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Abstract Background Smoking is an established risk factor for oral diseases and, therefore,
dental clinicians routinely assess and record their patients' detailed smoking status.
Researchers have successfully extracted smoking history from electronic health records
(EHRs) using text mining methods. However, they could not retrieve patients' smoking
intensity due to its limited availability in the EHR. The presence of detailed smoking
information in the electronic dental record (EDR) often under a separate section allows
retrieving this information with less preprocessing.
Objective To determine patients’ detailed smoking status based on smoking inten-
sity from the EDR.
Methods First, the authors created a reference standard of 3,296 unique patients’
smoking histories from the EDR that classified patients based on their smoking
intensity. Next, they trained three machine learning classifiers (support vector
machine, random forest, and naïve Bayes) using the training set (2,176) and evaluated
performances on test set (1,120) using precision (P), recall (R), and F-measure (F).
Finally, they applied the best classifier to classify smoking status from an additional
3,114 patients’ smoking histories.
Results Support vector machine performed best to classify patients into smokers,
nonsmokers, and unknowns (P, R, F: 98%); intermittent smoker (P: 95%, R: 98%, F: 96%);
past smoker (P, R, F: 89%); light smoker (P, R, F: 87%); smokers with unknown intensity
(P: 76%, R: 86%, F: 81%), and intermediate smoker (P: 90%, R: 88%, F: 89%). It performed
moderately to differentiate heavy smokers (P: 90%, R: 44%, F: 60%). EDR could be a
valuable source for obtaining patients’ detailed smoking information.
Conclusion EDR data could serve as a valuable source for obtaining patients’ detailed
smoking information based on their smoking intensity thatmay not be readily available
in the EHR.
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Background and Significance

Smoking is a major risk factor of common oral diseases
such as dental caries, and periodontal disease,1 which, if
left untreated, leads to tooth loss and poor quality of
life.2–5 Moreover, people who smoke have an increased
risk to develop oral cancers compared with nonsmokers.6

As a result, dental clinicians routinely assess and record
their patients’ detailed smoking status such as smoking
intensity and duration (cigarettes or packs smoked per
day/year).7,8 They use this information to assess their
patients’ risk of developing oral diseases, and the prognosis
of treatment provided.8,9 With the increased use of elec-
tronic dental record (EDR) to document patient care,
clinical information including patients’ detailed smoking
histories are available electronically.9,10 This offers the
opportunity to utilize it for clinical care and research
purposes.10,11 Similar to electronic health record (EHR)
data,12–21 smoking histories are mostly documented as
free-text (unstructured format) in the EDR and could be
time-consuming to retrieve them manually. Natural lan-
guage processing and text mining approaches have been
successfully used to retrieve patients’ smoking status from
the EHR.13–21 However, scant reports exist on the auto-
mated retrieval and classification of patients’ smoking
status from their EDR.

Most studies in medicine have classified patients’ smok-
ing status superficially based on their smoking statuses (past,
current, nonsmoker, and unknowns).13–17,21 These studies
applied machine learning (ML) classifiers such as support
vector machine (SVM), naïve Bayes, random forest, and
decision tree to retrieve patients’ smoking-related informa-
tion from the EHR.13–21A few studies also applied traditional
features such as unigrams, bigrams, and parts of speech tags
in combination with rules.15,17 Hybrid systems have also
been developed utilizing a combination of topic modeling
and SVM to classify patients’ smoking status from unstruc-
tured EHR data.21 However, these studies13–17,21 did not
classify patients based on their smoking intensity (cigarettes
or packs smoked per day/year), although determining
patients’ smoking intensity is important to assess disease
prognosis and treatment outcomes.9 A recent study reported
the lack of availability of smoking intensity in the EHR as a
limitation to classify patients based on their smoking inten-
sity .15

Since dental clinicians gather their patients’ detailed
smoking status, EDR data could be a rich resource to retrieve
patients’ detailed smoking information. In addition, this
information is often documented in response to the question,
“Do you use tobacco, or alcohol?” in the social history section
and not in progress/clinical notes (that may contain chief
complaint, treatment progress, etc.) as seen in the EHR.15 In
this study, we have considered only responses to this ques-
tion that contains patients’ smoking histories (hereon
referred to as “smoking histories” in this article). This dis-
tinction in recording smoking history makes it easier to
retrieve patients’ smoking information from the EDR than
from the EHR.

Objective

The objective of this study was to determine patients’
detailed smoking status based on their smoking intensity
from EDR utilizing ML classifiers. We applied three ML
classifiers (SVM, naïve Bayes, and random forest) to extract
this information due to following reasons: the presence of
detailed smoking documentation and under a separate sec-
tion in EDR made it easier to train the classifiers to detect a
consistent pattern of smoking intensity information across
patients’ EDR.

Methods

Our approach consisted of the following steps. First, we
retrieved 6,410 unique patient records. Second, we created
guidelines to annotate patients’ detailed smoking histories
based on smoking intensity in the EDR. Next, we developed a
reference standard consisting of manually annotated unique
patient smoking histories from 3,296 records. We then
randomized and split this reference standard into training
and test sets. Subsequently, we trained three ML classifiers
using the training set and evaluated their performances
using the test set. We applied the classifier that performed
best on the remaining 3,114 unique patients’ smoking his-
tories. From here on the data set (3,114 [49%]) used for
extracting patients smoking information automatically will
be referred as “new data set.” We also evaluated the ML
classifier’s performance on this newdata set using a subset of
315 randomly selected smoking histories (see ►Fig. 1). We
describe each step in detail below.

Data Extraction and Preprocessing
Our data set consisted of 6,410 unique patients who under-
went comprehensive oral evaluation from January 1, 2009, to
December 31, 2011, at the Indiana University School of
Dentistry. We included only patients’ smoking histories
from their single visits during this period. If we found
multiple visits of these patients, we considered smoking
histories reported during their latest dental visit. We
extracted, preprocessed, and standardized the patients’
smoking histories by removing all nonalphabetical and
nonnumerical characters and converting all texts into lower
case. We then converted each patient’s smoking history into
individual text files.

Annotation Guidelines and Reference Standard
As displayed in►Table 1, we created guidelines based on the
existing literature in medicine and dentistry13,14,16–18,22–24

to annotate patients’ smoking status including smoking
intensity. Next, using these guidelines, two researchers
independently annotated 3,296 unique patients’ smoking
histories. The application and evaluation of text mining
methods such as supervised ML methods depend on vali-
dated manually annotated texts, which are often referred as
the reference standard or gold standard corpus.25 It is also
used to train classifiers to learn patterns inwritten textwhen
using supervised ML in text mining.25 We used the
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extensible Human Oracle Suite of Tools for the manual
annotation.26,27 Next, we performed interannotator agree-
ment to evaluate the agreement between two annotators.
The agreement between the two annotators was 0.92
(Cohen’s kappa),28 which indicated an excellent agreement.
They resolved any disagreements through discussion and
consensus. The finalized annotations were considered as the
reference standard.

Training Machine Learning Classifiers
In this study, we applied three ML classifiers such as naïve
Bayes, SVM, and random forest, which were applied in
previous studies to automatically extract information from
free-text in the EHRs.12,14–22,29–31 To apply classifiers, we
utilized the Weka ML workbench32 platform. We randomly
split 66% (2,176 patient smoking histories) of the reference
standard (annotated data) into a training set to train the
classifiers and the remaining 34% (1,120) into a test set to
evaluate these classifiers.

We applied theML classifiers on the data sets in two steps.
In the first step, the ML classifiers classified patients into
three categories: (1) smokers, (2) nonsmokers, and (3)
unknowns (see►Fig. 1). In the second step, theML classifiers
classified patients in the smokers category based on their
smoking intensity and duration: (1) smokers with unknown
intensity, (2) past, (3) light, (4) intermediate, (5) intermit-
tent, and (6) heavy smokers (see ►Fig. 1). This two-step
approach provides a better result when compared with
classifying all the smoking categories at once.14

We used the following functions, and features while
applying the classifiers. We tokenized each annotated smok-
ing history sentence using the string to vector function,
which also converts the string into a set of attributes that
contain word occurrence information. The NGram tokenizer
with 1 to 2 window word feature produced single word (N1)
and bigrams (N2) representations. The term frequency-
inverse document frequency (TF-IDF) determined the word
frequencies and the most important word/s within the

Fig. 1 Flowchart describing the sequence of steps involved in classifying patients’ smoking status based on smoking history from one visit
documented in the electronic dental record (EDR). SVM, support vector machine
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annotated training set that classifies a patient’s smoking
status. For example, in the sentence “patient smokes two
cigarettes daily,” “1 to 2”windowword feature generated the
following NGram tokens: (1) “patient smokes,” (2) “smokes
two,” (3) “two cigarettes,” and (4) “cigarettes daily,” (5)
“patient,” (6) “smokes,” (7) “two,” (8) “cigarettes,” and (9)
“daily.” The TF-IDF determined whether the word frequen-
cies in a document should be transformed into: fij�log(num
of Docs/num of Docs with word i), where “fij” is the fre-
quency of word “i” in each sentence (instance), while j
describes word occurrence in the training set. So, in the
sentence, “patient smokes two cigarettes daily,” the tokens,
“smokes” and “two cigarettes” were ranked as the most
important word features to classify a patient as “light
smoker.”

The classifiers used these word features to classify
patients’ detailed smoking status. ►Tables 2 and 3 list the
top ranked word features utilized for each smoking status.
The most frequent word features in the documents (see
►Tables 1 and 3) became identification term features for
the classifiers to assign patients’ smoking status. Finally, we
utilized 10-fold cross-validation on the training data set, to
obtain an unbiased model, and to mitigate overfitting the
model.15,20,21,29,30

Evaluating ML Classifiers Performance on the Test Set
and Applying it to the New Data Set
We evaluated the performance of the three ML classifiers by
calculating their precision (true positive / (true positives þ
false positives)), recall (true positives / (true positive þ false

negative)), and F-measure (2 � (precision � recall) / (precision
þ recall)).31Weselected the classifier that performed best to
classify patients’ smoking status from the new data set
consisting of 3,114 unique patients’ records. The purpose
of applying trained classifier on the new data set was to
extract patients’ smoking information from a different data
set using the trained ML classifier that demonstrated

Table 2 Word features utilized to classify patients into smokers,
nonsmokers, and unknown categories

Nonsmokers “no/No,” “denies,” and “N”

Smokers “tobacco,” “day,” “smoking,” and “socially”

Unknowns “Alcohol,” “alcohol,” and “drinks”

Table 1 Guidelines to manually annotate patient’s smoking status and create reference standard

Smoker classification Description and annotation guidelines Examples of literal text matches from EDRs

Nonsmoker If patient has never smoked tobacco “Patient denies,” “never,” “N,” “No tobacco”

Smokers with unknown
intensity

If a patient was a smoker within the past year.
Additionally, the history does not contain any
detailed information such as the number of
cigarettes or packs/day

“Patient smoke cigarettes”

Past smoker If the patient was a smoker 1 year or more
ago but who has not smoked for at least
1 year. Additionally, the history does not
contain any detailed information such as the
number of cigarettes or packs/day

“Patient smoked for 9 years and then quit
2 years back”

Light smoker If the patient smokes less than or equal to
10 cigarettes/day

“Patient smokes 9 cigarettes a day,”
“Patient smokes 2 cigarettes a week”

Intermediate smoker If the patient smokes in between 11 and
20 cigarettes per day

“Patient smokes 12 cigarettes per day”

Intermittent smoker If the patient smokes occasionally or socially,
such as in parties, bars, and nondaily basis

“Patient smokes occasionally,” “Patient
smokes socially,” “smokes only in
parties or holidays”

Heavy smoker If the patient smokes more than or equal to
20 cigarettes or more than 1 pack per day

“25 cigarettes a day,” “more than 1
pack a day”

Unknown When there is no information present
regarding patient’s smoking status or blank
space present within the history

“Patient drinks 5 beers a day”

Abbreviation: EDR, electronic dental record.

Table 3 Word features utilized to classify smokers into light,
intermediate, intermittent, heavy, smokers with unknown
intensity, past, and intermittent categories

Light smoker “1/2,” “day,” and “years”

Intermediate smokers “pack,” “1,” and “years”

Heavy smokers “a,” “day,” “pack,” and “years”

Smokers with
unknown intensity

“smoking,” “years”

Past smokers “quit,” “ago”

Intermittent smoker “socially,” and “occasionally”
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excellent performance. To confirm the classifier’s perfor-
mance on the new data set, we evaluated the performance
on a subset of 315 randomly selected annotated patients’
smoking histories.

Results

Based on the annotation guidelines (see ►Table 1), the
reference standard consisted of 1,076 (33%) smokers, 1,300
nonsmokers (39%), and 920 (28%) unknowns (see ►Table 4).
►Table 4 also displays smokers classified based on their
smoking intensity. ►Table 5 displays patients’ smoking
statuses in the new data set, and the smokers classified
based on their smoking intensity. The new data set consisted
of 1,090 (35%) smokers, 1,214 (39%) nonsmokers, and 810
(26%) unknowns in the new data set (see ►Table 5). Among
smokers, most patients were classified as light smokers in
both the reference standard (253 [24%]) and new data set
(346 [31%]) (see►Tables 2 and 3). Additionally, least number
of patients were classified as heavy smokers in both refer-
ence standard (43 [4%]) and new data set (45 [4%]) (see
►Tables 1 and 3). Among the three ML classifiers, SVM
performed excellent (precision, recall, and F-measure of
98%) (►Table 6) in classifying patients into smokers, non-
smokers, and unknowns. SVM also performed best in classi-
fying smokers further based on their smoking intensity
(precision: 88%, recall: 82%, F-measure: 84%) (see ►Table 7).

As demonstrated in ►Table 8, SVM achieved moderate
performance (precision: 90%, recall: 44%, F-measure: 60%) in
classifying heavy smokers, which could be due to the small
sample size in our training set. SVM, in general, tends to be
biased toward majority classes giving less priority to minor-
ity classes. Here, “heavy smoker” was considered minority
class due to its small sample size in the data set. In contrast,
SVM performed excellent in identifying intermittent smo-
kers (precision: 95%, recall: 98%, F-measure: 96%) even
though their sample size was low. The probable reason could
be the consistency in the documentation of intermittent

Table 4 Number of smokers, nonsmokers, and unknowns in
the reference standard

Smoking status and intensity Reference
standard (%)

Smokers Light smoker 253 (24)

Intermediate smoker 234 (22)

Smoker with
unknown intensity

164 (15)

Past smoker 302 (28)

Intermittent smoker 80 (7)

Heavy smoker 43 (4)

Total smokers 1,076 (33)

Nonsmoker 1,300 (39)

Unknown 920 (28)

Total 3,296 (100)

Note: Percentages are rounded to the nearest integer.

Table 5 Number of smokers, nonsmokers, and unknowns in the
new data set

Smoking status and intensity New data set (%)

Smokers Light smoker 346 (31)

Intermediate smoker 314 (29)

Past smoker 197 (18)

Smoker with
unknown intensity

129 (12)

Intermittent smoker 59 (6)

Heavy smoker 45 (4)

Total smokers 1,090 (35)

Nonsmoker 1,214 (39)

Unknown 810 (26)

Total 3,114 (100)

Note: Percentages are rounded to the nearest integer.

Table 6 Performance ofmachine learning classifiers on classifying
patients into smoker, nonsmoker, and unknown categories

MLCs Precision Recall F-measure

SVM 0.98 0.98 0.98

Random forest 0.96 0.96 0.96

Naïve Bayes 0.95 0.95 0.95

Abbreviations: MLCs, machine learning classifiers; SVM, support vector
machine.

Table 7 Performance of machine learning classifiers to classify
smokers into light smoker, intermediate smoker, intermittent
smoker, heavy smoker, past smoker, smoker with unknown
intensity, and heavy smoker

MLCs Precision Recall F-measure

SVM 0.89 0.82 0.84

Random forest 0.75 0.73 0.73

Naïve Bayes 0.69 0.70 0.70

Abbreviations: MLCs, machine learning classifiers; SVM, support vector
machine.

Table 8 Performance of support vector machine to classify
patients based on their smoking intensity

Smoking status Precision Recall F-measure

IntS 0.95 0.98 0.96

IS 0.90 0.88 0.89

PS 0.89 0.89 0.89

LS 0.87 0.87 0.87

SUI 0.76 0.86 0.81

HS 0.90 0.44 0.60

Average 0.89 0.82 0.84

Abbreviations: HS, heavy smoker; IntS, intermittent smoker; IS, intermediate
smoker; LS, light smoker;PS,past smoker; SUI, smokerwithunknown intensity.
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smoking status in the EDR. As described in our annotation
guidelines (see ►Table 1), we classified patients into this
category when they smoked occasionally in parties and
clubs. Many of these histories contain words such as “occa-
sionally,” “socially,” and “in party.” Frequent appearance of
these words helped the SVM to differentiate this class from
others.

►Table 9 describes correctly and incorrectly identified
smoking statuses by SVM in our test set. At times, the
classifier could not differentiate between smokers with
unknown intensity and past smoker, although smokers
with unknown intensity status was written in present tense
(“smokes,” “smoke”), and past smoker in past tense
(“smoked”). However, SVM differentiated sentences describ-
ing “nonsmokers” with negation attributes such as “patient
never smokes,” or “patient does not smoke” from those
describing smokers with affirmed attributes such as “patient
smokes,” or “patient is smoking since last 20 years.”

In the new data set, SVM achieved precision of 0.96, recall
of 0.96, and F-measure of 0.96 to classify patients into
smokers, nonsmokers, and unknowns. SVM achieved preci-
sion of 0.90, recall of 0.84, and F-measure of 0.88 classifying
patients into light, intermediate, heavy, intermittent, past,
and smokers with unknown intensity category.

Discussion

The study results demonstrated the feasibility of automati-
cally classifying patients’ smoking statuses including smok-
ing intensity from their EDR that may not be easily available
from the EHR data. The ML classifiers achieved excellent
performance to classify patients into smokers, nonsmokers,
or unknowns because of a large training set.33 Also, the
consistency in the documentation of smoking status across
EDRs enabled ML to recognize patterns of smoking docu-
mentation and led to superior performance. Compared with
previous studies in medicine,16,18,21 the SVM performed
superiorly in classifying smokers versus nonsmokers. While
previous studies15,16,18,21 achieved F-measure, precision,
and recall of less than 96% (except one that achieved a
precision of 98%), our classifier achieved a higher F-measure,

precision, and recall of 98%. The classifier also distinguished
records, which did not have any smoking information into
“unknowns.”

We found no major difference between SVM’s perfor-
mance on the test set and new data set confirming its ability
to classify patients’ smoking statuses based on smoking
intensity.We observed that SVMcorrectly classified patients’
smoking status when themost important and frequent word
features (see ►Tables 2 and 3) were present in the sentence.
However, it incorrectly classified when it did not recognize a
writing pattern observed rarely in the training set such as “x
packs per month” instead of “x packs per week or day.”

A significant strength of this study is leveraging the pre-
sence of a separate section for smoking in the EDR, which
eliminated preprocessing of clinical notes significantly. Pre-
viousworkon retrieving smoking statusfirst retrieved clinical
notes that described a patient’s smoking status. Next, they
extracted sentences, which defined smoking status from the
clinical notes, and in the last step, classified patients’ smoking
status based on the context found in the sentence. Due to this
need for extensive preprocessing and multiple steps, systems
demonstrated low to moderate performance in classifying
patient’s smoking status.14,15,17,18 We also did not require
extracting smoking-specific sentences from lengthy clinical
notes, which eliminated thefirst two steps and thus enhanced
system performance with fewer errors.

Unlike previous studies13–17,21 which focused mainly on
classifying patients as past, current, and nonsmokers, we also
classified patients based on their smoking intensity. To date,
onlyonestudybyWangetal classifiedpatients’ smokingstatus
based on smoking intensity by adding two additional cate-
gories such as light andheavy smokers.18 In this study,we took
one step further and added intermediate smoker categories
because recent studies indicate a lower prevalence of heavy
smokers and ahigher prevalence of intermediate smokers. The
study results confirmed this finding with only 4% heavy
smokers and maximum light smokers followed by intermedi-
ate smokers (see ►Tables 1 and 3). Retrieving detailed smok-
ing status is beneficial not only for research purposes but also
for clinical care purposes. Awareness of patients’ smoking
status enables clinicians to determine their tobacco

Table 9 Number of patients’ correctly and incorrectly identified smoking intensity by the support vector machine in the reference
standard

Patients’ smoking statuses
identified by SVM

Patients’ smoking statuses identified by manual annotation Total smokers

Classification SUI HS IS IntS LS PS Total

PS 5 0 0 0 0 297 302 1,076

LS 15 0 14 2 221 1 253

IS 13 0 207 1 11 2 234

SUI 141 2 3 0 5 13 164

IntS 8 0 1 67 4 0 80

HS 3 19 7 1 12 1 43

Abbreviations: HS, heavy smoker; IntS, intermittent smoker; IS, intermediate smoker; LS, light smoker; PS, past smoker; SUI, smoker with unknown
intensity; SVM, support vector machine.
Note: Bold numbers indicate correctly identified smoking status.
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dependency levels and interest in receiving counseling to quit
smoking based on their smoking intensity.34,35 They are also
able to determine their patients’ risk of developing dental
diseases and prognosis following dental treatments especially
surgical procedures.36,37

The study results indicated the potential of leveraging EDR
data to obtain detailed smoking history such as smoking
intensity that may not be present in the EHR. In addition,
detailed smoking history is not easily retrievable from the
EHR.15,19 Medical providers could benefit from the detailed
smokinghistorypresent in theEDRsbecausesmoking isalsoan
established risk factor formany systemic diseases such as lung
cancer and cardiovascular diseases. Recently, there is growing
awareness and research on the value of integrating dental and
medical records to coordinate care and to investigate the
potential association between oral and systemic diseases.38

As this initiative progresses, it is worthwhile to determine the
value of sharing social habits such as smoking and diet to
increase dental and medical providers’ awareness of their
patients’ major risk factors for common chronic diseases.

A limitation of these ML classifiers is that it may not
perform well on other institutional data because they were
trained on our institutional data. The extent of smoking
documentation and writing patterns may also vary in dif-
ferent clinic settings. However, the approach utilized in this
study to train ML classifiers could be extended to data from
other settings, and thus researchers do not have to start from
the beginning.

Conclusion and Future Work

This study demonstrated the feasibility of extracting patients’
detailed smoking status automatically from EDR. EDR data
could serve as avaluable source forobtaining patients’detailed
smoking information based on smoking intensity. Although
our ML classifier performed excellently in classifying patients
into light, intermediate, smokers with unknown intensity,
intermittent, nonsmoker, and unknown, we need to enhance
their performance to classify heavy smokers.Wewill enhance
the classifier’s performance by utilizing methods such as
oversampling and Synthetic Minority Over-sampling Techni-
que. We also plan to test this classifier on data from other
dental and medical settings. Additionally, we plan to study
changes in patients’ smoking status from their longitudinal
smoking records. Finally, we will use this classifier to report
the prevalence of smoking in our patient population and to
determine the correlation of smoking with dental diseases
such as dental caries and periodontal disease.
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