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Qiang Kou

COMPLEX PROTEOFORM IDENTIFICATION USING TOP-DOWN MASS

SPECTROMETRY

Proteoforms are distinct protein molecule forms created by variations in genes, gene

expression, and other biological processes. Many proteoforms contain multiple primary

structural alterations, including amino acid substitutions, terminal truncations, and post-

translational modifications. These primary structural alterations play a crucial role in

determining protein functions: proteoforms from the same protein with different alterations

may exhibit different functional behaviors. Because top-down mass spectrometry directly

analyzes intact proteoforms and provides complete sequence information of proteoforms, it

has become the method of choice for the identification of complex proteoforms. Although

instruments and experimental protocols for top-down mass spectrometry have been ad-

vancing rapidly in the past several years, many computational problems in this area remain

unsolved, and the development of software tools for analyzing such data is still at its very

early stage. In this dissertation, we propose several novel algorithms for challenging com-

putational problems in proteoform identification by top-down mass spectrometry. First, we

present two approximate spectrum-based protein sequence filtering algorithms that quickly

find a small number of candidate proteins from a large proteome database for a query mass

spectrum. Second, we describe mass graph-based alignment algorithms that efficiently iden-

tify proteoforms with variable post-translational modifications and/or terminal truncations.

Third, we propose a Markov chain Monte Carlo method for estimating the statistical sig-

nificance of identified proteoform spectrum matches. They are the first efficient algorithms

that take into account three types of alterations: variable post-translational modifications,

unexpected alterations, and terminal truncations in proteoform identification. As a result,

they are more sensitive and powerful than other existing methods that consider only one

or two of the three types of alterations. All the proposed algorithms have been incor-

porated into TopMG, a complete software pipeline for complex proteoform identification.

Experimental results showed that TopMG significantly increases the number of identifica-

tions than other existing methods in proteome-level top-down mass spectrometry studies.
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TopMG will facilitate the applications of top-down mass spectrometry in many areas, such

as the identification and quantification of clinically relevant proteoforms and the discovery

of new proteoform biomarkers.

Huanmei Wu, PhD, Chair
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CHAPTER 1

INTRODUCTION

1.1 Proteoforms

Proteoforms [2] are distinct protein forms created by variations in genes, gene expression,

and other biological processes. These proteoforms often contain multiple primary struc-

tural alterations (PSAs), including amino acid sequence variations, terminal truncations,

and post-translational modifications (PTMs). Proteoforms are functional macromolecules in

cellular processes, and proteoform functions are primarily determined by PSAs. For exam-

ple, the combinatorial patterns of PSAs in histone proteins determine their gene regulatory

functions [3, 4]. Identification and characterization of these proteoforms aid researchers in

answering many questions in basic and translational research [5, 6].

Most protein sequence databases, such as UniProt [7], provide only one reference protein

sequence for each gene or transcript isoform even though many proteoforms can be gener-

ated from one gene or transcript. Compared with its corresponding reference sequence in

the database, a complex proteoform often contains various PSAs (Figure 1.1), which can

be divided into five categories: (a) fixed PTMs, which modify every instance of specific

residues in the protein sequence, such as carbamidomethylation and carboxymethylation;

(b) sequence variations, such as mutations, insertions, and deletions; (c) variable PTMs,

which may or may not modify specific residues in the protein sequence, such as phospho-

rylation and oxidation; (d) terminal truncations, which remove a prefix and/or a suffix of

the protein sequence; and (e) unknown mass shifts introduced by unknown PSAs. In Fig-

ure 1.1, the proteoform contains four kinds of PSAs: carbamidomethylation is a fixed PTM

that modifies every cysteine (C) residue; phosphorylation is a variable PTM that may mod-

ify serine (S), threonine (T), and tyrosine (Y) residues, but only one serine (S) residue is

modified in the proteoform; the N-terminal truncation removes the prefix “MTE”; multiple

sequence variations are also observed, including an amino acid mutation from “R” to “K”,

an insertion of “KK”, a deletion of “G”. The differences between the target proteoform and

its reference sequence make proteoform identification a challenging computational problem.
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Reference sequence:

Proteoform:

:Carbamidomethylation :Phosphorylation

MTEPRSTRAASP - - EARDGCRTSDSRTRCSR

Terminal
truncation

PRSTK

Mutation

AASPKK

Insertion

EARD -

Deletion

CRTSDS

PTM

RTRCSR

Figure 1.1: Comparison of a complex proteoform and its corresponding reference protein
sequence in the database. The proteoform has an N-terminal truncation “MTE”, an amino
acid mutation from “R” to “K”, an insertion of “KK”, a deletion of “G”, one phosphorylated
serine residue, and two modified cysteine residues with carbamidomethylation. Revised from
Kou et al. [1].

1.2 Mass spectrometry

Mass spectrometry (MS) is an analytic technique for measuring the mass-to-charge ratios

(m/z) of charged particles. It is the de facto standard method for high-throughput pro-

teomics studies. Figure 1.2 illustrates the ionization and measurement steps in an MS

experiment, in which the ion abundance and m/z value of an ionized protein are measured.

The application of MS in biomedical research made rapid progress with the development

of the electrospray ionization (ESI) technique [8]. Because ESI generates ions directly from

the solution, liquid chromatography (LC) are often used for protein separation and coupled

to a mass spectrometer in proteome-level proteomics studies.

P

R

O

T

E

I

N

ionization

P

R

H
+

O

T

E

H
+

I

N

measure

mass/charge

m/z

intensity

protein

abundance

mass/charge of

the ionized protein

Figure 1.2: An illustration of the ionization and measurement steps in MS. The abundance
and mass-to-charge ratio of a protein are measured.

Using only the molecular masses of proteoforms cannot provide sufficient information

to infer their corresponding amino acid sequences. The reason is that a molecular mass has

many candidate proteoforms that have different amino acid sequences. Tandem mass spec-

trometry (MS/MS) [9] was introduced to solve this problem by breaking down precursor

2



ions and measuring m/z values of their fragments ions (Figure 1.3). Two mass analyzers

are used in the MS/MS method: the first mass analyzer (MS1) isolates the precursor ions

in a fixed range of m/z and store them in a chamber (e.g., an ion trap) where the precursor

ions are fragmented. Commonly used fragmentation methods include collision with neu-

tral gas molecules [10, 11] and transferring electrons to positively charged molecules [12].

The resulting fragment ions are analyzed by the second mass analyzer (MS2) to generate

an MS/MS spectrum. A precursor ion is often broken into two fragment ions in the pro-

cess. Because many precursor ions of the same proteoform are collected and the breakage

points of precursor ions are not fixed, a list of fragment ions with various breakage points

are generated. Ideally, the MS/MS spectrum contains peaks of fragment ions supporting

all breakage points of the proteoform, providing enough information for proteoform iden-

tification and characterization. The MS/MS method achieved great success in proteomics

studies [8, 13, 14] because of its accuracy and high-throughput. The fast development of

high-resolution mass spectrometers makes in-depth profiling of complex proteomes not only

feasible [15] but also time-efficient [16].

sample

MS1

MS1 spectra

MS2

Fragmentation

MS2 spectra

Figure 1.3: An illustration of tandem mass spectrometry (MS/MS) in which two mass
analyzers are used. The first mass analyzer (MS1) isolates the target precursor ions (in the
red dotted box) from other ions based on m/z values. Then the selected precursor ions are
fragmented and analyzed by the second mass analyzer (MS2).

1.3 MS-based proteoform identification

MS methods in proteomics research can be roughly divided into two categories: bottom-up

MS and top-down MS. In bottom-up MS, proteins are digested with a protease, such as

3



trypsin, before MS analysis. The digestion step results in a mixture of short peptides. On

the other hand, top-down MS skips the digestion step and directly analyzes intact proteo-

forms [17]. This gives top-down MS unique advantages in identifying complex proteoforms

with multiple PSAs. Fragment ion series in top-down MS/MS spectra provide essential

information for identifying and localizing PSAs.

A top-down MS/MS spectrum contains a list of peaks (Figure 1.4(a)), each of which

is represented as (m/z, intensity), where m/z and intensity are the mass-to-charge ratio

and abundance of its corresponding fragment ion, respectively. The precursor mass of the

MS/MS spectrum measures the molecular mass of the proteoform being studied. The first

step in top-down spectral interpretation is usually spectral deconvolution [18–25], which

converts fragment ion peaks of various charge states and isotopomers into neutral monoiso-

topic fragment masses (Figure 1.4).

Let DB be a protein sequence database and Ω a set of variable PTMs (sequence vari-

ations can be handled as variable PTMs). The set of all possible proteoforms generated

from sequences in DB with variable PTMs in Ω and/or terminal truncations is denoted

by DB(Ω). Given a deconvoluted MS/MS spectrum S and a sequence database DB, the

proteoform identification problem is to find the proteoform F ∈ DB(Ω), which can best ex-

plain S. Various scoring functions [26] for peptide spectrum matches in bottom-up MS can

be applied to measure the similarity of the proteoform spectrum matches (PrSM) (F, S).

In this thesis, we evaluate (F, S) using the shared mass counting score which counts the

number of neutral masses in S explained by the theoretical neutral fragment masses of F .

Database search is the dominant method for this problem, where top-down MS/MS spec-

tra are searched against a protein sequence database or an annotated database for spectral

identification [1, 18, 27–39]. A list of available software tools for proteoform identification

using top-down MS is shown in Table 1.1.

Extended proteoform databases and spectral alignment are the two main strategies in

database search. ProSightPC [27] constructs a “shotgun annotated” proteoform database

containing known modified proteoforms, and efficiently identifies proteoforms in the database.

Because it only includes the commonly observed proteoforms to keep the database size man-

ageable, its ability to identify uncommon or novel proteoforms is limited.
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Figure 1.4: An example of top-down spectral deconvolution: (a) a centroided top-down mass
spectrum; (b) a deconvoluted top-down mass spectrum of the spectrum in (a). Fragment
ion peaks of various charge states and isotopomers are converted into neutral monoisotopic
fragment masses.
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Spectral alignment is used by many software tools to identify proteoforms with un-

expected alterations [1, 28, 32, 35–37]. The spectral alignment algorithm finds an optimal

alignment between the spectrum S and the protein sequence P by inserting mass shifts cor-

responding to the unexpected alterations in the blind mode. When the spectrum S contains

enough fragment masses, the alignment algorithm is capable of identifying and character-

izing the proteoform. MS-Align+ [32] and TopPIC [36] are two commonly used tools for

identifying proteoforms with unexpected alterations using top-down MS. In these tools,

variable PTMs are treated as unexpected alterations, making them inefficient in identify-

ing ultramodified proteoforms with many variable PTMs. To address this problem, several

spectral alignment algorithms, such as MS-Align-E [35], MSPathFinder [18], and pTop [37],

have been proposed to identify proteoforms with many variable PTMs.

One primary goal of translational research is to identify the molecular signatures or

biomarkers of specific diseases or disease phenotypes from patient samples. After being

found, these biomarkers often provide novel methods to detect and treat particular diseases.

Recent findings suggest that mRNA abundance is only weakly correlated to the real protein

expression levels [43]. Here we argue that intact proteoforms represent an efficient class

of biomarkers. since they can recognize the real biological differences in samples. With

increasing precision, top-down MS has become the method of choice to measure proteoforms

in their intact states. Many efforts have been made to identify and quantify the disease-

related proteoforms [44–49], including type II diabetes and myocardial dysfunction.

1.4 Contributions

The primary goal of this dissertation is to develop a complete pipeline for complex pro-

teoform identification. In this dissertation, we propose several novel algorithms for com-

putational problems in proteoform identification using top-down MS/MS. We apply the

proposed algorithms over simulated and real top-down MS/MS data sets to evaluate their

performance. We summarize the work in this dissertation as follows and present more

details in the following chapters (Figure 1.5).
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1.4.1 Approximate spectrum-based filtering algorithms

Protein sequence filtering is an indispensable step in proteome-level analyses because it is

extremely slow to align thousands of mass spectra against thousands of protein sequences.

Two kinds of methods are widely used: tag-based methods and unmodified protein fragment

(UPF)-based methods. Tag-based methods depend on consecutive fragment ions in the

query spectrum, and the efficiency is limited in top-down MS data due to the missing

peaks. UPF-based methods achieved satisfactory performance in identifying unexpected

alterations. However, they may fail in the sequence filtration when the target proteoform

contains more than two variable PTMs and/or unexpected alterations.

To address the above problems, we propose two approximate spectrum-based filtering

(ASF) algorithms that quickly find a small number of candidate proteins from a large pro-

teome database for a query spectrum whose target proteoform has multiple variable PTMs.

In the proposed ASF algorithms, the query spectrum is transformed into an approximate

spectrum by removing variable PTMs in the match between the target reference sequence

and the spectrum. Experiments on simulated and real data set demonstrated ASF algo-

rithms outperformed existing ones on proteoforms with multiple variable PTMs.

1.4.2 Mass graph-based alignment algorithms

Although spectral alignment [28] achieved great success in identifying proteoforms with

variable PTMs and unknown mass shifts, existing alignment algorithms have their limita-

tions: MS-Align+ [32] and TopPIC [36] can identify proteoforms with at most two unknown

mass shifts; MS-Align-E [35] and pTop [37] can identify proteoforms with variable PTMs,

but not those with terminal truncations; MSPathFinder [18] can identify variable PTMs,

but the identification of terminal truncations depends on high-quality sequence tags.

In this dissertation, we design a new data structure, called mass graphs, to represent all

possible proteoforms generated from one reference sequence with multiple variable PTMs

and/or terminal truncations. We also propose mass graph-based alignment algorithms

to identify proteoforms with multiple variable PTMs and/or terminal truncations. High

accuracy has been reported in experiments on simulated and real top-down MS data sets.
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1.4.3 Statistical significance estimation

A fundamental problem in proteoform identification is to distinguish between correct and

incorrect identifications. Many methods have been developed, but they have limitations in

estimating the statistical significance of identified complex proteoforms: distribution fitting

methods are computationally efficient, but they may fail in estimating extremely small p-

values; the generating function method cannot handle identified proteoforms with more

than two mass shifts; the Markov chain Monte Carlo (MCMC) method in MS-DPR was

designed for bottom-up MS and cannot be directly used for top-down MS since it does not

allow any PTMs.

In this dissertation, we propose a new MCMC method for estimating the statistical

significance of identified complex proteoforms with multiple variable PTMs. We design a

new Markov chain model to represent proteins for top-down spectral interpretation and use

a greedy algorithm for quick estimation of the similarity score between the query spectrum

and a protein with multiple variable PTMs. We use four top-down MS data sets to evaluate

our new method and show its high discriminative capacity.

1.5 Organization of the dissertation

The rest of this dissertation work is organized as follows. In Chapter 2, we describe the

data sets used in this study. In Chapter 3, we present two approximate spectrum-based

protein sequence filtering algorithms in which both variable PTMs and unexpected alter-

ations are considered. In Chapter 4, we describe mass graphs, which efficiently represent

proteoforms with multiple variable PTMs and/or terminal truncations. Mass graph-based

alignment algorithms are also proposed to identify complex proteoforms with variable PTMs

and/or terminal truncations. In Chapter 5, an MCMC method is proposed to estimate the

statistical significance of identified PrSMs. In Chapter 6, we summarize the work of this

dissertation and discuss some future directions.
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Protein sequence
filtering (Chapter 3)

Protein databaseMS/MS spectra
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Identified PrSMs

Figure 1.5: Overview of the dissertation work.
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CHAPTER 2

DATA SETS

Five top-down MS data sets were used in this dissertation: the first was generated from

Escherichia coli (EC) K-12 MG1655, the second and the third from purified human histone

proteins, the fourth from breast tumor xenograft samples, and the fifth from human MCF-7

cells.

The EC data set was obtained using a LC system coupled with an LTQ Orbitrap Velos

mass spectrometer (Thermo Scientific, Waltham, MA). The top 4 ions in each MS spectrum

were selected for MS/MS analysis and the alternating fragmentation mode was used. With a

resolution of 60 000, a total of 2 027 collision-induced dissociation (CID) and 2 027 electron-

transfer dissociation (ETD) top-down MS/MS spectra were collected [36].

The first histone data set was generated from purified histone H4 protein [35]. Core

histones were separated by a 2-dimensional reversed-phase and hydrophilic interaction liquid

chromatography (RP-HILIC) system where the histone H4 protein was isolated in the first

dimension. The histone H4 protein was further analyzed by an LTQ Orbitrap Velos mass

spectrometer (Thermo Scientific, Waltham, MA). With a resolution of 60 000, a total of

1 626 CID and 1 626 ETD spectra were acquired.

The second histone data set was generated from the human histone H2A, H2B, H3, and

H4 proteins. Core histones were separated in the first dimension using a Jupiter C5 column

and further separated in the second dimension by a weak cation exchange hydrophilic inter-

action LC (WCX-HILIC) using a PolyCAT A column. All acquisitions were performed by

an LTQ Orbitrap Velos mass spectrometer (Thermo Scientific, Waltham, MA) with a 60 000

resolution. In total, 11 378 CID and 11 378 ETD top-down MS/MS spectra were collected,

including 3 462 CID and 3 462 ETD spectra from histone H3 sample. More details of the

MS experiment can be found in [50].

The breast tumor xenograft data set [51] was generated using an Orbitrap Elite mass

spectrometer (Thermo Scientific, Waltham, MA). Cryopulverization of the tumor xenografts

was performed using the standard CPTAC protocols [52]. A basal-like (WHIM2) breast

cancer sample and a luminal B (WHIM16) breast cancer sample [53, 54] were used for
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the experiments. Protein separation was achieved using a commercial GELFREE 8100

fractionation system (Expedeon, Cambridge, UK). With a resolution of 60 000, a total of

51 474 and 50 372 higher-energy collisional dissociation (HCD) top-down MS/MS spectra

were collected from the WHIM2 and WHIM16 samples respectively.

For the MCF-7 data set, proteins extracted from MCF-7 cells were reduced with dithio-

threitol and alkylated with iodoacetamide, and then separated by capillary zone elec-

trophoresis (CZE). A one-meter linear polyacrylamide coated capillary (50 µm/360 µm

i.d./o.d.) was used for CZE, and a commercialized electro-kinetically pumped sheath flow

CE-MS interface (CMP Scientific, Brooklyn, NY) was used to couple CZE to MS [55, 56].

The background electrolyte (BGE) of CZE was 10% (v/v) acetic acid. The sample was

dissolved in 50 mM ammonium bicarbonate (pH 8.0) for the dynamic pH junction based

CZE-MS/MS [57], and injected into the capillary via applying 5-psi pressure for 95 seconds.

The sample injection volume was 500 nL. 28 kV was applied across the capillary for separa-

tion and 2 kV was applied for electrospray. At the end of the separation, 20 psi was applied

at the injection end for 10 min to flush the capillary with the BGE. A Q-Exactive HF mass

spectrometer (Thermo Fisher Scientific, Waltham, MA) was coupled with the CZE system.

The top 3 precursor ions in each MS spectrum were selected for MS/MS analysis. The mass

resolution for MS and MS/MS was 120 000 and 60 000, respectively. The AGC target for

MS and MS/MS was the same, 1E6. The number of microscan was 4 and 3 for MS and

MS/MS, respectively. A total of 1 523 HCD MS/MS spectra were acquired.

All the raw data files were controided and converted to mzML files by msconvert in

ProteoWizard (version 3.0.11537) [58]. The mzML files were further deconvoluted by TopFD

(version 1.1.2), an improved version of MS-Deconv [23]. TopFD converted all MS/MS

spectra into lists of neutral fragment masses. In TopFD, candidate isotopomer envelopes,

each of which contains peaks from the same fragment ion with the same charge state, are

first obtained by using the theoretical intensity distributions of these peaks, and are then

selected by a dynamic programming algorithm. Finally, a neutral monoisotopic mass is

computed for each selected isotopomer envelope. TopFD often significantly simplifies top-

down MS/MS spectra and converts a complex spectrum with thousands of peaks into a

deconvoluted one with dozens or hundreds of fragment masses.

12



CHAPTER 3

PROTEIN SEQUENCE FILTERING ALGORITHMS FOR PROTEOFORM

IDENTIFICATION

3.1 Introduction

There are two main steps in spectral alignment-based software tools for identifying pro-

teoforms with variable PTMs and/or unexpected alterations by database search. First, a

filtering algorithm is used to filter out most candidate protein sequences in the database for

the query mass spectrum. Second, a spectral alignment algorithm is employed to align the

mass spectrum against each remaining candidate protein sequence to find the best scoring

PrSM [28]. It is extremely slow to align mass spectra against tens of thousands of database

protein sequences [32]. Therefore, the filtering step is indispensable in proteome-level anal-

yses. A filtering algorithm is efficient if it keeps the correct target protein sequence as a

candidate for spectral alignment.

Most proteoform identification methods allow fixed PTMs and terminal truncations in

the target proteoform. There are several scenarios for the other two types of alterations: (1)

neither variable PTMs nor unexpected alterations are allowed in the target proteoform; (2)

only variable PTMs are allowed; (3) only unexpected alterations are allowed; and (4) both

variable PTMs and unexpected alterations are allowed. In the first scenario, a candidate

protein sequence (may be truncated) is filtered out if its molecular mass does not match

the precursor mass of the query spectrum. In the last three scenarios, the precursor mass of

the query spectrum may be different from the molecular mass of its corresponding database

sequence. For the second scenario, one filtering method is to check if the difference between

the precursor mass and the molecular mass can be explained by a combination of variable

PTMs. In this chapter, we focus on filtering methods for the last three scenarios.

There are three main approaches for protein sequence filtering. In the first approach, a

large error tolerance is allowed between the precursor mass of the query spectrum and the

molecular mass of the candidate sequence [59]. In top-down MS, the method is employed

in the Delta-M mode in ProSightPC [27]. However, when the error tolerance is very large,
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the filtering method reports many candidates, significantly increasing the running time of

database search.

The second approach is based on sequence tags, which were proposed by Mann et al. in

a pioneer work in 1994 [60]. In this approach, sequence tags are generated from the query

spectrum and searched against the database to find hits, based on which top candidates

are selected. Sequence tags and gapped sequence tags have been widely and successfully

used for bottom-up spectral interpretation [61–67]. In top-down MS, tag-based methods

have been used in USTag [68], pTop [37], MSPathFinder [18], and the sequence tag mode

in ProSightPC [27]. The accuracy of tag-based methods depends on whether the query

spectrum contains consecutive fragment ions.

The third approach uses unmodified protein fragments (UPFs) and their matched frag-

ment masses in the query spectrum to filter proteins [32,36]. The idea is to find a mass shift

for the fragment masses in the query spectrum such that many shifted fragment masses are

explained by the unmodified target protein sequence. This method is computationally in-

tensive. Fortunately, index-based algorithms [69–71] have been proposed to partially solve

the problem. In top-down MS, UPF-based methods have been used in MS-Align+ [32] and

TopPIC [36] and achieved satisfactory performance in identifying unexpected alterations.

The three filtering approaches can be combined to improve filtering efficiency. For example,

proteins can be filtered by combining a large error tolerance for the precursor mass and

sequence tags extracted from the query spectrum.

The three filtering approaches are designed to identify proteoforms with a limited num-

ber (1 or 2 in most cases) of unexpected alterations. These methods may fail to keep the

target database protein sequence in filtration when the target proteoform contains more

than 2 variable PTMs and/or unexpected alterations.

In this chapter, we propose two Approximate Spectrum-based Filtering (ASF) algorithms

for identifying complex proteoforms with variable PTMs and those with both variable PTMs

and unexpected alterations. Let F be the target proteoform and F ′ a proteoform obtained

from F by removing h variable PTMs. In the ASF algorithms, the query spectrum is trans-

formed into an approximate spectrum of F ′, which is searched against database sequences
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to find candidate proteins. After the transformation, the number of variable PTMs in the

target proteoform is reduced by h (Figure 3.1), significantly increasing filtering efficiency.

200 Da

T Y D S + Ph R P

Intensity

Prefix residue mass

79.97 Da

Intensity

Prefix residue mass
T Y D S R P

Figure 3.1: A prefix residue mass spectrum (top) of the proteoform TYDS[Ph]RP with a
phosphorylation site on the serine residue is transformed into an approximate prefix residue
mass spectrum (bottom) of the unmodified protein TYDSPR. In the top spectrum, each
peak represents a possible prefix residue mass extracted from the experimental spectrum,
and bold peaks are those mapped to theoretical prefix residue masses of the proteoform
TYDS[Ph]RP. The prefix residue mass 200 Da is a guessed prefix residue mass for the
modification site. All peaks (in the box) with a mass larger than 200 Da are shifted to the
left by 79.97 Da, which is the mass shift of a phosphorylation site. In the bottom spectrum,
the two shifted bold peaks in the box are matched to prefix residue masses of TYDSRP,
and the left most peak in the box is not matched to any prefix residue mass of TYDSRP
because of the error in the estimated 200 Da for the modification site.

We evaluated the ASF algorithms and 4 existing ones for protein sequence filtration in

top-down MS database search. Experiments on simulated data showed that the ASF algo-

rithms outperformed the existing ones for complex proteoform identification. By combining

the ASF and mass graph alignment algorithms [1], we identified many phosphorylated pro-

teoforms missed by ProSightPC from a top-down MS data set of breast cancer xenograft

samples.
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3.2 Methods

In the ASF algorithms, approximate spectra are first generated from the query spectrum

and then searched against the protein database using the methods proposed in UPF-based

filtering algorithms. We first review tag-based and UPF-based filtering algorithms and then

describe the ASF algorithms.

3.2.1 Tag-based filtering algorithms

A sequence tag is a short amino acid sequence extracted from an MS/MS spectrum. Most

tag extraction methods are based on spectrum graphs [61]. A spectrum graph is constructed

from a deconvoluted MS/MS spectrum using three steps (Figure 3.2): (a) A node is added to

the spectrum graph for each fragment mass in the spectrum. (b) Two nodes are connected

by an edge if the difference between their corresponding masses is similar to (within an

error tolerance) the mass of an amino acid residue. In some tag generation methods, two

nodes are connected if their corresponding mass difference is similar to the mass of one or

two amino acid residues. The label of the edge is the amino acid. (c) A node is removed

from the graph if there are no edges connecting to it. Each path in the spectrum graph

corresponds to a sequence tag. A top-down spectrum graph typically consists of several

connected components because of many missing peaks.

We describe two sequence tag-based filtering methods, which are used in MS-Align+Tag

and MSPathFinder [18], respectively. The first method uses the long tag strategy to obtain

sequence tags from a spectrum graph with three steps: (a) A longest sequence tag is selected

from each component of the spectrum graph. If a component contains several longest

sequence tags with the same length, one of them is arbitrarily selected. (b) The reported

sequence tags are filtered to remove those with less than k amino acids (k = 4 in the

experiments). (c) For each remaining sequence tag, all of its substrings with length k are

reported. For example, in Figure 3.2, the longest sequence tags NVYTSAG and AC are

extracted from the spectrum graph, then the tag AC is filtered out because its length is less

than k = 4, and finally four length-4 short tags are extracted: NVYT, VYTS, YTSA, and

TSAG.
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Intensity

Mass221.09

N

335.13

V

434.20

Y

526.22

A
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T
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856.38

913.40
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1055.24
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N V Y

A
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Figure 3.2: A spectrum graph (bottom) is constructed from a deconvoluted MS/MS spec-
trum (top). The two left most nodes correspond to masses 221.09 Da and 335.13 Da in the
spectrum. These two nodes are connected by an edge because the difference between 221.09
and 335.13 is similar to the mass of an asparagine residue (114.04 Da). The spectrum graph
contains two connected components.

In the second method, we extract from the spectrum graph all sequence tags with a

length l between the minimum length lmin and the maximum length lmax, that is, lmin ≤

l ≤ lmax. In the experiment, lmin = 5 and lmax = 8. First, all tags with length lmax are

extracted from the spectrum graph and added to a sequence tag set T . For example, when

lmax = 6, two tags NVYTSA and VYTSAG are extracted from the graph in Figure 3.2.

Next, all tags with length lmax − 1 are extracted. A length lmax − 1 tag is added to T if

it is not a substring of any tag in T . For example, the length-5 sequence tag NVYTS in

Figure 3.2 is not added to T because it is a substring of the length-6 sequence tag NVYTSA,

and the sequence tag ATSAG is added to T because it is not a substring of any tag in T .

Two tags in T may share a substring, but their whole sequences are different. Similarly, we

further extract sequence tags with lengths lmax− 2, . . . , lmin and add them to T if they are

not substrings of tags in T . The two methods are called TAG-LONG (with the long tag

strategy) and TAG-VAR (with tags of various lengths), respectively.

Because some sequence tags are extracted from suffix fragment ion series, a reversed tag

is generated from each extracted tag. The extracted sequence tags and their reversed tags

are searched against a protein database to find a small number of top candidate proteins.

Because the lengths of proteins vary significantly from dozens to tens of thousands, we

compute similarity scores between sequence tags and protein fragments with similar lengths
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rather than whole proteins. Protein fragments are generated using a parameter L (L = 150

in the experiments). If the length of a protein is no larger than L, the whole protein

sequence is a fragment. Otherwise, each length L substring of the protein is a fragment,

and the total number of fragments of the protein is n− L+ 1.

Let T be a set of sequence tags and reversed tags extracted from a spectrum graph.

We define a similarity score between a candidate fragment and T . If a sequence tag is a

substring of a fragment, we say the sequence tag has a hit in the fragment. The tag score

between the fragment and T is the number of tags in T that have a hit in the fragment.

The tag score between a protein and T is the maximum tag score among its fragments. All

proteins in the protein database are ranked based on their tag scores and the top t (t = 20

in experiments) proteins are reported as filtering results.

3.2.2 UPF-based filtering algorithms

We introduce some notations for describing UPF-based filtering algorithms. Let mass(a) be

the residue mass of an amino acid a. The residue mass of a protein sequence P = a1a2 . . . an

is the sum of the residue masses of its amino acids, that is,
∑n

k=1 mass(ak). The residue

mass of the length-i prefix a1a2 . . . ai is a prefix residue mass of P , denoted by pi. The

residue mass of the length-i suffix an−i+1 . . . an is a suffix residue mass of P , denoted by si.

Specifically, the residue masses of the empty prefix and the empty suffix are 0, that is, p0 = 0

and s0 = 0. We denote the set of all prefix residue masses of P as Ppre = {p0, p1, . . . , pn}

and the set of all suffix residue masses of P as Psuf = {s0, s1, . . . , sn}.

Let S be a deconvoluted top-down MS/MS spectrum with a precursor mass M . The

set of deconvoluted neutral fragment masses of S are converted into a set of possible prefix

(suffix) residue masses corresponding to the masses of proteoform prefixes (suffixes). When

S is a CID spectrum, both the prefix residue mass set and the suffix residue mass set

contain the following two masses: 0 and M − mass(H2O), where mass(H2O) is the mass

of a water molecule. In addition, for each fragment mass x, two masses x and M − x

are added to the prefix residue mass set, and two masses x − mass(H2O) and M − x −

mass(H2O) are added to the suffix residue mass set. The mass of a water molecule is

deducted from x for suffix residue masses because the mass difference between a neutral
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y-ion fragment mass and its corresponding suffix residue mass is mass(H2O). The sets

of fragment masses, prefix residue masses, and suffix residue masses of spectrum S are

denoted as Sfra , Spre , and Ssuf , respectively. For example, when S is a CID spectrum

with a precursor mass 302.17 Da and two neutral fragment masses 71.04 Da and 174.11

Da, the mass 0 and M − mass(H2O) = 284.16 are added into Spre and Ssuf . Spre =

{0, 71.04, 128.06, 174.11, 231.13, 284.16} after the masses x and M − x for fragment masses

x are added; Ssuf = {0, 53.03, 110.05, 156.10, 213.12, 284.16} after the masses x−mass(H2O)

and M − x −mass(H2O) for x are added. Similarly, we use the most commonly observed

fragment ion types to convert other types of deconvoluted spectra into prefix (suffix) residue

masses. For example, we choose c, z-dot, and z-prime ions as the most commonly observed

ones in ETD spectra, and each fragment mass in the deconvoluted spectrum is converted

to three possible prefix residue masses based on the mass differences between the neutral

prefix residue mass and its corresponding c, z-dot and z-prime fragment masses.

Two UPF-based filtering methods are implemented in TopPIC [36]. The first method is

based on diagonal scores defined below. Let A,B be two set of masses. The mass counting

score of A and B is the number of masses in A that match masses in B (within an error toler-

ance), denoted by C(A,B). Let shift(A, d) be the set of masses generated by adding a shift d

to each mass in A. The diagonal score of A and B is the maximum mass counting score of A

and B among all shift values (Figure 3.3(a)), denoted by D(A,B) = maxdC(shift(A, d), B).

Let P be an unmodified protein sequence and F a modified form of P with truncations and

PTMs. A high diagonal score between Ppre and Fpre means that F contains a long unmodi-

fied fragment. For example, the proteoform T[Ph]IDEST[Ph]R in Figure 3.3(a) contains an

unmodified fragment IDES. When a CID spectrum of T[Ph]IDEST[Ph]R contains peaks

of the b-ions b1, b2, . . . , b5, the diagonal score between the prefix residue masses of PEP-

TIDESTRING and those of the spectrum is at least 5. In the first method, the similarity

score between a database protein sequence P and a deconvoluted spectrum S is defined as

D(Ppre , Spre).

The second method is based on restricted diagonal scores. The restricted diagonal score

of A andB is the maximum mass counting score among all non-positive shifts whose absolute

values equal a mass in A (Figure 3.3(b)), denoted by R(A,B) = maxd∈AC(shift(A,−d), B).
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Figure 3.3: Diagonal scores and restricted diagonal scores. (a) The diagonal score between
the prefix residue masses of PEPTIDESTRING and T[Ph]IDEST[Ph]R is 5, correspond-
ing to the 5 dots in the diagonal. The score is obtained by shifting the prefix residue
masses of PEPTIDESTRING by −243.18 Da, which equals −mass(PEPT) + mass(T[Ph]).
(b) The restricted diagonal score between the prefix residue mass of PEPTIDESTRING
and TIDEST[Ph]R is 6. The score is obtained by shifting the prefix residue masses of
PEPTIDESTRING by −323.15 Da = −mass(PEP).

For example, when A is the set of prefix residue masses {0, 97.05, 226.09} of the peptide PE,

R(A,B) = max{C(shift(A, 0), B), C(shift(A,−97.05), B), C(shift(A,−226.09), B)}. A high

restricted diagonal score between Ppre and Fpre means that F contains a long unmodified

prefix that is a substring of P . For example, the proteoform TIDEST[Ph]R in Figure 3.3(b)

contains an unmodified prefix TIDES that is a substring of PEPTIDESTRING. In contrast,

the restricted diagonal score between the prefix residue masses of T[Ph]IDEST[Ph]R and

those of PEPTIDESTRING is 1 because T[Ph]IDEST[Ph]R does not have a long unmodified

prefix. Similarly, a high restricted diagonal score between Psuf and Fsuf means that F

contains a long unmodified suffix that is a substring of P . In the second method, the

similarity score between a protein sequence P and a deconvoluted spectrum S is defined as

R(Ppre , Spre)+R(Psuf , Ssuf ), which is determined by the unmodified prefix and suffix of the

target proteoform. Different from the computation of a diagonal score, only a small number

of mass shifts are considered to compute a restricted diagonal score. As a result, the chance

that a random spectrum protein pair has a high restricted diagonal score is significantly

reduced compared with a high diagonal score. However, when the target proteoform has two

modifications: one at the N-terminus and the other at the C-terminus, using the restricted
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diagonal score may fail to retain the target database protein sequence in filtration. The

second method is efficient for identifying proteoforms with a long unmodified prefix or suffix.

In the two filtering methods, the two similarity scores are used to rank proteins in the

database, and the top t proteins are reported as filtering results. The scores are computed

using index-based algorithms [69]. The two methods are called UPF-DIAGONAL (the

diagonal score) and UPF-RESTRICT (the restricted diagonal score), respectively.

3.2.3 ASF algorithms

In bottom-up MS, variable PTMs are often incorporated into database peptides to identify

modified peptides. However, this approach is inefficient for top-down MS (see Section 3.4).

In the proposed ASF algorithms, we incorporate variable PTMs into the query spectrum

to improve the efficiency and sensitivity of protein filtration.

We use phosphorylation as an example to explain how to generate an approximate

spectrum. Let δ be the mass shift of phosphorylation. Let P = a1 . . . ai . . . an be an

unmodified protein sequence (may be truncated) and F a modified form of P with one

phosphorylation site on the amino acid ai. The theoretical prefix residue mass spectrum

Ppre = {p0, p1, . . . , pi, pi+1 . . . , pn} contains all prefix residue masses of P and the theoretical

spectrum Fpre contains all prefix residue masses of F , that is, Fpre = {p0, p1, . . . , pi+δ, pi+1+

δ, . . . , pn + δ}. We can convert Fpre into Ppre by deducting δ from the prefix residue masses

pi + δ, pi+1 + δ, . . . , pn + δ.

Let Spre be a prefix residue mass spectrum generated from an experimental spectrum

of F . The precursor mass of the experimental spectrum is M . The spectrum Spre is similar

to Fpre , but has missing and noise peaks. To simplify the analysis, we assume that Spre

is a perfect spectrum, that is, Spre = Fpre = {p0, p1, . . . , pi + δ, pi+1 + δ, . . . , pn + δ}. In

the ASF method, we try to convert Spre into an approximate spectrum of Ppre with limited

information (Figure 3.1): it is known that the target proteoform contains a phosphorylation,

but the target protein sequence and the location of the phosphorylation site are unknown.

Because the modification site is unknown, we give k guesses for the prefix residue mass

pi, the smallest prefix residue mass with the modification, and hope that one of the guesses

is similar to pi. The mass pn + δ in Spre is the residue mass of the target proteoform, which
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equalsM−mass(H2O). We divide the mass pn+δ into k intervals (0, l], (l, 2l], . . . , ((k−1)l, kl]

each with the same length l = pn+δ
k . The k centers of the intervals are the guessed values

for pi. For example, when pn + δ = 5000 Da and k = 2, the two intervals are (0, 2500] and

(2500, 5000], and the two centers are 1250 and 3750.

For each guessed prefix residue mass q, we convert Spre into a spectrum conv(Spre , q) by

deducting δ from all masses in Spre that are no less than q. In Figure 3.1, the guessed prefix

residue mass is 200 Da and all masses no less than 200 Da are shifted to the left by 79.97 Da.

When q < pi, all masses in the mass intervals (0, q) and [pi, pn + δ] are correctly converted

into their corresponding masses in Ppre , and all masses in the mass interval [q, pi) are not

correctly converted. In Figure 3.1, peaks in the mass intervals (0, 200) and [546.14, 799.29]

are correctly converted into peaks of TYPDSRP, but the left most peak in the box is not

correctly converted. The ratio between the length of the interval [q, pi) and pn + δ is called

the conversion error ratio of conv(Spre , q). When q > pi, all masses in the mass intervals

(0, pi) and [q, pn+δ] are correctly converted into their corresponding masses in Ppre , and all

masses in the mass interval [pi, q) are not correctly converted. The conversion error ratio of

conv(Spre , q) is the ratio between the length of the interval [pi, q) and pn + δ. The distance

between pi and the best guessed value q∗ is no larger than pn+δ
2k , and the conversion error

ratio of conv(Spre , q
∗) is no larger than 1

2k . When k is large, conv(Spre , q
∗) is almost the same

as Ppre and is called an approximate prefix residue mass spectrum of P . In practice, although

Spre has missing and noise peaks, it is converted into an approximate prefix residue mass

spectrum of P using the same method. The above method is used to generated approximate

suffix residue mass spectra as well.

Next we extend the method to generate approximate spectra for proteoforms with g > 1

variable PTM sites. When the target proteoform F is ultramodified and the number g is

large, it is impractical to enumerate all approximate spectra with g PTM sites. Let F ′

be a proteoform that is obtained from F by removing h variable PTM sites. By using h

(h < g) variable PTM sites in spectral conversion, we generate an approximate spectrum

of F ′ from Spre. Although the resulting spectrum is not an approximate spectrum of the

protein sequence P , it is more similar to the theoretical spectrum of P compared with

Spre. We treat the remaining g − h PTM sites in F ′ as unexpected PTMs. Note that h
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is a user-specified parameter and not related to the number of PTM sites in the target

proteoform.

To generate approximate spectra, we first choose h interval centers (each of the k centers

can be chosen multiple times) as the guessed values of the prefix residue masses correspond-

ing to the h PTM sites, then enumerate all possible combinations of the types of variable

PTMs on the sites. For each configuration of h guessed prefix residue masses and guessed

PTM types, we convert the spectrum Spre into an approximation spectrum. The total num-

ber of configurations is proportional to (kf)h, where f is the number of variable PTM types

in database search. The UPF-RESTRICT and UPF-DIAGONAL methods are employed to

search these approximate spectra against the protein database to find candidate proteins.

The ASF method coupled with UPF-RESTRICT is called the ASF-RESTRICT algorithm

(Figure 3.4). Detailed steps for Step 4 in the algorithm is given in Figure 3.5. To couple the

ASF method with UPF-DIAGONAL, we replace the UPF-RESTRICT algorithm with the

UPF-DIAGONAL algorithm in Step 5 of the ASF-RESTRICT algorithm. The ASF method

with the UPF-DIAGONAL algorithm is referred to as the ASF-DIAGONAL algorithm.

To guarantee the efficiency of the method, the values of k, f and h need to be small. In

the experiments, k = 3 was chosen based on the evaluation of speed and sensitivity of the

ASF algorithms with various settings of k (see Section 3.3.2), and h was set as 1 or 2. The

number f of variable PTM types is a parameter specified by the user.

3.3 Results

3.3.1 Simulated data set

To evaluate the accuracy and speed of the filtering algorithms, a test data set of PrSMs with

mutations (treated as PTMs) was generated from the EC data set. The proteome database

of Escherichia coli K-12 MG1655 was downloaded from the UniProt database [72] (version

September 12, 2016, 4 306 entries) and concatenated with a shuffled decoy database of the

same size. The 4 054 top-down MS/MS spectra were deconvoluted by TopFD and then

searched against the target-decoy concatenated EC proteome database using TopPIC [36].
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The ASF-RESTRICT algorithm

Input: A deconvoluted top-down MS/MS spectrum S, a set Ω of f variable
PTMs, a number k of intervals, parameters h and t, and a protein
database D.

Output: Top t candidate protein sequences in D for the query spectrum S.

1. Set the protein set Φ as an empty set, and compute k intervals as well as
their k centers in S.

2. For each set of h masses selected from the k centers with replacement do

3. For each set of h PTMs selected from Ω with replacement do

4. Generate an approximate spectrum S′ using the h selected masses
and the h selected PTMs.

5. Use the UPF-RESTRICT algorithm to search S′ against D to find
top t candidate proteins as well as their similarity scores, and add
them to Φ.

6. Report t top scoring protein sequences from Φ.

Figure 3.4: The ASF-RESTRICT algorithm for protein sequence filtration using top-down
MS/MS spectra.

A total of 874 PrSMs without PTMs (529 from CID and 345 from ETD) were identified

with a 1% spectrum-level false discovery rate (FDR).

For each identified PrSM between a spectrum S and a protein sequence P with a score

x, we used the generating function method [73, 74] to compute the conditional spectral

probability that the similarity score between the spectrum S and a random protein sequence

is no less than x on the condition that the molecular mass of the random protein matches the

precursor mass of S. In the generating function method, a dynamic programming algorithm

is employed to efficiently and accurately compute the distribution of the similarity scores

between the spectrum S and random proteins as well as the conditional spectral probability.

The 874 PrSMs without PTMs were used to generate test PrSMs with random muta-

tions. Let (P, S) be a PrSM between a spectrum S and a protein sequence P without PTMs.

We randomly select an amino acid in P , then replace it with a random amino acid, resulting

in a protein sequence P ′ with a mutation. The mass difference between the original amino

acid and the new one is required to be larger than 5 Da. In addition, a random sequence

with no more than 20 amino acids is appended to the N-terminus of P ′ and another random

sequence with no more than 20 amino acids to the C-terminus of P ′. The PrSM between
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The approximate spectrum generation algorithm

Input: A deconvoluted top-down MS/MS spectrum S with a precursor mass
M and peaks (a1, b1), (a2, b2), . . . , (an, bn), where ai is the ith mass and
bi is the intensity of ai; h guessed prefix residue masses c1 ≤ c2 ≤ . . . ch;
and h guessed PTMs and their corresponding mass shifts δ1, δ2, . . . , δh.

Output: An approximate spectrum S′.

1. Set q0 = 0, qh+1 = M , and qk = ck for 1 ≤ k ≤ h.

2. For i = 1 to n do

3. Find two values qj and qj+1 such that qj ≤ ai < qj+1.

4. a′i = ai −
∑j

k=1 δk.

5. If a′i > 0 then add (a′i, bi) as a peak to S′.

6. Set the precursor mass of S′ as M −
∑h

k=1 δk and output S′.

Figure 3.5: An algorithm for generating an approximate spectrum from a query top-down
deconvoluted MS/MS spectrum S and a list of guessed prefix residue masses and variable
PTMs.

the resulting sequence and S contains a PTM (mutation), an N-terminal truncation, and

a C-terminal truncation. Using this method, a total of 13 110 test PrSMs (15 test PrSMs

for each of the 874 PrSMs: 5 without terminal truncation, 5 with only an N- or C-terminal

truncation, and 5 with both N- and C-terminal truncations) were generated. In addition,

PrSMs with 2, 3, 4, 5 mutations were generated using a similar method. When two or more

PTMs (mutations) were added to a protein sequence, the random mutations were chosen

independently and were different in most cases. A total of 65 550 PrSMs (13 110 for each

setting of the mutation numbers 1, 2, 3, 4, 5) were generated. All the experiments on the

simulated data set were performed on a desktop with an Intel Core i7-3770 Quad-Core 3.4

GHz CPU and 16 GB memory.

3.3.2 Parameter settings

We tested the ASF-RESTRICT and ASF-DIAGONAL algorithms with various settings of

the parameters k and h on the simulated PrSMs with 5 PTMs. The error tolerance for

computing diagonal scores and restricted diagonal scores was 15 ppm. For each test PrSM

with a mutated protein sequence P ′ and a spectrum S, we replaced the unmodified protein
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sequence of P ′ in the EC proteome database with P ′, then used the ASF algorithms to search

S against the proteome database, and finally reported t = 20 candidate proteins. If the 20

candidate proteins contain protein P ′, we say the filtration is efficient. The efficiency rate

of the filtering algorithm is the ratio between the number of PrSMs with efficient filtration

and the total number of test PrSMs.

The efficiency rates of the ASF algorithms with various settings for k = 2, 3, 4, 5, 6 and

h = 1, 2 are shown in Figure 3.6. Removing two modification sites from the query spectrum

(h = 2) achieved marginal improvement in the efficiency rate compared with removing one

modification site (h = 1). However, the average running time of ASF-RESTRICT and

ASF-DIAGONAL with h = 2 was more than 10 times slower than those with h = 1. When

k increases, the efficiency rate increases, but the increase rate becomes less significant.

In the ASF-based methods, each approximate spectrum is searched against the database

sequentially, and the memory usage of the algorithms remains the same when the parameter

settings of h and k increase and the number of generated approximate spectra increases.

The memory usage of ASF-RESTRICT and ASF-DIAGONAL was less than 4 GB.
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Figure 3.6: The efficiency rates of the ASF algorithms with various settings k = 2, 3, 4, 5, 6
and h = 1, 2 on the simulated PrSMs with 5 PTMs.
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3.3.3 Evaluation on filtration efficiency

We tested the TAG-LONG, TAG-VAR, UPF-RESTRICT, UPF-DIAGONAL, ASF-

RESTRICT and ASF-DIAGONAL algorithms on the simulated PrSMs with 5 PTMs. The

ASF-DIAGONAL method achieved the best filtration efficiency rate 82.4%, while the filtra-

tion efficiency rates of the tag-based methods were below 40% and those of the UPF-based

method were below 70%. The ASF-DIAGONAL algorithm missed 528, 253, and 794 PrSMs

efficiently filtered by UPF-RESTRICT, UPF-DIAGONAL, and ASF-RESTRICT, respec-

tively.

The efficiency rates of the filtering algorithms are related to the conditional spectral

probabilities of test PrSMs (Figure 3.7). Most PrSMs with a conditional spectral probability

≥ 10−30 have less than 30 matched masses, and protein sequence filtering for these PrSMs

is more challenging than those with many matches masses. For PrSMs with a conditional

spectral probability between 10−20 and 10−30, the efficiency rate of ASF-DIAGONAL was

higher than 85%. For PrSMs with a conditional spectral probability between 10−10 and

10−20, the efficiency rate of the ASF-DIAGONAL algorithm was still higher than 50%. In

addition, the filtration efficiency rates of ASF-based algorithms were similar on CID and

ETD spectra.

Because ASF-RESTRICT and ASF-DIAGONAL are designed for identifying prote-

oforms with multiple PTMs, they were not tested on the PrSMs with 1 PTM. ASF-

RESTRICT outperformed the other algorithms on the test PrSMs with 2 or 3 PTMs, and

ASF-DIAGONAL obtained the best performance on the test PrSMs with 4 or 5 PTMs. The

main reason is that ASF-RESTRICT and ASF-DIAGONAL have complementary strengths

in protein sequence filtration. When the proteoform that corresponds to the approximate

spectrum contains only a small number of PTMs, it is highly possible that the proteo-

form has a long unmodified N-terminal or C-terminal fragment. Compared with ASF-

DIAGONAL, ASF-RESTRICT is more efficient for identifying this type of proteoforms.

ASF-DIAGONAL is more powerful than ASF-RESTRICT when the proteoform contains a

long unmodified internal fragment. The experimental results show that combining the two

methods can improve filtration efficiency.
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Figure 3.7: Comparison of the filtration efficiency rates of the TAG-LONG, TAG-VAR,
UPF-RESTRICT, UPF-DIAGONAL, ASF-RESTRICT and ASF-DIAGONAL algorithms
on the simulated test PrSMs with 5 PTMs. The PrSMs are divided into 7 groups based
on their conditional spectral probabilities p, and the efficiency rates for each group are
compared.

The average running time of ASF-DIAGONAL (10.9 seconds) for one test PrSM was

about 8 times of TAG-LONG (1.34 seconds) and TAG-VAR (1.35 seconds) and 13 times of

UPF-DIAGONAL (0.85 seconds). Although ASF-DIAGONAL is slower than other filtering

methods, its running time is still acceptable because the running time is similar to that of

spectral alignment algorithms. The running time for aligning a mass spectrum with 20

candidate protein sequences is usually more than 20 seconds.

To test the filtering algorithms on large protein databases, we concatenated the EC

proteoform database with the human proteome database downloaded from the UniProt

database [72] (version July 9, 2016, 20 191 entries). The concatenated database contained

24 497 proteins. The filtration efficiency rates of ASF-RESTRICT and ASF-DIAGONAL

were 61.6% and 70.6%, respectively, while those of the other four algorithms were below

55%.
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3.3.4 Evaluation on the histone data sets

The two human histone protein data sets were used to evaluate the filtering methods for

identifying proteoforms with multiple PTMs. All the experiments on the histone data sets

were performed on the same desktop used for the simulated data analyses. TopMG [1] was

employed to align the histone H3 and H4 spectra against their corresponding histone H3

and H4 protein sequences. Five PTMs: acetylation, methylation, dimethylation, trimethy-

lation, phosphorylation (Table 3.1) were used as variable PTMs in proteoform identification.

TopMG identified 3 205 and 1 087 PrSMs with at least 10 matched fragment ions from the

histone H3 and H4 data sets, respectively.

Table 3.1: Five variable PTMs used in the identification of proteoforms of histone proteins

PTM Monoisotopic mass shift (Da) Amino acids

Acetylation 42.01056 R, K

Methylation 14.01565 R, K

Dimethylation 28.03130 R, K

Trimethylation 42.04695 R

Phosphorylation 79.96633 S, T, Y

The tag-based, UPF-based, and ASF algorithms were tested on these identified PrSMs.

For each identified PrSM of protein P and spectrum S, the filtering algorithm used the

spectrum S to filter the UniProt human proteome database (version July 9, 2016, 20 191

entries) and reported 20 top candidate protein sequences. If the 20 protein sequences contain

the target protein P (histone H3 or H4), the filtration is efficient. The five PTMs used in

proteoform identification were treated as variable PTMs in the ASF algorithms.

The filtration efficiency rates of the 6 filtering methods for the histone H3 and H4 PrSMs

are summarized in Table 3.2. The filtration efficiency rates of the two tag-based methods

were not as high as the UPF and ASF based methods. The main reason is that many

spectra in the test PrSMs do not contain long consecutive fragment ions. The filtration

efficiency rates of UPF-RESTRICT and ASF-RESTRICT were the highest among the 6

methods. Most of the histone H3 and H4 proteoforms have no more than 4 PTMs, and
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most PTM sites on the histone H3 and H4 proteins lie in a short region near the N-terminus

and can be treated as one large unexpected mass shift in protein filtering. UPF-RESTRICT

and ASF-RESTRICT are efficient in filtering proteins for this type of spectra. As a result,

ASF-RESTRICT outperformed ASF-DIAGONAL on the histone data sets. Compared

with UPF-RESTRICT, ASF-RESTRICT improved the efficiency rate by about 9.7% for

the histone H3 PrSMs and 2.6% for the histone H4 PrSMs. ASF-RESTRICT efficiently

filtered 334 histone H3 PrSMs missed by UPF-RESTRICT and 1 094 histone H3 PrSMs

missed by ASF-DIAGONAL. Similarly, ASF-RESTRICT outperformed ASF-DIAGONAL

and UPF-RESTRICT on the histone H4 PrSMs. Compared with UPF-RESTRICT, ASF-

RESTRICT achieved a better improvement on the histone H3 data set than the histone H4

data set. The main reason is that the quality of the histone H3 PrSMs is not as good as

that of the histone H4 PrSMs. While 86.0% of the histone H3 PrSMs contain ≤ 25 matched

fragment ions, only 29.7% of the histone H4 PrSMs contain ≤ 25 matched fragment ions.

Most of the PrSMs with ≤ 25 matched fragment ions have a relatively large conditional

spectral probability. Compared with the UPF-based methods, the ASF algorithms achieve

a better improvement in the filtration efficiency for PrSMs with large conditional spectral

probabilities than those with very small ones (Figure 3.7).

A total of 892 histone H3 PrSMs and 7 histone H4 PrSMs were missed by ASF-

RESTRICT. The main reasons for inefficient filtration of these PrSMs are: (1) some PrSMs

are of low quality and (2) some contain many PTM sites. Of the 899 histone PrSMs (892

histone H3 and 7 histone H4 PrSMs), 576 (64.1%) contain no more than 15 matched frag-

ment ions. Of the other 323 PrSMs, 294 (91.0%) contain at least 4 variable PTM sites.

Of the 29 remaining PrSMs, 28 have less than 22 matched fragment ions but more than

220 deconvoluted peaks and 1 has 125 deconvoluted peaks with 17 matched fragment ions,

showing the low quality of the PrSMs.

The speed of the ASF algorithms is much slower than the other filtering methods.

For the histone H3 data set, the running time of ASF-RESTRICT was about 11 times of

UPF-RESTRICT, and the running time of ASF-DIAGONAL was about 11 times of ASF-

RESTRICT and 130 times of UPF-RESTRICT. In practice, the ASF-based algorithms

can be combined with other methods to speed up protein sequence filtration: fast filtering
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methods are used in the first round of spectral identification, and the ASF-based algorithms

are employed to identify spectra that are elusive for the fast methods.

3.3.5 Phosphorylated proteoforms identified from the xenograft data set

The ASF algorithms were combined with TopMG [1] for proteome-wide complex proteo-

form identification. In the combined method, ASF-RESTRICT and ASF-DIAGONAL were

employed to report top 20 candidate proteins separately for each query spectrum. The re-

sulting proteins were aligned with the query spectrum using TopMG to find the best PrSM.

We compared the performances of ProSightPC [27] and TopMG coupled with the ASF al-

gorithms for identifying phosphorylated proteoforms on the breast cancer xenograft data

set.

All the mass spectra from the WHIM2 and WHIM16 samples were deconvoluted by

TopFD. Because the xenograft samples contain both mouse and human proteins, a multi-

step database search approach was used for proteoform identification. While TopMG cou-

pled with the ASF methods was used to identify phosphorylated proteoforms, TopPIC [36]

was used to identify proteoforms without variable PTMs. The experiments were performed

on a node with two 12-core Intel Xeon E5-2680 v3 CPUs and 256 GB memory on Carbon-

ate, a parallel computing system at Indiana University. A total of 12 threads were used in

the analysis. The running time for analyzing all the spectra was about 63 hours (3 hours

for TopPIC and 60 hours for TopMG), of which 30 hours were used by the ASF algorithms.

When multiple threads are used, the memory usage of the ASF algorithms is proportional

to the number of threads. The maximum memory usage for analyzing the xenograft data

set was 48 GB (4 GB for each thread).

Proteoforms identified by ProSightPC were obtained from a previous study [51], in

which a customized version of cRAWler was used for spectral deconvolution and a five

step database search was performed for proteoform identification. The third and fourth

steps were to identify proteoforms with sample specific mutations and splicing events; the

fifth step was to identify proteoforms with unexpected alterations. Because the last three

steps were not designed to identify proteoforms with variable PTMs, we focused on only

proteoforms identified in the first two steps.
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Mouse proteoforms In the first step of the ProSightPC analysis, the absolute mass

mode was used to search all the deconvoluted spectra against a mouse proteoform database

including proteoforms with PTMs, which was built based on the UniProt mouse proteome

database (version May 2014) and its annotations. The error tolerances for precursor and

fragment masses were set as 2.2 Da and 10 ppm, respectively. With a p-value cutoff 10−10,

this step reported 648 proteoforms from 54 proteins, including 41 proteoforms without

PTMs (N-terminal acetylation is allowed) and 24 phosphorylated proteoforms from 14 pro-

teins. Some reported phosphorylated proteoforms are of the same protein and their precur-

sor masses are the same (within an error tolerance). The only difference of these proteoforms

is the locations of phosphorylation sites. The 24 phosphorylated proteoforms correspond to

15 distinct precursor masses.

In the first step of the analysis of TopPIC and TopMG, the mouse proteome database

was downloaded from the UniProt database (version November 13, 2016, 16 840 entries)

and concatenated with a shuffled decoy database of the same size. We first used TopPIC

to search all the deconvoluted spectra against the target-decoy mouse database to identify

proteoforms without variable PTMs and unexpected alterations (terminal truncations and

N-terminal acetylation are allowed), then used TopMG to search the spectra unidentified by

TopPIC against the database to identify phosphorylated proteoforms. In TopPIC, the error

tolerances for precursor and fragment masses were set as 10 ppm. In the ASF algorithms,

the parameter h was set as 1 and the error tolerance for computing filtering scores was set as

10 ppm. In TopMG, the error tolerances for precursor and fragment masses were set as 10

ppm and 0.1 Da respectively, and phosphorylation was used as the variable PTM. With a 5%

proteoform-level FDR, TopPIC identified 122 proteoforms from 105 proteins, and TopMG

identified 45 proteoforms, including 41 phosphorylated proteoforms from 27 proteins and 4

proteoforms without phosphorylation sites. The reason that the 4 unmodified proteoforms

were missed by TopPIC is that TopPIC used a more stringent error tolerance for fragment

masses compared with TopMG. Most of the identified phosphorylated proteoforms contain

≤ 3 phosphorylation sites.

A total of 21 proteoforms without variable PTMs (some may contain terminal trun-

cations and N-terminal acetylation) were identified by both ProSightPC and TopPIC. In
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addition, TopPIC identified 101 proteoforms missed by ProSightPC. Because the spectral

scan numbers of the proteoforms reported by ProSightPC were not available, we matched

the molecular masses of the proteoforms to the precursor masses of the spectra reported

by TopFD with an error tolerance 2.2 Da to find candidate PrSMs. Of the 20 proteo-

forms missed by TopPIC, TopFD failed to report corresponding deconvoluted spectra for

4 proteoforms. The molecular masses of the other 16 proteoforms were matched to the

precursor masses of 242 deconvoluted spectra, but their corresponding PrSMs were not

reported by TopPIC because their E-values were not highly significant. One main reason

that ProSightPC missed many proteoforms identified by TopPIC is that truncations were

not allowed in the first step of the ProSightPC analysis.

ProSightPC reported several proteoforms with the same molecular mass, but differ-

ent PTM sites. Because it is a challenging problem to confidently localize PTM sites in

top-down spectral identification, we decided not to directly compare proteoforms reported

by the two tools. If a proteoform reported by ProSightPC and a proteoform reported by

TopMG are of the same protein and have the same precursor mass (within an error toler-

ance), we say the two proteoforms match. We compared the numbers of distinct precursor

masses corresponding to the proteoforms, not the numbers of proteoforms, reported by

ProSightPC and TopMG. A total of 38 and 15 distinct precursor masses were reported by

TopMG and ProSightPC, respectively. Only one phosphorylated proteoform (corresponding

to one precursor mass) was reported by both TopMG and ProSightPC. Of the remaining 23

phosphorylated proteoforms (14 precursor masses) reported by ProSightPC, 4 did not have

matched deconvoluted spectra reported by TopFD, and 19 were matched to deconvoluted

spectra, but their corresponding PrSMs were not reported by TopMG. ProSightPC missed

many proteoforms reported by TopMG because the proteoform database (data warehouse)

used in ProSightPC was incomplete. The proteoforms identified by TopMG include 37

highly confident ones with an E-value smaller than 10−10.

Human proteoforms In the second step of the ProSightPC analysis, the absolute mass

and biomarker modes were used to search the spectra unidentified in the first step against

a human proteoform database, which was built based on the human RefSeq database and
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protein annotations. The error tolerance for precursor masses was set as 2.2 Da in the

absolute mass mode and 10 ppm in the biomarker mode; the error tolerance for fragment

masses was set as 10 ppm in the two search modes. With a p-value cutoff 10−10, ProSightPC

identified 685 proteoforms from 150 proteins, including 147 proteoforms without PTMs (N-

terminal acetylation is allowed) and 98 phosphorylated proteoforms from 26 proteins. The

98 phosphorylated proteoforms are matched to 35 distinct precursor masses.

In the second step of the analysis of TopPIC and TopMG, the human proteome database

(version July 9, 2016, 20 191 entries) was downloaded from UniProt and concatenated with

a shuffled decoy database with the same size. Using the same parameters in the first step,

the spectra unidentified in the first step were searched against the human target-decoy

database using TopPIC and TopMG. TopPIC identified 265 proteoforms from 190 proteins

without variable PTMs, and TopMG identified 91 proteoforms from 64 proteins, including

82 phosphorylated proteoforms from 59 proteins. Similar to the first step, most of the

identified phosphorylated proteoforms contain ≤ 3 phosphorylation sites.

The human database search of TopPIC identified 85 of the 147 human proteoforms

without PTMs (except for terminal truncations and N-terminal acetylation) reported by

ProSightPC. Of the 62 proteoforms missed by TopPIC, 13 were identified by TopPIC in

the mouse database search because they are the same as their homologous mouse proteins.

Similar to mouse proteoforms, the main reasons for the remaining 49 proteoforms missed

by TopPIC are the missing of matched deconvoluted spectra and large E-values of PrSMs.

TopPIC also identified 180 proteoforms missed by ProSightPC.

A total of 80 and 35 distinct precursor masses were reported by TopMG and ProSightPC,

including 14 ones reported by both the two tools. The proteoforms identified by TopMG

include 47 proteoforms with an E-value smaller than 10−10. Similar to the comparison on

mouse phosphorylated proteoforms, TopMG identified many phosphorylated human prote-

oforms missed by the absolute mass and biomarker modes of ProSightPC.
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3.4 Discussion

In this chapter, we proposed two ASF algorithms for protein filtration in proteoform iden-

tification by top-down MS and evaluated the performances of the ASF algorithms as well

as two tag-based and two UPF-based filtering algorithms on simulated and real top-down

MS data sets. The experimental results showed that the UPF-based filtering algorithms

outperformed the tag-based algorithms and that the ASF algorithms achieved the best per-

formance among the 6 evaluated algorithms in filtration efficiency. The ASF algorithms are

efficient when the target proteoform contains truncations as well as many variable PTMs

and/or unknown alterations. Specifically, the filtration efficiency of ASF-DIAGONAL is

much higher than other methods for spectra with low sequence coverage. Although the

ASF algorithms are the slowest, their speed is still acceptable in proteoform identification.

Both ASF-RESTRICT and ASF-DIAGONAL use approximate spectra in protein filtra-

tion, but they are designed for different scenarios. ASF-RESTRICT has a smaller search

space than ASF-DIAGONAL. While the filtration efficiency of ASF-RESTRICT depends

on if the corresponding proteoform of the approximate spectrum contains a long unmodified

prefix or suffix, the filtration efficiency of ASF-DIAGONAL depends on if the corresponding

proteoform of the approximate spectrum contains a long unmodified fragment (a prefix, a

suffix, or an internal one). In practice, we suggest combining the two algorithms to achieve

good filtration efficiency.

The parameters h, f , and k determine the search space, running time, and filtration

efficiency of the ASF algorithms. When h, f , and k increases, the search space and running

time increase. The experimental results demonstrate that using one variable PTM site

in approximate spectrum generation (h = 1) significantly improves filtration efficiency for

complex proteoforms with multiple variable PTMs compared with UPF-based methods.

While using h = 2 achieves marginal improvement in filtration efficiency compared with

h = 1, it significantly increases the running time. We suggest using h = 1 in most cases.

When only one or two types of variable PTMs are used (f = 1 or 2) and many proteoforms

are highly modified, h = 2 can be used to further improve filtration efficiency. To guarantee
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that the ASF algorithms are fast in protein filtration, we suggest that the settings of k and

f should be no more than 5.

The ASF algorithms are proposed for proteoform identification in proteome-level pro-

teomics studies in which all proteoforms in the sample are analyzed in an MS experiment.

The types of PTMs of interest are known in many proteome-level proteomics studies. For

example, phosphorylation is the PTM of interest and chosen as the variable PTM in the

studies of phosphoproteins. In the discovery mode analysis, the types of PTMs of interest

are unknown and it is a challenging problem to anticipate the types of PTMs that will be

identified in proteoforms. To solve the problem, we first use spectral alignment algorithms,

such as TopPIC, to identify proteoforms with mass shifts corresponding to unexpected al-

terations. If the number of occurrences of a specific mass shift, e.g. 80 Da, in identified

proteoforms is large and the mass shift is explained by a PTM (80 Da is explained by

phosphorylation), then we use the PTM as a variable one in the second round of database

search to find proteoforms with the PTM.

The number of variable PTM types needs to be small to guarantee the fast speed of the

ASF algorithms. A proteome level MS analysis may identify more than 10 types of PTMs,

but each proteoform often contains only one or two types of PTMs. To identify these

proteoforms, we can perform multiple rounds of database searches, and a small number of

variable PTM types are selected in each round.

A proteoform may contain various alterations including terminal truncations, sequence

mutations, fixed PTMs, variable PTMs, and unexpected alterations. The ASF algorithms

are capable of filtering spectra of proteoforms with truncations, fixed PTMs, variable PTMs,

and unexpected alterations. When sample specific protein databases are not available,

sequence mutations are treated as unexpected alterations in protein filtration. When RNA-

Seq data of the sample are available, sequence mutations obtained from RNA-Seq data

can be incorporated into sample specific protein databases to improve filtration efficiency.

When the target proteoform contains many variable PTM sites, most of them are treated as

unexpected alterations in filtration because approximate spectra usually remove only one

or two variable PTM sites (h = 1 or 2) in the proteoform.
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Unexpected alterations and the alterations that are treated as unexpected ones in fil-

tration are called filtration blind alterations. The number and locations of filtration blind

alterations affect the filtration efficiency of the ASF algorithms. In general, the filtration effi-

ciency decreases when the number of filtration blind alterations increases. ASF-DIAGONAL

filters proteins using a long unmodified protein fragment. When a proteoform with many

filtration bind alterations has a long fragment free of filtration bind alterations, it is highly

possible that ASF-DIAGONAL is efficient for the proteoform. Similarly, when a proteoform

with many filtration blind alterations contains a long prefix or suffix free of filtration blind

alterations, it is highly possible that ASF-RESTRICT is efficient for the proteoform.

In proteome-level proteomics studies, proteoforms can be divided into three groups: (1)

proteoforms with only variable PTMs, (2) proteoforms with only filtration blind alterations,

and (3) proteoforms with both variable PTMs and filtration blind alterations. The ASF

algorithms are designed to improve the sensitivity in proteoform identification in groups (1)

and (3), but not in group (2). That is, the ASF algorithms work well for proteoforms with

only variable PTMs, and those with both variable PTMs and unexpected alterations, not

for proteoforms with only unexpected alterations.

In the ASF algorithms, the query spectrum is transformed into an approximate spectrum

to reduce the number of variable PTMs in the match between the target database sequence

and the spectrum. An alternative method is to incorporate variable PTMs into database

sequences to generate a proteoform database. This approach has been widely used in PTM

identification in bottom-up MS, but it is inefficient in top-down MS. Proteoforms analyzed

in top-down MS are generally longer than peptides in bottom-up MS. Because long proteins

often contain many possible modification sites, the size of a proteoform database may be

extremely large. For example, when phosphorylation is the only variable PTM and one or

two PTM sites (h = 2) are incorporated into each proteoform, the size of the proteoform

database increases by more than 100 times compared with the original one.

The proposed ASF algorithms have some limitations. The first limitation is that the

running time of the algorithms is an exponential function of the parameter h. In practice, a

small number h (h = 1 or 2) is used to reduce the running time of the algorithms, limiting

its ability to identify complex proteoforms with many variable PTM sites. The second is the
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ASF algorithms are inefficient for proteoforms with many PTM types. Using a large number

(> 5) of variable PTM types significantly increases the running time of the algorithms.
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CHAPTER 4

MASS GRAPH ALIGNMENT

4.1 Introduction

Extended proteoform databases and spectral alignment are the two main database search

strategies for proteoform identification. ProSightPC [27] and MascotTD [30] use the first

approach, in which spectra are searched against a sequence database of commonly observed

proteoforms. However, the number of candidate proteoforms increases exponentially due

to the combinatorial explosion of PTMs and truncations. As a result, most uncommon

proteoforms have to be excluded from the sequence database to keep its size manageable,

limiting the ability to identify uncommon or novel proteoforms.

Spectral alignment [28] is capable of identifying variable PTMs and unknown mass shifts

by finding a best scoring alignment between the spectrum and the reference sequence. How-

ever, existing alignment algorithms have their limitations. MS-Align+ [32] and TopPIC [36]

can identify proteoforms with at most two unknown mass shifts because it treats all PSAs

as unknown mass shifts except for fixed PTMs and protein N-terminal PTMs. MS-Align-

E [35] and pTop [37] are capable of identifying proteoforms with variable PTMs, but not

those with terminal truncations. MSPathFinder [18] is also capable of identifying variable

PTMs, but the identification of truncations depends on high quality sequence tags.

In this chapter, we use mass graphs (Figure 4.1) to efficiently represent proteoforms

of a protein with variable PTMs and/or terminal truncations. We transform the prote-

oform identification problem to the mass graph alignment problem and propose dynamic

programming algorithms for a restricted version of the problem.

Many graph-based approaches have been proposed in bioinformatics studies. Splicing

graphs were proposed by Heber et al. [75] for solving the EST assembly problem and have

been widely used in the identification of alternative splicing events [76]. In proteogenomics

studies, splicing graphs [77] and variant graphs [78] were employed for representing tran-

script variants. In the variant graph approach, both genetic variations and alternative

splicing junctions of a gene are represented in a variant graph, in which each node rep-
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Figure 4.1: Construction of mass graphs. (a) An illustration of the construction of a pro-
teoform mass graph from a protein ARKTDAR and four variable PTMs: acetylation on
K and the first R; methylation on R and K, phosphorylation on T, and dimethylation
on K. Each node corresponds to a peptide bond, or the N- or C-terminus of the protein;
each edge corresponds to an amino acid residue (red edges correspond to modified amino
acid residues). The weight of each edge is the mass of its corresponding unmodified or
modified residue (a scaling factor 1 is used to convert weights to integers). (b) An illus-
tration of the construction of a spectral mass graph from a prefix residue mass spectrum
0, 156, 198, 326, 340, 425, 521, 707. The spectrum is generated from a proteoform of RKTDA
with an acetylation on the R, a methylation on the K, and a phosphorylation on the T. To
simplify the mass graph, masses corresponding to proteoform suffixes (C-terminal fragment
masses) are not shown. The full path from the start node y0 to the end node y7 is aligned
with the bold path from node x1 to node x6. The path from y0 to y6 and the red bold path
from x1 to x4 are consistent.

resents a sequence of nucleotide bases and each path corresponds to a transcript variant

of the gene. The transcript variants represented in a variant graph are translated into

peptide or protein sequences for the identification of MS/MS spectra. Splicing graphs and

variant graphs efficiently represent an exponential number of transcript variants and their

corresponding proteoforms. Another example of graph-based methods is spectrum graphs

that were proposed for de novo peptide sequencing and sequence tag generation in MS data

analysis [61, 79]. In a spectrum graph, each node represents a prefix residue mass in an

MS/MS spectrum, and each path represents a peptide that may explain the spectrum. He

et al. [80] extended the spectrum graph approach to incorporate limited number of PTMs,

and Bhatia et al. [81] proposed to use a constraint graph to represent sequence constraints

and combine a spectrum graph and a constraint graph in de novo sequencing.
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The idea of mass graphs is inspired by splicing graphs, variant graphs, spectrum graphs,

and constraint graphs. Similar to variant graphs, a mass graph efficiently represents an

exponential number of possible proteoforms of a gene. In addition, mass graphs are capable

of representing site specific variable PTMs. Compared with variant graphs and spectrum

graphs, the mass graph representation has its unique properties. While variant graphs

store sequences of nucleotide bases (which can be translated into amino acids sequences)

in nodes, mass graphs store amino acid residue masses in edges. Replacing nucleotides (or

amino acids) with masses simplifies the representation of proteoforms with variable PTMs.

(See Section 4.4.) While nodes in a spectrum graph represent prefix residue masses of an

MS/MS spectrum, nodes in a mass graph represent prefix residue masses of many possible

proteoforms.

The mass graph alignment problem is different from the spectral alignment problem [28,

82] and the spliced alignment problem [83]. While spectral alignment methods search for

the best alignment between two lists of prefix residue masses, the mass graph alignment

problem finds the best alignment between a prefix residue mass list and all possible paths in

a mass graph, each of which corresponds a prefix residue mass list and a proteoform. In the

spliced alignment problem, a variation of a nucleotide base does not significantly affect the

whole sequence alignment. However, a mass shift in an amino acid and its corresponding

edge in a mass graph dramatically affect the similarity score between a prefix residue mass

list and a path containing the edge because the mass shift “propagates” to the residue

masses of all prefixes containing the amino acid. (See Section 4.4.)

We propose TopMG (TOP-down mass spectrometry-based proteoform identification us-

ing Mass Graphs), a software tool for identifying modified proteoforms using top-down

tandem mass spectra, which is based on algorithms for the mass graph alignment problem.

TopMG was tested on three top-down MS/MS data sets. Experimental results showed that

TopMG was efficient in identifying proteoforms with variable PTMs and outperformed MS-

Align-E [35] and ProSightPC [27] in identifying complex proteoforms, especially those with

terminal truncations.
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4.2 Methods

Mass graphs are used to represent candidate proteoforms and top-down MS/MS spectra.

Mass graphs representing proteoforms are called proteoform mass graphs; those representing

MS/MS spectra spectral mass graphs. With the representation, we formulate the proteoform

identification problem as the mass graph alignment problem and design dynamic program-

ming algorithms for a restricted version of the problem.

4.2.1 The mass graph alignment problem

Proteoform mass graphs A proteoform mass graph is constructed from an unmodified

protein sequence and its variable PTMs with three steps (Figure 4.1(a)). (1) A node is

added to the graph for each peptide bond of the protein. In addition, a start node and an

end node are added for the N and C-termini of the protein, respectively. The left node of

an amino acid is the one representing the peptide bond left of the amino acid. Specifically,

the start node is the left node of the amino acid at the N-terminus. The right node of an

amino acid is the one representing the peptide bond right of the amino acid. Specifically,

the end node is the right node of the amino acid at the C-terminus. (2) For each amino acid

in the protein, we add into the graph a directed black edge from its left node to its right

node. The weight of the edge is the residue mass of the amino acid. (3) If an amino acid is

a site of a variable PTM, we add into the graph a directed red edge from its left node to its

right node. The weight of the edge is the residue mass of the amino acid with the PTM.

The locations of a PTM can be specified in a mass graph, thus reducing the number

of candidate proteoforms. For example, the mass graph in Figure 4.1(a) specifies that

acetylation occurs on only the first arginine residue, not the second, in the protein. As a

result, mass graphs are capable of representing amino acid mutations because a mutation

can be treated as a variable PTM that modifies only the amino acid at the mutation site.

To represent an amino acid with a fixed PTM, the weight of the black edge corresponding

to the amino acid is assigned as the mass of the residue with the fixed PTM.

Each path in a mass graph represents a proteoform of the protein. A path from the

start node to the end node is called a full path of the graph, representing a proteoform
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without terminal truncations. In the graph, the number of nodes is proportional to n, and

the number of edges is proportional to ln, where n is the length of the protein sequence and

l is the largest number of edges between two nodes.

Spectral mass graphs Mass graphs are also used to represent top-down MS/MS spec-

tra. In the preprocessing of spectra, peaks are converted into neutral monoisotopic masses

of fragment ions by deconvolution algorithms [19, 23, 25]. Peak intensities are ignored to

simplify the description of the methods. These monoisotopic masses are further converted

to a list of candidate prefix residue masses, called a prefix residue mass spectrum [35].

A prefix residue mass spectrum with masses a0, a1, . . . , an in the increasing order is

converted into a spectral mass graph as follows (Figure 4.1(b)). A node is added into

the graph for each mass in the spectrum. The nodes for a0 = 0 and an = PrecMass −

mass(H2O) are labeled as the start and the end nodes, respectively. For each pair of

neighboring masses ai and ai+1, for 0 ≤ i ≤ n−1, a directed edge is added from the node of

ai to that of ai+1, and the weight of the edge is ai+1−ai. The spectral mass graph contains

only one full path.

In the construction of mass graphs, the masses of all amino acids and PTMs are scaled

and rounded to integers (a scaling constant 274.335215 was used in the experiments [35]).

Precursor masses and candidate prefix residue masses in highly accurate top-down mass

spectra are discretized using the same method. As a result, all edge weights are integers in

mass graphs.

Formulation of the mass graph alignment problem With the mass graph repre-

sentation, the proteoform identification problem is transformed to an alignment problem

between a proteoform mass graph and a spectral mass graph. The objective of the align-

ment problem is to find a path in the spectral mass graph and a path in the proteoform

mass graph such that the similarity score between the two paths is maximized.

Let A be a path with k edges e1, e2, . . . , ek. The weight of the prefix e1, e2, . . . , ei,

1 ≤ i ≤ k, is called a prefix weight of A, denoted as wi. Specifically, w0 = 0 and wk is

the weight of the whole path. The path A is also represented as a list of prefix weights
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w0, w1, . . . , wk. For example, the prefix weight list of the red bold path in Figure 4.1(a) is

0, 198, 340, 521. Two paths are consistent if their weights are the same. For example, the

red bold path in Figure 4.1(a) and the path from y0 to y6 in Figure 4.1(b) are consistent

because they have the same weight 521.

We define the shared mass counting score of two consistent paths A and B as the number

of shared prefix weights in their prefix weight lists, denoted as Score(A,B). For example,

the shared mass counting score of the red bold path in Figure 4.1(a) and the path from y0

to y6 in Figure 4.1(b) is 4 because they share 4 prefix masses 0, 198, 340, and 521. If A and

B are inconsistent, Score(A,B) = −∞.

Given a proteoform mass graph G and a spectral mass graph H, the mass graph align-

ment problem is to find a path A in G and a path B in H such that Score(A,B) is maximized.

There are several variants of the mass graph alignment problem. In the local alignment

problem, the two paths in the mass graphs are not required to be full paths (from the start

to the end node). It can identify a sequence tag of the target proteoform as well as its

matched masses in the spectrum. For example, the alignment between the red bold path

in Figure 4.1(a) and the path from y0 to y6 in Figure 4.1(b) is a local alignment. The pro-

teoform identification problem is transformed into the semi-global mass graph alignment

problem in which the path B in the spectral mass graph is required to be the full path. If

the path A is a full path, a proteoform without terminal truncations is identified. Other-

wise, a truncated proteoform is reported. For example, the bold path (not a full path) from

x1 to x6 in Figure 4.1(a) is aligned with the full path in Figure 4.1(b), corresponding to

a truncated proteoform R[Acetylation]K[Methylation]T[Phosphorylation]DA. In the global

alignment problem, both A and B are required to be full paths, that is, terminal truncations

are forbidden.

In proteoform identification, we can reduce the search space by limiting the number

of PTM sites in a proteoform. This limitation gives rise to a variant of the mass graph

alignment problem in which the number of red edges corresponding to modified amino

acids is limited. Given a proteoform mass graph G, a spectral mass graph H, and a number

t, the restricted mass graph alignment (RMGA) problem is to find a path A in G and a path

B in H such that A contains no more than t red edges and Score(A,B) is maximized.
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The algorithm for computing all the r-distance sets

Input: A proteoform mass graph G with
nodes x0, xi, . . . , xn in the topo-
logical order, and a number t.

Output: The distance sets D(xi, xj , r) for
0 ≤ i ≤ j ≤ n and 0 ≤ r ≤ t.

1. For i = 0 to n do

2. Set D(xi, xi, 0) = {0} and set D(xi, xi, r) = ∅ for 1 ≤ r ≤ t.

3. For i = 0 to n do

4. For j = i+ 1 to n do

5. For r = 0 to t do

6. Initialize D(xi, xj , r) = ∅.

7. If r ≥ 1 then

8. For each red edge er ∈ R(xj−1, xj) do

9. For each d ∈ D(xi, xj−1, r − 1) do

10. Add d+ w(er) into D(xi, xj , r).

11. For each black edge eb ∈ B(xj−1, xj) do

12. For each d ∈ D(xi, xj−1, r) do

13. Add d+ w(eb) into D(xi, xj , r).

Figure 4.2: The algorithm for computing all the r-distance sets of a proteoform mass graph.

4.2.2 Consistent preceding node pairs

We use consistent preceding node pairs described below to solve the RMGA problem. In

a mass graph, if there is a path from a node u1 to another node u2, we say u1 precedes

u2. There may exist different paths from u1 to u2, each of which defines a distance that

equals the weight of the path. Let D(u1, u2) denote the set of all distinct distances defined

by the paths from u1 to u2. The size of D(u1, u2) is smaller than the number of paths

from u1 to u2 when there are many duplicated distances introduced by consistent paths.

For example, in Figure 4.1(a), there are a total of 12 paths from x1 to x3, but D(x1, x3)

contains only 7 distances {284, 298, 312, 326, 340, 354, 368}. When u1 is not a preceding

node of u2, D(u1, u2) is an empty set.
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Let u1, u2 be two nodes in G and let v1, v2 be two nodes in H. The node pair (u1, v1) is

a consistent preceding node pair of the other node pair (u2, v2) if D(u1, u2)∩D(v1, v2) 6= ∅,

that is, there exist two consistent paths: one from u1 to u2, the other from v1 to v2. For

example, the node pair (x1, y0) is a consistent preceding node pair of the node pair (x3, y4)

in Figure 4.1, because D(x1, x3) ∩D(y0, y4) = {340}.

Given a proteoform mass graph G and a spectral mass graph H, the consistent preceding

node pair problem is to find all consistent preceding node pairs for every node pair (u, v)

where u is in G and v is in H. We study a variant of the problem in which the number of

red edges in a path in G is restricted. Let D(u1, u2, r) denote the set of distances defined

by the paths from u1 to u2 that contain exactly r red edges, called an r-distance set. A

node pair (u1, v1) is an r-consistent preceding node pair of the other node pair (u2, v2) if

D(u1, u2, r) ∩D(v1, v2) 6= ∅.

Computing r-distance sets Let x0, x1, . . . , xn be the nodes in the proteoform mass

graph G in the topological order. We propose a dynamic programming algorithm (Fig-

ure 4.2) for computing D(xi, xj , r) for 0 ≤ i ≤ j ≤ n and 0 ≤ r ≤ t. In the initialization

(Steps 1 and 2), we set for each node xi in G

D(xi, xi, r) =

{
{0} if r = 0;

∅ otherwise.

For 0 ≤ i < j ≤ n and 0 ≤ r ≤ t, the set D(xi, xj , r) is computed based on the distances

between xi and xj−1. Let R(u1, u2) (B(u1, u2)) be the set of all red (black) directed edges

from a node u1 to another node u2. The weight of an edge e is denoted by w(e). For

each red edge er ∈ R(xj−1, xj) and each distance d ∈ D(xi, xj−1, r − 1), we add d + w(er)

into D(xi, xj , r) (Steps 7-10). For each black edge eb ∈ B(xj−1, xj) and each distance

d ∈ D(xi, xj−1, r), we add d + w(eb) into D(xi, xj , r) (Steps 11-13). When the number of

the types of variable PTMs in proteoform identification is c, the number of operations of

the algorithm is proportional to n2tc+1, where n is the number of nodes in the mass graph

and t is the largest number of variable PTMs in a proteoform.
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The size of a distant set D(xi, xj , r) is O(nrlr), where l is the largest number of edges

between two nodes in G. In the implementation, each distance set is stored in a sorted list,

and Steps 12 and 13 are performed by merging two sorted lists with O(nrlr) steps. The

time complexity of Steps 11-13 is O(nrlr+1). Similarly the number of operations of Steps

7-10 is also O(nrlr+1). The time complexity of Steps 5-13 is
∑t

r=0O(nrlr+1) = O(ntlt+1),

and the time complexity of the whole algorithm is O(nt+2lt+1).

The types of variable PTMs in proteoform identification are often limited. For example,

only 5 types of PTMs were used in the experiments for the identification of proteoforms of

the histone H4 protein. In this case, Algorithm 1 has a better time complexity. When a

constant number c of PTM types are considered, the red edges in G can be divided into c

types (variable PTMs). For example, the red edges in Figure 4.1(a) are divided into four

types based on their corresponding PTMs: acetylation, methylation, phosphorylation, and

dimethylation. Each path in G has a modification vector [z1, z2, . . . zc] where zi is the number

of red edges corresponding to the ith type of PTM. For example, the modification vector of

the bold path in Figure 4.1(a) is [1, 1, 1, 0]: one acetylation site, one methylation site, and

one phosphorylation site. If two paths between two nodes have the same modification vector,

they are consistent (their weights are the same) because their corresponding proteoforms

have the same mass shifts introduced by PTMs. As a result, the size of a set D(xi, xj , r) is

bounded by the number of different modification vectors satisfying that
∑c

i=1 zi = r, that

is, the total number of red edges is r. The bound equals the number of ways to distribute

r balls into c boxes, which is O(rc). Since the largest number of edges between two nodes

l ≤ c+1 is a constant, the time complexity of Steps 7-13 is O(rc). The number of operations

in Steps 5-13 is
∑t

r=0O(rc) = O(tc+1), and the time complexity of the whole algorithm is

O(n2tc+1).

Finding r-consistent preceding node pairs A node pair (u1, u2) in G and its r-

distance set (u1, u2, r) = {d1, d2, . . . , dk} are represented by triplets < u1, u2, d1 >, . . . , <

u1, u2, dk >. For a given r, the triplets of distance sets (u, v, r) for all node pairs (u, v)

in G are merged and sorted based on the distance. Similarly, node pairs in H and their

distances are also represented by a list of triplets sorted by the distance. The two sorted
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triplet lists are compared to find the r-consistent preceding node pairs for all node pairs

(u, v) satisfying that u is in G and v is in H. The number of operations in this step is

proportional to n2L log(nL) +m2 logm+Z, where L is the size of the largest r-distance set

in G, m is the number of nodes in H, and Z is the total number of reported r-consistent

node pairs.

Prefix residue masses in deconvoluted top-down MS/MS spectra may contain small

errors introduced in measuring the m/z values of fragment ions. To address this problem,

an error tolerance ε is used in finding r-consistent preceding node pairs. With the error

tolerance, two paths are consistent if the difference of their weights is no larger than ε, and

a triplet < u1, u2, du > from G matches a triplet < v1, v2, dv > from H if |du − dv| ≤ ε.

When the number of the types of variable PTMs in a proteoform is a constant, the

algorithms for computing r-distance sets need polynomial time. In practice, we can further

speed up the algorithms by removing some node pairs (u1, u2) from the computation. That

is, we compute D(u1, u2, r) only if the number of edges of the shortest path from u1 to u2

is no large than a user defined parameter L.

4.2.3 Algorithms for the RMGA problem

We present a dynamic programming algorithm (Figure 4.3) for the local RMGA problem.

The algorithm can be modified to solve the semi-global and global RMGA problems. Let

x0, x1, . . . , xn be the nodes in the proteoform mass graph G in the topological order, and let

y0, y1, . . . , ym be the nodes in the spectral mass graph H in the topological order. We fill

out a three dimensional table T (i, j, k) for 0 ≤ i ≤ n, 0 ≤ j ≤ m, and 0 ≤ k ≤ t. The value

T (i, j, k) is the highest shared mass counting score among all consistent path pairs (A,B)

such that A ends at xi and contains k red edges, and B ends at yj . Let C(i, j, r) be the

set of all r-consistent preceding node pairs of (xi, yj). The values of T (i, j, k) are computed

using the following function:
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T (i, j, k) =


max

0≤r≤k
max

(xi′ ,yj′ )∈C(i,j,r)
T (i′, j′, k − r) + 1 if ∪kr=0 C(i, j, r) 6= ∅;

1 if ∪kr=0 C(i, j, r) = ∅ and j = k = 0;

−∞ otherwise.
(4.1)

When (xi, yj) has no consistent preceding node pairs and k = 0, the value T (i, j, 0) is

set as 1 because two empty paths have a shared prefix weight 0. After all values in the

table T (i, j, k) are filled out, we find the largest one in the table and use backtracking to

reconstruct a best scoring local alignment. The number of operations of the algorithm is

proportional to t2nmM , where M the size of the largest set C(i, j, r).

The recurrence relation can be slightly modified to solve the semi-global and global

RMGA problems. For the semi-global alignment problem, we change the second line in

Equation (4.1) to T (i, j, k) = 1 if ∪kr=0C(i, j, r) = ∅ and j = k = 0, that is, yj is required

to be the start node. For the global alignment problem, we change the second line in

Equation (4.1) to T (i, j, k) = 1 if ∪kr=0C(i, j, r) = ∅ and i = j = k = 0, that is, both xi and

yj are required to be the start nodes.

4.3 Results

We developed TopMG (TOP-down mass spectrometry-based proteoform identification using

Mass Graphs) based on the proposed algorithms using C++. All the experiments were

performed on a desktop with an Intel Core i7-3770 Quad-Core 3.4 GHz CPU and 16 GB

memory.

4.3.1 Evaluation on speed, memory usage, and accuracy

A test data set of PrSMs with mutations, which were treated variable PTMs, was generated

from the EC data set for evaluating the speed, memory usage, and accuracy of TopMG.

The proteome database of Escherichia coli K-12 MG1655 was downloaded from the UniProt

database [72] (version June 18, 2015, 4 305 entries) and concatenated with a shuffled decoy

database of the same size. All the 4 054 top-down MS/MS spectra from the EC data set
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The algorithm for the local RMGA problem

Input: A proteoform mass graph G with nodes x0, x1, . . . , xn in the
topological order, and a spectral mass graph H with nodes
y0, y1, . . . , ym in the topological order, and a number t.

Output:A path A in G and a path B in H such that the number of red
edges in A is no more than t and Score(A,B) is maximized.

1. For i = 0 to n do

2. For j = 0 to m do

3. For k = 0 to t do

4. If k = 0 then set T (i, j, 0) = 1 else set T (i, j, k) = −∞.

5. For r = 0 to k do

6. For each node pair (xi′ , yj′) ∈ C(i, j, k − r) do

7. If T (i′, j′, k − r) + 1 > T (i, j, k) then update
T (i, j, k) = T (i′, j′, k − r) + 1.

8. Find the largest value of T (i, j, k) for 0 ≤ i ≤ n, 0 ≤ j ≤ m, 0 ≤ k ≤ t
and use backtracking to find a best scoring local alignment.

Figure 4.3: The algorithm for the local RMGA problem.

were deconvoluted by TopFD and then searched against the target-decoy concatenated EC

proteome database using TopPIC [36]. In the database search, the error tolerances for

precursor and fragment masses were set as 15 ppm and no mass shifts were allowed. A total

of 861 PrSMs were identified with a 1% spectrum-level false discovery rate (FDR), which

were further filtered by the number of matched fragment ions, resulting in 767 PrSMs with

at least 15 matched fragment ions.

The 767 PrSMs without PTMs were used to generate test PrSMs with PTMs (muta-

tions). Three mutations: lysine (K) to cysteine (C), threonine (T) to alanine (A), and

valine (V) to glycine (G), were treated as variable PTMs. Let (P, S) be a PrSM between a

spectrum S and a protein sequence P = a1a2 . . . an without PTMs and truncations, and Ω a

set of variable PTMs (mutations). We change the protein sequence P to introduce variable

PTMs (mutations) into the PrSM. We first randomly select a mutation from amino acid x

to y in Ω and an amino acid ai = y in P , then replace ai with the amino acid x, resulting in

a protein sequence P1 with a mutation. In addition, a random amino acid sequence with a

random length between 1 and 20 is appended to the N terminus of P1, and another random
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sequence with a random length between 1 and 20 is appended to the C-terminus of P1. The

PrSM between the resulting sequence and S contains a variable PTM (mutation), an N-

terminal truncation, and a C-terminal truncation. Using this method, a total of 11 505 test

PrSMs (15 for each of the 767 PrSMs) were generated. In addition, PrSMs with 2, 3, . . . , 10

PTMs and N- and C- terminal truncations were generated using a similar method. A total

of 115 050 PrSMs were generated.

The semi-global mass graph alignment algorithm in TopMG was employed for identifying

a top proteoform for each test PrSM. If the proteoform reported by TopMG has more than

15 matched fragment ions, we say TopMG identifies a PrSM. A reported proteoform may

contain some mass shifts that are localized to several candidate PTM sites, not single ones.

If one candidate site of a mass shift is correct, we say the mass shift is consistent with the

correct site in the target proteoform. If a reported proteoform has the same N-terminal and

C-terminal truncations as the target one and each mass shift in the reported proteoform is

consistent with its corresponding PTM site in the target proteoform, the identification is

correct.

We tested the running time, memory usage, accuracy of TopMG on the 11 505 test PrSMs

with 5 variable PTMs each using various settings for L: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

(see Section 4.2.2). The error tolerance ε was set as 0.1 Dalton (Da); the largest number

of red edges (PTMs) t was set as 10; the three mutations were treated as variable PTMs.

When the setting of L increases from 10 to 100, the running time increases from 328 minutes

to 947 minutes, the memory usage increases from 1.2 GB to 2.2 GB, and the percentage

of correctly identified proteoforms increases from 38.8% to 81.8% (Figure 4.4). TopMG

achieved a good balance between the speed and the accuracy rate when L = 40. Of the

11505 test PrSMs, TopMG (L = 100) reported 11308 (98.3%) PrSMs with at least 15

matched fragment ions, 11101 (96.5%) PrSMs with correct N- and C-terminal truncations,

and 11019 (95.7%) PrSMs with both correct terminal truncations and correct numbers of

variable PTMs. Most incorrectly identified proteoforms contained some PTMs that were

not correctly localized because of the existence of random matches between experimental

fragment masses and theoretical prefix residue masses.
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Figure 4.4: The running time and percentages of correctly identified PrSMs for the 11505
test PrSMs with 5 variable PTMs each when the parameter L is set as 10, 20, . . . , 100.
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Figure 4.5: The percentages of correctly identified PrSMs for the test PrSMs with various
numbers of variable PTMs.

We tested the accuracy rates of TopMG on the test PrSMs with various numbers (1 to

10) of variable PTMs, in which the parameter L was set as 40 and all other parameters

were set as the same as the previous experiment. When the number of variable PTMs

increases from 1 to 10, the accuracy rate decreases from 92.6% to 65.9% (Figure 4.5). Of

the 11505 test PrSMs with 10 variable PTMs, TopMG reported 11019 (95.7%) PrSMs with

at least 15 matched fragment ions, 10552 (91.7%) PrSMs with correct N- and C-terminal

truncations, and 10056 (87.4%) PrSMs with both correct terminal truncations and correct

numbers of variable PTMs, showing that most of the incorrectly identified proteoforms

contained incorrectly localized PTMs.

4.3.2 Proteoform identifications from the histone data sets

We deconvoluted all the MS/MS spectra in the histone data sets using TopFD. Five common

variable PTMs in the histone protein (Table 3.1) were included in the construction of
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proteoform mass graphs. For precursor masses, ±1 and ±2 Da errors were allowed, which

may be introduced by the deconvolution algorithm. For a spectrum with a precursor mass

m, we generated five candidate spectra with precursor masses m − 2, m − 1, m, m + 1,

m + 2, respectively, and the spectrum with the best alignment result was reported. The

error tolerance ε was set as 0.1 Da and the largest number of red edges t was set as 10; the

parameter L was set as 40.

By aligning the spectra against the proteoform mass graph, TopMG (the algorithm

for the semi-global RMGA problem) identified from the first histone data set 1087 PrSMs

with at least 10 matched fragment ions, including 918 matches with at least 20 matched

fragment ions (Figure 4.6(a)). Of the 1087 matches, 239 contain more than 3 PTM sites

(Figure 4.6(b)).

The running time of TopMG was about 88 minutes. The running time depends on the

sizes of the r-distance sets and the numbers of r-consistent preceding node pairs reported

from the proteoform and spectral mass graphs. For the histone H4 protein with the five

variable PTMs, the size of the largest r-distant set was 553. For each spectral mass graph,

we count the total number N of the consistent preceding node pairs used in the mass graph

alignment algorithm, that is, N =
∑

i

∑
j

∑t
r=0C(i, j, r). The average value of N for all

the 3, 252 spectra was 5.60× 106, and the maximum value of N was 6.20× 107.

We compared the performance of TopMG and MS-Align-E [35] on the first histone data

set. For MS-Align-E, the error tolerance for fragment masses was set as 15 ppm and all the

other parameters were set as the same as TopMG. The running time of MS-Align-E was

505 minutes. MS-Align-E identified 1 031 PrSMs with at least 10 matched fragment ions.

TopMG identified 991 of 1 031 matches reported by MS-Align-E as well as 96 PrSMs missed

by MS-Align-E, all of which correspond to proteoforms with terminal truncations. The

main reason why 96 PrSMs were missed by MS-Align-E is that MS-Align-E is not able to

identify truncated proteoforms. The comparison demonstrated that TopMG outperformed

MS-Align-E in identifying truncated proteoforms. TopMG missed 40 PrSMs identified by

MS-Align-E because it may fail to identify PrSMs with very low sequence coverage with

the parameter setting L = 40. When L was set as 200, TopMG identified all the 40 PrSMs.
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Proteoforms reported by TopMG tend to have more matched fragment ions (Figure 4.6(a))

and less PTM sites (Figure 4.6(b)) compared with those reported MS-Align-E.

The second histone data set contains 1 349 CID and 1 349 ETD spectra of the histone

H4 protein. TopMG identified from these spectra 1 051 PrSMs of the histone H4 protein

with at least 10 matched fragment ions, including 851 matches with at least 20 matched

fragment ions. Of the 1 051 matches, 291 contain more than 3 PTM sites. Coupled with

the Thrash algorithm [19], the absolute mass mode of ProSightPC reported 89 proteoforms

as well as their corresponding PrSMs with at least 10 matched fragment ions from these

spectra. TopMG identified all the 89 spectra corresponding to the 89 matches reported

by ProSightPC. In addition, TopMG identified 79 PrSMs whose precursor masses cannot

match any proteoforms reported by ProSightPC, showing that the corresponding proteo-

forms are missed by ProSightPC. Manual inspection confirmed that a proteoform with an

N-terminal truncation (18 amino acids are removed) was identified by TopMG, but missed

by ProSightPC. TopMG also identified proteoforms missed by ProSightPC from the spectra

of the histone H2A, H2B, and H3 proteins in the second histone data set.
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Figure 4.6: Histograms for the PrSMs reported from the first histone data set by TopMG
with L = 40 and MS-Align-E: (a) the number of matched fragment ions; (b) the number of
variable PTM sites.
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4.4 Discussion

Unlike splicing graphs [75] and variant graphs [78], amino acid residue masses are stored

as weights of edges, not of nodes, in mass graphs. Suppose residue masses are stored

as weights of nodes. Let u1, u2, u3 be the three nodes representing the first arginine (R)

and its modified forms R[Acetylation] and R[Methylation] in the protein in Figure 4.1

and v1, v2, v3, v4 be the four nodes representing the first lysine (K) and its modified forms

K[Aceyltation], K[Methylation] and K[Dimethylation]. We need 12 edges to connect all

node pairs (ui, vj) for 1 ≤ i ≤ 3 and 1 ≤ j ≤ 4, making the graph more complex than the

mass graph representation. The example shows that using edge weights in graphs is more

efficient than node weights in representing proteoforms with variable PTMs.

The mass graph alignment problem is similar to the spliced alignment problem [83],

but they are different. The spliced alignment problem studies sequence alignment, not

mass alignment. In a sequence alignment problem, a substitution in a sequence does not

significantly affect the alignment results. For example, changing “A” to “T” in x in the

sequence alignment between x = ACGT and y = ACGT does not affect the matching pairs

of CGT. However, this property does not hold for mass alignment. For example, the red

bold path in Figure 4.1(a) and the path from y0 to y6 in Figure 4.1(b) has a shared mass

counting score 4 because they share 4 prefix masses 0, 198, 340, and 521. If we change the

mass on the red edge between x1 and x2 from 198 to 156, the two paths share only one

prefix residue mass 0. The reason is that the mass shift “propagates” to all non-zero prefix

residue masses of the red bold path. The “propagation” property makes mass alignment

more challenging than sequence alignment.

Compared with MS-Align-E [35] and pTop [37], the main advantage of TopMG is that it

is capable of identifying proteoforms with terminal truncations. Although using MS-Align-

E or pTop to search spectra against a database containing all possible proteoforms with

terminal truncations can also identify truncated proteoforms, the size of the database is

extremely large, making the approach inefficient. For example, a protein sequence with 300

amino acids has 45 150 different truncated forms.
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The parameter L determines the sensitivity and speed of TopMG. The experiments

showed setting L = 40 obtained a good balance between speed and sensitivity. In practice,

users can adjust the setting of L to satisfy specific requirements in data analyses. When a

long running time is acceptable, the setting of L can be increased to 100 or even the length

of the target protein to increase the sensitivity of TopMG.
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CHAPTER 5

STATISTICAL SIGNIFICANCE ESTIMATION FOR IDENTIFIED

COMPLEX PROTEOFORMS

5.1 Introduction

Assigning accurate statistical significance to proteoform identifications is an important step

in top-down mass spectral interpretation [74, 84]. In spectral identification, a query spec-

trum is searched against a protein sequence database to find several candidate proteoform

spectrum matches (PrSMs). These matches are usually ranked by their E-values to find the

best one. In proteome-level MS studies, thousands of spectra are searched and matched to

proteoforms, and these identified PrSMs are often filtered by an E-value cutoff. Accurate

E-values of identifications efficiently distinguish correct identifications from incorrect ones

and increase the number of identifications.

Many efforts have been made to develop methods for estimating the statistical signif-

icance of identifications in bottom-up MS [85], in which proteins are digested into short

peptides before MS analysis. Because of the similarity between bottom-up MS and top-

down MS, most of the methods developed for bottom-up MS can be used in top-down

MS.

There are three types of methods for assigning statistical significance to identifica-

tions in bottom-up MS. The first is probability distribution fitting, which has been widely

used [86–89]. In this approach, a parametric probability distribution is fit to an empirical

score distribution and then used to compute the statistical significance of identifications.

Methods using probability distribution fitting highly depend on the empirical score function

in spectral identification and may fail to to accurately compute extremely small p-values or

E-values [90].

The second is the generating function method [73, 90], which provides an analytical

framework for assigning statistical significance to identifications. Given a match between a

query spectrum and a peptide with a score t, its p-value is computed as follows: a dynamic

programming algorithm is employed to compute the distribution of the similarity score
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between the spectrum and a random peptide whose molecular mass matches the precursor

mass of the spectrum, and then the p-value is computed based on the probability that the

score is no less than t in the distribution. This approach is capable of accurately assigning

p-values to identifications. When thousands of spectra are analyzed, the score distribution

of each query spectrum needs to be computed separately, making it much slower than the

first approach.

The third is the Markov chain Monte Carlo (MCMC) method [91]. Importance sampling

methods, such as direct probability distribution (DPR), are often used in Monte Carlo

simulation to estimate probabilities of extremely rare events [92]. Mohimani et al. [93]

proposed MS-DPR, which successfully applied MCMC with DPR to estimate the statistical

significance of identified cyclic peptides. In MS-DPR, peptides are sampled by a random

walk on a Markov chain to estimate the distribution of the similarity score between a query

spectrum and a random peptide as well as the p-value of an identification.

Many proteoform identifications in top-down MS contain multiple alterations, especially

multiple variable PTMs [4,94]. The problem of assigning statistical significance to identifi-

cations with multiple PTMs has not been extensively studied. In bottom-up MS, peptide

identifications seldom contain three or more PTMs, and there is no urgent need to solve the

problem. In top-down MS, most existing methods are extended from those in bottom-up

MS, which are not designed for the problem.

When variable PTMs are allowed, many proteoforms of a protein are similar, and the

similarity scores of a query spectrum and these proteoforms are not independent. As a result,

it is a challenging problem to accurately estimate proteoform-level statistical significance

of identifications. In this chapter, we focus on the estimation of protein-level statistical

confidence of identifications.

The first two approaches in bottom-up MS have been applied to estimate the protein-

level statistical significance of identifications in top-down MS. In ProSightPC [30], the

distribution of similarity scores of proteoform identifications is fit to a Poisson distribution

for p-value estimation. The generating function method was extended to handle unexpected

alterations in proteoform identifications [74] and used in MS-Align+ [32], TopPIC [36], and

MS-PathFinder [18].
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In this chapter, we propose TopMCMC, an MCMC method with DPR for estimating

the protein-level statistical significance of proteoform identifications with multiple PTMs

identified by top-down MS. Because of the existence of PTMs, the MS-DPR method pro-

posed by Mahimani et al. [93] cannot be directly applied to solve this problem. We designed

a new Markov chain model for representing proteins in top-down spectral identification and

a fast greedy algorithm for computing the similarity score between a query spectrum and

a protein with variable PTMs. By combining the Markov chain and the greedy algorithm,

TopMCMC is capable of efficiently assigning protein-level statistical significance to PrSMs.

We used two methods to evaluate the performance of TopMCMC on four top-down MS

data sets, and showed that TopMCMC achieved high accuracy in estimating p-values of

identifications. By coupling TopMCMC and spectral alignment algorithms in TopMG [1],

we identified more top-down mass spectra from an MCF-7 data set than TopMG with the

generating function method.

5.2 Methods

5.2.1 Similarity scores of PrSMs

In proteoform identification, a score is reported for each identified PrSM to evaluate the

similarity of the match, and the statistical significance of the match is estimated based

on the similarity score. Next we describe the representations of spectra and proteins, and

define a similarity score between an MS/MS spectrum and a proteoform.

In preprocessing of top-down mass spectra, spectral deconvolution tools [18,19,23] are of-

ten used to convert complex tandem mass spectra to neutral monoisotopic fragment masses.

A deconvoluted tandem mass spectrum S is represented by a monoisotopic precursor mass

and a list of neutral monoisotopic fragment masses. The residue mass of S is defined as

PrecMass(S)−mass(H2O), where PrecMass(S) is the monoisotopic neutral precursor mass

of S and mass(H2O) is the monoisotopic mass of a water molecule.

A proteoform F of n amino acids (some amino acids may be modified) is represented

as a list of n integer residue masses, that is, F = a1a2 . . . an, where ai is the integer residue

mass of the ith amino acid. In practice, residue masses of amino acids are discretized by

61



multiplying them by a scale factor and rounding the results to integers [35]. The residue

mass of the protein P is the sum of its amino acid residue masses, mass(F ) =
∑n

i=1 ai.

To compute the similarity between spectrum S and proteoform F , we generate a the-

oretical fragment mass list of F . For 1 ≤ i ≤ n − 1, the mass fi =
∑i

k=1 ak is called a

prefix residue mass of F ; the mass gi =
∑n

k=n−i+1 ak is called a suffix residue mass of F .

Combining all the prefix and suffix residue masses gives us a theoretical mass list of F ,

denoted by t(F ) = {f1, . . . , fn−1, gi, . . . , gn−1}. The theoretical mass list contains neutral

monoisotopic fragment masses of b- and y-ions, which are used in the interpretation of CID

spectra. We add mass shifts to prefix and suffix residue masses to generate theoretical mass

lists for other dissociation methods. For example, when the scale factor in discretization is

1, a mass shift of 17 is added to all prefix residue masses to obtain theoretical c-ion masses,

which are commonly observed in ETD spectra.

The mass counting score between S and F is defined based on their residue masses and

matched fragment masses. If the residue mass of S matches the residue mass of F , the mass

counting score FScore(S, F ) is defined as the number of matched fragment masses between

S and t(F ). Otherwise, the similarity score is 0. The mass counting score is used as the

similarity score of a spectrum and a proteoform in the following analysis.

5.2.2 Similarity scores between proteins and spectra

Database search is the most used method for proteoform identification by top-down MS.

Many protein databases contain only unmodified protein sequences, not proteoforms with

modifications. Several variable PTMs are often provided by the user to identify modified

proteoforms.

Let V be a multiset of variable PTMs. Each PTM in V is represented by its discretized

monoisotopic mass shift. Similar to residue masses, mass shifts of PTMs are discretized by

multiplying them by a scale factor and rounding the results to integers. To simplify the

analysis, we assume that a PTM v ∈ V can modify any amino acid with a residue mass a if

the modified residue mass is positive, that is, a+v > 0. In Section 5.2.6, we will discuss the

case in which a PTM modifies only one or several amino acids. A PTM may occur several

times in the multiset V . For example, V = {80, 80, 16} specifies two phosphorylation sites
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and one oxidation site in a modified proteoform. A length n proteoform F is a modified

proteoform of a length n protein P with PTMs V = {v1, v2, . . . , vk} if (1) there are n − k

matched mass pairs in P and F and (2) the multiset of the mass differences of the remaining

k mass pairs is the same as V . For example, 57,147, 114, 156, 129,167, 128 is a modified

proteoform of protein 57,131, 114, 156, 129,87, 128 with two PTMs V = {16, 80}.

Let D(P, V ) be the set of all modified proteoforms of a protein P with a multiset

V = {v1, v2, . . . , vk} of PTMs. The P-score between S and P with the multiset V is

the maximum similarity score between S and the proteoforms in D(P, V ), denoted by

PScore(S, P, V ). That is, PScore(S, P, V ) = maxF∈D(P,V ) FScore(S, F ). All proteoforms in

D(P, V ) have the same residue mass m+
∑k

i=1 vi, where m is the residue mass of P . When

m+
∑k

i=1 vi does not match the residue mass of S, the score PScore(S, P, V ) is zero.

In this chapter, we study protein-level statistical significance of matches between proteins

and spectra. When PScore(S, P, V ) = t > 0, we use an MCMC-based method to estimate

the probability that the P-Score between the spectrum and a random protein with n amino

acids and a residue mass m is no less than t.

It is inefficient to compute PScore(S, P, V ) by enumerating all proteoforms in D(P, V ).

The size of D(P, V ) is proportional to nk, where n is the length of P and k is the size of V .

When the PTM list V is long, the size D(P, V ) is very large.

Spectral alignment can be used for computing the P-score between a spectrum and a

protein. The dynamic programming method for spectral alignment solves the combinatorial

explosion problem by filling out a 3-dimensional table. Although it is fast for aligning a

spectrum-protein pair, it is still inefficient for the MCMC method, in which tens of thousands

of random proteins need to be aligned with a query spectrum.

Here we use a greedy algorithm (Figure 5.1) to quickly obtain an estimation of

PScore(S, P, V ). Two proteoforms F1 and F2 in D(P, V ) are neighbors if we can obtain

F2 from F1 by shifting the position of one PTM in F1 and vice versa. For example, F =

57,147, 114, 156, 129,167, 128 is a proteoform of protein 57, 131, 114, 156, 129, 87, 128 with

two PTMs {16, 80}, and F ′ = 57, 131, 114,172, 129,167, 128 is a neighbor proteoform of F .

The proteoform F ′ can be obtained from F by shifting the position of the PTM 16 to the

right: the PTM is shifted from the second amino acid residue to the fourth. In the greedy
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algorithm, we start with a random proteoform F in D(P, V ). In each round, we select a

proteoform F ′ from all neighbors of F to maximize the score FScore(S, F ′) and use F ′ to

replace F . The algorithm is terminated if the similarity score cannot be improved, and the

final score is used as an estimation of PScore(S, P, V ).

A greedy algorithm for estimating similarity scores

Input: A protein sequence P , a spectrum S, and a multiset V of PTMs.

Output: An estimation of the similarity score PScore(P, S, V ).

1. Randomly select a proteoform F in D(P, V ).

2. Repeat

3. Find a proteoform F ′ in all neighbors of F such that FScore(S, F ′)
is maximized.

4. Set the score difference δ ← FScore(S, F ′)− FScore(S, F ).

4. If δ > 0 then F ← F ′

5. Until δ ≤ 0

6. Report the score FScore(S, F ).

Figure 5.1: A greedy algorithm for estimating similarity scores.

5.2.3 Markov chains representing proteins

Similar to the method proposed by Mohimani et al. [93], we assume that the alphabet

of protein sequences is not the masses of the 20 standard amino acids, but the set of all

positive integers Z+ = {1, 2, . . .}. Using the alphabet of Z+ makes it possible to build a

homogeneous Markov chain for representing all proteins that match a query spectrum.

Let Ωn,m be the collection of all length n proteins with a residue mass m, in which the

probabilities of the elements follow a uniform distribution. Next we define sister proteins

and introduce a method for building a Markov chain representing Ωn,m.

Two masses ai and bi (1 ≤ i ≤ n) in two proteins a1a2 . . . an and b1b2 . . . bn are a matched

mass pair if ai = bi, and a mismatched mass pair otherwise. Two proteins are sister proteins

if they have the same length and the same residue mass, and contain at most 2 mismatched

mass pairs. For example, 57,71, 114, 156,129, 57, 128 and 57,87, 114, 156,113, 57, 128 are

sister proteins. They have the same length 6, the same residue mass 712, and contain only
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two mismatched mass pairs (71, 87) and (129, 113), whose mass differences are opposites:

16 and −16. In addition, a protein is a sister protein of itself by definition.

Below we give the total number of sisters of a protein P = a1a2 . . . an with a residue mass

m =
∑n

i=1 ai. Let P ′ = b1b2 . . . bn be a sister protein of P with two mismatched mass pairs:

(ai, bi) with ai > bi and (aj , bj) with aj < bj . There are a total of ai−1 possible values for bi,

so the total number of such sister proteins is (ai−1). For a given pair (ai, bi), there are n−1

possible positions for the other pair (aj , bj). As a result, the total number of sister proteins

of P with two mismatched mass pairs is
∑n

i=1(ai− 1)(n− 1) = (m−n)(n− 1). In addition,

P is a sister protein of itself. The total number of sister proteins of P is (m−n)(n− 1) + 1.

We build a Markov chain C for the sample space Ωn,m as follows. Each protein in Ωn,m

is represented by a state in C, and a state is connected to another state by a directed

edge if and only if their corresponding proteins are sisters (Figure 5.2). Each state has an

outdegree of (m− n)(n− 1) + 1 because its corresponding protein has (m− n)(n− 1) + 1

sister proteins. The transition probability of each edge is 1
(m−n)(n−1)+1 . The Markov chain

is ergodic and aperiodic because it is connected and contains length-1 cycles. Based on

the fundamental theorem of Markov chains [95], the Markov chain has a unique stationary

distribution. In addition, the Markov chain C is homogeneous because each state in C has

the same number of edges connecting to it and the transition probability for each edge is

the same. It can be proved that the stationary distribution of C is a uniform distribution:

each state has the same probability 1
|Ωn,m| , where |Ωn,m| is the size of the set Ωn,m. We will

use the MCMC method to sample elements in Ωn,m.

5.2.4 The direct probability redistribution method

Let X be a random variable for the similarity score PScore(S, P, V ) between a spectrum S

and a random protein P ∈ Ωn,m with a fixed multiset V = {v1, v2, . . . , vk} of PTMs. The

space of X is {0, 1, . . . ,m}, where m is the number of masses in the spectrum S. When the

spectrum S and multiset V are fixed, the score PScore(S, P, V ) is also defined as the score

of the state in the Markov chain C corresponding to P . We use the MCMC random walk

method to generate random proteins for estimating the distribution of X.
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1,1,3

1,2,21,3,1

2,1,2

2,2,1 3,1,1

Figure 5.2: An example Markov chain for the sample space Ω3,5, which contains all proteins
with length 3 and residue mass 5. Each protein is represented as a state in the Markov
chain, and a state is connected to another if and only if their corresponding proteins are
sister proteins. There are no edges connecting (1, 3, 1) and (2, 1, 2) because they contain 3
mismatched mass pairs. Each state is connected to itself because each protein is a sister
protein of itself. Each state has an outdegree of (m−n)(n− 1) + 1 = (5− 3)(3− 1) + 1 = 5.
The transition probability of each edge is 1

5 .

In MS-DPR, two mismatched mass pairs in two sister peptides need to be neighbors,

but those in two sister proteins in TopMCMC may be not neighbors. The definition of

sister proteins in TopMCMC leads to abrupt changes of similarity scores of states visited

in random walks and makes it possible to move from a state with a low score to another

state with a high score with several transitions.

For an identified PrSM with a similarity score t, we need to estimate the probability

Pr(X ≥ t) to obtain its p-value. The probability is often very small when the score t is

large. For example, the probability is usually less than 10−10 when t = 20. In the MCMC

random walk method, billions of simulations (trial runs) are required to accurately estimate

such a small probability. To speed up the computation, we need to oversample rare events

to reduce the number of simulations.

The Direct Probability Redistribution (DPR) method is an efficient technique for re-

ducing the number of simulations in estimating rare event probabilities in Monte Carlo

simulation [92]. Let pi (0 ≤ i ≤ m) be the probability that X = i. The DPR method

increases the transition probability of the edge from a state Q1 to another state Q2 if the
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score for Q2 is higher than that for Q2. The oversampling procedure is a recursive function

(Figure 5.3). Let u0 ≤ u1 ≤ . . . ≤ um be oversampling factors, where ui is the oversampling

factor for states with score i. We assume that the oversampling factor increases when the

score increases. In each iteration of the algorithm, a new state Q′ is randomly selected from

a current state Q using the Markov chain. The number of simulations starting from the

new state Q′ is based on its score s′, the score s for Q, and a threshold h ≤ s. There are

three cases: (1) If the score s′ is smaller than the threshold h, the number of simulations

from state Q′ is reduced to 0 (Step 4). (2) If the score s′ is larger than s, the number of

simulations from Q′ is increased (Steps 6-8). (3) If the score s′ is between h and s, that is,

h ≤ s′ ≤ s, the number of simulations from Q′ is 1 (Step 9). The output of the procedure is

stored in a list of counts z0, z1, . . . , zm, in which zi represents the number of visited states

with a score i. For each score i (0 ≤ i ≤ m), the stationary probability pi is computed as

zi/ui∑m
k=0 zk/uk

. More details of the DPR method can be found in [92].

The oversampling factors u0, . . . , um are important parameters for accurate estimation

of rare event probabilities. Haraszti et al. [92] proved that ui = 1/pi are the optimal

oversampling factors. Since the stationary probabilities p0, . . . , pm are unknown, an iterative

method is used to find settings for the oversampling factors (Figure 5.4). In the first

iteration, the oversampling factors are set to u0 = · · · = um = 1 to estimate p0, . . . , pm;

in the next iterations the oversampling factors are set to u0 = 1/p0, . . . , um = 1/pm. The

algorithm will be terminated after T iterations. The parameter T was set to 3 in the

experiments.

5.2.5 Expected values of PrSMs

Given a spectrum S, a multiple set V of PTMs, and a random protein sequence P from

Ωi,j , the DPR method is used to estimate the distribution of PScore(S, P, V ) when the

sum of the residue mass j and the masses in V equals the residue mass of S. Let D

be a protein sequence database that contains random sequences with various lengths and

residue masses. We denote by Di,j the set of protein sequences in D with i amino acids and

a residue mass j. The size of Di,j is denoted by di,j . In practice, the value di,j is obtained

by counting the number of protein sequences with i amino acids and residue mass j in the
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MCMC simulation using DPR

Global variables: A Markov chain C, a total number cmax of simulations,
a query spectrum S, a multiset V of PTMs, oversam-
pling factors u0 ≤ u1 ≤ · · · ≤ um, and state counts
z0, z1, . . . , zm with initial values all set to 0.

Input: An initial state Q in the Markov chain C, a counter c for the number
of sampled states, and a threshold h. The initial values for c and h
are 0.

Output: The state counts z0, z1, . . . , zm.

1. Procedure Simulate(Q, c, h)

2. While c < cmax do

3. Randomly select a next state Q′ from Q using the Markov chain. The
scores of Q and Q′ are represented by s and s′, respectively.

4. If s′ < h then return

5. If s′ > s then

6. For i = 1 to bus′/usc − 1 do

7. Randomly select x from [us, us′ ] and find a score h′ such that
uh′−1 ≤ x ≤ uh′ .

8. Simulate(Q′, c, h′)

9. Set c← c+ 1, Q← Q′ and zs ← zs + 1.

Figure 5.3: MCMC simulation using DPR.

protein sequence database used in top-down spectral identification. Each sequence in Di,j

is randomly selected from the set Ωi,j . Let X(i, j, t, V ) be a random variable representing

the number of protein sequences P in Di,j with PScore(S, P, V ) ≥ t. Note that X(i, j, t, V )

is zero when the sum of the residue mass j and the masses in V does not match the residue

mass of S. The expected value of X(i, j, t, V ) is estimated to be p(i, j, t, V ) · di,j , where

p(i, j, t, V ) = Pr(PScore(S, P, V ) ≥ t). Let X(t, V ) be a random variable representing the

number of proteins in D with a score PScore(S, P, V ) ≥ t. The expected value of X(t, V )

is
∑

i

∑
j p(i, j, t, V ) · di,j .

In top-down spectral identification, a set T of possible PTM types, instead of a multi-

set of PTM sites, is allowed in identified proteoforms. Let Φk be a set of all multisets V

each containing at most k PTMs (may have repetitions) in T . We define a random vari-

able Y (k, t) =
∑

V ∈Φk
X(t, V ), which represents the number of pairs (P, V ) with a score
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Algorithm for estimating oversampling factors

Input: A Markov chain C, a query spectrum S, and a parameter T of
iterations.

Output: Oversampling factors u0, u1, . . . , um.

1. Set u0 = u1 = . . . = um = 1.

2. For i = 1 to T do

3. Use the DPR method to estimate the state counts z0, z1, . . . zm
with the Markov chain C, the query spectrum S, and the over-
sampling factors.

4. For i = 0, 1, . . . ,m, compute pi = zi/ui∑m
i=1 zk/uk

.

5. Set u0 = 1/p0, u1 = 1/p1, . . . , um = 1/pm.

6. Return oversampling factors u0, u1, . . . , um.

Figure 5.4: The algorithm for estimating oversampling factors.

PScore(S, P, V ) ≥ t, where P is a protein in D and V is a multiset in Φk. The expectation

of Y (k, t) is computed as
∑

V ∈Φk

∑
i

∑
j p(i, j, t, V ) · di,j . The expected value of Y (k, t) is

reported as the E-value for a PrSM with k variable PTM sites and a mass counting score

t identified by database search. The p-value of the PrSM is the probability that the max-

imum score maxP∈D,V ∈Φk
PScore(S, P, V ) ≥ t, which equals the probability that at least

one match between a protein P in D and a multiset V ∈ Φk has a score PScore(S, P, V ) ≥ t.

That is, the p-value of the PrSM is the probability Pr(Y (t, V ) ≥ 1). Because it is compli-

cated to compute the probability, we use a simple method to estimate it.

To speed up the computation, the greedy algorithm in Figure 5.1 is used to estimate

P-scores in the DPR method. Below we describe how to estimate the probability p(i, j, t, V )

with the greedy algorithm. Consider an identified PrSM (S, P ∗) between a spectrum S and

a protein P ∗ with a multiset V of PTMs and a similarity score t. We first use the greedy

algorithm to compute an estimation t′ of PScore(S, P ∗, V ). Second, we use the DPR method

to compute the probability that the estimation of PScore(S, P, V ) reported by the greedy

algorithm is no less than t′, where P is a random protein in Ωi,j . The probability is used

as an estimation of p(i, j, t, V ).
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5.2.6 Sequences of standard amino acids

In the Markov chain model described previously, the alphabet of a protein sequence is all

positive integer numbers, not the residue masses of the 20 amino acids. We modify the

model to sample protein sequences of the 20 amino acids.

In the modified model, the alphabet contains 19 integer masses, each of which is the

discretized residue mass of an amino acid. We use 19 instead of 20 masses because leucine

and isoleucine have the same integer mass value and are treated as the same. Because of

the small size of the alphabet, two sister proteins a1a2 . . . an and b1b2 . . . bn of the 19 masses

often have two mismatched mass pairs (ai, bi) and (aj , bj) where ai = bj and aj = bi. That

is, the two proteins have the same composition of amino acids. As a result, simulations in

the MCMC method may be limited to sequences similar to that of the initial state.

To address the problem, we introduce cousin proteins, which allow more changes in

sequences compared with sister proteins. The lengths of two cousin proteins can be different,

and they have at most two pairs of mismatched segments, the length of which can be longer

than one. A protein with two mismatched segments is divided into 5 segments by the

four ending points of the two mismatched segments. Two protein sequences P1 and P2 are

cousin proteins if they have the same residue mass and can be represented by concatenations

of three matched segments and two mismatched segments P1 = A1A2A3A4A5 and P2 =

B1B2B3B4B5, where A1 = B1, A2 6= B2, A3 = B3, A4 6= B4, and A5 = B5. That the

segments A1, A3, A5, B1, B3, B5 may be empty ones. In addition, a protein sequence is a

cousin of itself.

Because cousin proteins may have various lengths, a Markov chain in the modified model

represents protein sequences with various lengths, not a fixed length. Let Ωj be the set of

all protein sequences on the alphabet of the 19 masses with a residue mass j. Each state

in the Markov chain represents a protein in Ωj . Two states are connected by an edge if

their corresponding proteins are cousins. In the implementation of the method, we added

an additional constraint to reduce the number of cousin proteins of a state: the lengths of

A2 and A4 are each no longer than 2. In addition, an error tolerance is allowed for the

residue masses of two cousin proteins. An example of cousin proteins is given in Figure 5.5.
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M AA GG K S T SS M P T

M NN K S T TT M P T

Figure 5.5: An example of cousin proteins on the alphabet of the residue masses of the 20
standard amino acids. The sum of the residue masses in the substrings ‘AG’ and ‘S’ in the
protein MAGKSTSMPT is the same as that in the substrings ‘N’ and ‘T’ in the protein
MNKSTTMPT within an error tolerance of 15 ppm.

The number of cousins of a random protein in Ωj is not fixed because the proteins in

Ωj have various lengths and the numbers of possible mismatch segment pairs (A2, B2) and

(A4, B4) of proteins are not fixed. As a result, we assign different transition probabilities to

edges. For a state corresponding to a protein with k cousin proteins, we assign a transition

probability 1
k to each edge leaving the state. The stationary distribution of such a Markov

chain is not a uniform distribution. Let x be a random variable representing the number

of cousins of a random protein in Ωj (with the restriction that each mismatched segment is

no longer than 2). The distribution of x is narrowly concentrated and has a small relative

standard deviation.

A PTM in general modifies several amino acids, not all the 20 amino acids. In this

case, a length n proteoform F is a modified proteoform of a length n protein P with PTMs

V = {v1, v2, . . . , vk} if (1) there are n−k matched mass pairs in P and F and (2) the multiset

of the mass differences of the remaining k mass pairs is the same as V , and (3) for each

unmatched mass pair corresponding to an amino acid and a PTM (a mass shift), the PTM

can modify the amino acid. In addition, we modify the definition of neighbor proteoforms

in the greedy algorithm: two proteoforms F1 and F2 in D(P, V ) are neighbors if we can

obtain F2 from F1 by shifting the position i of one PTM in F1 to a new position j such

that the amino acid at position j can be modified by the PTM. For the protein sequence

P = GRMPKESK modified by a methylation and a phosphorylation, the proteoforms F1 =

GR[meth]MPKES[ph]K and F2 = GRMPK[meth]ES[ph]K are neighbors, because F2 can

be obtained by shifting the position of the methylation site from the second amino acid R

to the fifth amino acid K.
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We define Dj as the set of protein sequences in D with a residue mass j, and dj the size

of Dj . Each sequence in Dj is randomly selected from the set Ωj . Let X(j, t, V ) be a random

variable representing the number of protein sequences P in Dj with PScore(S, P, V ) ≥ t.

The p-values and E-values of PrSMs with various PTMs are estimated using the same

method described previously.

Many proteoforms identified by top-down MS contain unexpected alterations. The pro-

posed method can be extended to compute E-values and p-values of PrSMs containing

unexpected alterations. For a PrSM with variable PTMs and an unexpected alteration

with a mass shift x in [−500, 500] Da, the proposed method is modified as follows: the

mass shift x is considered as a variable PTM. An amino acid with a residue mass a can be

modified by the PTM if x+ a > 0.

5.3 Results

The proposed MCMC method was implemented in C++. All experiments were performed

on a computer with an Intel Xeon E5-2637 3.50GHz CPU and 128 GB memory.

5.3.1 Evaluation of the greedy algorithm

The greedy algorithm in Figure 5.1 may fail to report correct similarity scores of protein

spectrum matches with PTMs because its search space is limited. Large errors in estimated

similarity scores will affect the accuracy of p-values reported by TopMCMC. We used the

histone H4 data set to evaluate the accuracy of the greedy algorithm.

The human histone H4 protein sequence was downloaded from the UniProt database

(version September 12, 2016) [72]. Acetylation, methylation, dimethylation, trimethylation,

and phosphorylation were considered as variable PTMs. In a candidate proteoform, at most

10 variable PTMs were allowed and no unexpected mass shifts were allowed. Of the 3 256

spectra, the precursor masses of 1 112 matched (within 15 ppm) the molecular mass of a

candidate proteoform of the histone H4 protein.

We computed two similarity scores: the P-score and G-score, for the match between

each of the 1 112 spectra and the histone H4 protein with variable PTMs. For a protein

72



spectrum match (S, P, V ) between a spectrum S and a protein P with a multiset V of

PTMs, the G-score is an estimation of PScore(S, P, V ) reported by the greedy algorithm.

The PScore(S, P, V ) is accurately computed by the graph alignment algorithm in TopMG.

In the greedy algorithm, the error tolerance for fragment masses was 15 ppm. For each

protein, the algorithm was performed 3 times with different initial random proteoforms

(Step 1 in Figure 5.1), and the best score was reported.

The greedy method has a smaller search space and a shorter running time than the

graph alignment method. The average running times of the greedy method and the graph

alignment method on the 1 112 protein spectrum matches were 6 and 1 237 seconds, respec-

tively. Because of the small search space of the greedy method, the G-score of a match

was no larger than the P-score. We divided the 1 112 matches into four groups based on

the number of PTMs in the best scoring proteoform reported by TopMG: 0 − 2 PTMs,

3− 5 PTMs, 6− 8 PTMs, and 9− 10 PTMs. Figure 5.6 shows the scatter plots of the two

scores of the matches in the four groups. The difference between the G-score and P-score

of a PrSM increases as the number of PTMs increases. When the number of PTMs is no

larger than 5, the difference between the two scores is 7.1 on average, and the standard

deviation of the differences is 6.06. When the number of PTMs is larger than 5, the average

and standard deviation of the differences between the two scores are increased to 10.7 and

10.32, respectively. In the MCMC method, a large variance in the differences significantly

affects the accuracy of estimated p-values. The greedy method introduces more errors for

matches with > 5 PTMs compared with those with ≤ 5 PTMs.

5.3.2 Evaluation based on p-values

The bipartite database strategy [96] was used to evaluate the accuracy of p-values reported

by TopMCMC. In this strategy, query MS/MS spectra are searched against a bipartite

protein database containing sample sequences and entrapment sequences. While the sample

sequences are expected to be observed in the sample, the entrapment sequences are not.

The p-values of matches between spectra and entrapment sequences should follow a uniform

distribution. This property is used to assess the accuracy of methods that assign p-values

to PrSMs.
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Figure 5.6: Scatter plots of the P-scores and G-scores of the 1 112 protein spectrum matches
in the histone H4 data set with various numbers of PTMs: (a) 0−2 PTMs; (b) 3−5 PTMs;
(c) 6− 8 PTMs; (d) 9− 10 PTMs.

We used the histone H3 data set to assess the accuracy of p-values estimated by TopM-

CMC. A bipartite database was constructed as follows. The 5 histone H3 protein sequences

in the UniProt human proteome database (version September 12, 2016) were treated as

sample sequences, and the sequences in the UniProt Pyrococcus furiosus proteome database

(version February 4, 2017, 499 entries) entrapment ones. A previous study [97] demon-

strated that P. furiosus proteins are a good choice for entrapment sequences because they

have a long evolutionary distance with human sequences,

TopMG [1] was employed to search the spectra in the histone H3 data set against the

bipartite database. Acetylation, methylation, dimethylation, trimethylation, and phospho-

rylation were considered as variable PTMs. The error tolerance for precursor and fragment

masses was set to 15 ppm, at most 5 variable PTMs were allowed in an identified proteo-
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form, and no unexpected mass shifts were allowed. Candidate PrSMs of a query spectrum

can be divided into many types based on the number of PTMs and terminal truncations.

TopMG reported a top scoring PrSM for each query spectrum and each PrSM type. The

TopMCMC method was used to estimate p-values and E-values for the top scoring PrSMs

and report one with the best E-value for each query spectrum. The greedy algorithm was

used to speed up the estimation of P-Scores in TopMCMC. Of the 6 824 spectra, 2 638 were

matched to proteoforms of the entrapment sequences.

By definition, the p-values of the entrapment PrSMs should follow a uniform distribu-

tion. One-sample Kolmogorov-Smirnov test was used to compute a D value (Kolmogorov-

Smirnov statistic), a distance between the empirical distribution of the p-values reported

by TopMCMC for the entrapment PrSMs and the uniform distribution over [0, 1]. The D

value was 0.1874 with a p-value 2.2× 10−16 (Figure 5.7), demonstrating that the empirical

distribution and the uniform distribution are similar. Granholm et al. studied D values

of scores reported by several commonly used tools for bottom-up mass spectral identifi-

cation, such as SEQUEST (D value ≤ 0.03) and MS-GFDB (D value 0.21) [96]. The D

values of SEQUEST and MS-GFDB are given for references, not for the comparison between

TopMCMC and these tools. The average running time of TopMCMC for a PrSM was 2.13

seconds. The settings of the parameters cmax = 10 000 and T = 3 were chosen to balance

the running time and the accuracy of reported p-values.

We also compared cumulative relative frequencies of the p-values of the 2 638 PrSMs

reported by TopMCMC and cumulative probabilities of the uniform distribution over [0, 1]

(Figure 5.8). If the cumulative relative frequency of the reported p-values for a value

x ∈ [0, 1] is larger than the cumulative probability of the uniform distribution for x, then

the reported p-values in [0, x] are underestimated. Figure 5.8 shows that TopMCMC un-

derestimated the p-values in [0, 0.7]. The main reason is that rare events (PrSMs with high

scores) might not be effectively sampled when the number of simulations (10 000 in the

experiments) is not large enough.
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Figure 5.7: The histogram of p-values reported by TopMCMC for the 2 638 entrapment
PrSMs reported from the histone H3 data set. The D value (Kolmogorov-Smirnov statistic)
between the empirical distribution of the p-values and the uniform distribution over [0, 1]
is 0.1874.

5.3.3 Evaluation based on FDRs

We also evaluated the accuracy of TopMCMC using an false discovery rate (FDR)-based

method [74, 98]. Given a list of query mass spectra, a target protein database, and an E-

value cutoff t, the spectrum level FDR of identifications is estimated by two methods: one

is by the target-decoy approach (TDA) [99], and the other by the eTDA estimator [98]. In

the first method, the query mass spectra are searched against a concatenated target-decoy

database for spectral identification, and the numbers of target and decoy identifications with

an E-value better than t are used to estimate the FDR of the identifications. In the second

method, each query mass spectrum is searched against the target database to find the best

target PrSM, whose E-value is denoted by tD. Then we compute the probability that the

spectrum and a random decoy database, whose size is the same as the target database, have

a PrSM with an E-value < min{t, tD}. That is, the decoy PrSM has an E-value better than

t and than that of the best target PrSM. Such probabilities for all query spectra are summed

up to obtain the expected number of decoy identifications, which is used to compute the

expected FDR of identifications. The FDR estimated by the target-decoy approach is used

as the gold standard. Because the computation of FDRs in the eTDA method is based on
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Figure 5.8: Comparison of the cumulative relative frequencies of the p-values reported by
TopMCMC of the 2 638 entrapment PrSMs and the cumulative probabilities of the uniform
distribution over [0, 1]. For each value x in [0, 1], the cumulative relative frequency of the
reported p-values in [0, x] and the cumulative probability of the uniform distribution for x
are plotted.

E-values reported by TopMCMC, a high similarity between the FDRs reported by the two

methods demonstrates a high accuracy of the E-values reported by TopMCMC.

The EC data set was used in the evaluation. The UniProt EC proteome database

(version September 12, 2016, 4 306 entries) was concatenated with a shuffled database of the

same size. A two-step database search was performed to analyze the EC data set. First, the

EC data set was searched against the EC proteome database using TopPIC [36] to quickly

identify spectra generated from proteoforms without modifications or with one modification

(some may contain terminal truncations). It is not necessary to use TopMCMC to estimate

E-values of these identifications because they do not contain multiple modifications. One

unexpected mass shift was allowed in an identified proteoform. With a 1% spectrum level

FDR, a total of 1 920 PrSMs from 178 proteins were identified, including 470 PrSMs with

unexpected mass shifts. Many mass shifts in the 470 PrSMs can be explained by common

PTMs (Table 5.1). For example, mass shifts around 14 Da, which can be explained by

methylation sites, were reported in 7 proteoforms from 4 proteins.

In the second step, these 1 450 spectra identified in the previous step were excluded,

and the remaining 2 604 spectra (including the 470 spectra identified with mass shifts in the
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Table 5.1: Common PTMs observed in the TopPIC identifications of EC data set.

PTM Monoisotopic Amino acids that # proteins # proteoforms

mass shift (Da) can be modified

Acetylation 42.01056 R, K 8 9

Methylation 14.01565 R, K 4 7

Phosphorylation 79.96633 S, T, Y 1 1

Oxidation 15.99492 D, K, N, P, Y, R, C 9 9

previous step) were searched against the target-decoy EC database using TopMG. Because

the mass shifts of acetylation, methylation, phosphorylation, and oxidation were observed

in the first step of the analysis, they were treated as variable PTMs in TopMG. At most

5 variable PTM sites were allowed in a proteoform and no unexpected mass shifts were

allowed.

A total of 303 and 86 PrSMs with an E-value smaller than 1 were reported from the

target and decoy sequences, respectively. Since the FDR estimated by the target-decoy

approach would be 0 when the cut-off E-value was below 1.11 × 10−4, we only compared

the FDRs for cut-off E-values greater than 1.11 × 10−4 (Figure 5.9). When the E-value

cutoff is smaller than 0.1 (− log10(cutoff E-value) > 1), the FDRs estimated by the two

methods are similar, and the FDRs estimated by the eTDA method are smaller than those

by the TDA method, showing that E-values reported by TopMCMC are underestimated.

5.3.4 Discriminative capacity

We compared the TopMCMC method and the generating function approach [73, 74] on

distinguishing correct identifications from incorrect ones using the MCF-7 data set. A

human proteome database (version February 5, 2018, 20 303 entries) was downloaded from

the UniProt database [72] and concatenated with a shuffled decoy database of the same

size. Similar to the EC data set, a two-step database search was performed to analyze

the MCF-7 data set. In the first step, all MCF-7 mass spectra were searched against the

human target-decoy database using TopPIC, and the parameter settings were the same as

the EC data analysis. With a 1% spectrum level FDR, TopPIC identified 615 PrSMs from
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Figure 5.9: Comparison of the FDRs estimated by the TDA and eTDA methods for the
PrSMs identified by TopMG from in the EC data set.

115 proteins, including 400 PrSMs without unexpected mass shifts. In the second step,

the 400 spectra were excluded and the remaining 1 123 spectra were searched against the

human target-decoy database using TopMG. The PTMs in Table 5.2 were considered as

variable PTMs, and other parameter settings were the same as the EC data analysis. The

TopMCMC method and the generating function method were incorporated into TopMG

for E-value computation separately. TopMG coupled with TopMCMC is referred to as

TopMG+MCMC, and TopMG coupled with the generating function method TopMG+GF.

Table 5.2: Common PTMs observed in the TopPIC identifications of MCF-7 data set.

PTM Monoisotopic Amino acids that # proteins # proteoforms

mass shift (Da) can be modified

Acetylation 42.01056 R, K 5 5

Dimethylation 28.03130 R, K 2 2

Phosphorylation 79.96633 S, T, Y 8 15

Oxidation 15.99492 D, K, N, P, Y, R, C 3 3

With a 5% spectrum level FDR, TopMG+MCMC and TopMG+GF identified 161 and

133 PrSMs, respectively (Figure 5.10). TopMG+MCMC identified 21.1% more PrSMs

than TopMG+GF, demonstrating that TopMCMC is better than the generating function
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method in distinguishing correct identifications from incorrect ones. TopMG+GF missed

many PrSMs because the implementation of the generating function method cannot accu-

rately estimate E-values for PrSMs with multiple variable PTMs. TopMG+MCMC also

missed 21 PrSMs identified by TopMG+GF. A possible reason is that the greedy method

in TopMCMC introduced errors in the estimation of E-values of PrSMs with many variable

PTMs. Most of the PrSMs (16 out of 21) missed by TopMG+MCMC have at least 4 vari-

able PTMs. The running times of the two methods for E-value computations were similar:

380 seconds for TopMCMC and 375 seconds for the generating function method.

49 21112

TopMG+MCMC TopMG+GF

Figure 5.10: Comparison of the numbers of PrSMs identified by TopMG+MCMC and
TopMG+GF from 1 123 spectra in the MCF-7 data set with a 5% spectrum level FDR.

5.4 Discussion

There are two main differences between TopMCMC and MS-DPR [93] although they use

the same MCMC framework and oversampling method. First, while a sister of a peptide is

obtained by changing two neighboring masses in MS-DPR, a sister of a protein is obtained

by changing two masses or two substrings, which may be not neighbors, in TopMCMC.

The definition of sister peptides in MS-DPR leads to smooth change of similarity scores

after state transition, and that in TopMCMC leads to abrupt change of similarity scores.

PrSMs identified by top-down MS often have a high similarity score. We need at least 30

transitions to move from a state with a score 0 to a state with a score 30. When the number

of simulations is not large, the MCMC method may fail to find such a long path, resulting

in inaccurate p-value estimation. Abrupt change of scores in TopMCMC can significantly
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reduce the length of such a path, increasing the chance that states with high similarity

scores are visited.

Second, the score of a peptide for a query spectrum in MS-DPR is the shared mass

counting score between the spectrum and the peptide; the score of a protein in TopMCMC

is the shared mass counting between the query spectrum and the best candidate proteoforms

of the protein. Because the number of all candidate proteoforms grows exponentially with

the number of PTM sites, a greedy method is used in TopMCMC to speed up the estimation

of the similarity score.

TopMCMC is more accurate than the generating function method because it estimates

protein-level probabilities, not proteoform-level probabilities. The generating function ap-

proach was designed to estimate E-values of matches between spectra and unmodified pro-

tein sequences. When it is extended to analyze PrSMs with variable PTMs, it can only

report proteoform-level probabilities: the probability that a query spectrum and a random

proteoform has a score no less than a threshold. Because many proteoforms of a protein

are similar, the similarity scores of the query spectrum and these proteoforms are not inde-

pendent. As a result, the generating function approach may have large errors in reported

E-values. TopMCMC is capable of accurately estimating the protein-level probabilities:

the probability that a query spectrum and the best scoring proteoform of a random protein

has a score no less than a threshold, avoiding the errors caused by similar proteoforms. If

users are interested in modification identification or proteoform characterization, modifica-

tion identification scores or localization scores, such as the MIScore [100], can be reported

as confidence scores of identified modifications.

The accuracy of p-values reported by TopMCMC is related to its number of simulations.

While increasing the number of simulations will improve the accuracy, it also increases the

running time. Experimental results demonstrated that TopMCMC achieved a good balance

between the running time and the accuracy by setting cmax (the number of simulations) to

10 000 simulations and setting T (the number of rounds in oversampling factor estimation)

to 3. The accuracy of reported p-values can be further improved by increasing the settings

of cmax and T when a long running time is acceptable.
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CHAPTER 6

CONCLUSION

The relatively small number of genes revealed by the Human Genome Project suggests a

significant source of the complexity in human bodies is protein variation, which may come

from genomic changes, in vivo proteolysis or PTMs. The accumulation of all these vari-

ations defines specific proteoforms [2], which govern various biological functions. In this

dissertation, we present several novel algorithms for computational problems in complex

proteoform identification using top-down MS/MS. All the proposed algorithms have been

incorporated into TopMG, a complete software pipeline for complex proteoform identifica-

tion. Experiments on simulated and real top-down MS/MS data sets showed TopMG can

significantly increase the number of identifications compared with the existing methods.

TopMG will facilitate the identification and quantification of clinically relevant proteoforms

as well as the discovery of new protein biomarkers. Here, we summarize the main contribu-

tions of this dissertation and briefly discuss some future directions in the field of proteoform

identification.

6.1 Summary

The contributions of this thesis involve several aspects of proteoform identification and are

summarized as follows:

Approximate spectrum-based filtering algorithms Existing protein sequence fil-

tering methods may fail when the target proteoform has more than two mass shifts or

there are not enough consecutive fragment ions in the query spectrum. In the proposed

ASF-RESTRICT and ASF-DIAGONAL algorithms, we address the problem by using a

new strategy of incorporating the variable PTM information into MS/MS spectra, not the

database sequences. The PTM information is used to remove variable PTMs in the match

between the target sequence and the query spectrum.
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Mass graph-based alignment algorithms We design a new data structure, called

mass graphs, to effectively represent all possible proteoforms generated from the reference

sequence with multiple variable PTMs and/or terminal truncations in one graph. One

fundamental difference between the proposed structure and existing graph models in com-

putational proteomics is to store amino acid residue masses as weights of edges, not of nodes.

Using edge weights can significantly simplify the graphs in representing proteoforms with

variable PTMs. Mass graph-based alignment algorithms are proposed for complex proteo-

form identification. Experiments on the simulated data set showed, even with 10 variable

PTMs and terminal truncations, the proposed algorithms can still report more than 60%

correct identifications.

Statistical significance estimation using MCMC In this dissertation, we design a

new Markov chain model to represent proteins for top-down spectral interpretation, and a

greedy algorithm is used to quickly estimate the similarity score between the query spectrum

and a proteoform with multiple variable PTMs. The greedy algorithm and DPR sampling

method together provide a fast method for estimating statistical significance of identified

complex proteforms.

6.2 Future directions

This dissertation provides our solutions to several computational problems in proteoform

identification. However, many fundamental issues in this field remain unresolved. In this

section, we briefly discuss several promising research directions in this area.

Peak intensity A top-down MS/MS spectrum contains a list of peaks, each of which is

represented as (m/z, intensity). Almost every framework for MS-based proteoform iden-

tification ignores the intensity values. An exception is SQID, which incorporates intensity

information in computing the scores of candidate peptides using bottom-up MS [101]. To our

best knowledge, there is no software framework for top-down MS integrating the intensity

information. Currently, TopMG uses the shared mass counting score, which only considers

m/z values from each spectrum. The intensity value of a peak measures the abundance
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of the corresponding fragment ion. However, due to the complexity of the fragmentation

process, it is difficult to predict the intensity pattern and use it to assist proteoform identi-

fication. It is of great interest to investigate how to use the intensity information to improve

the scoring function between mass spectra and proteoforms.

Retention time In a typical MS experiment, the protein samples are separated according

to their hydrophobicity on an LC column. Then samples are ionized via ESI and subjected

to mass spectrometry analysis. Besides the peak list, each spectrum also contains the

retention time from the separation step. Recently, the prediction of retention time using

protein sequences achieved very high accuracy [102,103]. So we can predict retention time

using database sequences and use the predicted retention time for sequence filtration. This

filtering method can potentially improve the filtration efficiency and speed up the analysis

workflow.

Spectral deconvolution Spectral deconvolution is usually one of the first steps in MS

data analysis, and we assume the input of TopMG is mass spectra deconvoluted by TopFD.

The deconvolution step determines the number of peaks and the noise level in each spec-

trum, which further affect the processing time and final results. A better deconvolution

process can significantly reduce running time and improve proteoform identification results.

Besides converting isotopomer envelopes into monoisotopic peaks, LC-MS feature detection

is another critical step in spectral deconvolution. An LC-MS feature represents a group

of isotopomer envelopes corresponding to the same proteoform across all charge states and

retention times. Efficient LC-MS feature detection can significantly improve the proteoform

identification and characterization results because the different spectra generated from the

same proteoform can provide complementary information.

Proteogenomics Proteogenomics is an area of research combining proteomics and ge-

nomics [104]. One of the attractive features of proteogenomics research is to integrate

information from both genomics and proteomics. Genomic and transcriptomic information

is used to customize the protein database, and mass spectrometry is used to identify the

novel proteoforms. On the other hand, the MS data provides the protein-level evidence for
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genomic analysis. The complementary information from the same sample can provide a

much deeper understanding of many problems in biomedical research.
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A mass graph-based approach for the identification of modified proteoforms using

top-down tandem mass spectra. Bioinformatics, 33:1309–1316, 2016.

[2] Lloyd M Smith, Neil L Kelleher, and Consortium for Top Down Proteomics. Pro-

teoform: a single term describing protein complexity. Nature Methods, 10:186–187,

2013.

[3] Benjamin A Garcia, James J Pesavento, Craig A Mizzen, and Neil L Kelleher. Per-

vasive combinatorial modification of histone H3 in human cells. Nature Methods,

4:487–489, 2007.

[4] Nicolas L Young, Peter A DiMaggio, Mariana D Plazas-Mayorca, Richard C Baliban,

Christodoulos A Floudas, and Benjamin A Garcia. High throughput characterization

of combinatorial histone codes. Molecular & Cellular Proteomics, 8:2266–2284, 2009.

[5] Shahaf Peleg, Farahnaz Sananbenesi, Athanasios Zovoilis, Susanne Burkhardt, Sanaz

Bahari-Javan, Roberto Carlos Agis-Balboa, Perla Cota, Jessica Lee Wittnam, An-

dreas Gogol-Doering, Lennart Opitz, Gabriella Salinas-Riester, Markus Dettenhofer,

Hui Kang, Laurent Farinelli, Wei Chen, and André Fischer. Altered histone acetyla-

tion is associated with age-dependent memory impairment in mice. Science, 328:753–

756, 2010.

[6] Xintong Dong, C Amelia Sumandea, Yi-Chen Chen, Mary L Garcia-Cazarin, Jiang

Zhang, C William Balke, Marius P Sumandea, and Ying Ge. Augmented phospho-

rylation of cardiac troponin I in hypertensive heart failure. Journal of Biological

Chemistry, 287:848–857, 2012.

[7] Emmanuel Boutet, Damien Lieberherr, Michael Tognolli, Michel Schneider, Parit

Bansal, Alan J Bridge, Sylvain Poux, Lydie Bougueleret, and Ioannis Xenarios.

UniProtKB/Swiss-Prot, the manually annotated section of the UniProt knowledge-

86



base: How to use the entry view. Plant Bioinformatics: Methods and Protocols, pages

23–54, 2016.

[8] John B Fenn, Matthias Mann, Chin Kai Meng, Shek Fu Wong, and Craig M White-

house. Electrospray ionization for mass spectrometry of large biomolecules. Science,

246(4926):64–71, 1989.

[9] Fred W McLafferty. Tandem mass spectrometry. Science, 214(4518):280–287, 1981.

[10] Scott A McLuckey. Principles of collisional activation in analytical mass spectrometry.

Journal of the American Society for Mass Spectrometry, 3(6):599–614, 1992.

[11] J Mitchell Wells and Scott A McLuckey. Collision-induced dissociation (CID) of

peptides and proteins. Methods in Enzymology, 402:148–185, 2005.

[12] Roman A Zubarev, Neil L Kelleher, and Fred W McLafferty. Electron capture dis-

sociation of multiply charged protein cations. a nonergodic process. Journal of the

American Chemical Society, 120(13):3265–3266, 1998.

[13] Ruedi Aebersold and Matthias Mann. Mass spectrometry-based proteomics. Nature,

422(6928):198–207, 2003.

[14] Ruedi Aebersold and Matthias Mann. Mass-spectrometric exploration of proteome

structure and function. Nature, 537(7620):347, 2016.

[15] Nagarjuna Nagaraj, Nils Alexander Kulak, Juergen Cox, Nadin Neuhauser, Korbinian

Mayr, Ole Hoerning, Ole Vorm, and Matthias Mann. System-wide perturbation anal-

ysis with nearly complete coverage of the yeast proteome by single-shot ultra hplc

runs on a bench top orbitrap. Molecular & Cellular Proteomics, 11(3):M111–013722,

2012.

[16] Alicia L Richards, Alexander S Hebert, Arne Ulbrich, Derek J Bailey, Emma E Cough-

lin, Michael S Westphall, and Joshua J Coon. One-hour proteome analysis in yeast.

Nature Protocols, 10(5):701, 2015.

87



[17] A. D. Catherman, O. S. Skinner, and N. L. Kelleher. Top down proteomics: facts and

perspectives. Biochemical and Biophysical Research Communications, 445:683–93,

2014.

[18] Jungkap Park, Paul D Piehowski, Christopher Wilkins, Mowei Zhou, Joshua Mendoza,

Grant M Fujimoto, Bryson C Gibbons, Jared B Shaw, Yufeng Shen, Anil K Shukla,

Ronald J Moore, Tao Liu, Vladislav A Petyuk, Nikola Tolić, Ljiljana Paša-Tolić,
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