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Abstract

Many smartphone apps routinely gather various , “ivate 1 ser data and send them to ad-
vertisers. Despite recent study on protection mechanis. s and analysis on apps’ behavior, the
understanding about the consequences of such priv. ~v losses remains limited. In this paper, we
investigate how much an advertiser can infer a” .. " *eers’ social and community relationships.
After one month’s user study involving abeut 14" most popular Android apps, we find that
an advertiser can infer 90% of the social relay on.ips. We further propose a privacy leakage
inference framework and use real mobility ‘races and Foursquare data to quantify the conse-
quences of privacy leakage. We find that achieving 90% inference accuracy of the social and
community relationships requires - ierely ¢ weeks’ user data. Finally, we present a real-time
privacy leakage visualization toc™ that .- tures and displays the spatial-temporal characteris-
tics of the leakages. The disce ~r’:s v «derscore the importance of early adoption of privacy
protection mechanisms.
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1. Introduction

The huge sv ccess  © smartphones is largely fueled by the availability of millions of phone
apps that provia. fune ions covering all aspects of our lives. A large portion of these apps are
free. Their levelop ors get financial support from advertisers by embedding their advertisement

libraries to a. !~ mobile advertisements to users. Many advertisers exist and some of the
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major players include Google, DoubleClick and AdMob [1, 2]. To gain better mderstanding of
user habits and behaviors for accurate ad targeting, these apps customarilv scave. ge private
user data, ranging from the phone’s IMEI number, MAC addresses of iear jy access points,
the user’s location, even the contact list, and send it to advertisers [ 4]. timately, these
“free” apps are not entirely free: users pay the price of their privac .

There has been quite some recent work that investigates the p1. = y leakage and potential
defense mechanisms. TaintDroid [3] can track the flow of differe at kin s of private information
(e.g., IMEI, location) within an app and log the leaking of suct infor» iation through network
interfaces. Barrera et al. [5] and Felt et al. [6] examined pe mis .. s requested by about 1,000
apps and found requests for unnecessary permissions cor. monly e ast. A number of tools [7, 8]
can help users manage permissions granted to apps such ti at they do not have access to
certain private information. Sowayway [9] and Kir.. [10; _.n detect over-privileged apps or
identify requests of dangerous combinations of p _..l..icus. Beresford et al. and Zhou et al.
proposed MockDroid [11] and TISSA [12] respectively v. obfuscate private information so that
adversaries only receive empty, fake or anonymu. > information. Agarwal et al. [13] proposed
a crowdsourcing based mechanism to help us . decide proper privacy settings.

In this paper, we seek to answer an in. .. .2t but different question: how much does the ad-
vertiser know about the user, in particular, her social and community relationship (e.g.,family,
colleagues and friends) from the le &ked | -ivate data? This is motivated by a couple obser-
vations. First, there is only liritea “*tucy of apps’ dynamic leakage behavior at run-time.
Existing study [14, 9, 4, 11, 1F 12 5, €] is mostly on the static aspects of apps’ permissions.
TaintDroid [3] can be used 1t log v. - leaking activities but the paper did not focus on a sys-
tematic study on the dest.natic. ~ frequencies and types of apps’ run-time privacy leakages.
Second, the consequenc: s o1 such leakage, especially when an advertiser gathers such private
data from many users ana “<ross many apps, is not known either. It is easy to conjecture that
the advertiser may ain iddi‘ional information when cross-examining private data, but exactly
what can be lear~* ren. ‘s an open issue.

We focus on one im rortant aspect of that perspective, the social and community relation-
ships of a ur.., sucu as her family, colleagues and friends. Such knowledge is an important
channel for the ad- ertiser to push relevant advertisements since people tend to take note on
things t*. *» acquaintances have done (e.g., bought). For example Facebook has largely relied
on people Oluntarily publicizing such relationship. However, many real world relationships

are not publicized online yet they are equally important to advertisers; and there is a trend for



Facebook users of various age groups to go for other “small-circle” social net orks, or become
less and less active due to privacy concerns [16, 17].

In particular, we quantify to what extent an advertiser can learn anc infr . users’ relation-
ships by developing a privacy leakage inference framework. Our syste. atic . "1dy on privacy
leakage inference involves both real experiments with multiple volunt .er. as well as trace-driven
studies with human mobility traces obtained from two data sets, na. =’y MIT reality trace [18]
and Foursquare trace [19]. By examining the privacy leakages of pa ticipants from a diverse
background ranging from academia to city environments (i.e., ~ur real experiments and the
MIT trace are academia whereas the Foursquare trace rep eser . ~ city environment), we dis-
cover that the privacy leakage enables an advertiser to in”~r a sien‘.icant portion of a user’s real
world relationships that have physical interactions. Our prive =y leakage model and inference
framework could server as a foundation for estimatin, the . _.ential social relationship leakage
of a particular user based on his/her app usage.

Specifically, we make the following contributions:

e We conduct a manual study of the frequern es, destinations and types of the run-time
privacy leakages of nearly 200 most po, m. - apps across 19 categories in Google Play.
We discover that major advertisers =n casily gather all types of private data in short

time from many users.

e We model the relationship in"~rence process in a three-layer framework and define the
concept of connection, w'ich is exemplified by two users sharing similar patterns in
their leaked data (e.g.. con mor Wi-Fi access points). We conduct a one-month real
experiment of 10 par’.c,, ~nts of family, colleague and friend relationships, using various
apps in their daily .. ~s. We find that by aggregating data across users and apps, an

advertiser can imic. o er 90% of the relationships from the “connections”.

e We further pr »por e twy models for users’ temporal privacy leakage profiles based on the
experiment- stuay. [o verify the generality of findings from the real experiments based
on privacy leakag inference, we conduct trace-driven studies by populating the derived
user p oules to the human mobility traces in the MIT reality [18] and the Foursquare
datasc ‘s [19]. We find that the advertiser can infer 80-95% of a regular user’s relation in

ac .. ~ic and city environments after gathering only 3 weeks of private data.

e Finall, we build a visualization tool that captures and displays the spatial-temporal

statistics of different types of privacy leakage on both per app and per destination basis
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Figure 1: We take a four-step approach to understand the advertiser’s per-mecu. . users’ social and community

relationships.

in real time, which helps users gain better insights n t... scope and degree of privacy
losses. This tool can serve as a complement "~ recor mendation-based user privacy

protection mechanisms [13].

2. Approach Overview

To facilitate the understanding on the consequ aces of privacy leakages, we take a four-step
approach: run-time privacy leakage study, p1.7ac -~ leakage inference and profile modeling via
experimental study, inference framework .-aluacon via trace-driven study, and user privacy
leakage visualization, as depicted in Fieure 1.

From the advertiser’s perspecti e, we s udy two types of relations: social relationship and
social community. The social re ations. **, is defined as a pair-wise relationship between two
users with certain kind of phy.ica’ intr ractions such as colleagues, families, and friends (not
virtual friends from online s cial networks). Whereas a social community involves more than
two users, who usually appear at . location during the same time period for certain common
interests. For example a g oup of students taking the same class twice every week or peo-
ple eating in the sar e resv. "rant every Tuesday. We believe identification of both kinds of
relationships help « 've cise’ s design better targeted advertising strategies.

Run-Time " rivacy Leakage Study. First we want to systematically understand the
destinations, fre ruencie s and types of the leaking behavior of apps to understand the flow of
common pr .ctice ~f privacy leakages in apps. We study their spatial and temporal privacy
leakage chai ~cteris ics to complement the existing work, which focuses on static aspects of
permiss,us -7 7, 20], or provides the capability of logging the leakage but stops short of
a systemat, = study [3]. The Wall Street Journal (WSJ) study [21] in 2010 investigated the

types of leakages for about 50 most popular apps, but not destinations and frequencies, and



it was a bit outdated given the fast pace of the mobile market. Thus we cc 'duct a series of
experiments over a about two-month period to obtain the most up-to-date picture of privacy
leakages, where we also find changes in the types of leakages for about hs.f of che apps studied
in [21].

Privacy Leakage Modeling. To understand the consequence: o1 privacy leakages when
an advertiser combines the data received from different users, we ac ~')p a three-layer privacy
leakage inference framework (as depicted in Figure 1) includin’, Priv. <y Leakage Aggregation,
User Connection Derivation and Relation Inference.

We introduce an important concept connection, which ¢ xists . ~en two users share similari-
ties in leaked data. The connection helps bridge the gap “~etween - aw privacy leakage data and
higher level relationship inference. The intuition is that eact type of particular relationship
has certain temporal-spatial patterns in users’ physic. ! inte. .ctions, which can be captured by
connection. For example, two family members us' .1, ..., together at home during late night
and early morning; while classmates encounter each ov. >r frequently in classrooms during the
daytime of weekdays. Although exceptions to su b patterns exist, it can usually identify most
relationships and is the standard practice wiai 'y ~dopted in social community inference [22, 23].
We conduct an additional experimental ... ;- »-ith 10 participants for over one-month time
period to confirm the effectiveness of our privacy leakage model, which also reveal that the
temporal-spatial similarities betwee 1 peo, 'e who have friend relationship is not as regular as
that between people of other relatio.. hir; that have repetitive interactions (e.g., colleagues
and families).

Evaluation of User Pr'vacy . ~ erence. To understand whether the above observations
can be generalized to larger sca.  user population with various backgrounds, we extract user
privacy leakage profiles. app y them to user mobility traces generated from two datasets with
over 500 participants Wc verify that using 3 weeks of private data, an advertiser can infer
colleague-based relr Jion hip- of regular users at around 90% accuracy in an academia environ-
ment, and friend " asea . -.ationships above 95% in a city environment. When an advertiser
uses hierarchica cluster ng to infer social communities, 80 — 90% of those of regular users’ are
revealed in 7 _«Jemia environments, and over 80% in a city environment.

User F -ivacy Leakage Visualization. Finally, we believe that explicit presentation of
privacy = ~'=oes to users will help them gain better understanding of the privacy loss. As a
starting st », we leverage TaintDroid [3] to develop a tool that visualizes the temporal and

spatial characteristics of the leakages in real-time on a mobile device. We note that the privacy



Table 1: Counts of six types of frequent privacy leakages to top-five appeared destinat o. = during one day

(including three time periods) testing for each app.

. . Phone Network-based Lo-
Destination Contact IMEI GPS Location . elerometer
Number cation
Google 70 75 49 90 110 | R
DoubleClick | 5 6 3 9 11 | 3
Mixpanel 0 0 0 2 9 -
Flurry 2 2 0 4 7 0
Amobee 0 0 6 0 4 0

leakage inference model together with the privacy leakage dat. can 7 otentially augment the
visualization tool so that users can see the consequences on *...°'tr relationship in real-time,
which hopefully can guide their usage of apps (e.g., stor nusmg Y ip for the rest of the day or

resetting the ad tracking ID once a threshold of relationships e exposed).

3. Run-Time Privacy Leakage Study

Starting in Android API level 23, users can gra..* bermissions to apps even when they are
running. App permissions could be manually -eve ' by users, and unauthorized communi-
cations among apps are prohibited. Althot "h th< permission control mechanism seem to be
friendly to users, they are not effective in pro ecu.ng users from malicious apps that request
to collect data irrelevant to the main func..~n of the app. Moreover, once the application is
granted access, the OS does not hav~ “irther control on when a type of private data is ac-
cessed and how it is used by the ¢ olicatic n at run-time. The application is free to access it
as frequently as possible and ser d it to waerever it wants over the Internet [3, 9, 1].

The most similar study tn ¢ =3 is .he WSJ one [21] in 2010, which focuses on 5 privacy
leakage types (i.e., contacts, 'acation, phone id, and phone number) among 50 most popular
apps from Google Play. "= results are interesting but there is no analysis on the frequencies
and destinations of priv oy "2akages. Our study aims to provide a more comprehensive and up-
to-date analysis incl' din~ the (requencies and destinations of the leakages. We also investigate
how much private d« -~ an -.dvertiser can collect and aggregate from multiple apps. This helps
the user unders? and tk ~ scope and extent of privacy leakages when running apps; it also serves

as the basis for 1 >e for aulation of the privacy leakage inference in the next section.

3.1. Metho 'ology
We chnose vue top 10 most popularly downloaded applications from each of the 19 categories
in Google Fiay as of January 2013, totaling 190 applications. We expect that these most

popularly downloaded apps are installed by the majority of users, thus their behavior analysis is



representative to the majority of users. Our app behavior study is grounded ¢ ' TaintDroid [3],
which helps to track and log the privacy leakages of the applications. Once an . pplication
accesses private data, TaintDroid generates a taint log in the Android s- ster . log.

We use an Android application called CatLog to capture the system "~g an.' save the leaked
information as a text file in the smartphone’s memory card. The f.ic vings are recorded for
each leaking event: application name, the leaked private data, tinu. ©~ the leakage, the desti-
nation to which the data is sent, the event/operation triggerir s the '~akage, and an optional
memo. The saved information is downloaded to a computer to J» offli ie processing, which in-
cludes discriminating privacy leakages and calculating the ‘requ .. v of privacy leakages. Some
of the apps crash during the test, and we are able to galher com- iete results for 145 apps.

We use Google Nexus One and Google Nexus S, hoth run ing Android OS 2.3.4, and the
whole study lasts for about two months. To captu.~ the _pplication’s behavior at different
times in a day, we test about 4-5 applications ir 1. . uferent time periods (i.e., morning,
noon and night) in each day. During each perind, the . clected applications are tested one at
a time: we first reboot the device to make sure . U cached information is cleaned up; then we
install the application and perform normal w. ag > fo. about 5 minutes; finally we uninstall the
application and reboot the device to tes. -i.. == 't application. This procedure helps to avoid

interference between applications.

3.2. Findings

Per App Privacy Leakag .. Dui.. : our study, we find that about 50% of the apps in
the WSJ report have changed he r pr vacy leakage behavior. In particular, we find that 97
out of the 145 applications < nd out private data of the user. The data includes GPS location,
network-based location (provided Ly Android based on cellular ID and Wi-Fi networks), WiFi
Access Point SSID list cor .act list, phone number, International Mobile Station Equipment
Identity (IMEI), acce erome.. = readings, but not those of microphone, camera and text message
log, which are acce.. ~ by “ne applications but not leaked out. We also find that there are 8
applications sen ang Wi-ri SSID list (scanned by the smartphone) through SSL, and 3 of the
8 applications (1 »., Co apass, CNN App, Yelp) send this information to the same destination
(with TP ac tress 773.194.73.104 belonging to Google according to www.iplocation.net). This
type of Wik. AP 1"t is most likely the company’s effort to build a WiFi address database for
geo-locacon .. poses [24]. It could be employed to infer the user’s location, thus potentially
her mobility vattern during a day.

Per Destination Privacy Leakage. We further investigate how the private data
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Figure 2: Destinations that collect private data fro... more .han one app.
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Figure 3: Privacy leakage co''nts  des imations that collect private data from more than one app.

could be collected by a sin‘ 1 'estination (e.g., an advertiser’s server) through multiple apps.
Table 1 summarizes the .. \ber of times that 6 types of private data are leaked to the top 5
most frequent destinatic <. with one day test for each app. It is not surprising that Google and
DoubleClick (bough' by Foogie in 2008) dwarf the other three much smaller players due to their
dominance to the mo. ‘e a .vertising market. We also observe that the location information is
the most freque 1t leak. 1 type, followed by phone number and contact list.

We show the 1ect’nations receiving data from more than one app in Figure 2 (called
“common” lestina ions). We identify 28 such destinations in 19 categories. Specifically, we
find that thre. ~'Logle destinations collect private data from more than 10 applications, and
www.tap, w.ds.com from 7 applications. Among all 97 applications showing privacy leakages,

26 of them scad 7 different types of privacy data to Google, while 9 applications send 7 differ-
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Figure 4: Privacy leakage counts of apps leaking more than 1u “‘me in a 5-minute continuous testing.

ent types to DoubleClick. Figure 3 shows that durine ~»~ lay’s testing of the 97 applications,
most of the 28 destinations collect more than 3 types f private data, and Google is the most
active one among these destinations.

Furthermore, we find that among applica. . < se. ding to common destinations, they usually

Tar i1, tance, we observe that app Pandora Jewelry

send out different types of private data.
sends out IMEI, phone number and contact lis. whereas app Evernote sends out phone number
and location information. This cor.rm. our conjecture that an advertiser can combine the
private data from different apps to ¢ in a nore complete picture of the user’s behavior.

Privacy Leakage Frequer cy. Juring our testing, we find that the Location and IMEI are
the first and second most con mon | ~i- acy leakage types, which involves 71 and 61 applications
respectively. We present t! e le. "age count decomposition of 28 apps that leaks more than 10
times in its 5-minute urage in Figure 4. We observe that at least three different types of
private information are ..~ <ed for most of these apps. Specifically, the combination of IMEI
and NET-based loce sion is the most leaked information. We also notice that both Facebook
and Textgram have ab. 't 20 times leakages of address book when the user queries his friends
in the social ne work.

These res=-'s ... '__ate that an advertiser can potentially use the combination of private
data (such s IME and NET-based location) to identify the location of the user from such
apps, ard furtucr obtain a fine-grained picture of the user’s social life with the assistance of
the leakew contact information. Additionally, we observe that 7 apps shown in Figure 4 have

leaked more chan 4 types of private information, 3 of them have even leaked all 7 types of
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nations in 5-minute usage for each app.

private information (i.e., Pandora Jewelry, Carphone Mobile ,"uperhero, and Evernote). This
equips the advertiser with a comprehensive view of .o us. =" private data through their daily
phone usage.

We also find that it is common for different applic.*ons to have similar combinations and
frequencies of privacy leakages. For example, Ga. B «ddy and Breastmilk Counts have the same
number of Net-based location and IMEI leaka . in (ne 5-minute usage. Such applications have
equivalent ability of revealing the user’sp '.~*e ¢ ta. As the user continues using such “ability-
equivalent” apps, the leaked private data keeps at similar levels all the time. The situation
becomes more severe when these ay plicav. ns send the private data to the same destination.

Leakage to Common Destina. ~ns We take a closer look at the leakage frequency from
different apps to a “common” d stir ation. We first show the number of privacy leakages for the
top 41 apps sending to comn on de. ** ations in a 5-minute usage in Figure 5. We observe that
WeatherBug and Jackass Fans «. ~ the top two apps with the most frequent leakages: they leak
about 80/70 times durir g t. e 5 minute period. We further summarize the leakage frequency
in app categories to comi.. n destinations and observe that the Weather category exhibits the
highest privacy leak .ge f equancy, partly due to their needs to know the user’s location, and the
Social category is *he s *~ad. This again confirms that various apps leak private information
to multiple com non de: sinations, which allows the advertiser to piece together the user’s social

picture at fir . lempu.al granularity through multiple apps.

4. User Pi’'vacy Leakage Modeling and Experimental Study

In th = srcouwon, we present a privacy leakage inference framework that quantifies to what
extent an ac ertiser can learn and infer users’ relationships. We then run real experiments with

multiple participants to analyze the consequences of the privacy leakage from the advertiser’s

10



perspective and abstract privacy leakage user profiles based on the experime ts.

4.1. Privacy Leakage Modeling

We first define the concept of connection. A connection between . ~ ~.sers exists if the
same type of privacy leakage from the two users share certain spatial, ‘~mporal or content
similarities. A few examples are:

Contact list: A connection instance exists between two users it .“ey are in each other’s
contact list, or they share common contacts. (However, we 1ote th t contact lists are not

L

sufficient for social relationship inference simply a person d~es .. * .iecessarily to have close
relationship with anyone in his or her contact list.)

Wi-Fi Access Point list: A connection instance exists = ~tween two users when they share
common leaked access points at the same time.

GPS location: A connection instance exists betwee.. *wo users if two GPS locations leaked
around the same time are close by within a certai. *hreshold.

Network-based location: A connection in. ... -~ exists between two users if the leaked
network-based locations are close by within = cer. 'in threshold around the same time.

The connection bridges the gap between “he privacy leakage information and the users’
relationship inference. In particular, to qu. ~tity che consequences of the privacy leakage from
the advertiser’s perspective, we design a privacy leakage inference framework, which consists
of three virtual layers: Privacy Le .kage A 'gregation, User Connection Derivation, and Rela-
tionship Inference as shown in F.gure v.

Such a framework facilitates *s .o pr cform a systematic study to understand the advertiser’s
perspective of user privacy: (1) The Privacy Leakage Aggregation layer deals with the raw
privacy leakage information. An awvertiser can combine the privacy leakage data from multiple
apps across different u-ers ver time. For example, the users can be identified by the IMEI
or phone number. T e aggi. sated privacy leakage data of each user can then be categorized
into different types, " n as contact list, AP list, GPS location, and Network location. (2) In
the User Conne c¢on Nerivation layer, the advertiser correlates the data from different users
and identifies cc ‘nectic ns ? between any two users. By correlating different types of privacy
leakages ac oss th~ users over time, the connection frequency between any two users can be
derived. (3) ™ the Relationship Inference layer, the user’s social and community relationships,

such as anu ,, .olleagues and friends, are inferred based on the connections between users.

2We use “connections” to refer to connection instances later in the paper.

11
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Figure 6: Privacy leakage inference framework with th. « .. ' -~1 layers to quantify the advertiser’s perspective

of smartphone user privacy.

The type of relationship is usually determinea by ~xamining the temporal and spacial patterns
of the connections (e.g., family members « m1au, _1ave connections at home in the morning and
at night, whereas colleagues have connections in office during working hours). We next conduct

an experiment to study the effectiv ness o’ our privacy leakage model using this framework.

4.2. Ezxperimental Study
4.2.1. Design of Experiments

Our experiment involver *0 volunteer students and their family members over one month
period, among which five +-mes of relationships exist: colleague, collaborator, classmate, friend,
and family. The ten olu' ceers are all graduate students between 21 to 24 years. Eight of
them major in Comp (ter Eng neering and the other two major in non-computer-related major.
All of them have bec. ' sing smartphones for over two years and have moderate understandings
of information t:chnol~gy. To clarify, collaborators are usually colleagues that actively work
together, usually 2t rec alar times such as weekly meetings.

During he ex, sriments, we distribute smartphones with our visualization tool (which is
presented in “ect’ m VI) and the top 10 popular apps across 19 categories in Google Play
sending o ¢ uunon destinations (shown in Figure 5) installed. Because the experimental
smartphone. are not replacements of the volunteers’ regular phones, they are asked to use their

experimental smartphones at least three times a day. There is no restriction of how and when
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to use the apps in the experiments, and the . ~lunteers are encouraged to use whichever apps
they are interested in without know’ .g .= purpose of this experiment. After the experiments
we extract the leaked privacy data .. ged ! y our tool to quantify to what extent an advertiser

can infer a user’s relationships.

4.2.2. Observations

User Connection D-rivatioa. Figure 7 shows one example on the temporal patterns
of the derived user co nect.ons at three different locations based on GPS location leakage.
We observe obvious ¢ patial a. d temporal patterns of connections corresponding to the ground
truth of the social re’~t'ons} (ps. In particular, subjectl and subject2 have frequent connections
in the morning arour1 1VAM) and at night (through 9PM-2AM) at a residential area. The
advertiser can t. us inf.r the two subjects most likely have a family relationship. Further,
subjectl, s1 njects and subject4 have connections frequently during working hours (through
11AM-7TPM, ‘n ar office building. This follows a typical pattern of colleagues or collaborators.
Addition MLy . connections of subject3 and subject5 usually happen at early night (9PM-
10PM) but 'o not show up late night (12AM-6AM) or morning. Such a pattern is more like

friends hanging out together. From the above examples, the advertiser can infer users’ social
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relationship once it has accumulated enough privacy leakages over time.

Definition of Two Types of Social Relationships. From the experimentai . esults, we
observe that while some relationships (e.g., family, colleagues, collabore .ors and classmates)
exhibit repetitive connection patterns, some others like friends do not. This .. because family
and colleague based relationships naturally carry similar spatial-terr »or \l patverns dictated by
the relationship. For example, families live together at night whu. <lleagues work together
during the day, whereas friendship does not necessarily carry such ‘nherent patterns. Two
friends that do not hang out for a while are still friends. We a. tingr sh these two categories
of relationships as Fact Based Relationship and Intelligen e B ..." Relationship, which covers
traditional social relationships. The Fact-based Relatio: <hip inc’ades colleagues, classmates,
roommates, families that carry inherit similar, regular and _=petitive spatial-temporal con-
nection patterns as dictated by the relationship, wi. reas e Intelligence-based Relationship

includes friends, which do not necessarily carry s 1. oooans.

4.8. Making Inference based on Thresholding

We next investigate how accurate an alvert. °r could infer about the user’s social rela-
tionship such as colleagues, families and frienc ~ by utilizing connections between users derived
from different types of privacy leakages.

We use a threshold-based approach to derive relationships based on the connections be-
tween users extracted from privacr leakage aggregation at the advertisement provider. If the
connection count between two u’ ers exco ds a certain threshold in an observation window, we
consider some relationship exi, =~ Our framework utilizes the temporal and spatial patterns
of the connections to classif - the type of relationship: the connections of colleagues occur in
work hours of weekdays, families 1.1 early morning and late night, while friends after working
time and in weekends.

These simple rulr s may ..~t be entirely reliable. Nevertheless, we show that an advertiser
can make inference ~v.n v.th such simple rules. We note that such temporal and spatial
patterns of the conne-tions are the basis to statistically generate a user’s privacy leakage
profile, which w.'! be d scribed in Section 4.4.

In total we ha -e 10 pairs of colleague relationship, 5 pairs of collaborator relationship, 1
pair of famii - rela*.onship, 2 pairs of classmates, and 3 pairs of friend relationship among our
10 particvas ... That is 18 pairs of fact-based relationships and 3 pairs of intelligence-based
relationship.  During our experiments, we observe that by utilizing connection frequencies

and patterns, an advertiser can infer over 90% social relationship correctly (i.e., all fact based

14



relationships and 2 pairs of intelligence based relationship). The only one fr nd relationship
that is not correctly identified is because this pair of users only have one connec. on during
the testing. This is inline with our expectation since the intelligence-bs sed elationship does
not carry repetitive spatial-temporal connection patterns, therefore th.‘r cow. <ction may not

frequently repeat on different days, thus the relationship is harder t, 1 > idencified.

4.4. Deriving Privacy Leakage User Profiles

Based on the experimental data collected over one month, w : next 1 1ild the privacy leakage
user profile to statistically capture the temporal and spatial »~tte. - We develop two types of
privacy leakage user profile, activeness based profile and p1bo’ ity based profile, which will be

applied to our large-scale trace-driven studies on advertisc ’s poispective in the next section.

4.4.1. Activeness Based Profile

The activeness based profiles are generated ba . ... p.ivacy leakages from each participant
in our experiments and aim to capture the fine-orainea . Yatistical view of the privacy leakages.

Step 1. We first derive the privacy leakage p. ~Hability model of a particular user. Assume
there are IV types of privacy leakages observ~ua ‘n votal. We divide the time in day d into T
time windows as {wy,t = 1,--- ,T}. The - wi*% a time window wy, a vector ®%% is defined
to capture the numbers of occurrences of diticrent privacy leakage types, and each element
dwdt(j)(i = 1,--- ,N) corresponds .o the qumber of times privacy leakage type i occurs. For
example, when %% equals to [2 1,u, it aeans 2 occurrences of leakage type 1, 1 occurrence
of leakage type 2 and 0 occurrr ace of lekage type 3 in time window Wy at day d for user w.

We then define ’y?’d’t to “adicate - hether the privacy leakage type ¢ appears in the vector
Pt ag:

y,d,t _ 17 q)u’d’t(i) 7é 0 (1)
' 0, &%t (7) = 0.

The probability cha’ type i leakage happens for user u in time window w; across D days

(e.g., D =7 days) is de.~ d as:

D w,d,t
Probt = 7251:]1)% . (2)

Step 2. The n .mber of occurrence of the privacy leakages affects the inference of a user’s
social cc un. - "*7. Thus we capture the frequency of type i privacy leakage using the average

number of ¢ ~currences over the days it happens in time window w; across D days. Specifically,
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t.
the average rate r;"" is defined as:

D w,dyt(;
@ bhad
T;z,t _ Zd:l (l) (3)

D At
D de1 7?

The activeness based profile of user u consists of Prob;"t and rf’t.

Example. We illustrate the generation of the activeness based - rofi . . € user u in Figure 8.
We examine a privacy leakage dataset across 7 days (i.e., one week, with the time window
wy set to 5 minutes and 288 time windows in total per da;. Assime 3 types of privacy
leakage are under study. For w; at day 2, if there are 2 ocrre.. -~ of leakage type 2 and 8
occurrences of type 3 observed, we have ®“2! = [0,2,8] < 7y % = 1 shown as the green
eclipse in Figure 8. In addition, if the leakage type 2 is ¢ v vuserved during day 1 and day
2 with ®%1t = [0,5,7] and %! = [0,2,8], the priva. - leaka e probability of type 2 privacy

leakage in time window wy across 7 days for user u c.n be calculated using Equation 2 as:

w.t ’\/u,l,t+wu,2,t+.”+7u,7,t 141 0
Proby” = = 2 — 2 = 1t —;+ = 0.25. And the corresponding average rate can
. RN R Lo Lo .
be obtained as: r’' = —= + 2 t+ + 2 = 3740 —_ 35 which is shown in blue rectangles
2 1 ’ g
R I A

in Figure 8.

Categorization. Once the activeness bas~d .ser profile is obtained, the advertiser could
further categorize the profiles by the num. ~r o1 nours k, the user u has privacy leakages in a
one-day duration. There are three renresentative user categories, namely active user category,
reqular user category, and inactive user cctegory. Assume two thresholding hours p; and po
with p; > po. If the user u has greater ‘aan p; hours with privacy leakages, his user profile
is put into the active user categ~r . If he user u has less than p; but larger than or equal to
p2 hours with privacy leake s, his user profile is then added into the regular user category.
When the user u has less than py hours privacy leakages, his user profile is then captured in

the inactive user catege -y. " he categorization can be summarized as:

1 (active user category), if k, > p1;

2 (regular user category), if po < ky < p1; (4)

3 (inactive user category), if k, < po.

4.4.2. Prob .bility Rased Profile

The {Prc’ ?’t 7 ’t} in each activeness based profile captures the leakage of the corresponding
user u. 10 ¢f aracterize the statistical average of the leakages of users in the same category, we
design the 1. -obability based profile. Activeness based profiles in the same category are used

to derive the leakage probability and rate for the probability based profile of that category.
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Figure 8: Example of activeness based profile generation for user u wi‘a 3 t- .. of privacy leakages when D = 7.

Step 1. We first define the 5;” to indicate whether " >ere i= = probability of type i leakage

in the time window w; for the profile of user u as:

1, Prob" = 2
5’}1/,75 — lql,’ . 7 (5)
0, Prov,” = 0.

We calculate the average probability that leaka, = t /pe ¢ occurs in a time window for user u:

u }4: 3 (’;L,t
N= sl O (6)

Step 2. We then define the leakage probaylity of that category as the previous probability
averaged over all users of the same ategc -y:
Soay Al
Prof = =u=lt 7
)Z Ma ( )
where M, is the number of - sers b ' aging to the category a.
Step 3. The correspouding , vofile privacy leakage rate is calculated over all the users in

one particular category « as

' S a_ > Y 1y (8)
DD YT

The probability .~ .ed “rofile of a user category o then consists of Prob and r{*, which
can be calculate ( base ' on the data from our experiments. We respectively name them as high
probability (Prou) = 0 37), medium probability (Prob$ = 0.68), and low probability (Proby =
0.44) profil s.

Both type ~f _rofiles quantify the users’ privacy leakage characteristics: the leakage prob-
ability + -ob ', Prob{ determine whether type i privacy leakage happens or not in a time

window, wh. “eas the average leakage rate rf’t, ri* determine the number of type i leakages in
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that time window should they happen at all. The profiles will be used in our arge-scale trace-
drive studies in the Section 5 to facilitate the understanding of the user relationsh,, inference

from the advertiser’s point of view.

5. Social Relationship Inference Leveraging Privacy Leakages

In this section, we systematically study the consequence of the pri» . - leakages obtained
by advertisers by applying the privacy leakage model to two human 1. ~bility traces. We build
a simulator utilizing the privacy leakage inference framework t  gener. te connections between
users based on both the leakage profiles derived from Section 4 ai. ' **; human mobility traces.
The human mobility traces are used to discover connection: be’ wee 1 users in both an academia

and a city environment.

5.1. Methodology
5.1.1. Human mobility traces

We use two human mobility traces: the MI1 -ace [18], and the Foursquare trace [19].
We choose these two traces mainly because wuc . °»s in these traces come from different
backgrounds and have various relationships. Sveci. cally, the MIT trace represents participants
with similar background in an academia enviroi.me..t, where user relationships mostly represent
research colleagues, office staff and classmav.~ In the Foursquare trace, participants have more
diverse relationships; they may be col'~~aues, friends, and families in a city environment. The
details of these two traces are intr duced 1 slow:

Foursquare Trace. Fours juare is 1 company that helps people share life experiences
based on locations such as rest.. »ants This trace is generated based on tipping information
collected from different venr .- in Los Angeles (LA). A tip in a venue shows that one participant
has carried out some esser*ial activities (like dinning and shopping) at that venue. There are
104,478 tips left by 31, ‘44 - ,articipants in this trace. We choose 354 participants from the top
10 venues (which are all rest« irants) to generate encounter events between participants based
on the time of the 1., .ng 1 a 21 day duration.

MIT Tracr. Thi trace is collected on MIT campus for 10 months by 107 participants
with smartphone - Eac 1 smartphone scans (using Bluetooth) and records nearby smartphones
every five n mutes. The encounter happens when two participants are located in close physical
proximity (e.. skown in the Bluetooth scanned neighboring list in MIT Trace). And such an
event is 'efi.eu as an encounter event. There are 97 participants with valid data including
staffs and st. dents. In our study, we use 21 days’ data which includes 91 participants for social

relationship inference.

18



5.1.2. Privacy Leakage Profile Population

To understand the impact of user profiles, we repeat the study using both acti.eness and
probability based profiles. When activeness based ones are used, each pe tici» ant is assigned a
randomly selected profile in the chosen category (i.e., active, regular ana mact.. ~). When prob-
ability based ones are used, each participant is assigned the same 1 ob. hility profile (i.e., one
of high, medium and low). When presenting our results, we will us. *:rms like “active users”
or “users of medium probability” to (loosely) refer to particip wnts a: signed of the activeness
or probability based profiles.

We then infer the relationships from the leakages over o’ iserv ... 'n windows of different sizes
(i.e., 7, 14 and 21 days). The inference is based on conr ~tion= - crived from the leaked data.
From real experiments with 10 participants having krown rele sionships, we find that different
thresholds of connection counts in the observation w.~dow .uould be applied to derive differ-
ent relationships. In addition, depending on the ",ucngivunds of the environment where the
datasets are collected (e.g., MIT trace collected on ca.. pus involves more academia relation-
ships, and Foursquare trace collected in a city c. r.ains even more diversity of relationships),
the thresholds could also be different.

The appropriate value for the threshe. ., . ¢ ade-off between accuracy and false positive 3.
If the threshold is too high, we may miss some real relationships and have low accuracy;
if the threshold is too low, we wil" “idewn ify” nonexistent relationships and have high false
positives. In our work, we respertiver, ns: 3 days and 2 days for fact-based and intelligence-
based relationships in both exy rin ents and simulations. Such thresholds enable an advertiser
to achieve over 90% inferenr : accui. .es for regular users with very small false positive rate,
which is a good balance betweer “he two.

Foursquare Trace In rder to apply privacy leakage profiles to this dataset, we generate
encounter events betveen (~articipants as follows: for a particular venue, we give a visiting
duration with a rar o teng th ranging from 30 minutes to 2 hours to each tipping user. In the
overlapped perio” _f the "aration of two users, we generate encounter events with a fixed time
interval of 30 m. nutes ( :.g., in an 1 hour overlapped period, we generate 2 encounter events).
For each en sunter event, we first find out corresponding 5-minute time windows. Then we
flip a coin \-ith the privacy leakage probability in the users’ profile (defined in Equation (2)

or (7)) . '~ride whether privacy leakages should happen or not in that 5-minute time window.

3The accuracy and false positive rate are defined in Section 5.B.
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Figure 9: Inference accuracy, MIT mobility trace, (a) and (b) are from the acti. ~ess based profiles using 3
days as the threshold, (c) and (d) are from the probability based profiles - sing 2 « “ys as the threshold.
If they do, we use the privacy leakage rate defined in Equation 2 or (8) as the number of
leakages revealed to the advertiser in that particular 5-mir ute m window. The leakages are
used by the advertiser to derive connections and encounte. eve..s to infer users’ relationship.
MIT Trace. The MIT trace records encounter eve ts for e «ch participant every 5 minutes.
For each encounter event, we first find out the correspu. ding 5-minute time window. Then for
each of the two participants, we flip a coin with v. » privacy leakage probability in his profile
(defined in Equation 2 or Equation 7) to d¢ '~ whether privacy leakages should happen
or not in that 5-minute time window. If they dc¢ we use the privacy leakage rate defined in
Equation 3 or 8 as the number of leakages reve. leu “o the advertiser in that particular 5 minute
time window. The leakages are used by .>= auvertiser to derive connections and eventually

encounter events to infer users’ relationship.

5.2. Metrics

In our evaluations, we study the inference accuracy of pairwise social relationship and the
correlation between social comm. ‘itie , extracted based on the connections of users.

Inference accuracy. Tr.s - the ratio between the successfully inferred relationship pairs
and all relationship pairs

Community correlac. *n  This is the ratio between the common subjects within a community
identified by our pri acy leakage inference framework and the total number of subjects within
the community.

False positit > rate. This is the ratio between the number of mistakenly identified members

of inferred comm. ~it and the total number of members within the inferred community.

5.8. Inferes ce with Privacy Leakages
5.8.1. C ~hinagtion of Privacy Leakages
As we ( scussed in Section 4, an advertiser can utilize the temporal and spatial patterns of

connections to infer users’ relationship. There are multiple privacy leakages that can produce
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connections between users. In this study we focus - a the {user identity, location} combinations
of most popular privacy leakages including IM %1, ~hone number, GPS location, Wi-Fi AP list,

and network-based location.

5.8.2. Puairwise Social Relationship nfer nce

Figure 9 compares the accuracy ~f p .irwise social relationship inference (for both fact
and intelligence based relation<.aips, by applying activeness and probability based profiles to
the MIT trace under differe .t size * /¢ observation windows. We use 3 days and 2 days as
the threshold for fact-basrd au ' intelligence-based relationship inference respectively, which
is introduced in Section « (+ \me threshold applies hereafter). The fact-based relationship has
greater threshold becaus. »eople having fact-based relationships are supposed to encounter
each other more resalar.y than those having intelligence-based relationships (e.g., colleagues
meet 3 days a weelr wi.'» riends meet 1 day a week).

From Figurc 9 (a) « ad (b) we observe that for most cases, an advertiser can achieve over
80% inferencs ccus oy for fact-based relationships with regular users, whereas it is around 60%
for intellige \ce-basi d relationships. We also observe that the inference accuracy decreases for
less acti—~ nsers, which is reasonable since less usage leads to less privacy leakages. In addition,
for active +.ers, Figure 9 shows that the inference accuracy for both fact-based relationship

and intelligence relationship is high (i.e., above 90%).
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Furthermore, we find that longer observation windows hel in,, =~ ¢ the inference accuracy,
especially when the privacy leakage probability is low. This is c"sser ed in the probability-based
approach shown in Figure 9 (¢) and (d). It is because a '~ug.. window helps the advertiser
to accumulate more data, resulting in more connectic. ~ to ide 1tify users’ relationships. Com-
paring Figure 9 (a) and (b) to Figure 9 (c¢) and (d) res, ~ctively, we observe that the inference
accuracy of active users is similar to that of users ~ave the profile with a high leakage proba-
bility. Figure 9 (d) suggests that in order to k ¢, *he inference accuracy of intelligence based
relationship lower than 60%, the user has to ke o his leakage probability smaller than low
probability (i.e., 0.44).

Examining the Foursquare trace, we o. “erve much higher inference accuracy for both fact
and intelligence based relationships. We show the results using privacy leakage profile with
different activeness in Figure 10 (a’ and (b, For inactive users, the inference accuracy is about
70% for a 7-day window, and it goes o, 95% for the 14-day window. This is because users
in the Foursquare trace encou. “er eac'. other more frequently than those in the MIT trace.
Thus, more connections can ‘e discovered when the users have the same intensity of app usage,
leading to a higher inference accu.acy. It is also the case when using the probability-based

profile to infer pairwise rela tonship with the Foursquare trace (i.e., Figure 10 (c¢) and (d)).

5.8.8. Social Comm uni’y Inference

We next stud-- how “'.e social community could be inferred by the advertiser using the
privacy leakage profile. In particular, based on the inferred pairwise social relationships, a
hierarchical .steriuy algorithm [25] is applied to obtain the social communities of users with
similar rela ‘onshir ; (e.g., collaborators, labmates, and classmates).

Cor —'mity Correlation. Figure 11 shows the community correlations calculated when
applying t. : activeness and probability based profiles on the MIT trace with three different

observation windows. We observe that overall the community correlation is above 60% for
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Table 2: False positive rate for community correlation: MIT trace and Foursqr u. *race.

Fact-based Intelligence-based i

7days | l4days | 21days Tdays ‘ l4days | 21days |

MIT Trace 4
Active users 0.035 0.022 0.016 0.149 0.129 0.098
Regular users 0 0 0 0.065 0 e
Inactive users 0 0 0 0.056 0 J_
High prob. 0.069 0.054 0.052 0.17 0.145 ) rl.l/‘“__
Medium prob. 0.045 0.041 0.039 0.104 0.093 | 0.u. '
Low prob. 0.026 0.016 0.015 0.055 0.07 | O.(‘?EL

Foursquare Trace

Active users 0 0 0 0010 [ oo [ ors
Regular users 0 0 0 0.081 ! u.061 | 0.052
Inactive users | 0 0 0 0.04 | 0r 0.029
High prob. 0 0 0 019 | 078 0.078
Medium prob. | 0 0 0 0.15. | 0.C 0.078
Low prob. 0 0 0 0.099 | 64 0.058

regular users. Furthermore, we observe that the co.. munity correlation also increase with
longer observation windows, especially for regular . ~ers and inactive users. This is also because
longer observation windows help the advertise ' - ~ooregate more connections between users,
which helps to more accurately identify their soc. ( communities.

¢ L *h fact based relationship and intelligence

We present the community correlations c
based relationship when activeness and pr.>abu..y based profiles are applied to the Foursquare
trace in Figure 12. We observe that the intelligence based community correlation is high for
active users and regular users (i.e., - ver 80y on average). Similarly it is high for users with high
probability and medium probab’ ity pi. S es (i.e., over 90%), which is comparable to those of
the MIT trace. However, the c. o anit. correlation of users having the fact-based relationship
is much lower with inactive - sers ana users with low probability profiles (i.e., ranges from 10%
to 60%) than that of the MIT trac>. This is because participants in Foursquare data are from
much diverse backgrov .d i" the city environment and the locations are mostly restaurants
which favors more to che in. ligence-based relationship inference.

Discussion of “al.e Fositive. Table 2 shows false positive rate of community correla-
tion for both M”71 and roursquare traces. Overall, the false positive rate is very small. In
addition, larger ‘bserve jion window has smaller false positive rates. This indicates that longer
observation windcw size has more information and can improve the inference performance.
Furthermore we o' serve that the Foursquare trace has much lower false positive rate than the
MIT tra-e. " *3 is because the Foursquare trace has more connections, thus leads to lower
false positiy ~ rate.

To briefly summarize the major findings, 1) the advertiser can infer users’ social relation-
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ships at high accuracy, e.g., over 90% on average for active users and over 30% on average
for regular users; 2) the advertiser can also infer a significant portion of users’ «>mmunity
relationships, e.g., over 90% on average for active users and over 60% ca av_rage for regular
users, which reveals common interests or activities among users not . =~cess. ~ily with direct
interactions. The results from the simulation confirm the findings ‘o1 our real experiments

with the relatively smaller number of participants and shorter teri.

6. Privacy Leakage Visualization

Since advertisers can infer users’ relationships and comr ..ities «rom the privacy leakages,
a visualization tool that presents such leakages in real tim. » ay b :lp users better adapt their

! spatial characteristics of privacy

app usage. Such tool would reveal the detailed temporal au
leakages to complement existing works, such as the cic ~dsov cing-based privacy setting tool

proposed in [13].

6.1. Tool Features

We present our privacy leakage visualization to sl that can display the leakage statistics at
different levels of granularity. Existing visuc'.. ~tio. tools usually address each app individu-
ally or focus on a specific type of priva . '=akees [26, 27]. For example, by displaying the
privacy data that an app intents to access, ex. ting work allows the user to block such privacy
leakage [20] or helps her obfuscate tie pi.acy information [11, 12].

In contrast, our tool provides sp. “ial-t -mporal visualization of the leaked private data at
multiple levels of granularity, *.clv ging the global level, whereby the statistics over all apps
and destinations (i.e., advert.sers, = ,ummarized; the destination level, whereby the privacy
leakages received at each d stin. *ion are shown; and the app level, whereby the leakage can be
displayed per app and p .r u ‘er’s location. Such comprehensive statistical visualization avoids
presenting low-level raw - ra to users who are mostly not tech-savvy and cannot make sense
out of the raw data It acilitates a better understanding of the privacy leakage and provides
users opportunities to . 'i* st her app usage pattern to control such leakage.

Our tool uti zes Tai wwDroid [3] (with Android OS 2.3.4) to capture the leakage information.
The tool rur~ ‘n L. .ground and logs the details of each privacy leakage event including the
privacy tyr 3, the ¢ ntent of leaked data, the app name, the destination, and a timestamp.
It consi~*< of nve main components: Global Viewer, Map Viewer, Statistics Viewer, App-
Destinatic » Viewer, and App Leakage Warning. The main components and the flow of the

tool are depicted in Figure 13.
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Figure 13: GUI flow ¢ ... “enalization tool.

Global Viewer. It presents the overall ~rivac - leakages of the mobile device by aggregat-
ing the leaked information from all apps in a vser Jefined time period.

Map Viewer. It shows a detailed spauv.. ! distribution of leakage information including the
type and occurred time over a map.

Statistics Viewer. It provid s temp ral statistics of different types of privacy leakage
using scatter plots and pie chart .

App-Destination Viewe.. .t di.plays the connection between apps and destinations:
what private data is leakec “om which apps to the same destination. The destination can
integrate the data from a'' these apps to infer knowledge about the user.

App Leakage Wt ~nir g. The visualization tool dynamically sends active warnings to
users based on the a- erase le. kages of apps. The warning message includes a summary of the
average leakages an. ~ ovires a shortcut link to the detailed statistics of the privacy leakages

of the highlightr 4 app

6.2. Global Viewe,

The vis alizatic n tool starts with the Global Viewer, which shows the total numbers of
privacy leakages ot each data type (i.e., Phone number, IMEI, Location, Contact list, and Wi-
Fi AP list, », illustrated in Figure 13) over a user-defined time period or the total history of the
phone usage. The Global Viewer has two branches: App List or Destination List, which show
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Figure 14: Screenshots of multiple privacy leakages founa .~ be ! “.ed at different locations.

the lists of apps that leak private data and destinatic »s that eceive it (shown in Figure 13).
By observing the privacy leakage counts per app, a usc. can easily tell which app has the most

frequent leakage of sensitive data.

6.3. Map Viewer

The Map Viewer shows the physical loc *ions wvhere the private data is leaked. The Map
Viewer can be accessed from the App list or the Descination list, which will show on the map all
the leakages from one app or to one destina. ~n (e.g., Figure 14 (a)). The user can also further
refine to only showing a certain type ~* nrivacy leakage per app or per destination. Clicking an
icon will display the details of priv: ~v leake ze at that location. Figure 14 (b) and (c) illustrate
the detailed information of all ty ses nf pi.vacy leakages and the detailed information of contact
information leakage, respective,, We .ranslate the GPS coordinates into the corresponding
physical address using Goor,.> Maps API for easy understanding to the user.

One implementation i=~e is how to display the privacy leakage events when a lot of them
occur around the sam location. This happens when the user stays at the same location
for some time durins, which . «ultiple leakage events of different types can happen. The Map
Viewer combines eve t, of ne same privacy type and shows them as one icon on the map. It
determines whe’ ner tv » locations can be combined if their distance is less than a threshold.

Different typ. - of p .vacy leakages are displayed in icons of different colors. When too many
events occu - at oi -~ location, a single red icon is shown to avoid crowdedness. Figure 14 (a)
displays muly ~le » ivacy leakages happening at two locations (with two red icons for aggregated
privacy 1 ake zes). Clicking on the icon will display the detailed information about the privacy
leakages, such as the physical address, historical counts of different types of privacy leakages,

and the most recent leakage time (shown in Figure 14 (b)). Clicking on an icon of a specific
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Figure 15: Screenshots of (a) & (b) App-Destination View. - and [.) App Leakage Warning.
type of privacy leakage will display the historical cou.."s of th .t type of leakage and the most

recent leakage time (shown in Figure 14 (c)).

6.4. Statistics Viewer

The Map viewer summarizes the spatial d. tri’ uw.on of privacy leakages. The Statistics
Viewer reveals the temporal patterns of each , ~e 0. 'eakage events such as IMEI, GPS location,
Wi-Fi Access Point SSID list, contact list and , hone number. The Statistics Viewer plots the
numbers of different types of privacy leakag. = over a time window, whose sizes are 1-day, 7-
day, and 30-day to show the leakage pa. »rn in both short-term and long-term. Figure 15 (a)
depicts the statistics over a 7-day , ~riod. Leakage patterns in fine-grained time slots (e.g.,
one-hour) are also available in }ar g aphs. These statistics potentially can help a user identify
apps leaking private data agg ess. ~ly and alter his/her usage patterns of these apps (e.g., use

them less frequently or sto, a. ngether).

6.5. App-Destination V ewe -

The App-Destination . ‘ewer presents how much private data each destination can obtain
across multiple apy s, wiich determines the scope and depth of the knowledge one advertiser
may infer about ‘' 2 use. Figure 15 (b) presents an example of App-Destination Viewer for
the app Weath rBug. The screen is separated into two columns: the left column lists the
destinations .o whicu the selected app has sent private data, and the right column shows other

apps that a o senc private data to the same destinations.

6.6. Apy Leo va,e Warning
In addiv »n to providing various interfaces for users to have the complete and detailed

picture of the privacy leakages in their smartphone use, we design an App Leakage Warning
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mechanism, which can actively send a warning message to users about a par 'cular app when
the average leakages of the app have crossed a certain threshold. Figure 15 (c) . -esents an
example of the App Leakage Warning message for the app Yelp. The mesage includes the
name of the app, average leakages in different scales (i.e., 1-day, 7-. v. aun' 30-day). The
average leakage crossing the threshold would be highlighted in red. " se. s couud directly go the
detailed statistics by tapping the name of the app in the message.

7. Discussion

More Types of Private Data. There are potentially o*' 2r ty . .- of private data available
to advertisers. For example, Google has the access to its <2 ch t :rms and histories of many
users. Although we do not find the 190 apps studied lea. ng text message logs, audio and
video data, illegitimate access and disclosure of sucn ‘nform ation are not impossible. Our
current study is based on the combination of most bas. vrivacy leakages (i.e., identities and
locations). Contact list carries important inform« ‘on. For example, a certain relationship
most likely exists when two users share many ¢ wuu.. - ~ontacts. Unfortunately, because we do
not have the contact lists of the subjects of +™e twe mobility traces, we are not able to evaluate
its impact on relationship inference. Studying "he .mpact of more types of private data would
be interesting future work.

Large Scale Evaluation. We »~~ aware that our experiments (due to limited available
manpower) may cause bias to our ; =ivacy 1 akage profiles and the evaluation may not cover all
privacy leakage patterns in the r .al wori.. In particular, the ten volunteers in our experiments
are most graduate students an. .mly c¢wo of them are family-related. We mainly use this
experiment to demonstrate .o possibility of revealing users’ social relationships by using the
spatial and temporal infor~ation or the privacy leakages in their smartphone use. In addition,
we are also aware tha’ our experiments may be limited to independent app behaviors due
to the limited numt or of ap,s used in our real experiments. Involving more apps running
simultaneously in t..~ sam phone would better reveal the privacy leakages of apps having
certain depende icies. "ncreasing the number of participants and apps in real experiments and
building more sc histic ated privacy leakage profiles are our future exploration as well.

Insuffi ient letadata. Our evaluation is constrained by the availability of metadata
descriptions . ¥ d2’asets. Neither the MIT nor Foursquare data has sufficient annotation to
different. ‘te .uc relationships among users at fine granularity desired by us: colleague, collab-
orator, class nate, friend, and family. In lieu of that, we have to utilize the most commonly

used technique for detecting social communities (i.e., hierarchical clustering algorithm [25]) and
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use the results as the base of comparison, which is a common practice in s ~ial relationship
research. In the future we hope such metadata would be made available when peoy'e conduct
such experiments.

More Advanced Inference Algorithms. The thresholding aly +ithiu. that we use to
infer relationships is based on quite simple heuristics. With the av ac bility of large amount
of data, advertisers can use more advanced inference algorithms, e.y 'y utilizing data mining
techniques. In addition, certain relationship may have similar spatie' and temporal patterns
that may be hard to distinguish by using the naive algorithm, su h as f .mily and friends if they
live together. However, it may be possible to reveal the dif 2rer .. based on even finer-grained
analysis. For example, family members usually have brez -fast an< dinner together at the same
time while friends may have totally different schedules. We . re aware of this limitation and
plan to build advanced models more closely describi.. = gei.._al cases.

Time Guidelines from the Visualization 7__.. Cur visualization tool provides spatial
temporal statistics of privacy leakages, which gives the v er better ideas of the scope and degree
of privacy loss. Ideally, based on the type, destin t on, location and frequency of the leakages,
an inference algorithm can be used to estimi>vc how much of the user’s relationships can be
derived. The tool would then be able { o..>7"2 app usage guidelines in real time, such as
stopping using certain apps for some time, whe.. certain conditions are triggered (e.g., a certain
fraction of a kind of relationship is e ;posec\. This estimation requires certain knowledge about
the usage patterns of other related us. -<. - vailable to advertisers but not to us without a wide
enough installation base of the ¢0o! Hcwv to make educated guesses on such knowledge would
be one interesting research i sue.

Emerging Visualiza.ion ol. We are also aware there are several visualization tools
has been proposed rece.tly [28, 29, 30]. XDroidet al. [28] is a machine-learning based tool
that can detect malware -~ased on apps’ behaviors. Liu [29] proposed a personal privacy
assistant that can ' aild permission profiles based on people’s choices and provide permission
suggestions to us~3. 5. tarly, DroidNet [30] could help users to detect malware and make
decisions on en bling ¢ ops’ permissions based on the suggestions from experts through the
cloud servicr. However, all these tools are focusing on permissions setup and do not reveal
real-time pi‘vacy le akages and the more serious consequence of privacy leakages integrated at

the samr '~<tination.
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8. Related Work

Enck et al. [10] are the first to conduct permission analysis to identify < ~ngerous function-
alities using Android permissions, such as tracking user or voice eavesdr ~pi.g. They propose
Kirin, which performs inspections on Android API permissions during the «pp installation
time. They examine 311 top free applications and identify severa' qu: <*ionable applications
sending out users’ private information. Barrera et al. [5] perform per.. ssion analysis of the top
1,100 free applications and report many applications request ¢ nly a . nall set of permissions.
Felt et al. [6] study 100 paid and 856 free applications from e A.droid Market and find
INTERNET permission is the most frequently requested. T* .y ater propose Sowayway [9]
to detect over-privilege in applications and report 10 mo.* cor - .on unnecessary permissions.
Taylor et al. [35] analyze a privilege escalation attack where he third-party libraries can get
access to sensitive data from devices using intra-libr.. v couusion. And they prove that sev-
eral popular libraries facilitate this attack by coli. -ung enough sensitive data. Pennekamp et
al. [36] provide a survey, which reviews the - ~thods vhat have been proposed to check the
applications permission and their access to sensi.” e information.

Static analysis analyzes the code of applic.“10. ~ to infer what can happen to users’ security.
For example, PiOS [31] analyzes compile.” U)o tive-C code to identify information leaks on
the iOS platform, whereas ComDroid [32] uses disassembled DEX bytecode to identify vulner-
abilities in Intent communication ' etween. applications. Enck et al. further propose the ded
decompiler [34] to reverse Andrc'd apy i~ .tions to Java code for security analysis. FlowDroid
[37] can detect private data le %s *1 A» droid apps by performing a data flow analysis, which
becomes a highly popular s’ atic analysis framework. DroidSafe [38] uses the static analysis
on Android information flow to 1. ~ort the potential leaks of sensitive information.

Less work has been don in dynamic analysis. TaintDroid [3] tracks the flow of privacy-
sensitive data througl thira ~arty applications. It detects when sensitive data leaves the system
via interfaces such as .etwrk connections. Agarwal et al. [13] propose ProtectMyPrivacy
(PMP) which ut’..es a v owdsourcing-based mechanism to help users decide proper privacy
settings for iOS pps, s .ch as denying access to private data or substituting anonymized data.
He et al. [37 propose a privacy leakage analysis framework for third-party libraries in real time
using both « \mbinr d static and dynamic Xposed methods. Chen et al. [40] propose a method
called E 'v.."~id which gets the advantage of both static and dynamic analysis methods to
identify the orivate data leakage. Using the combination of both static and dynamic analysis,

HybriDroid can detect data leakage for both inter and intra-app communications with the
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high accuracy. Brandtzaeg et al. [41] also apply the dynamic analysis to nalyze the data
flow and measure activity in the apps over a long time, which strengthens the unu rstanding
of the complexity of privacy issues in mobile apps. Our work takes . di’.erent viewpoint
by systematically analyzing what privacy-sensitive information the ad. ~rtisc. <an collect and
aggregate at run-time from multiple apps and infer the social relatic sn p of o user. We utilize
TaintDroid as a tool to track and log the run-time privacy leakage "~ n apps.

A few app tools are developed to provide a user with the p 1vacy 'eakage information [11,
7, 8]. However, the information is provided in low-level and rc v dat . format based on each
app, which only gives the user a narrow view of the priva .y le ... 3e on a per-app basis. Our
visualization tool seeks to provide a multi-level statisti =l view Jf privacy leakage and gives
the user a better understanding of the implication of leaked p ivate information.

Finally, some work develops smartphone platfoi.~ bas. . privacy protection mechanisms.
Ongtang et al. propose Saint [26] and Porscha [27" ., _...cading the functionality of the Kirin
system to allow runtime permission inspection bv defi..ng runtime policies. Bugiel et al. pro-
pose XManDroid [42] to mitigate permission priv.'e e escalation attacks in Android by tracking
communication between components in differ. n. ~oplications. To prevent smartphone applica-
tions from leaking phone identifiers and . «...*~n information, MockDroid [11] and TISSA [12]
provide empty, fake or anonymized informatio.. to applications. AppFence [20] builds on top
of Taintdroid to actively block netr ork t.wnsmissions containing user-defined sensitive infor-
mation, which should be used or the Jev ce only. Our work focuses on a different aspect of
gaining a systematic understar dinc of the social relationship inference consequences from the
privacy leakage by an adver .iser. . -:h understanding may motivate the user to adjust app

usage pattern or adopt delense .. ~chanisms to control the sensitive data leakage.

9. Conclusion

Privacy leakage ',y smai.phone apps has attracted significant research efforts in recent
years. The commu..’* has proposed various defense mechanisms, from permission manage-
ment, code ana'ysis, t» obfuscated data. Nevertheless, the characteristics of apps’ run-time
privacy leakage . ehavi ir is still not well investigated, and the consequences of such privacy
leakages he /e not attracted much attention. This paper serves as the first step towards a
comprehensi, ~ nn-_erstanding of the advertiser’s perspective. In particular, we seek to discover
what an ~dv:iwser can infer about users’ social and community relationships by combining
private data ‘rom many apps. Our analysis on the run-time privacy leakage behavior of nearly

200 most popular apps from 19 categories of Google Play shows that dominant advertisers
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can easily gather data from many apps. We propose a privacy leakage infe ence framework
that describes a general method for inferring users’ social and community relation. hips. Our
experimental study over one month demonstrates that an advertiser csa in er 90% of users’
social relationship correctly using simple heuristics. This observation . furv. ~r confirmed by
human mobility trace driven studies of two large scale data sets. we finaliy build a visual-
ization tool that can capture and display the spatial-temporal stav. +':s of privacy leakage to
different advertisers in real time. We hope our work will eventr ally le~d to a complete picture

of the advertiser’s perspective.
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