

5



Table 1: Counts of six types of frequent privacy leakages to top-five appeared destinations during one day

(including three time periods) testing for each app.

Destination Contact
Phone

Number
IMEI GPS Location

Network-based Lo-

cation
Accelerometer

Google 70 75 49 90 110 53

DoubleClick 5 6 3 9 11 3

Mixpanel 0 0 0 2 9 2

Flurry 2 2 0 4 7 0

Amobee 0 0 6 0 4 0

leakage inference model together with the privacy leakage data can potentially augment the

visualization tool so that users can see the consequences on their relationship in real-time,

which hopefully can guide their usage of apps (e.g., stop using Yelp for the rest of the day or

resetting the ad tracking ID once a threshold of relationships are exposed).

3. Run-Time Privacy Leakage Study

Starting in Android API level 23, users can grant permissions to apps even when they are

running. App permissions could be manually revoked by users, and unauthorized communi-

cations among apps are prohibited. Although the permission control mechanism seem to be

friendly to users, they are not effective in protecting users from malicious apps that request

to collect data irrelevant to the main function of the app. Moreover, once the application is

granted access, the OS does not have further control on when a type of private data is ac-

cessed and how it is used by the application at run-time. The application is free to access it

as frequently as possible and send it to wherever it wants over the Internet [3, 9, 1].

The most similar study to ours is the WSJ one [21] in 2010, which focuses on 5 privacy

leakage types (i.e., contacts, location, phone id, and phone number) among 50 most popular

apps from Google Play. The results are interesting but there is no analysis on the frequencies

and destinations of privacy leakages. Our study aims to provide a more comprehensive and up-

to-date analysis including the frequencies and destinations of the leakages. We also investigate

how much private data an advertiser can collect and aggregate from multiple apps. This helps

the user understand the scope and extent of privacy leakages when running apps; it also serves

as the basis for the formulation of the privacy leakage inference in the next section.

3.1. Methodology

We choose the top 10 most popularly downloaded applications from each of the 19 categories

in Google Play as of January 2013, totaling 190 applications. We expect that these most

popularly downloaded apps are installed by the majority of users, thus their behavior analysis is
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representative to the majority of users. Our app behavior study is grounded on TaintDroid [3],

which helps to track and log the privacy leakages of the applications. Once an application

accesses private data, TaintDroid generates a taint log in the Android system log.

We use an Android application called CatLog to capture the system log and save the leaked

information as a text file in the smartphone’s memory card. The followings are recorded for

each leaking event: application name, the leaked private data, time of the leakage, the desti-

nation to which the data is sent, the event/operation triggering the leakage, and an optional

memo. The saved information is downloaded to a computer to do offline processing, which in-

cludes discriminating privacy leakages and calculating the frequency of privacy leakages. Some

of the apps crash during the test, and we are able to gather complete results for 145 apps.

We use Google Nexus One and Google Nexus S, both running Android OS 2.3.4, and the

whole study lasts for about two months. To capture the application’s behavior at different

times in a day, we test about 4-5 applications in three different time periods (i.e., morning,

noon and night) in each day. During each period, the selected applications are tested one at

a time: we first reboot the device to make sure all cached information is cleaned up; then we

install the application and perform normal usage for about 5 minutes; finally we uninstall the

application and reboot the device to test the next application. This procedure helps to avoid

interference between applications.

3.2. Findings

Per App Privacy Leakage. During our study, we find that about 50% of the apps in

the WSJ report have changed their privacy leakage behavior. In particular, we find that 97

out of the 145 applications send out private data of the user. The data includes GPS location,

network-based location (provided by Android based on cellular ID and Wi-Fi networks), WiFi

Access Point SSID list, contact list, phone number, International Mobile Station Equipment

Identity (IMEI), accelerometer readings, but not those of microphone, camera and text message

log, which are accessed by the applications but not leaked out. We also find that there are 8

applications sending Wi-Fi SSID list (scanned by the smartphone) through SSL, and 3 of the

8 applications (i.e., Compass, CNN App, Yelp) send this information to the same destination

(with IP address 173.194.73.104 belonging to Google according to www.iplocation.net). This

type of WiFi AP list is most likely the company’s effort to build a WiFi address database for

geo-location purposes [24]. It could be employed to infer the user’s location, thus potentially

her mobility pattern during a day.

. Per Destination Privacy Leakage. We further investigate how the private data
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Figure 2: Destinations that collect private data from more than one app.
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Figure 3: Privacy leakage counts of destinations that collect private data from more than one app.

could be collected by a single destination (e.g., an advertiser’s server) through multiple apps.

Table 1 summarizes the number of times that 6 types of private data are leaked to the top 5

most frequent destinations, with one day test for each app. It is not surprising that Google and

DoubleClick (bought by Google in 2008) dwarf the other three much smaller players due to their

dominance to the mobile advertising market. We also observe that the location information is

the most frequent leaked type, followed by phone number and contact list.

We show the destinations receiving data from more than one app in Figure 2 (called

“common” destinations). We identify 28 such destinations in 19 categories. Specifically, we

find that three Google destinations collect private data from more than 10 applications, and

www.tapjoyads.com from 7 applications. Among all 97 applications showing privacy leakages,

26 of them send 7 different types of privacy data to Google, while 9 applications send 7 differ-
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Figure 4: Privacy leakage counts of apps leaking more than 10 times in a 5-minute continuous testing.

ent types to DoubleClick. Figure 3 shows that during one day’s testing of the 97 applications,

most of the 28 destinations collect more than 3 types of private data, and Google is the most

active one among these destinations.

Furthermore, we find that among applications sending to common destinations, they usually

send out different types of private data. For instance, we observe that app Pandora Jewelry

sends out IMEI, phone number and contact list whereas app Evernote sends out phone number

and location information. This confirms our conjecture that an advertiser can combine the

private data from different apps to gain a more complete picture of the user’s behavior.

Privacy Leakage Frequency. During our testing, we find that the Location and IMEI are

the first and second most common privacy leakage types, which involves 71 and 61 applications

respectively. We present the leakage count decomposition of 28 apps that leaks more than 10

times in its 5-minute usage in Figure 4. We observe that at least three different types of

private information are leaked for most of these apps. Specifically, the combination of IMEI

and NET-based location is the most leaked information. We also notice that both Facebook

and Textgram have about 20 times leakages of address book when the user queries his friends

in the social network.

These results indicate that an advertiser can potentially use the combination of private

data (such as IMEI and NET-based location) to identify the location of the user from such

apps, and further obtain a fine-grained picture of the user’s social life with the assistance of

the leaked contact information. Additionally, we observe that 7 apps shown in Figure 4 have

leaked more than 4 types of private information, 3 of them have even leaked all 7 types of
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Figure 5: App leakage frequency to destination study: top 41 apps having leakages to multiple common desti-

nations in 5-minute usage for each app.

private information (i.e., Pandora Jewelry, Carphone Mobile Superhero, and Evernote). This

equips the advertiser with a comprehensive view of the users’ private data through their daily

phone usage.

We also find that it is common for different applications to have similar combinations and

frequencies of privacy leakages. For example, GasBuddy and Breastmilk Counts have the same

number of Net-based location and IMEI leakages in the 5-minute usage. Such applications have

equivalent ability of revealing the user’s private data. As the user continues using such “ability-

equivalent” apps, the leaked private data keeps at similar levels all the time. The situation

becomes more severe when these applications send the private data to the same destination.

Leakage to Common Destinations. We take a closer look at the leakage frequency from

different apps to a “common” destination. We first show the number of privacy leakages for the

top 41 apps sending to common destinations in a 5-minute usage in Figure 5. We observe that

WeatherBug and Jackass Fans are the top two apps with the most frequent leakages: they leak

about 80/70 times during the 5 minute period. We further summarize the leakage frequency

in app categories to common destinations and observe that the Weather category exhibits the

highest privacy leakage frequency, partly due to their needs to know the user’s location, and the

Social category is the second. This again confirms that various apps leak private information

to multiple common destinations, which allows the advertiser to piece together the user’s social

picture at fine temporal granularity through multiple apps.

4. User Privacy Leakage Modeling and Experimental Study

In this section, we present a privacy leakage inference framework that quantifies to what

extent an advertiser can learn and infer users’ relationships. We then run real experiments with

multiple participants to analyze the consequences of the privacy leakage from the advertiser’s
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perspective and abstract privacy leakage user profiles based on the experiments.

4.1. Privacy Leakage Modeling

We first define the concept of connection. A connection between two users exists if the

same type of privacy leakage from the two users share certain spatial, temporal or content

similarities. A few examples are:

Contact list: A connection instance exists between two users if they are in each other’s

contact list, or they share common contacts. (However, we note that contact lists are not

sufficient for social relationship inference simply a person does not necessarily to have close

relationship with anyone in his or her contact list.)

Wi-Fi Access Point list: A connection instance exists between two users when they share

common leaked access points at the same time.

GPS location: A connection instance exists between two users if two GPS locations leaked

around the same time are close by within a certain threshold.

Network-based location: A connection instance exists between two users if the leaked

network-based locations are close by within a certain threshold around the same time.

The connection bridges the gap between the privacy leakage information and the users’

relationship inference. In particular, to quantify the consequences of the privacy leakage from

the advertiser’s perspective, we design a privacy leakage inference framework, which consists

of three virtual layers: Privacy Leakage Aggregation, User Connection Derivation, and Rela-

tionship Inference as shown in Figure 6.

Such a framework facilitates us to perform a systematic study to understand the advertiser’s

perspective of user privacy: (1) The Privacy Leakage Aggregation layer deals with the raw

privacy leakage information. An advertiser can combine the privacy leakage data from multiple

apps across different users over time. For example, the users can be identified by the IMEI

or phone number. The aggregated privacy leakage data of each user can then be categorized

into different types, such as contact list, AP list, GPS location, and Network location. (2) In

the User Connection Derivation layer, the advertiser correlates the data from different users

and identifies connections 2 between any two users. By correlating different types of privacy

leakages across the users over time, the connection frequency between any two users can be

derived. (3) In the Relationship Inference layer, the user’s social and community relationships,

such as family, colleagues and friends, are inferred based on the connections between users.

2We use “connections” to refer to connection instances later in the paper.
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Figure 6: Privacy leakage inference framework with three virtual layers to quantify the advertiser’s perspective

of smartphone user privacy.

The type of relationship is usually determined by examining the temporal and spacial patterns

of the connections (e.g., family members usually have connections at home in the morning and

at night, whereas colleagues have connections in office during working hours). We next conduct

an experiment to study the effectiveness of our privacy leakage model using this framework.

4.2. Experimental Study

4.2.1. Design of Experiments

Our experiment involves 10 volunteer students and their family members over one month

period, among which five types of relationships exist: colleague, collaborator, classmate, friend,

and family. The ten volunteers are all graduate students between 21 to 24 years. Eight of

them major in Computer Engineering and the other two major in non-computer-related major.

All of them have been using smartphones for over two years and have moderate understandings

of information technology. To clarify, collaborators are usually colleagues that actively work

together, usually at regular times such as weekly meetings.

During the experiments, we distribute smartphones with our visualization tool (which is

presented in Section VI) and the top 10 popular apps across 19 categories in Google Play

sending to common destinations (shown in Figure 5) installed. Because the experimental

smartphones are not replacements of the volunteers’ regular phones, they are asked to use their

experimental smartphones at least three times a day. There is no restriction of how and when
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Figure 7: Comparison of location leakage patterns of different relationships with respect to locations.

to use the apps in the experiments, and the volunteers are encouraged to use whichever apps

they are interested in without knowing the purpose of this experiment. After the experiments

we extract the leaked privacy data logged by our tool to quantify to what extent an advertiser

can infer a user’s relationships.

4.2.2. Observations

User Connection Derivation. Figure 7 shows one example on the temporal patterns

of the derived user connections at three different locations based on GPS location leakage.

We observe obvious spatial and temporal patterns of connections corresponding to the ground

truth of the social relationships. In particular, subject1 and subject2 have frequent connections

in the morning (around 10AM) and at night (through 9PM-2AM) at a residential area. The

advertiser can thus infer the two subjects most likely have a family relationship. Further,

subject1, subject3 and subject4 have connections frequently during working hours (through

11AM-7PM) in an office building. This follows a typical pattern of colleagues or collaborators.

Additionally, the connections of subject3 and subject5 usually happen at early night (9PM-

10PM) but do not show up late night (12AM-6AM) or morning. Such a pattern is more like

friends hanging out together. From the above examples, the advertiser can infer users’ social
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relationship once it has accumulated enough privacy leakages over time.

Definition of Two Types of Social Relationships. From the experimental results, we

observe that while some relationships (e.g., family, colleagues, collaborators, and classmates)

exhibit repetitive connection patterns, some others like friends do not. This is because family

and colleague based relationships naturally carry similar spatial-temporal patterns dictated by

the relationship. For example, families live together at night while colleagues work together

during the day, whereas friendship does not necessarily carry such inherent patterns. Two

friends that do not hang out for a while are still friends. We distinguish these two categories

of relationships as Fact Based Relationship and Intelligence Based Relationship, which covers

traditional social relationships. The Fact-based Relationship includes colleagues, classmates,

roommates, families that carry inherit similar, regular and repetitive spatial-temporal con-

nection patterns as dictated by the relationship, whereas the Intelligence-based Relationship

includes friends, which do not necessarily carry such patterns.

4.3. Making Inference based on Thresholding

We next investigate how accurate an advertiser could infer about the user’s social rela-

tionship such as colleagues, families and friends by utilizing connections between users derived

from different types of privacy leakages.

We use a threshold-based approach to derive relationships based on the connections be-

tween users extracted from privacy leakage aggregation at the advertisement provider. If the

connection count between two users exceeds a certain threshold in an observation window, we

consider some relationship exists. Our framework utilizes the temporal and spatial patterns

of the connections to classify the type of relationship: the connections of colleagues occur in

work hours of weekdays, families in early morning and late night, while friends after working

time and in weekends.

These simple rules may not be entirely reliable. Nevertheless, we show that an advertiser

can make inference even with such simple rules. We note that such temporal and spatial

patterns of the connections are the basis to statistically generate a user’s privacy leakage

profile, which will be described in Section 4.4.

In total we have 10 pairs of colleague relationship, 5 pairs of collaborator relationship, 1

pair of family relationship, 2 pairs of classmates, and 3 pairs of friend relationship among our

10 participants. That is 18 pairs of fact-based relationships and 3 pairs of intelligence-based

relationships. During our experiments, we observe that by utilizing connection frequencies

and patterns, an advertiser can infer over 90% social relationship correctly (i.e., all fact based
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relationships and 2 pairs of intelligence based relationship). The only one friend relationship

that is not correctly identified is because this pair of users only have one connection during

the testing. This is inline with our expectation since the intelligence-based relationship does

not carry repetitive spatial-temporal connection patterns, therefore their connection may not

frequently repeat on different days, thus the relationship is harder to be identified.

4.4. Deriving Privacy Leakage User Profiles

Based on the experimental data collected over one month, we next build the privacy leakage

user profile to statistically capture the temporal and spatial patterns. We develop two types of

privacy leakage user profile, activeness based profile and probability based profile, which will be

applied to our large-scale trace-driven studies on advertiser’s perspective in the next section.

4.4.1. Activeness Based Profile

The activeness based profiles are generated based on privacy leakages from each participant

in our experiments and aim to capture the fine-grained statistical view of the privacy leakages.

Step 1. We first derive the privacy leakage probability model of a particular user. Assume

there are N types of privacy leakages observed in total. We divide the time in day d into T

time windows as {wt, t = 1, · · · , T}. Then within a time window wt, a vector Φu,d,t is defined

to capture the numbers of occurrences of different privacy leakage types, and each element

Φu,d,t(i)(i = 1, · · · , N) corresponds to the number of times privacy leakage type i occurs. For

example, when Φu,d,t equals to [2, 1, 0], it means 2 occurrences of leakage type 1, 1 occurrence

of leakage type 2 and 0 occurrence of leakage type 3 in time window Wt at day d for user u.

We then define γu,d,ti to indicate whether the privacy leakage type i appears in the vector

Φu,d,t as:

γu,d,ti =





1,Φu,d,t(i) 6= 0

0,Φu,d,t(i) = 0.
(1)

The probability that type i leakage happens for user u in time window wt across D days

(e.g., D = 7 days) is defined as:

Probu,ti =

∑D
d=1 γ

u,d,t
i

D
. (2)

Step 2. The number of occurrence of the privacy leakages affects the inference of a user’s

social community. Thus we capture the frequency of type i privacy leakage using the average

number of occurrences over the days it happens in time window wt across D days. Specifically,
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the average rate ru,ti is defined as:

ru,ti =

∑D
d=1 Φ

u,d,t(i)
∑D

d=1 γ
u,d,t
i

. (3)

The activeness based profile of user u consists of Probu,ti and ru,ti .

Example. We illustrate the generation of the activeness based profile of user u in Figure 8.

We examine a privacy leakage dataset across 7 days (i.e., one week) with the time window

wt set to 5 minutes and 288 time windows in total per day. Assume 3 types of privacy

leakage are under study. For wt at day 2, if there are 2 occurrences of leakage type 2 and 8

occurrences of type 3 observed, we have Φu,2,t = [0, 2, 8] and γu,2,t2 = 1 shown as the green

eclipse in Figure 8. In addition, if the leakage type 2 is only observed during day 1 and day

2 with Φu,1,t = [0, 5, 7] and Φu,2,t = [0, 2, 8], the privacy leakage probability of type 2 privacy

leakage in time window wt across 7 days for user u can be calculated using Equation 2 as:

Probu,t2 =
γu,1,t
2 +γu,2,t

2 +···+γu,7,t
2

7 = 1+1+···+0
7 = 0.286. And the corresponding average rate can

be obtained as: ru,t2 =
Φu,1

2 +Φu,2
2 +···+Φu,7

2

γu,1,t
2 +γu,2,t

2 +···+γu,7,t
2

= 5+2+···+0
1+1+···+0 = 3.5, which is shown in blue rectangles

in Figure 8.

Categorization. Once the activeness based user profile is obtained, the advertiser could

further categorize the profiles by the number of hours ku the user u has privacy leakages in a

one-day duration. There are three representative user categories, namely active user category,

regular user category, and inactive user category. Assume two thresholding hours ρ1 and ρ2

with ρ1 > ρ2. If the user u has greater than ρ1 hours with privacy leakages, his user profile

is put into the active user category. If the user u has less than ρ1 but larger than or equal to

ρ2 hours with privacy leakages, his user profile is then added into the regular user category.

When the user u has less than ρ2 hours privacy leakages, his user profile is then captured in

the inactive user category. The categorization can be summarized as:

α =





1 (active user category), if ku > ρ1;

2 (regular user category), if ρ2 6 ku < ρ1;

3 (inactive user category), if ku < ρ2.

(4)

4.4.2. Probability Based Profile

The {Probu,ti , ru,ti } in each activeness based profile captures the leakage of the corresponding

user u. To characterize the statistical average of the leakages of users in the same category, we

design the probability based profile. Activeness based profiles in the same category are used

to derive the leakage probability and rate for the probability based profile of that category.
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Figure 8: Example of activeness based profile generation for user u with 3 types of privacy leakages when D = 7.

Step 1. We first define the δu,ti to indicate whether there is a probability of type i leakage

in the time window wt for the profile of user u as:

δu,ti =





1, P robu,ti 6= 0

0, P robu,ti = 0.
(5)

We calculate the average probability that leakage type i occurs in a time window for user u:

λu
i =

∑T
t=1 δ

u,t
i

T
. (6)

Step 2. We then define the leakage probability of that category as the previous probability

averaged over all users of the same category:

Probαi =

∑Mα
u=1 λ

u
i

Mα
, (7)

where Mα is the number of users belonging to the category α.

Step 3. The corresponding profile privacy leakage rate is calculated over all the users in

one particular category α as:

rαi =

∑Mα
u=1

∑T
t=1 r

u,t
i∑Mα

u=1

∑T
t=1 δ

u,t
i

. (8)

The probability based profile of a user category α then consists of Probαi and rαi , which

can be calculated based on the data from our experiments. We respectively name them as high

probability (Probαi = 0.87), medium probability (Probαi = 0.68), and low probability (Probαi =

0.44) profiles.

Both types of profiles quantify the users’ privacy leakage characteristics: the leakage prob-

ability Probu,ti , P robαi determine whether type i privacy leakage happens or not in a time

window, whereas the average leakage rate ru,ti , rαi determine the number of type i leakages in
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that time window should they happen at all. The profiles will be used in our large-scale trace-

drive studies in the Section 5 to facilitate the understanding of the user relationship inference

from the advertiser’s point of view.

5. Social Relationship Inference Leveraging Privacy Leakages

In this section, we systematically study the consequence of the privacy leakages obtained

by advertisers by applying the privacy leakage model to two human mobility traces. We build

a simulator utilizing the privacy leakage inference framework to generate connections between

users based on both the leakage profiles derived from Section 4 and the human mobility traces.

The human mobility traces are used to discover connections between users in both an academia

and a city environment.

5.1. Methodology

5.1.1. Human mobility traces

We use two human mobility traces: the MIT trace [18], and the Foursquare trace [19].

We choose these two traces mainly because the users in these traces come from different

backgrounds and have various relationships. Specifically, the MIT trace represents participants

with similar background in an academia environment, where user relationships mostly represent

research colleagues, office staff and classmates. In the Foursquare trace, participants have more

diverse relationships; they may be colleagues, friends, and families in a city environment. The

details of these two traces are introduced below:

Foursquare Trace. Foursquare is a company that helps people share life experiences

based on locations such as restaurants. This trace is generated based on tipping information

collected from different venues in Los Angeles (LA). A tip in a venue shows that one participant

has carried out some essential activities (like dinning and shopping) at that venue. There are

104, 478 tips left by 31, 544 participants in this trace. We choose 354 participants from the top

10 venues (which are all restaurants) to generate encounter events between participants based

on the time of the tipping in a 21 day duration.

MIT Trace. This trace is collected on MIT campus for 10 months by 107 participants

with smartphones. Each smartphone scans (using Bluetooth) and records nearby smartphones

every five minutes. The encounter happens when two participants are located in close physical

proximity (e.g., shown in the Bluetooth scanned neighboring list in MIT Trace). And such an

event is defined as an encounter event. There are 97 participants with valid data including

staffs and students. In our study, we use 21 days’ data which includes 91 participants for social

relationship inference.
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5.1.2. Privacy Leakage Profile Population

To understand the impact of user profiles, we repeat the study using both activeness and

probability based profiles. When activeness based ones are used, each participant is assigned a

randomly selected profile in the chosen category (i.e., active, regular and inactive). When prob-

ability based ones are used, each participant is assigned the same probability profile (i.e., one

of high, medium and low). When presenting our results, we will use terms like “active users”

or “users of medium probability” to (loosely) refer to participants assigned of the activeness

or probability based profiles.

We then infer the relationships from the leakages over observation windows of different sizes

(i.e., 7, 14 and 21 days). The inference is based on connections derived from the leaked data.

From real experiments with 10 participants having known relationships, we find that different

thresholds of connection counts in the observation window should be applied to derive differ-

ent relationships. In addition, depending on the backgrounds of the environment where the

datasets are collected (e.g., MIT trace collected on campus involves more academia relation-

ships, and Foursquare trace collected in a city contains even more diversity of relationships),

the thresholds could also be different.

The appropriate value for the threshold is a trade-off between accuracy and false positive 3.

If the threshold is too high, we may miss some real relationships and have low accuracy;

if the threshold is too low, we will “identify” nonexistent relationships and have high false

positives. In our work, we respectively use 3 days and 2 days for fact-based and intelligence-

based relationships in both experiments and simulations. Such thresholds enable an advertiser

to achieve over 90% inference accuracies for regular users with very small false positive rate,

which is a good balance between the two.

Foursquare Trace. In order to apply privacy leakage profiles to this dataset, we generate

encounter events between participants as follows: for a particular venue, we give a visiting

duration with a random length ranging from 30 minutes to 2 hours to each tipping user. In the

overlapped period of the duration of two users, we generate encounter events with a fixed time

interval of 30 minutes (e.g., in an 1 hour overlapped period, we generate 2 encounter events).

For each encounter event, we first find out corresponding 5-minute time windows. Then we

flip a coin with the privacy leakage probability in the users’ profile (defined in Equation (2)

or (7)) to decide whether privacy leakages should happen or not in that 5-minute time window.

3The accuracy and false positive rate are defined in Section 5.B.
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Figure 9: Inference accuracy, MIT mobility trace, (a) and (b) are from the activeness based profiles using 3

days as the threshold, (c) and (d) are from the probability based profiles using 2 days as the threshold.

If they do, we use the privacy leakage rate defined in Equation (3) or (8) as the number of

leakages revealed to the advertiser in that particular 5-minute time window. The leakages are

used by the advertiser to derive connections and encounter events to infer users’ relationship.

MIT Trace. The MIT trace records encounter events for each participant every 5 minutes.

For each encounter event, we first find out the corresponding 5-minute time window. Then for

each of the two participants, we flip a coin with the privacy leakage probability in his profile

(defined in Equation 2 or Equation 7) to decide whether privacy leakages should happen

or not in that 5-minute time window. If they do, we use the privacy leakage rate defined in

Equation 3 or 8 as the number of leakages revealed to the advertiser in that particular 5 minute

time window. The leakages are used by the advertiser to derive connections and eventually

encounter events to infer users’ relationship.

5.2. Metrics

In our evaluations, we study the inference accuracy of pairwise social relationship and the

correlation between social communities extracted based on the connections of users.

Inference accuracy. This is the ratio between the successfully inferred relationship pairs

and all relationship pairs.

Community correlation. This is the ratio between the common subjects within a community

identified by our privacy leakage inference framework and the total number of subjects within

the community.

False positive rate. This is the ratio between the number of mistakenly identified members

of inferred community and the total number of members within the inferred community.

5.3. Inference with Privacy Leakages

5.3.1. Combination of Privacy Leakages

As we discussed in Section 4, an advertiser can utilize the temporal and spatial patterns of

connections to infer users’ relationship. There are multiple privacy leakages that can produce
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Figure 10: Inference accuracy, Foursquare mobility trace, (a) and (b) are from the activeness based profiles

using 3 days as the threshold, (c) and (d) are from the probability based profiles using 2 days as the threshold.
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Figure 11: Community correlation, MIT dataset, (a) and (b) are from the activeness based profiles using 3 days

as the threshold, (c) and (d) are from the probability based profiles using 2 days as the threshold.

connections between users. In this study we focus on the {user identity, location} combinations

of most popular privacy leakages including IMEI, phone number, GPS location, Wi-Fi AP list,

and network-based location.

5.3.2. Pairwise Social Relationship Inference

Figure 9 compares the accuracy of pairwise social relationship inference (for both fact

and intelligence based relationships) by applying activeness and probability based profiles to

the MIT trace under different sizes of observation windows. We use 3 days and 2 days as

the threshold for fact-based and intelligence-based relationship inference respectively, which

is introduced in Section 4 (same threshold applies hereafter). The fact-based relationship has

greater threshold because people having fact-based relationships are supposed to encounter

each other more regularly than those having intelligence-based relationships (e.g., colleagues

meet 3 days a week while friends meet 1 day a week).

From Figure 9 (a) and (b) we observe that for most cases, an advertiser can achieve over

80% inference accuracy for fact-based relationships with regular users, whereas it is around 60%

for intelligence-based relationships. We also observe that the inference accuracy decreases for

less active users, which is reasonable since less usage leads to less privacy leakages. In addition,

for active users, Figure 9 shows that the inference accuracy for both fact-based relationship

and intelligence relationship is high (i.e., above 90%).
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Figure 12: Community correlation, Foursquare dataset, (a) and (b) are from the activeness based profiles using

3 days as the threshold, (c) and (d) are from the probability based profiles using 2 days as the threshold.

Furthermore, we find that longer observation windows help improve the inference accuracy,

especially when the privacy leakage probability is low. This is observed in the probability-based

approach shown in Figure 9 (c) and (d). It is because a longer window helps the advertiser

to accumulate more data, resulting in more connections to identify users’ relationships. Com-

paring Figure 9 (a) and (b) to Figure 9 (c) and (d) respectively, we observe that the inference

accuracy of active users is similar to that of users have the profile with a high leakage proba-

bility. Figure 9 (d) suggests that in order to keep the inference accuracy of intelligence based

relationship lower than 60%, the user has to keep his leakage probability smaller than low

probability (i.e., 0.44).

Examining the Foursquare trace, we observe much higher inference accuracy for both fact

and intelligence based relationships. We show the results using privacy leakage profile with

different activeness in Figure 10 (a) and (b). For inactive users, the inference accuracy is about

70% for a 7-day window, and it goes over 95% for the 14-day window. This is because users

in the Foursquare trace encounter each other more frequently than those in the MIT trace.

Thus, more connections can be discovered when the users have the same intensity of app usage,

leading to a higher inference accuracy. It is also the case when using the probability-based

profile to infer pairwise relationship with the Foursquare trace (i.e., Figure 10 (c) and (d)).

5.3.3. Social Community Inference

We next study how the social community could be inferred by the advertiser using the

privacy leakage profile. In particular, based on the inferred pairwise social relationships, a

hierarchical clustering algorithm [25] is applied to obtain the social communities of users with

similar relationships (e.g., collaborators, labmates, and classmates).

Community Correlation. Figure 11 shows the community correlations calculated when

applying the activeness and probability based profiles on the MIT trace with three different

observation windows. We observe that overall the community correlation is above 60% for
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Table 2: False positive rate for community correlation: MIT trace and Foursquare trace.

Fact-based Intelligence-based

7days 14days 21days 7days 14days 21days

MIT Trace

Active users 0.035 0.022 0.016 0.149 0.129 0.098

Regular users 0 0 0 0.065 0 0

Inactive users 0 0 0 0.056 0 0

High prob. 0.069 0.054 0.052 0.17 0.145 0.129

Medium prob. 0.045 0.041 0.039 0.104 0.093 0.084

Low prob. 0.026 0.016 0.015 0.055 0.037 0.0257

Foursquare Trace

Active users 0 0 0 0.019 0.076 0.076

Regular users 0 0 0 0.081 0.061 0.052

Inactive users 0 0 0 0.04 0.038 0.029

High prob. 0 0 0 0.19 0.078 0.078

Medium prob. 0 0 0 0.183 0.078 0.078

Low prob. 0 0 0 0.099 0.064 0.058

regular users. Furthermore, we observe that the community correlation also increase with

longer observation windows, especially for regular users and inactive users. This is also because

longer observation windows help the advertiser to aggregate more connections between users,

which helps to more accurately identify their social communities.

We present the community correlations of both fact based relationship and intelligence

based relationship when activeness and probability based profiles are applied to the Foursquare

trace in Figure 12. We observe that the intelligence based community correlation is high for

active users and regular users (i.e., over 80% on average). Similarly it is high for users with high

probability and medium probability profiles (i.e., over 90%), which is comparable to those of

the MIT trace. However, the community correlation of users having the fact-based relationship

is much lower with inactive users and users with low probability profiles (i.e., ranges from 10%

to 60%) than that of the MIT trace. This is because participants in Foursquare data are from

much diverse background in the city environment and the locations are mostly restaurants

which favors more to the intelligence-based relationship inference.

Discussion of False Positive. Table 2 shows false positive rate of community correla-

tion for both MIT and Foursquare traces. Overall, the false positive rate is very small. In

addition, larger observation window has smaller false positive rates. This indicates that longer

observation window size has more information and can improve the inference performance.

Furthermore, we observe that the Foursquare trace has much lower false positive rate than the

MIT trace. This is because the Foursquare trace has more connections, thus leads to lower

false positive rate.

To briefly summarize the major findings, 1) the advertiser can infer users’ social relation-
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ships at high accuracy, e.g., over 90% on average for active users and over 80% on average

for regular users; 2) the advertiser can also infer a significant portion of users’ community

relationships, e.g., over 90% on average for active users and over 60% on average for regular

users, which reveals common interests or activities among users not necessarily with direct

interactions. The results from the simulation confirm the findings from our real experiments

with the relatively smaller number of participants and shorter terms.

6. Privacy Leakage Visualization

Since advertisers can infer users’ relationships and communities from the privacy leakages,

a visualization tool that presents such leakages in real time may help users better adapt their

app usage. Such tool would reveal the detailed temporal and spatial characteristics of privacy

leakages to complement existing works, such as the crowdsourcing-based privacy setting tool

proposed in [13].

6.1. Tool Features

We present our privacy leakage visualization tool that can display the leakage statistics at

different levels of granularity. Existing visualization tools usually address each app individu-

ally or focus on a specific type of privacy leakages [26, 27]. For example, by displaying the

privacy data that an app intents to access, existing work allows the user to block such privacy

leakage [20] or helps her obfuscate the privacy information [11, 12].

In contrast, our tool provides spatial-temporal visualization of the leaked private data at

multiple levels of granularity, including the global level, whereby the statistics over all apps

and destinations (i.e., advertisers) is summarized; the destination level, whereby the privacy

leakages received at each destination are shown; and the app level, whereby the leakage can be

displayed per app and per user’s location. Such comprehensive statistical visualization avoids

presenting low-level raw data to users who are mostly not tech-savvy and cannot make sense

out of the raw data. It facilitates a better understanding of the privacy leakage and provides

users opportunities to adjust her app usage pattern to control such leakage.

Our tool utilizes TaintDroid [3] (with Android OS 2.3.4) to capture the leakage information.

The tool runs in background and logs the details of each privacy leakage event including the

privacy type, the content of leaked data, the app name, the destination, and a timestamp.

It consists of five main components: Global Viewer, Map Viewer, Statistics Viewer, App-

Destination Viewer, and App Leakage Warning. The main components and the flow of the

tool are depicted in Figure 13.
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Figure 13: GUI flow of the visualization tool.

Global Viewer. It presents the overall privacy leakages of the mobile device by aggregat-

ing the leaked information from all apps in a user defined time period.

Map Viewer. It shows a detailed spatial distribution of leakage information including the

type and occurred time over a map.

Statistics Viewer. It provides temporal statistics of different types of privacy leakage

using scatter plots and pie charts.

App-Destination Viewer. It displays the connection between apps and destinations:

what private data is leaked from which apps to the same destination. The destination can

integrate the data from all these apps to infer knowledge about the user.

App Leakage Warning. The visualization tool dynamically sends active warnings to

users based on the average leakages of apps. The warning message includes a summary of the

average leakages and provides a shortcut link to the detailed statistics of the privacy leakages

of the highlighted app.

6.2. Global Viewer

The visualization tool starts with the Global Viewer, which shows the total numbers of

privacy leakages of each data type (i.e., Phone number, IMEI, Location, Contact list, and Wi-

Fi AP list, as illustrated in Figure 13) over a user-defined time period or the total history of the

phone usage. The Global Viewer has two branches: App List or Destination List, which show
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multiple leakages with detailed information detailed leakage

Figure 14: Screenshots of multiple privacy leakages found to be leaked at different locations.

the lists of apps that leak private data and destinations that receive it (shown in Figure 13).

By observing the privacy leakage counts per app, a user can easily tell which app has the most

frequent leakage of sensitive data.

6.3. Map Viewer

The Map Viewer shows the physical locations where the private data is leaked. The Map

Viewer can be accessed from the App list or the Destination list, which will show on the map all

the leakages from one app or to one destination (e.g., Figure 14 (a)). The user can also further

refine to only showing a certain type of privacy leakage per app or per destination. Clicking an

icon will display the details of privacy leakage at that location. Figure 14 (b) and (c) illustrate

the detailed information of all types of privacy leakages and the detailed information of contact

information leakage, respectively. We translate the GPS coordinates into the corresponding

physical address using Google Maps API for easy understanding to the user.

One implementation issue is how to display the privacy leakage events when a lot of them

occur around the same location. This happens when the user stays at the same location

for some time during which multiple leakage events of different types can happen. The Map

Viewer combines events of the same privacy type and shows them as one icon on the map. It

determines whether two locations can be combined if their distance is less than a threshold.

Different types of privacy leakages are displayed in icons of different colors. When too many

events occur at one location, a single red icon is shown to avoid crowdedness. Figure 14 (a)

displays multiple privacy leakages happening at two locations (with two red icons for aggregated

privacy leakages). Clicking on the icon will display the detailed information about the privacy

leakages, such as the physical address, historical counts of different types of privacy leakages,

and the most recent leakage time (shown in Figure 14 (b)). Clicking on an icon of a specific
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Figure 15: Screenshots of (a) & (b) App-Destination Viewer and (c) App Leakage Warning.

type of privacy leakage will display the historical counts of that type of leakage and the most

recent leakage time (shown in Figure 14 (c)).

6.4. Statistics Viewer

The Map viewer summarizes the spatial distribution of privacy leakages. The Statistics

Viewer reveals the temporal patterns of each type of leakage events such as IMEI, GPS location,

Wi-Fi Access Point SSID list, contact list, and phone number. The Statistics Viewer plots the

numbers of different types of privacy leakages over a time window, whose sizes are 1-day, 7-

day, and 30-day to show the leakage pattern in both short-term and long-term. Figure 15 (a)

depicts the statistics over a 7-day period. Leakage patterns in fine-grained time slots (e.g.,

one-hour) are also available in bar graphs. These statistics potentially can help a user identify

apps leaking private data aggressively and alter his/her usage patterns of these apps (e.g., use

them less frequently or stop altogether).

6.5. App-Destination Viewer

The App-Destination Viewer presents how much private data each destination can obtain

across multiple apps, which determines the scope and depth of the knowledge one advertiser

may infer about the user. Figure 15 (b) presents an example of App-Destination Viewer for

the app WeatherBug. The screen is separated into two columns: the left column lists the

destinations to which the selected app has sent private data, and the right column shows other

apps that also send private data to the same destinations.

6.6. App Leakage Warning

In addition to providing various interfaces for users to have the complete and detailed

picture of the privacy leakages in their smartphone use, we design an App Leakage Warning
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mechanism, which can actively send a warning message to users about a particular app when

the average leakages of the app have crossed a certain threshold. Figure 15 (c) presents an

example of the App Leakage Warning message for the app Yelp. The message includes the

name of the app, average leakages in different scales (i.e., 1-day, 7-day, and 30-day). The

average leakage crossing the threshold would be highlighted in red. Users could directly go the

detailed statistics by tapping the name of the app in the message.

7. Discussion

More Types of Private Data . There are potentially other types of private data available

to advertisers. For example, Google has the access to its search terms and histories of many

users. Although we do not find the 190 apps studied leaking text message logs, audio and

video data, illegitimate access and disclosure of such information are not impossible. Our

current study is based on the combination of most basic privacy leakages (i.e., identities and

locations). Contact list carries important information. For example, a certain relationship

most likely exists when two users share many common contacts. Unfortunately, because we do

not have the contact lists of the subjects of the two mobility traces, we are not able to evaluate

its impact on relationship inference. Studying the impact of more types of private data would

be interesting future work.

Large Scale Evaluation . We are aware that our experiments (due to limited available

manpower) may cause bias to our privacy leakage profiles and the evaluation may not cover all

privacy leakage patterns in the real world. In particular, the ten volunteers in our experiments

are most graduate students and only two of them are family-related. We mainly use this

experiment to demonstrate the possibility of revealing users’ social relationships by using the

spatial and temporal information of the privacy leakages in their smartphone use. In addition,

we are also aware that our experiments may be limited to independent app behaviors due

to the limited number of apps used in our real experiments. Involving more apps running

simultaneously in the same phone would better reveal the privacy leakages of apps having

certain dependencies. Increasing the number of participants and apps in real experiments and

building more sophisticated privacy leakage profiles are our future exploration as well.

Insufficient Metadata . Our evaluation is constrained by the availability of metadata

descriptions of datasets. Neither the MIT nor Foursquare data has sufficient annotation to

differentiate the relationships among users at fine granularity desired by us: colleague, collab-

orator, classmate, friend, and family. In lieu of that, we have to utilize the most commonly

used technique for detecting social communities (i.e., hierarchical clustering algorithm [25]) and
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use the results as the base of comparison, which is a common practice in social relationship

research. In the future we hope such metadata would be made available when people conduct

such experiments.

More Advanced Inference Algorithms. The thresholding algorithm that we use to

infer relationships is based on quite simple heuristics. With the availability of large amount

of data, advertisers can use more advanced inference algorithms, e.g., by utilizing data mining

techniques. In addition, certain relationship may have similar spatial and temporal patterns

that may be hard to distinguish by using the naive algorithm, such as family and friends if they

live together. However, it may be possible to reveal the differences based on even finer-grained

analysis. For example, family members usually have breakfast and dinner together at the same

time while friends may have totally different schedules. We are aware of this limitation and

plan to build advanced models more closely describing general cases.

Time Guidelines from the Visualization Tool. Our visualization tool provides spatial

temporal statistics of privacy leakages, which gives the user better ideas of the scope and degree

of privacy loss. Ideally, based on the type, destination, location and frequency of the leakages,

an inference algorithm can be used to estimate how much of the user’s relationships can be

derived. The tool would then be able to provide app usage guidelines in real time, such as

stopping using certain apps for some time, when certain conditions are triggered (e.g., a certain

fraction of a kind of relationship is exposed). This estimation requires certain knowledge about

the usage patterns of other related users, available to advertisers but not to us without a wide

enough installation base of the tool. How to make educated guesses on such knowledge would

be one interesting research issue.

Emerging Visualization Tool . We are also aware there are several visualization tools

has been proposed recently [28, 29, 30]. XDroidet al. [28] is a machine-learning based tool

that can detect malware based on apps’ behaviors. Liu [29] proposed a personal privacy

assistant that can build permission profiles based on people’s choices and provide permission

suggestions to users. Similarly, DroidNet [30] could help users to detect malware and make

decisions on enabling apps’ permissions based on the suggestions from experts through the

cloud service. However, all these tools are focusing on permissions setup and do not reveal

real-time privacy leakages and the more serious consequence of privacy leakages integrated at

the same destination.
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8. Related Work

Enck et al. [10] are the first to conduct permission analysis to identify dangerous function-

alities using Android permissions, such as tracking user or voice eavesdropping. They propose

Kirin, which performs inspections on Android API permissions during the app installation

time. They examine 311 top free applications and identify several questionable applications

sending out users’ private information. Barrera et al. [5] perform permission analysis of the top

1,100 free applications and report many applications request only a small set of permissions.

Felt et al. [6] study 100 paid and 856 free applications from the Android Market and find

INTERNET permission is the most frequently requested. They later propose Sowayway [9]

to detect over-privilege in applications and report 10 most common unnecessary permissions.

Taylor et al. [35] analyze a privilege escalation attack, where the third-party libraries can get

access to sensitive data from devices using intra-library collusion. And they prove that sev-

eral popular libraries facilitate this attack by collecting enough sensitive data. Pennekamp et

al. [36] provide a survey, which reviews the methods that have been proposed to check the

applications permission and their access to sensitive information.

Static analysis analyzes the code of applications to infer what can happen to users’ security.

For example, PiOS [31] analyzes compiled Objective-C code to identify information leaks on

the iOS platform, whereas ComDroid [32] uses disassembled DEX bytecode to identify vulner-

abilities in Intent communication between applications. Enck et al. further propose the ded

decompiler [34] to reverse Android applications to Java code for security analysis. FlowDroid

[37] can detect private data leaks in Android apps by performing a data flow analysis, which

becomes a highly popular static analysis framework. DroidSafe [38] uses the static analysis

on Android information flow to report the potential leaks of sensitive information.

Less work has been done in dynamic analysis. TaintDroid [3] tracks the flow of privacy-

sensitive data through third-party applications. It detects when sensitive data leaves the system

via interfaces such as network connections. Agarwal et al. [13] propose ProtectMyPrivacy

(PMP) which utilizes a crowdsourcing-based mechanism to help users decide proper privacy

settings for iOS apps, such as denying access to private data or substituting anonymized data.

He et al. [39] propose a privacy leakage analysis framework for third-party libraries in real time

using both combined static and dynamic Xposed methods. Chen et al. [40] propose a method

called HybriDroid which gets the advantage of both static and dynamic analysis methods to

identify the private data leakage. Using the combination of both static and dynamic analysis,

HybriDroid can detect data leakage for both inter and intra-app communications with the
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high accuracy. Brandtzaeg et al. [41] also apply the dynamic analysis to analyze the data

flow and measure activity in the apps over a long time, which strengthens the understanding

of the complexity of privacy issues in mobile apps. Our work takes a different viewpoint

by systematically analyzing what privacy-sensitive information the advertiser can collect and

aggregate at run-time from multiple apps and infer the social relationship of a user. We utilize

TaintDroid as a tool to track and log the run-time privacy leakage from apps.

A few app tools are developed to provide a user with the privacy leakage information [11,

7, 8]. However, the information is provided in low-level and raw data format based on each

app, which only gives the user a narrow view of the privacy leakage on a per-app basis. Our

visualization tool seeks to provide a multi-level statistical view of privacy leakage and gives

the user a better understanding of the implication of leaked private information.

Finally, some work develops smartphone platform based privacy protection mechanisms.

Ongtang et al. propose Saint [26] and Porscha [27] by extending the functionality of the Kirin

system to allow runtime permission inspection by defining runtime policies. Bugiel et al. pro-

pose XManDroid [42] to mitigate permission privilege escalation attacks in Android by tracking

communication between components in different applications. To prevent smartphone applica-

tions from leaking phone identifiers and location information, MockDroid [11] and TISSA [12]

provide empty, fake or anonymized information to applications. AppFence [20] builds on top

of Taintdroid to actively block network transmissions containing user-defined sensitive infor-

mation, which should be used on the device only. Our work focuses on a different aspect of

gaining a systematic understanding of the social relationship inference consequences from the

privacy leakage by an advertiser. Such understanding may motivate the user to adjust app

usage pattern or adopt defense mechanisms to control the sensitive data leakage.

9. Conclusion

Privacy leakage by smartphone apps has attracted significant research efforts in recent

years. The community has proposed various defense mechanisms, from permission manage-

ment, code analysis, to obfuscated data. Nevertheless, the characteristics of apps’ run-time

privacy leakage behavior is still not well investigated, and the consequences of such privacy

leakages have not attracted much attention. This paper serves as the first step towards a

comprehensive understanding of the advertiser’s perspective. In particular, we seek to discover

what an advertiser can infer about users’ social and community relationships by combining

private data from many apps. Our analysis on the run-time privacy leakage behavior of nearly

200 most popular apps from 19 categories of Google Play shows that dominant advertisers

31



can easily gather data from many apps. We propose a privacy leakage inference framework

that describes a general method for inferring users’ social and community relationships. Our

experimental study over one month demonstrates that an advertiser can infer 90% of users’

social relationship correctly using simple heuristics. This observation is further confirmed by

human mobility trace driven studies of two large scale data sets. We finally build a visual-

ization tool that can capture and display the spatial-temporal statistics of privacy leakage to

different advertisers in real time. We hope our work will eventually lead to a complete picture

of the advertiser’s perspective.
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