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Abstract

One important goal in pharmaco-epidemiology studies is to understand the causal relationship

between drug exposures and their clinical outcomes, including adverse drug events (ADEs). In

order to achieve this goal, however, we need to resolve several challenges. Most of pharmaco-

epidemiology data are observational and confounding is largely present due to many co-medications.

The pharmaco-epidemiology study data set is often sampled from large medical record databases

using a matched case-control design, and it may not be representative the original patient population

in the medical record databases. Data analysis method needs to handle a large sample size

that cannot be handled using existing statistical analysis packages. In this paper, we tackle these

challenges both methodologically and computationally. We propose a conditional causal log-odds

ratio (OR) definition to characterize individual causal effects of drug exposures on a binary ADE.

Using a case-control design, we then provide sufficient conditions for control-based propensity

scores to estimate this causal log-odds ratio. Computationally, we implement a principle component

analysis to reduce high dimensional confounders. Extensive simulation studies are performed to

demonstrate superior performance of our method to existing methods. Finally, we apply the proposed

method to analyze drug induced myopathy data sampled from a de-identified subset of medical

record database (close to 5 million patient records), The Indiana Network for Patient Care. Our

method identified 70 drug induced myopathy (p value < 0.05) out 72 drugs who have myoathy side

effects on their FDA drug labels. These 70 drugs include 3 statins who are known for their myopathy

side effects.
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1 Introduction

One important goal in pharmaco-epidemiology (PE) studies is to investigate the causal relationship
between drug exposures and their clinical outcomes. Such clinical outcomes can be either drug
efficacy endpoints or adverse drug events (ADEs). For the latter, because it is unethical to conduct
randomized trials in studying how drugs cause ADEs, PE studies are currently the best available and
effective approaches to understand their causal relationship5. For example, in our motivating application,
investigators are interested to detect novel drugs and/or drug-drug interactions induced myopathy, which
is defined by either ICD-9 codes or a laboratory claim of serum creatine renal kinase measurement3. Data
were obtained from an de-identified subset of The Indianan Network for Patient Care data, which contains
coded prescription medications, diagnoses, and observational data for million of patients between 2004
and 20098,9,11,26.

To estimate the true relationship between drug exposure and ADEs, it is necessary to control potentially
systematic difference between drug-exposed and unexposed patients15,19. Traditionally, the true causal
relationship is defined as the mean difference between potential outcomes associated with exposed or
unexposed drug status in a counterfactual outcome framework established by Rubin 19,20 . There have
been a number of methods to infer this drug effect using observational data after sufficiently controlling
potential confounders in analysis. Particularly, propensity scores, which describe the tendency of patient
taking the drug of interest, are extensively used in these methods, and they reduce the imbalance of
baseline covariates, like age, gender and comorbidity, between subjects who takes drug and who dose
not take the drug in observational studies2. The propensity score methods include stratified analysis by
propensity scores, matching analysis using propensity scores16, and inverse probability weighting based
on propensity scores12.

Since ADEs are measured as whether one specific case event occurs within certain time period, ADE
outcomes are usually dichotomous. The standard practice in PE studies is to report log-odds ratios as the
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Zhu et al. 3

true relationship between drugs and ADEs, which has an easy interpretation for dichotomous outcomes,
especially when ADEs rate is low. Many methods have been proposed to make inference on log-odds
ratios, including frequentist approaches such as the Chi-square test, the Fisher’s exact test, the reporting
odds ratio24 and the proportional reporting ratio10, and empirical Bayesian methods including empirical
Bayes geometric mean proposed by Bate, et al. 4 and DuMouchel 7 . Previously, using chi-square and
logistic regression methods, we have shown much increase myopathy risk due to simvastatin/loratadine
and and chloroquine/simvastain interactions1,11.

However, all these approaches do not fully control potential confounders between drug-exposed and
unexposed groups. The obtained log-odds ratios may not reflect the true relationship in terms of odds
of having ADE for two exactly same patients except for opposite exposure status. In fact, estimating
odds ratio between drugs and dichotomous ADEs in PE studies encounters several challenges. First,
the definition of true causal relationships between drugs and ADEs in terms of odds ratio remains
largely unclear even within a potential outcome framework, as this quantity cannot be expressed as
the mean difference of potential outcomes. Second, because of the latter, propensity score methods in
traditional causal inference, which rely on unbiased estimation separately for each potential outcome, are
no longer applicable. Most importantly, in many PE studies, data are usually collected from a big database
under some special sampling designs, mainly because of cost and efficiency concerns. In the motivating
application of myopathy analysis, a case-control sampling frame was used to obtain patient’s ADE
records and corresponding drug use history. Particularly, within the study period, all the case information
with at least one ADE occurrence was obtained and for each case, 50 patients who had never experienced
ADE within the time period were further sampled as matched controls. Then for each control patient,
their drug use information within most recent month was obtained. When data are obtained from biased
sampling designs, estimating causal relationship becomes even more challenging since the estimation
must account for biased representation of the whole population in addition to potential confounders. For
example, since traditional propensity scores are estimated from biased sample so may not reflect the true
tendency of patients taking this drug in the true population, all current methods could lead to artifactual
modification and reduced ability to control for potential confounders as studied in Månsson et al. 14 . There
have been some recent work attempting to address causal inference in a case-control design, including
double robust inverse probability weighted methods by Wang et al. 25 and targeted maximum likelihood
estimation in Rose 18 , but they both aim to estimate the prevalence of outcomes, instead of odds ratio.

Motivated by the PE study of drug induced myopathy, we develop a novel framework to estimate the
true log-odds ratios between drugs and ADEs. Our contributions are multi-folds. First, we rigorously
define the true causal relationship in terms of log-odds ratios and provide sufficient conditions to show
when this quantity is estimable under a case-control design. Second, we propose a case-based propensity
score approach for inference. Our method first obtains propensity scores using the case sample only so
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avoids the bias representation when using mixed data from both cases and controls. We then estimate
log-odds ratios nonparametrically after matching on this one-dimensional propensity score instead of
potentially high-dimensional confounders. We show that the proposed method results in consistent
estimators of the log-odds ratios. Finally, when analyzing the PE study of myopathy, we develop effective
computation algorithms based on data partition and meta analysis to handle the challenge in this big data
analysis of 450, 634 cases and 450, 634× 10 controls.

The paper is structured as follows. Section 2 describes the proposed method and gives theoretical
justification for the method. The last part of Section 2 provides detailed algorithms for method
implementation. Section 3 summarizes the results from extensive simulation studies and makes
comparison with some existing methods, where we consider both the situation of continuous confounders
and the situation of dichotomous confounders. Section 4 presents the detail of analyzing the PE study of
myopathy. Final remarks are given in Section 5.

2 Method

In this section, we first present a definition of a causal log-odds ratio (OR) for binary outcomes in the
framework of counterfactual outcomes. We then provide sufficient conditions such that this quantity is
estimable in a case-control design. Finally, we propose a case-based propensity score method to estimate
the causal log-OR in the presence of high-dimensional confounders.

2.1 Causal log-odds ratio

Let A be a dichotomous exposure status (A = 1: exposed to a risk; A = 0: not exposed). The outcome of
interest is binary, denoted by D. Particularly, in our application, A is the status whether a candidate
drug has ever been taken or not and D indicates whether an ADE has occurred in a given study
period. To introduce the definition of a causal log-OR, we adopt the counterfactual framework in causal
inference so let D(a) be the counterfactual outcome if subject’s exposure status is A = a, where a is
0 or 1. Thus, every subject has a pair of the counterfactual outcomes {D(0), D(1)}. Traditional causal
effect defines the average causal effect of A as E[D(1)]− E[D(0)], i.e., the risk difference given by
P (D(1) = 1)− P (D(0) = 1), so it describes the difference of two ADE probabilities in our application.
As the ADE rate is usually low, we expect that this difference is small so it may not be scientifically
meaningful to discriminate two exposure status. Therefore, a more meaningful quantity with causal
interpretation is necessary to characterize the true causal relationship between A and D.
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For a binary outcome D, the ORs, which is defined as

P (D = 1|A = 1)/P (D = 0|A = 1)

P (D = 1|A = 0)/P (D = 0|A = 0)
,

is extensively used in epidemiology to characterize the relationship between the drug exposure A and
the ADE D. However, OR only describes the apparent associations that can be highly different from the
actual causal relationship between A and the underlying counterfactual ADE, the one we are interested
in. The latter can be especially true due to the presence of confounding, which may result in potentially
different compositions of subjects in the drug exposed and unexposed groups. Hence, a proper OR
with causal interpretation should be able to describe the effect of A on the potential outcomes within
homogeneous subjects. This motivates our definition of the causal log-OR in the following. We let U be
the set consisting of all potential confounders which can be either observed or latent. To define a causal
log-OR, we assume the following model for the counterfactual ADE given U :

log
P (D(a) = 1|U)

P (D(a) = 0|U)
= g(U) + δa, a = 0, 1, (1)

where g(·) is an unknown and arbitrary function and δ is a constant. We define δ as the causal log-OR.

Model (1) assumes that for the finest subpopulation with the same U ’s value, the log-odds for the
counterfactual ADE D(1) differs from the log-odds for the counterfactual ADE D(0) by a constant
independent of U . Equivalently, we assume that the logarithm of the OR forD(1) andD(0) is a constant:

log
P (D(1) = 1|U)/P (D(1) = 0|U)

P (D(0) = 1|U)/P (D(0) = 0|U)
= δ.

Thus, if we can partition the whole population as much as possible so that each partitioned group is
perfectly homogeneous in terms of their counterfactual outcomes, then the OR from 2× 2 table given by
D(1) and D(0) is eδ in this group. Different from the conditional odds ratio that is defined by Robins
(1999), the U in our definition contains both measured and unmeasured confounders. Particularly, in PE
studies, U represents any prognostic factors that can lead to the AEs. Conditioning on the U , δ is a precise
measure of the effect of drug on AEs. Essentially, for all the subjects with the same confounders, if their
exposure levels were 1, as compared to the situation when their exposure status were 0, the odd of having
ADE will be increased by a factor of eδ (δ > 0), or decreased by a factor of eδ (δ < 0), or no change
(δ = 0). As a note, our definition is different from the marginal causal log-OR in Rose (2011), which
is defined without conditional on U . Clearly, our definition is close to causal relationship at individual
levels so has a better causal interpretation.
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2.2 Estimability of causal log-OR in a case-control study

As in our motivating study, practical data are often collected from a case-control study. Suppose that the
data consist of observations (Di, Ai, Xi), i = 1, ..., n, where Di is the ADE, Ai is the drug exposure
status, and Xi denotes all other observed covariates for subject i. Our goal is to estimate the causal
log-OR using the data from such a biased sampling design.

It is well known that a case-control study can provide a consistent OR of A for the observed ADE D

if a logistic regression model also holds for D given (A,X). Therefore, it is natural for one to verify
whether this OR is equivalent to the casual OR, δ, as defined previously. Unfortunately, this is no longer
true in general. Instead, we need the following estimability conditions:
(C1) (completeness of confounders) A is independent of (D(0), D(1)) given U in the population.
(C2) (consistency) D =

∑
a I(A = a)D(a);

Condition (C1) stipulates that U in model (1) should include all possible confounders which explain
the dependence between the exposure and the counterfactual ADE. For example, if U contains all the
variables accurately predict the drug exposure status, then this assumption holds. This condition is similar
to no unobserved confounder assumption in the usual causal inference, but we allow U to contain latent
confounders. Condition (C2) is the stable unit treatment value (SUTV) assumption, which states that the
observed ADE is the same as corresponding counterfactual ADE with the same exposure status. This
condition is standard in causal inference.

Under (C1) and (C2), for d = 0, 1,

P (D(a) = d|U) = P (D(a) = d|A = a, U) = P (D = d|A = a, U).

Hence, model (1) also implies

log
P (D = 1|A,U)

P (D = 0|A,U)
= δA+ g(U). (2)

In other words, if we observed the complete set of potential confounders U , then the causal log-OR δ can
be estimated consistently by fitting the logistic regression model (2) with D regressing on both A and U ,
where g needs to be estimated nonparametrically.

However, U is unlikely to be all observed in practice; instead, only a subset of U , X , is available.
Thus, our next question is how to estimate δ using available information X in a case-control design.
Specifically, the following theorem provides the feasibility with one additional assumption.

Theorem 2.1 In addition to (C1) and (C2), we assume
(C3) (conditional independence in the case population) A is independent of U given X in the case
population (D = 1).
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Then it holds

log
P̃ (D = 1|A,X)

P̃ (D = 0|A,X)
= α+ δA+ g̃(X), (3)

where P̃ (D = d|A,X) denotes the conditional probability in the case-control sample, and

α = log
P̃ (D = 1)P (D = 0)

P̃ (D = 0)P (D = 1)
,

g̃(X) = log{E[exp{g(U)
−1}|X,D = 1]}.

Condition (C3) gives one key condition such that we can infer the causal log-OR by fitting a partial
linear logistic regression model using the case-control observations. This condition requires that there
does not exist latent variable differentiating the exposure status in the case population. In other words,
the observed exposure distribution is random within each stratum ofX in the case sample. For example in
our motivating example, U , the set of all possible confounders to the drug exposure, can be fully captured
by X , say the demographical factors, comorbidity or comedication. Or it is very likely that the part of U
that is not contained in X is independent to the drug exposure. With this condition, Theorem 1 implies
that if we can fit a logistic regression given A and X but allow the effect of X to be nonparametric and
additive, then the coefficient of A in the regression is the same as the causal log-OR δ. In addition, the
additive effect of X depends on g(U) in model (1) through expression log{E[exp{g(U)}|X,D = 1]}.
Without this assumption, it is not possible to estimate the causal log-OR theoretically. However, as we
will show in the simulation study, when the assumption is slightly violated, our proposed method will
still provide good estimates.

Interestingly, the same result holds if we replace the case population by the control population (D = 0).
Particularly, we have the following result.

Proposition 2.2 Under (C1) and (C2), condition (C3) is equivalent to
(C3’) (conditional independence in the control population) A is independent of U given X in the control
population (D = 0).

The proofs of Theorem 2.1 and Proposition 2.2 are given in the appendix.

2.3 Inference procedure

Recall that we observe (Di, Ai, Xi), i = 1, ..., n, from n independent subjects. Under model (3), the
likelihood equals to

n∏
i=1

exp{Di[δAi + g̃(Xi)]}
1 + exp{δAi + g̃(Xi)}

,
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where g̃ is a nonparametric function of X , see Theorem 2.1. Our inference shall be based on maximum
likelihood estimation where we estimate g̃ nonparametrically via spline approximation. However, the
dimensionality of X is often high in practice so the nonparametric estimation of g̃ may not be feasible.
To handle this challenge, we introduce a similar propensity score approach as in the usual causal inference
in order to reduce dimension in the estimation, but the score will be derived using the case data only.

Specifically, if let Z ≡ π(X) = P (A = 1|X,D = 1), then it is clear that condition (C3) holds if we
replace X by π(X). This is because

P (A = 1|π(X), U,D = 1) = E[P (A = 1|X,U,D = 1)|π(X), U,D = 1]

= E[P (A = 1|X,D = 1)|π(X), U,D = 1] = π(X)

As a result, model (3) holds if we replace X by Z. Therefore, using the reduced data (Di, Ai, Zi), we
can maximize the likelihood

n∏
i=1

exp{Di[δAi + λ(Zi)]}
1 + exp{δAi + λ(Zi)}

, (4)

to estimate δ and λ. Note that the spline function λ is to nonparametrically estimate the g̃ function and is
only a univariate function. Thus, the latter can be well estimated using spline approximation or stratified
analysis with moderate sample sizes.

In summary, our estimation procedure can be described as follows.
Step 1. Using the data from the case sample, we estimate the case propensity score Z = π(X) by fitting
a logistic regression model regressing A on X . When X is very high dimensional, we will use the first
few principal components of X to replace X in the regression. Denote the estimate for π as π̂.
Step 2. Reconstruct the data as (Di, Ai, Ẑi) where Ẑi = π̂(Xi). We then fit a partial linear logistic
regression model by maximizing the likelihood (4) where λ(z) is approximated by a finite sequence
of splines. Particularly, we will use a histogram spline so λ is approximated by a piece-wise constant
function so this step is equivalent to a stratified logistic regression. The number of splines will be
determined using a model selection approach such as AIC or BIC.

Denote the estimate for δ as δ̂ after Step 2. To make inference for δ̂, either direct estimation of the
asymptotic variance using an analytic expression (Shen and Wong, 1994; Lin and Zeng, 2011) or a
resampling approach can be used. However, in our experience, the variability in estimating π from Step
1 is often negligible so the variance for δ̂ can be estimated from the standard logistic regression in Step
2, treating π̂ as known.

Finally, under conditions (C1)–(C3) and assuming that the model for estimating the control propensity
score π(X) is correct, we can show that

√
n(δ̂ − δ0), where δ0 is the true causal log-OR, converges in

distribution to a mean-zero normal distribution when the number of splines is chosen to increase with n
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at a certain rate. The proof follows the similar argument as in Lin and Zeng (2011), and Shen and Wong
(1994), since our model (3) is equivalent to the model used in their development. We skip the proof in
this paper.

3 Simulation Study

In this section, we conduct extensive simulation studies to evaluate the performance of our method
and compare with standard propensity score based methods. We consider a case control design with
n cases and m controls. For each subject i, we generate Ui = (Xi,Wi) which contains both observed
confounders Xi and unobserved ones Wi. To generate Di(0) and Di(1), we use the following models

log
P (Di(0) = 1|Ui)
P (Di(0) = 0|Ui)

= g(Ui),

log
P (Di(1) = 1|Ui)
P (Di(1) = 0|Ui)

= g(Ui) + δ (5)

for some given function g(U) to be determined later. Thus, the true causal log-OR is given by δ. Next, the
exposure status for subject i, Ai, is simulate from a Bernoulli distribution with probability b(Ui). Since
it only depends on Ui, Ai is independent of Di(0) and Di(1) so condition (C1) is satisfied. Furthermore,
to ensure condition (C3) to hold, we particularly choose b(Ui) to be

b(Ui) =
exp{β0 + βT1 Xi}(exp{g(Ui + δ)}+ 1)

exp{δ} (exp{g(Ui)}+ 1) + exp{β0 + βT1 Xi}(exp{g(Ui + δ)}+ 1)
(6)

for some constant (β0, β1). For this choice of b(Ui), since some algebra gives

P (Ai = 1|Ui, Di = 1)

P (Ai = 0|Ui, Di = 1)
=

b(Ui)

1− b(Ui)
exp{δ} (exp{g(Ui)}+ 1)

exp{g(Ui) + δ}+ 1
,

it implies

log
P (Ai = 1|Ui, Di = 1)

P (Ai = 0|Ui, Di = 1)
= β0 + βT1 Xi.

Therefore, (C3) holds, i.e., Ai is independent of Ui given Xi in the control sample.

We consider two simulation scenarios. In the first scenario, both Xi and Wi are generated from
continuous distributions. Specifically, (Xi,Wi) follows a bivariate normal distribution with the mean

zeros and covariance matrix

[
1 ρ

ρ 1

]
, where ρ = 0 or 0.2. We then generate (Di(1), Di(0)) using

model (5), where g(Ui) = γ0 + γ1Xi + γ2X
2
i + θWi. The exposure Ai is from a Bernoulli distribution
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with probability b(Ui) given by (6). The true parameter values in both model (5) and (6) are set as
γ0 = −2, γ1 = 0.3, γ2 = 0.8, θ = 0.8, β0 = −4 and β1 = 2. Finally, to best mimic the real data in our
motivating example, we set the ratio of cases and controls, i.e., n : m, as 1 versus 10. We considered the
true causal log-OR to be δ = 1 or 1.5. The number of case samples in the simulation study is 2000 or
4000.

In the second simulation scenario, both Xi and Wi are generated from Bernoulli distribution to mimic
drug use variables in the real study. The data Ui = (Xi,Wi) is a multivariate binary random variate
marginal probabilities of 0.5 and correlation matrix

1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1

 ,

where ρ = 0 or 0.2. We then generate (Di(1), Di(0)) using model (5), where

g(Ui) = γ0 +

6∑
j=1

γjXj +

10∑
j=7

θjWj .

The exposure Ai is from a Bernoulli distribution with probability b(Ui) given by (6). The value
of all parameters in (5) an d(6) are γ0 = −3, γ1 = γ2 = · · · = γ6 = 0.3, θ7 = · · · = θ10 = 0.8, β0 =

−4 and β1 = · · · = 0.8. Similar to the first scenario, we set the ratio of cases and controls as 1:10. The
true value of δ was 1 or 1.5. The number of the cases is 2000 or 4000.

For each simulated data, we apply the proposed method to estimate δ . In the proposed method, we
first fit a logistic regression model of A given X using the case data (D = 1). This gives the control-
based propensity score Z = π(X) = P (A = 1|X = x,D = 1) which predicts the probability for each
subject. We then construct K strata based on Z’s quantiles then fit another stratified logistic regression
for D regression on A. By stratifying the control-based propensity score, we believe that the population
is well stratified with homogeneous prognostic factor. The coefficient of A is used as the estimator for δ.
The number of strata K is chosen from {5, 10, 15, 20, 30}, and the final number of strata is selected by
the BIC. The variance for the estimate is obtained from the usual stratified logistic regression.

For comparison, we also consider the standard logistic regression and the traditional propensity score
(Rosenbaum and Rubin, 1983). For the former, we fit a standard logistic regression for D regression
on A and X , and the coefficient of A is used as the estimator for δ. In other words, we assume that
logitP (D|A,X) was a linear function of A and X , and regard the estimated OR as the causal log-OR. In
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the traditional propensity score approach, we fit a logistic regression model of A on X using the entire
data to estimate the propensity score Z∗ = P (A = 1|X = x). Then we fit a logistic regression for D
regression on A and Z∗.

Table 1 summarizes the simulation results from 10,000 replicates for both scenarios. The results
indicate that the proposed method always perform better than the standard logistic regression and the
propensity score adjusted method. For the proposed method, the bias is small and the confidence intervals
have proper coverages. Furthermore, the estimated variance from the stratified logistic regression agrees
well with the empirical standard deviations the estimates. On the other hand, the standard logistic
regression yields the estimate for the causal log-OR with large bias and incorrect inference, mainly
because the model in this approach is misspecified. For example, in the appendix, we show that the
component ofX in the logistic regression is nonlinear in the first simulation scenario. The estimates from
the propensity score adjusted method still have larger bias than the proposed method and the confidence
intervals constructed in this method tend to have lower coverages. In scenario 2 when the confounders are
discrete, the proposed method and logistic regression method perform similarly, and both are better than
the propensity score adjusted method. Finally, in the proposed method, the BIC almost always chooses
K = 10 in the stratified logistic regression for continuous confounder, and chooses K = 5 or K = 15

for binary confounder.

4 Sensitivity Analysis

We also conduct extensive simulation studies to evaluate the performance of our method and compare
with standard propensity score based methods when the assumption of conditional independence is
slightly violated. Still, we consider a case control design with n cases and m controls. For each subject
i, we generate Ui = (Xi,Wi) which contains both observed confounders Xi and unobserved ones Wi.
Again, Di(0) and Di(1) are generated using model (5). The true causal log-OR is given by δ. Next, the
exposure status for subject i, Ai, is simulate from a Bernoulli distribution with probability b(Ui). Since
it only depends on Ui, Ai is independent of Di(0) and Di(1) so condition (C1) is satisfied. Furthermore,
to ensure condition (C3) to hold, we choose b(Ui) to be

b(Ui) =
exp{β0 + βT1 Xi + β2Ui}(exp{g(Ui + δ)}+ 1)

exp{δ} (exp{g(Ui)}+ 1) + exp{β0 + βT1 Xi + β2Ui}(exp{g(Ui + δ)}+ 1)

for some constant (β0, β1, β2). For this choice of b(Ui),

log
P (Ai = 1|Ui, Di = 0)

P (Ai = 0|Ui, Di = 0)
= β0 + βT1 Xi + β2Ui.
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Table 1. Summary of estimated δ in the simulation study from 10,000 replicates

Scenario 1: continuous confounders
δ ρ n Proposed Method Logistic Reg. Propensity Score

Bias Std ESE CP Bias Std ESE CP Bias Std ESE CP
1 0.0 2000 -0.00 0.11 0.11 0.94 1.00 0.10 0.09 0 -0.00 0.11 0.11 0.95

4000 -0.01 0.08 0.08 0.95 1.00 0.07 0.07 0 -0.00 0.08 0.08 0.94

1.5 0.0 2000 -0.00 0.12 0.12 0.94 1.00 0.11 0.10 0 0.02 0.12 0.12 0.94
4000 -0.01 0.08 0.08 0.95 1.00 0.08 0.07 0 0.02 0.08 0.08 0.94

1 0.2 2000 0.02 0.11 0.11 0.95 0.90 0.10 0.09 0 0.03 0.11 0.11 0.93
4000 0.01 0.08 0.08 0.95 0.90 0.07 0.07 0 0.03 0.08 0.08 0.93

1.5 0.2 2000 0.02 0.12 0.12 0.95 0.90 0.11 0.10 0 0.06 0.12 0.12 0.91
4000 0.01 0.09 0.08 0.95 0.90 0.08 0.07 0 0.06 0.09 0.09 0.88

Scenario 2: binary confounders
δ ρ n Proposed Method Logistic Reg. Propensity Score

Bias Std ESE CP Bias Std ESE CP Bias Std ESE CP
1 0.0 2000 0.02 0.06 0.06 0.93 0.00 0.06 0.06 0.95 0.02 0.06 0.06 0.94

4000 0.01 0.05 0.04 0.94 0.00 0.04 0.04 0.95 0.02 0.04 0.04 0.93

1.5 0.0 2000 0.02 0.07 0.07 0.93 0.00 0.07 0.06 0.95 0.03 0.07 0.07 0.93
4000 0.01 0.05 0.05 0.94 0.00 0.05 0.05 0.95 0.03 0.05 0.05 0.91

1 0.2 2000 0.01 0.06 0.06 0.95 0.01 0.06 0.06 0.95 0.07 0.07 0.06 0.79
4000 0.00 0.04 0.04 0.95 0.01 0.04 0.04 0.95 0.07 0.05 0.05 0.64

1.5 0.2 2000 0.01 0.07 0.07 0.95 0.00 0.06 0.07 0.95 0.11 0.07 0.07 0.59
4000 0.00 0.05 0.05 0.95 0.00 0.05 0.05 0.95 0.12 0.05 0.05 0.32

Therefore, (C3) is violated, i.e., Ai is not independent of Ui given Xi in the control sample.

We consider two simulation scenarios. In the first scenario, both Xi and Wi are generated from
continuous distributions. Specifically, (Xi,Wi) follows a bivariate normal distribution with the mean

zeros and covariance matrix

[
1 ρ

ρ 1

]
, where ρ = 0 or 0.2. We then generate (Di(1), Di(0)) using

model (5), where g(Ui) = γ0 + γ1Xi + γ2X
2
i + θWi. The exposure Ai is from a Bernoulli distribution

with probability b(Ui) given by (6). The true parameter values in both model (5) and (6) are set as
γ0 = −2, γ1 = 0.3, γ2 = 0.8, θ = 0.8, β0 = −4 and β1 = 2. We considered β2 in a range of 0.01 to
0.05. Finally, to best mimic the real data, we set the ratio of cases and controls, i.e., n : m, as 1 versus
10. We considered the true causal log-OR to be δ = 1 or 1.5. The number of the cases in the simulation
study is 2000 or 4000.
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In the second simulation scenario, both Xi and Wi are generated from Bernoulli distribution to mimic
drug use variables in the real study. The data Ui = (Xi,Wi) is a multivariate binary random variate
marginal probabilities of 0.5 and correlation matrix

1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1

 ,

where ρ = 0 or 0.2. We then generate (Di(1), Di(0)) using model (5), where

g(Ui) = γ0 +

6∑
j=1

γjXj +

10∑
j=7

θjWj .

The exposure Ai is from a Bernoulli distribution with probability b(Ui) given by (6). The value
of all parameters in (5) an d(6) are γ0 = −3, γ1 = γ2 = · · · = γ6 = 0.3, θ7 = · · · = θ10 = 0.8, β0 =

−4 and β1 = · · · = 0.8, and we considered β7 = · · · = β10 from 0.01 to 0.05. Similar to the first
scenario, we set the ratio of cases and controls as 1:10. The true value of δ was 1 or 1.5. The number of
the cases is 2000 or 4000.

For each simulated data, we apply the proposed method to estimate δ . In the proposed method, we
first fit a logistic regression model of A given X using the control data (D = 0). This gives the control-
based propensity score Z = π(X) = P (A = 1|X = x,D = 0) which predicts the probability for each
subject. We then construct K strata based on Z’s quantiles then fit another stratified logistic regression
for D regression on A. The coefficient of A is used as the estimator for δ. The number of strata K is
chosen from {5, 10, 15, 20, 30}, and the final number of strata is selected by the BIC. The variance for
the estimate is obtained from the usual stratified logistic regression.

Comparing to the standard logistic regression and the traditional propensity score, our proposed
method yields similar results as in the simulation study. Table 2 summarizes the simulation results from
10,000 replicates for both scenarios for different values of β2. The results indicate that the performance
of proposed method is also good even when the drug exposure depends on the unmeasured confounders,
if the unmeasure confounders are independent with the measured confounders. For the proposed method,
the bias is small and the confidence intervals have proper coverages. We can also notice that the
performance of the proposed methods improves as the sample size increasing. In scenario 2 when the
confounders are discrete, the proposed method also provides reasonable estimates. We can also notice that
under this scenario, the proposed method does perform similarly to the scenario where the drug exposure
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is independent to the unmeasured confounders conditional on the measured confounders. Finally, for the
proposed method, the BIC almost always chooses K = 10 in the stratified logistic regression .

Table 2. Summary of estimated δ in the sensitivity analysis from 10,000 replicates, where condition C.3 is
violated

Scenario 1: continuous confounders
δ ρ n β2 = 0.01 β2 = 0.03 β2 = 0.05

Bias Std ESE CP Bias Std ESE CP Bias Std ESE CP
1 0.0 2000 0.01 0.11 0.11 0.94 0.02 0.11 0.11 0.94 0.03 0.11 0.11 0.93

4000 -0.00 0.07 0.08 0.96 0.01 0.07 0.08 0.95 0.03 0.07 0.08 0.94

1.5 0.0 2000 0.01 0.12 0.12 0.94 0.02 0.12 0.12 0.93 0.03 0.12 0.12 0.93
4000 -0.00 0.08 0.08 0.96 0.01 0.08 0.08 0.96 0.02 0.08 0.08 0.95

1 0.2 2000 0.03 0.11 0.11 0.95 0.04 0.10 0.11 0.94 0.05 0.11 0.11 0.93
4000 0.02 0.08 0.08 0.95 0.03 0.08 0.08 0.93 0.04 0.08 0.08 0.90

1.5 0.2 2000 0.03 0.12 0.12 0.95 0.04 0.11 0.12 0.95 0.05 0.12 0.12 0.93
4000 0.02 0.08 0.08 0.94 0.03 0.08 0.08 0.93 0.05 0.09 0.08 0.92

Scenario 2: binary confounders
δ ρ n β2 = 0.01 β2 = 0.03 β2 = 0.05

Bias Std ESE CP Bias Std ESE CP Bias Std ESE CP
1 0.0 2000 0.03 0.06 0.06 0.93 0.04 0.06 0.06 0.90 0.05 0.06 0.06 0.87

4000 0.02 0.04 0.04 0.93 0.03 0.04 0.04 0.89 0.04 0.04 0.04 0.83

1.5 0.0 2000 0.03 0.06 0.06 0.93 0.04 0.06 0.06 0.90 0.05 0.06 0.06 0.87
4000 0.02 0.05 0.05 0.93 0.03 0.05 0.05 0.90 0.04 0.04 0.04 0.84

1 0.2 2000 0.02 0.06 0.06 0.94 0.03 0.06 0.06 0.91 0.05 0.06 0.06 0.86
4000 0.01 0.04 0.04 0.94 0.03 0.04 0.04 0.90 0.05 0.04 0.04 0.81

1.5 0.2 2000 0.02 0.07 0.07 0.94 0.03 0.07 0.07 0.92 0.05 0.07 0.06 0.87
4000 0.01 0.05 0.05 0.94 0.03 0.05 0.05 0.90 0.05 0.05 0.05 0.83

5 Application to Myopathy Study

The Indiana Network for Patient Care (INPC) is a health information exchange data repository containing
medical records for over 15 million patients throughout the state of Indiana. The Common Data
Model (CDM) is a derivation of the INPC containing coded prescription medications, diagnoses,
and observational data for 2.2 million patients between 2004 and 2009. The CDM contains over 60
million drug dispensing events, 140 million patient diagnoses, and 360 million clinical observations
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(e.g., laboratory results, diagnose codes, medications). These data were anonymized and architected
specifically for research on adverse drug reactions through collaboration with the Observational Medical
Outcomes Partnership project23. Using our previous defined myopathy phenotype8, 450, 634 myopathy
cases were selected from the CDM-5 database. Among patients having a myopathy event, the drug-
condition relationship is anchored by its date in the database. In our analysis, any drug exposure occurring
within a one-month drug exposure window before the diagnosis of myopathy was considered as a positive
exposure. In order to select a control patient and his/her drug exposure window, an index time was firstly
matched with the myopathy case event time. Then control patients were selected from those patients
without myopathy. Finally we randomly selected 10 control patients who are of the same gender and age
range for each myopathy case. Anchored by the index time, a one-month drug exposure window was
defined; and the exposure to a drug or no drug was defined similarly as for the cases. Eventually for each
case, ten controls that match the index time, gender and age group were selected. As a result, we have a
total of 4, 956, 974 records in the data.

Our goal is to estimate the causal effect of each drug on myopathy. To control for possible confounding
due to the other drug usage, it is ideal to include all comedications in this case-based propensity score
model. Ideally, all other drug usage information should be used to derive the case-based propensity score.
However, one practical challenge is that the drug usage for each drug is often sparse so the regression
including these drugs will be numerically unstable. Instead, we use Principal Components (PCs) instead
of original drugs usage as condensed information for all the confounding variables when computing the
control-based propensity scores. Particularly, we use the first 10 PCs derived from the correlation matrix
of drug usage.

To be specific, for each of the drug, we first created a binary variable from the raw data, , denoted as dj
for drug j. For each subject i, dij = 1 if the drug j has been taken with in one month prior to condition by
this subject, and dij = 0 otherwise. Then, we checked the frequency of drug use, and we only considered
the drugs that have been used more than 5 times per 10,000 records in the analysis. This was because that
including drugs that have few use will lead to the unstable result. We had 100 drugs left after applying the
criteria. With these 100 drugs, we did the eigen-decomposition on the correlation matrix of drugs among
case samples. We then computed the PCs for case and control samples with the eigenvectors from last
step.

Given the principal components, we then apply the proposed method as described above. Specifically,
the occurrence of ADE was treated as D, the use of a specific drug was treated as A, and the PCs, age
and gender were treated as X . The results are shown in figure 1.

The causal associations between 100 drugs and myopathy are analyzed using our proposed method.
The estimated log ORs vary from -0.41 to 3.46, with a median of 1.49 and mean 1.54 across 100 drugs.
Almost all drugs have significant effect on adverse conditions based on the results. The detailed drug
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Figure 1

information is given in supplementary materials. For most of the drugs, the estimated log OR from
proposed method is close to the log OR estimated from marginal logistic regression. For the other drugs,
our proposed method provides smaller log OR than the marginal logistic regression. We believe that
for these drugs, our proposed method provides the log OR closer to their true log OR on myopathy,
for we controlled the confounder through case based propensity score. The log OR from the marginal
logistic regression is falsely large because this log OR actually reflected the causal effect on myopathy
of confounder rather than the drug.

Among these 100 drugs, 72 drugs have reported myopathy adverse drug events in their drug labels
(www.sideeffects.embl.de), in which 70 drugs have increased myopathy risk (p-value < 0.05). In
particularly, 3 statins (atorvastatin, lotavastatin, simvastatin) have increased myopathy risk, ORs are
(2.61, 1.99, 3.22), respectively. These are highly consistent to the clinical trial data that myopathy are
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primary statin side effects. Also, in the top 10 drug-myopathy causal association pairs based on the log
OR, 6 of them are reported to have ADE related to myopathy.

6 Discussion

In this paper, we have proposed a new concept called the causal log-OR to evaluate the causal effect of one
exposure risk on a dichotomous outcome. This new causal effect differs from the traditional causal effect
defined as the marginal mean difference. Since the latter is often small for rare disease such as ADEs in
our application, the new causal effect is clinically meaningful and useful to evaluate the exposure risk.
We then proposed a set of conditions to describe how such a causal effect can be estimated under a case-
control design. Both theoretical results and numerical results showed that the proposed method is valid
and performs superior to some naive method. In our applications, we proposed both principal component
analysis and meta-analysis techniques to handle the challenges of sparse predictors and the computational
challenges due to a vast number of data records. In analyzing the de-identified Indiana medical record
database, our method identifies 70 out 72 drugs that have myopathy side effect in their labels. These 70
drugs including statins, which are well known for their myopathy side effect.

Our work is not the first attempt to mining drug ADE associations using causal inference model
framework in the health record databases. Early work by Tatonnetti et al21 used the traditional propensity
scores to screen the large scale drug-ADEs in Federal Adverse Events Reporting System (FAERS).
Unlike our longitudinal CDM medical record database, FAERS is a cross-sectional database containing
self reported ADEs and potentially associated drugs. Analyzing drug-ADE associations in FAERS does
not need additional sampling and/or case control matching, and the propensity score method implemented
in the Tatonnettis paper does not have to worry about the sampling bias. However, in analyzing drug-ADE
associations using longitudinal medical record databases, sampling is needed for proper case/control
matching. Our research in this paper shows that potential sampling bias has impact on the propersity score
calculation, and its follow-up causal drug-ADE association estimation. Our research moves a significant
step forward in developing drug-ADE data mining algorithms using longitudinal medical record database.

Although we only considered a case-control design, our general idea can be extended to other bias-
sampling design such as outcome-dependent sampling or stratified sampling, while the outcome of
interest can be either continuous or censored survival event. The key condition (C.3) is necessary to
be modified to adapt to each specific sampling design. However, one main message is that traditional
propensity score methods, which ignore biased sampling designs, may no longer be valid, since the
propensity scores estimated from the biased sample do not represent the actual likelihood of being
exposed or unexposed in the underlying population.
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Our current causal log-OR method cannot differentiate the causal drug-ADE associtions from the drug-
indication associations. It is primarily due to our initial pharmaco-epidmiological study design, where the
temperal order of drug exposure and ADEs was not restrained. We expect a more rigorous design will
reduce the drug-indication associations.

We only consider the causal log-OR of one single drug. The approach can be easily generalized to
study the causal effect of drug-drug interactions from multiple drugs, after controlling for confounding
effects of other comedications. In this case, the control-based propensity scores will be mulidimensional
to reflect the likelihood of receiving each combination of candidate drugs and will be incorporated into
the downstream logistic regression.
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Appendix

Proof of Theorem 2.1

With loss of generality, we assume U to be discrete. For continuous U , the summation in the following
proof will be replaced by integration with respect to certain dominating measure for U ’s distribution.
Since

log
P (D = 1|U,A)
P (D = 0|U,A)

= g(U) + δA,

we obtain

P (X,A|D = 0) =
∑
U

P (U,X,A|D = 0)

P (U,X,A|D = 1)
P (U,X,A|D = 1)

=
∑
U

P (D = 0|U,X,A)
P (D = 1|U,X,A)

P (D = 1)

P (D = 0)
P (U,X,A|D = 1)

=
∑
U

[exp(g(U) + δA)]
−1 P (D = 1)

P (D = 0)
P (U,X,A|D = 1),

where the summation is over U which is compatible with X . Therefore,

P (X,A|D = 0) = exp(δA)−1P (D = 1)

P (D = 0)

∑
U

exp[g(U)]−1P (U,X,A|D = 1).
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From condition (C3), P (U,X,A|D = 1) = P (U |X,D = 1)P (X,A|D = 1) so it gives

P (X,A|D = 0) = exp{δA}−1P (D = 1)

P (D = 0)
P (X,A|D = 1) exp{g̃(X)},

where g̃(X) = log{
∑
U exp[g(U)]−1P (U |X,D = 1)} = log{E[exp{g(U)}−1|X,D = 1]}. In other

words,

P̃ (D = 1|X,A)
P̃ (D = 0|X,A)

=
P (X,A|D = 1)

P (X,A|D = 0)

P̃ (D = 1)

P̃ (D = 0)
=
P̃ (D = 1)P (D = 0)

P̃ (D = 0)P (D = 1)
exp[δA+ g̃(X))].

Theorem 2.1 holds.

Proof of Proposition 2.2

We only prove one direction and the other direction holds using the same arguments. Assume (C3’)
holds. Note

P (U,A|X,D = 1) = exp{g(U) + δA}P (D = 0)

P (D = 1)
P (U,A|X,D = 0)

P (X|D = 0)

P (X|D = 1)
.

Since U and A are independent given X in the control population, then P (U,A|X,D = 1) can be
factorized into a production of two parts, one only involving (U,X) and the other part only involving
(X,A). This implies that A is independent of U given X in the control population (D = 0).

Analytic expression of the effect of X (g̃(X)) in the first simulation setting Since in Theorem 2.1 we
established

P (D = 1|X,A)
P (D = 0|X,A)

= exp[δA+ g̃(X))].

We derive the expression of g̃(X) from the first simulation study. After some algebra, we obtain

g̃(X) = log

∫
exp[g(U)]P (W |X,D = 0)dW

= γX + log

{∫
exp(θW )

P (D = 0|U)P (U)∫
P (D = 0|U)P (U)dW

dW

}
.

Using the simulation setting for P (D = 1|U,A) and P (A|U), we have

g̃(X) = γX + log

{∫
exp(θW + [2ρXW −W 2]/[2(1− ρ2)]

exp[a(U)] + 1 + exp(βX)exp[a(U) + δ] + 1
dW

}
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− log

{∫
exp([2ρXW −W 2][2(1− ρ2)])

exp[a(U)] + 1 + exp(βX)exp[a(U) + δ] + 1
dW

}
.

Clearly, g̃(x) is a nonlinear function of x. Thus, fitting a standard logistic regression model with linear
effects of X in the regression will result in a biased estimate for δ.
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