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Measuring the Uncanny Valley Effect
Refinements to Indices for Perceived Humanness, Attractiveness, and Eeriness
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Abstract Using a hypothetical graph, Masahiro Mori pro-
posed in 1970 the relation between the human likeness of
robots and other anthropomorphic characters and an obser-
ver’s affective or emotional appraisal of them. The relation
is positive apart from a U-shaped region known as the un-
canny valley. To measure the relation, we previously de-
veloped and validated indices for the perceptual-cognitive
dimension humanness and three affective dimensions: inter-
personal warmth, attractiveness, and eeriness. Nevertheless,
the design of these indices was not informed by how the un-
trained observer perceives anthropomorphic characters cat-
egorically. As a result, scatter plots of humanness vs. eeri-
ness show the stimuli cluster tightly into categories that are
widely separated from each other. The present study applies
a card sorting task, laddering interview, and adjective evalu-
ation (N = 30) to revise the humanness, attractiveness, and
eeriness indices and validate them via a representative sur-
vey (N =1,311). The revised eeriness index maintains its or-
thogonality to humanness (r = .04, p = .285), but the stim-
uli show much greater spread, reflecting the breadth of their
range in human likeness and eeriness. The revised indices
enable empirical relations among characters to be plotted
similarly to Mori’s graph of the uncanny valley. Accurate
measurement with these indices can be used to enhance the
design of androids and 3D computer-animated characters.
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Fig. 1 Categorical perception causes equal-sized differences in a char-
acter’s physical similarity to a human being to appear much smaller
within the category robot or human than at the boundary between them.

1 Introduction

Human physical and behavioral realism heightens empathy
for robots, which in turn enhances social interaction [34,
51]. This is advantageous in settings where it is preferred to
have the observer expect humanlike performance from the
robot, such as a robot portraying a standardized patient dur-
ing a trainee’s assessment [18,21]. It is also helpful to mea-
sure how the observer perceives human realism and evalu-
ates it affectively to develop design principles for increasing
human acceptance of android robots and three-dimensional
(3D) computer-animated characters.

Accurate measurement is vital because humanlike char-
acters are susceptible to negative affective evaluations
known as the uncanny valley effect [35,33,42]. These eval-
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uations have been characterized as cold, eerie feelings, as-
sociated with, but not equivalent to, fear, anxiety, and dis-
gust, a loss of empathy, and avoidance behavior [23,31,37,
41]. Mori [44] illustrated the uncanny valley effect by draw-
ing a valley of eeriness in a graph that otherwise depicts
a positive relation between human likeness and affinity. A
similar curve approximated ratings of a large sample of real-
world robots, though with considerable variance (R2

adj = .29)
[38]. However, there has been insufficient research on how
to measure the uncanny valley effect accurately.

Various methods have been used to evaluate human–ro-
bot interactions, including spatial engagement, open-ended
questions, and principal component analysis [40,45,46,61,
62]. In the context of the uncanny valley, the present study
focuses specifically on scale development for evaluating an-
droid robots and 3D computer-animated characters.

Bartneck [2] proposed the Godspeed indices, which
were designed to measure anthropomorphism, animacy, lik-
ability, perceived intelligence, and perceived safety. These
indices average ratings on semantic differential scales. Un-
fortunately, the anthropomorphism, animacy, and likability
indices were highly correlated (.67< r < .89, p< .001) [22]
and thus may not measure distinct concepts. This is a reoc-
curring measurement issue, because humanness tends to be
associated with other positive social attributes.

Although Ho and MacDorman’s [22] perceived human-
ness, attractiveness, and eeriness indices have high internal
reliability and the correlation of eeriness with humanness,
attractiveness, and warmth was not significant, their scatter
plots form two widely separated clusters: (a) mobile, hu-
manoid, and android robots and (b) 3D computer models
of humans that range from the cartoon-like to the photo-
realistic. Each cluster is tightly grouped despite the varied
appearance of the characters within it (Figure 4). The for-
mation of two tightly grouped but widely separated clusters
indicates the presence of categorical perception effects in
observing the characters’ appearance or behavior. This pat-
tern occurs if one bipolar adjective describes one perceptual
category and the other bipolar adjective describes a differ-
ent perceptual category, because category perception causes
physical difference among stimuli within each category to
appear much smaller than equal-sized differences between
categories (e.g., robot vs. human, Figure 1) [13,20,43].

These indices should be designed to span category
boundaries because anthropomorphic entities whose fea-
tures span them are prone to elicit the uncanny valley effect
[7,30,39,42,43,54]. These negative evaluations are likely to
persist at least until a new category is formed and labeled
[58]. As stimuli that span the new category and its neigh-
bors are categorized, categorical perception then develops
along those continua [6,25].

Categorical perception, also called the perceptual mag-
net effect, has recently been found on the continuum from

3D computer models to photographs of real people [7–9,24,
27,30,35]. Various theories have been proposed that broadly
relate categorization to the uncanny valley, including theo-
ries that are based on categorical perception [50], catego-
rization difficulty [63], cognitive dissonance [19], balance
theory [56], and feature inconsistency [42,43]. The cate-
gorical perception of humanlike characters necessitates ex-
amining how observers categorize the characters to ensure
that the humanness, attractiveness, and eeriness indices ade-
quately represent within-category variation along these three
dimensions and span category boundaries.

The present study seeks to improve these indices for
measuring the uncanny valley effect in light of how ob-
servers’ categorize mobile, humanoid, and android robots
and 3D computer-animated characters. To address the ef-
fects of categorical perception and anthropomorphism, card
sorting is applied to determine how untrained observers cat-
egorize robots, computer-animated characters, and real hu-
man beings, thus revealing their own categories and the
boundary regions between them. The bipolar adjectives of
the semantic differential scales composing these indices are
next evaluated to determine adjective pairs that span the cat-
egories and their boundary regions. The resulting indices are
then evaluated in a representative survey. Improving mea-
surement instruments for the uncanny valley is significant
both scientifically, in more accurately describing the phe-
nomenon and evaluating its effects, and in testing proposed
design principles for overcoming the uncanny valley.

2 Method

This study applied a four-stage exploratory sequential de-
sign that sought to improve the humanness, attractiveness,
and eeriness indices [22]: (1) a card sorting task to probe
how each participant conceptualizes humanlike characters;
(2) a laddering interview to collect new candidate adjectives
to revise the semantic differential scales that comprise the
indices; (3) a bipolar adjective evaluation to verify the im-
portance of the original scales to the categories identified
by the participant; and (4) a representative web survey to
validate the revised indices. This study was approved by the
Indiana University Institutional Review Board (EX0903-35B).

2.1 Participants

For the card sorting task, laddering interview, and adjective
evaluation, 30 participants were recruited by email and fly-
ers in a convenience sample from a Midwestern U.S. pub-
lic university system: 70.0% were male, 30.0% female, and
the median age was 26. Participants completed these stages
from January to June 2013. There was no attrition. Partici-
pants received a $10 gift card.
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Fig. 2 The 12 characters are five 3D computer animations, (1) Doctor Aki Ross from the film Final Fantasy: The Spirits Within (2001), (2) Billy,
the baby from “Tin Toy” (1988), (3) an unnamed man from Phil Rice’s “Apology” (2008), (4) Orville Redenbacher from a popcorn commercial
(2007), and (5) Mary Smith from “Heavy Rain: The Casting” (2006), five robots, (6) Roomba 570 (iRobot), (7) Kotaro (JSK, University of Tokyo),
(8) Jules (Hanson Robotics), (9) Animatronic Head (David Ng), and (10) Aiko (Le Trung), and two human beings, (11) a man and (12) a woman.

For the web survey, 1,311 participants were recruited by
email in a random sample of undergraduate students from
the same university system: 39.1% were male, 60.9% fe-
male, 81.5% were age 18–25, 5.4% 26–30, and 13.1% 31
or older. The sample population was 74.1% white, 7.3%
African American, 5.5% Hispanic/Latino, 3.1% Asian,
0.2% American Indian, 0.1% Pacific Islander, 2.9% two or
more races, 5.8% international, and 1.1% unknown. Ad-
ditional inclusion criteria were 18 or older, native English
speaker, and 20/40 vision or better with correction. Some
data was missing at random owing to attrition. The measure-
ment error range was ±2.89% at the 95% confidence level.
Participants completed the web survey from March to April
2014. Participants received no compensation.

2.2 Materials and Procedures

In the card sorting task, each of the 30 participants viewed a
randomized sequence of video clips that corresponded to 12
different characters: five 3D computer-animated characters,
five robots, and two human beings (Figure 2). One of the
robots (Hanson Robotics’ Elvis) and two of the 3D com-
puter-animated characters (from The Incredibles and The
Polar Express) from Ho and MacDorman (2010) were re-
placed to improve representativeness. The aim was to se-
lect robots from typical demonstration settings and 3D com-
puter models from a variety of genres—short films, ma-
chinima,1 advertisements, and videogames—in addition to
feature-length films. Two humans were added to extend the
range of humanness. The video clips were 480 pixels by 360
pixels (a 4:3 aspect ratio) and were 15 to 30 seconds in du-
ration.

A representative frame from each video was printed in
color on a 3 1

2 -by-5-inch card. Using the cards as visual
aids, the participant grouped the 12 characters into self-

1 The cinematic production of narrative computer animation by
means of a videogame or other real-time graphics engine.

determined categories and proposed a label for each cate-
gory [53]. The participant was instructed to sort each charac-
ter into only one category, thus ensuring that the categories
were mutually exclusive. The experimenter used prompts,
such as “Which characters would you group together, or sep-
arate from the others?” The participant then verified the cat-
egories by reviewing the video clips at least once.

Next, in the laddering interview, the participant was
asked to list the characteristics of each character. For each
characteristic, the participant was asked repeatedly, “Why is
that important to you?” The participant’s answer typically
linked a formal characteristic like “mechanical movement”
to an aesthetic judgment like “mismatched with human ap-
pearance” to an experiential characteristic like “weird.” The
participant was required to provide at least three laddering
responses.

Finally, in the adjective evaluation, the participant rated
on a 3-point importance scale (1. slightly important, 2. mod-
erately important, 3. very important) all bipolar adjectives
comprising the humanness (12 adjectives), attractiveness
(10 adjectives), and eeriness (16 adjectives) indices for each
category that the participant had proposed in the card sort-
ing task [22,55,60]. Each semantic differential scale is com-
prised of a bipolar adjective that is low on the scale (e.g.,
artificial is low on the humanness scale) and a bipolar ad-
jective that is high on the scale (e.g., natural is high on the
same scale). If the participant considered both bipolar ad-
jectives important (e.g., artificial and natural), the scale was
expected to measure the concept effectively; if the partici-
pant only considered one of the bipolar adjectives important,
the adjectives might not span that category.

In the representative web survey, each participant rated
the 12 characters on the semantic differential scales com-
prising the three indices, while the corresponding video clip
played in a continuous loop. The semantic differential scales
included new candidate adjectives from the laddering inter-
view. As before, the characters were presented one at a time
and in random order. Scale order was also randomized. The
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semantic differential scales recorded a 7-point value ranging
from −3 to +3.

2.3 Data Analysis Procedures

A semantic differential scale is defined as unbalanced to the
extent that one bipolar adjective is important for more cat-
egories than the other. In taking the difference in matches
between the low and high adjective of a scale, the magni-
tude represents the degree of imbalance and the sign repre-
sents the direction. For example, if a participant proposed
three categories — Animation, Humanlike Robot, and Real
Human— and stated that natural was important for all three
categories but artificial only for Humanlike Robot, the nat-
ural–artificial scale is unbalanced (3− 1 = +2). Based on
the bipolar adjective evaluation, if the mean imbalance of a
scale was statistically significant, an alternative bipolar ad-
jective was tested.

For the web survey, three criteria for bipolar adjective
selection were applied: (a) high internal reliability, (b) load-
ing on the correct factor, and (c) correlation with the ‘sanity
check’ scale. Internal reliability of the indices was assessed
with Cronbach’s α . To determine whether the semantic dif-
ferential scales loaded on factors matching their named con-
cepts, exploratory factor analysis was used, namely, princi-
pal component analysis with Promax rotation [17].

To verify that each index measured its concept, the fol-
lowing sanity check scales were included: artificial–nat-
ural, unattractive–attractive, and reassuring–eerie for the
humanness, attractiveness, and eeriness index, respectively.
Sanity check scales have face validity but do not meet one
or two other criteria. If a scale of a particular index did not
load on the same dimension as its sanity check scale or if its
factor loading was low (< .40), the scale was removed from
the index. The sanity check scales were excluded from the
final set of revised indices.

A correlation analysis was used to evaluate the discrim-
inant validity of the indices and the degree to which human-
ness was decorrelated from attractiveness and eeriness. Con-
firmatory factor analysis further verified the construct valid-
ity of the revised indices. Significance in comparing groups
was assessed by a one-way analysis of variance (ANOVA). To
visualize relations among the semantic differential scales of
the indices, multidimensional scaling (MDS) was employed
to reduce 18 dimensions to 2.

SPSS (ver. 20) was used to perform internal reliability as-
sessment, exploratory factor analysis, and correlation analy-
sis, LISREL (ver. 8.54) to perform confirmatory factor anal-
ysis, and MATLAB (ver. 8.5) to perform multidimensional
scaling.

Cronbach’s α thresholds were interpreted as acceptable
= .7, good = .8, and excellent = .9. The factor loading cut-
off for scale removal was .40 for exploratory factor analysis

and .60 for confirmatory factor analysis. Test statistics were
interpreted with a significance threshold of α = .05.

3 Results

3.1 Card Sorting

All 30 participants proposed to group the 12 characters in
at least two categories. More than half (54%) proposed at
least four categories (M = 4.38), thus exceeding the three
nominal categories of robots, animations, and humans. The
final categories (in decreasing order of frequency) were hu-
man (n = 16), robot (15), animation (14), machine (5), an-
droid (3), man (3), woman (3), 3D character (2), advance ro-
bot (2), advertisement (2), cartoon (2), digital creation (2),
dummy (2), half human–half robot (2), humanlike robot (2),
Japanese doll (2), machine part (2), prototype (2), robot ma-
chine (2), and utility robot (2). For the anthropomorphic
characters, participants often preferred to use narrower cat-
egories (e.g., advanced robot) instead of broader ones (e.g.,
robot). Even though the participants identified various cate-
gories, only three used android specifically.

3.2 Scale Evaluation

Of the 38 bipolar adjectives evaluated with respect to the
perceived categories, those comprising the semantic differ-
ential scales of the humanness index were deemed most im-
portant (M = 2.00, SD = 0.25, n = 30), followed by attrac-
tiveness (M = 1.64, SD = 0.40) and eeriness (M = 1.60,
SD = 0.33). However, when categorizing the anthropomor-
phic characters, the participants were more likely to choose
low humanness adjectives (M = −0.34, SD = 1.24), low
eeriness adjectives (M = −0.24, SD = 0.63), and high at-
tractiveness adjectives (M = 0.33, SD = 0.82).

Adjective importance was compared for robot-related
categories versus the other categories and likewise for
animation-related and human-related categories versus the
other categories using a one-way ANOVA (Table 1). Fewer
humanness adjectives were used for animation-related cat-
egories (M = 1.87, SE = 0.07) than for other categories
(M = 2.03, SE = 0.03, F(1, 61) = 4.37, p = .041) and more
attractiveness adjectives were used for human-related cat-
egories (M = 1.85, SE = 0.12) than for other categories
(M = 1.57, SE = 0.05, F(1, 61) = 6.18, p = .016).

Imbalance in the importance of bipolar adjectives was
similarly compared. More low humanness adjectives (e.g.,
inanimate) were used for robot-related categories (M =

−1.12, SE = 0.16) than for other categories (M = 0.11,
SE = 0.20, F(1, 61) = 18.57, p < .001) and more high hu-
manness adjectives for human-related categories (M = 1.56,
M = 0.11) than for other categories (M =−0.94, SE = 0.10,



Measuring the Uncanny Valley Effect 5

Table 1 Adjective importance and imbalance in bipolar adjective importance by category

Adjective Importance Importance Imbalance

Humanness Eeriness Attractiveness Humanness Eeriness Attractiveness

Robot-related 2.07 1.704 1.62 −1.12‡ −0.15 0.22
Others 1.96 1.55 1.66 0.11 −0.29 0.40

Animation-related 1.87∗ 1.53 1.52 −0.82 −0.12 0.15
Others 2.03 1.62 1.67 −0.21 −0.27 0.38

Human-related 2.09 1.62 1.85∗ 1.56‡ −0.70‡ 0.83†

Others 1.97 1.60 1.57 −0.93 −0.09 0.18

4p < .1. * p < .05. † p < .01. ‡ p < .001.

F(1, 61) = 172.93, p < .001). More low eeriness adjectives
were also used for human-related categories (M = −0.70,
SE = 0.13) than for other categories (M = −0.09, SE =

0.09, F(1, 61) = 12.47, p < .001) and more high attrac-
tiveness adjectives for human-related categories (M = 0.83,
SE = 0.20) than for other categories (M = 0.18, SE = 0.11,
F(1, 61) = 7.91, p = .007).

3.3 Revised Scales

Bipolar adjectives differed in their rated importance depend-
ing on the category. For each category, the difference in im-
portance between the low and high bipolar adjective of each
semantic differential scale was compared to identify imbal-
ance in their relative importance.

The results indicate that for the robot category, the scale
without definite lifespan–mortal (p = .006) of the human-
ness index was significantly unbalanced, as were the scales
numbing–freaky (p = .005) and unemotional–hair-raising
(p = .002) of the eeriness index, thus indicating these scales
required revision. For the animation category, two scales
of the humanness index were significantly unbalanced: syn-
thetic–real (p= .007) and mechanical movement–biological
movement (p = .014).

For the human category, inanimate–living (p = .001) of
the humanness index was significantly unbalanced. Three
scales of the eeriness index were significantly unbalanced:
reassuring–eerie (p = .007), ordinary–supernatural (p <

.001), and unemotional–hair-raising (p = .019). Two scales
of the attractiveness index were significantly unbalanced:
unattractive–attractive (p = .034) and crude–stylish (p =

.013).
For the android category, two scales of the eeriness index

were significantly unbalanced: numbing–freaky (p = .014)
and unemotional–hair-raising (p = .029). Three scales of
the eeriness index were unbalanced: numbing–freaky, ordi-
nary–supernatural, and unemotional–hair-raising.

Using the laddering responses as a pool of candidate ad-
jectives, we tentatively considered dull–freaky and boring–
freaky as potential replacements for numbing–freaky; or-

dinary–unreal and ordinary–creepy for ordinary–supernat-
ural; unemotional–alarming for unemotional–hair-raising;
and predictable–eerie for reassuring–eerie. In addition,
plain–weird, conformist–bizarre, and habitual–supernatu-
ral were also considered. These new scales were then in-
cluded in the web survey with the original ones to test
whether they were more appropriate for untrained observers.

3.4 Validation of New Scales

The five scales of the humanness index were validated: inan-
imate–living, synthetic–real, mechanical movement–biolog-
ical movement, human-made–human-like, and without defi-
nite lifespan–mortal, and the sanity check artificial–natural.
Overall internal reliability was good (Cronbach’s α = .84).2

The exploratory factor analysis showed all five scales and
the sanity check, loaded on one factor, which explained
58.30% of the total variance. These results confirmed the
reliability and validity of the original humanness index [22].

The four scales of the attractiveness index were val-
idated: ugly–beautiful, crude–stylish, repulsive–agreeable,
and messy–sleek, and the sanity check unattractive–attrac-
tive. Overall internal reliability of the index was good (Cron-
bach’s α = .88). Exploratory factor analysis showed all four
scales, including the sanity check, loaded on a single factor
that explained 65.08% of the total variance. These results
confirmed with a new sample the reliability and validity of
the original attractiveness index [22].

All seven scales comprising the original eeriness index
and its sanity check were validated. Factor analysis con-
firmed the existence of the two subfactors of the eeriness in-
dex previously found in Ho and MacDorman [22]. Uninspir-
ing–spine-tingling, boring–shocking, predictable–thrilling,
bland–uncanny, and unemotional–hair-raising loaded on
the spine-tingling subfactor, which explained 39.54% of the
total variance with a Cronbach’s α of .84. Reassuring–eerie,
numbing–freaky, and ordinary–supernatural loaded on the
eerie subfactor, which explained 23.62% of the total vari-

2 The value is the mean of 12 Cronbach’s αs, one for each character.
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Table 2 Factor loadings of the revised semantic differential scales

Humanness Eeriness Attractiveness

Eerie Spine-tingling

Inanimate–Living .81
Synthetic–Real .80
Mechanical Movement–Biological Movement .77
Human-Made–Humanlike .76
Without Definite Lifespan–Mortal .67

Dull–Freaky� .76
Predictable–Eerie� .75
Plain–Weird� .75
Ordinary–Supernatural .66

Boring–Shocking .77
Uninspiring–Spine-tingling .72
Predictable–Thrilling .65
Bland–Uncanny .65
Unemotional–Hair-raising .64

Ugly–Beautiful .79
Repulsive–Agreeable .78
Crude–Stylish .77
Messy–Sleek .69

Cronbach’s α .87 .82 .86 .81 .85

Model fit: χ2 = 3783, df = 129, GFI = .95, AGFI = .93, NFI = .97, CFI = .97, RMR = .15, RMSEA = .061
�New candidate scale

ance. However, the Cronbach’s α of the eerie subfactor was
only .69, indicating the need to improve its reliability.

Seven candidate scales, dull–freaky, ordinary–un-
real, ordinary–creepy, plain–weird, predictable–eerie, con-
formist–bizarre, and habitual–supernatural loaded on the
same dimension as reassuring–eerie, numbing–freaky, and
ordinary–supernatural; two scale candidates, unemotional–
alarming and boring–freaky, loaded on the same dimen-
sion as boring–shocking, uninspiring–spine-tingling, pre-
dictable–thrilling, bland–uncanny, and unemotional–hair-
raising.

First, the candidates ordinary–creepy (r = .70) and ha-
bitual–supernatural (r = .71) highly correlated with the
dimension of the original set, reassuring–eerie, numbing–
freaky, and ordinary–supernatural, indicating these scales
were redundant and thus should be excluded. Second,
adding the candidates unemotional–alarming and boring–
freaky only slightly increased the internal reliability of the
spine-tingling subfactor (Cronbach’s αs ranged from .84
to .86), indicating this subfactor, which included uninspir-
ing–spine-tingling, boring–shocking, predictable–thrilling,
bland–uncanny, and unemotional–hair-raising, was already
saturated. Given that these five reliable scales were already
available to measure the concept, we did not need to de-
velop any additional scales. Therefore, unemotional–alarm-
ing and boring–freaky were excluded from the revised index.
Third, ordinary–creepy (rattr = −.45, rhum = −.31), ordi-
nary–unreal (rattr =−.37, rhum =−.44), conformist–bizarre
(rattr = −.35, rhum = −.28), and numbing–freaky (rattr =

−.30, rhum = −.23) significantly correlated with the attrac-
tiveness and humanness indices, which violated the criterion
of scale decorrelation (cf. [22]). Therefore, they were ex-
cluded from the revised index. (Ordinary–supernatural was
retained, despite its bias, because the alternative candidates,
ordinary–unreal and ordinary–creepy, loaded on both the
eerie and spine-tingling subfactors.)

Based on the three criteria for bipolar adjective selec-
tion (i.e., high internal reliability, loading on the correct fac-
tor, and correlation with the sanity check scale), four scales
were developed for an revised version of the attractiveness
index, nine scales for the eeriness index, and five scales for
the humanness index.

Confirmatory factor analysis was employed to verify the
theoretical structure of this final set of 18 semantic differ-
ential scales (shown in Table 2 with their factor loadings).
Although one index (RMSEA = .061) exceeded the cutoff of
.05, the remaining indices indicated the 18 semantic differ-
ential scales had high goodness-of-fit within the structure of
the humanness, eerie, spine-tingling, and attractiveness in-
dices (χ2 = 3783, CFI = .97, NFI = .97, GFI = .95, AGFI
= .93) [5,10,16]. The revised scales showed improved fit as
compared with those of Ho and MacDorman [22] (RMSEA
decreased from .075 to .061, GFI increased from .91 to .95,
and AGFI increased from .88 to .93). Further, the statistics
of goodness-of-fit indicated the eerie and spine-tingling sub-
factors of the eeriness index were robust enough to represent
their own theoretical construct (r = .44).
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Fig. 3 Multidimensional scaling was performed on the 18 semantic differential scales using the ratings of the characters in the 12 video clips. The
scales of the humanness, eerie, spine-tingling, and attractiveness indices were well separated.

The correlation analysis indicated the revised indices re-
tained their construct validity (Table 3). Eeriness had no sig-
nificant correlation with either humanness or attractiveness,
reflecting its good discriminant validity.

Multidimensional scaling was performed on the 18 se-
mantic differential scales of the humanness, attractiveness,
and eeriness indices. The scales occupied three well sepa-
rated, nonoverlapping regions (Figure 3). Furthermore, for
the eeriness index, the four scales of its eerie subfactor and
the five scales of its spine-tingling subfactor occupied two
well separated, nonoverlapping regions. The MDS results
show the humanness, attractiveness, and eeriness indices
distinctly measured their concepts.

In comparing the scatter plot of stimuli from Ho and
MacDorman [22] (Figure 4) with those from this study (Fig-
ure 5), the revised humanness and eeriness indices better
capture the extent of within-category variation, thus miti-
gating the effects of categorical perception. The internal re-
liability of the eeriness index also increased from acceptable
(Cronbach’s α = .74) to good (.86).

Table 3 Correlation between the revised humanness, attractiveness,
and eeriness indices

Humanness Attractiveness

Attractiveness .36 (p < .001)

Eeriness .04 (p = .285) −.06 (p = .069)

4 Discussion

The categorization task revealed how observers apply cat-
egories in perceiving humanlike characters [36]. The cat-
egories supported inferences both about attributes of the
character and about unrelated attributes [64]. Although the
study’s untrained participants placed greater importance on
the humanness bipolar adjectives than the attractiveness and
eeriness ones, they tended to use the latter more frequently
when evaluating the characters.

An evaluation of the scales comprising the humanness,
attractiveness, and eeriness indices with respect to self-iden-
tified categories revealed that some pairs of bipolar adjec-
tives were unbalanced in their importance. If one pole of a
scale is unimportant for all sorted characters in a given cate-
gory, that scale is unlikely to measure differences effectively
within the category along the corresponding dimension.

During the card sorting task, untrained participants
found it challenging to partition humanlike characters on a
humanness continuum. Instead, they relied on their prior do-
main knowledge about human beings to anchor their judg-
ments [3,14]. During the laddering interview, this led them
to anthropomorphize the robots based on their relatively
simple behaviors (cf. [18,47]). The participants seemed un-
aware of their own judgment errors because of their lack
of knowledge about robots [12,26,48,49]. It is not surpris-
ing then that the participants’ cognitive system, which was
adapted to a human environment, would produce and fail
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Fig. 4 Although Ho and MacDorman’s [22] humanness and eeri-
ness indices had excellent (Cronbach’s α = .92) and acceptable (.74)
internal reliability, respectively, and nonsignificant linear correlation
(r = .02, p= .514, straight line), the Animation and Robot groups were
tightly clustered and widely separated from each other, and the Human
group was omitted. (Characters 1, 4–7, 9, and 10 were used in both
[22] and this study.)

to detect judgment errors when they were observing nonhu-
man, humanlike agents [1,57].

The new scales for the revised humanness, attractive-
ness, and eeriness indices were derived in part from the
participants’ responses. These adjectives may better reflect
contemporary U.S. English usage and provide better con-
tent validity than previously used adjectives. The revised
indices exhibited high internal reliability and, for both the
computer-animated characters and robots, the bipolarity of
the semantic space [4,15,28,52,59].

Confirmatory factor analysis verified the theoretical
structure of the three indices, which were found to measure
their putative concepts. The two subscales of the eeriness in-
dex provided a more detailed characterization of the eeriness
concept. Relative to the animated characters, the robots rated
higher on the eerie subscale but lower on the spine-tingling
subscale.

4.1 Limitations

Although eeriness was not significantly correlated with hu-
manness or attractiveness, attractiveness was significantly
correlated with humanness with a medium effect size (r =
.36, p < .001). This constitutes a substantial reduction in
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Fig. 5 The revised humanness and eeriness indices had good internal
reliability (Cronbach’s α = .87 and .86, respectively) and nonsignifi-
cant linear correlation (r = .04, p = .285, straight line). The Animation
and Robot were spread out and overlapped. A cubic approximation of
the relation between humanness and reverse-scaled eeriness resembles
Mori’s (1970/2012) graph of the uncanny valley (R2 = .640, dashed
line).

effect size (r = .61, p < .001) from Ho and MacDorman,
Table 7 [22]. One source of correlation may be the lack
of stylish mechanical-looking robots and cartoon characters
among the stimuli. Nevertheless, the difficulty in decorrela-
ting measures of attractiveness and other positive attribute
dimensions from those of humanness indicates a general
preference in U.S. culture for human attributes relative to
nonhuman attributes and also for attractive attributes rela-
tive to unattractive attributes.

From the perspective of index development, emotional
responses to robots and animation vary considerably be-
tween observers. These individual differences complicate
the development of quantitative measures of the uncanny
valley; thus, their effects require further investigation [7,31].

Although neither age nor gender were significant fac-
tors in our undergraduate population, these variables may
become significant in a sample with a more widely dis-
tributed age range. Cultural differences and exposure can
significantly affect attitudes toward robots [35]. Thus, the
revised indices should be tested with with other populations
(e.g., [11]).
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5 Conclusion

The revised indices developed in this study have two ad-
ditional advantages over their previous versions (compare
Figure 3 and 5 of this study with Figure 8 and 9 of [22],
respectively; Figure 9 was reproduced as Figure 4 in this pa-
per for ease of comparison). First, the scales of each index
exhibit a broader conceptual coverage; they are well differ-
entiated from each other while, nevertheless, remaining reli-
able (Figure 3). Second, the humanlike characters no longer
form two tightly clustered, but widely separated, categories;
instead, they show considerable spread and differentiation
along the humanness and eeriness dimensions — and in a
U-shaped pattern that somewhat resembles Mori’s original
uncanny valley graph (Figure 5).

The revised indices also retained three advantages of
the original indices. First, they maintained their theoretical
structure and psychometric properties in large-scale testing.
Second, their internal reliability remained high. Third, two
subscales of the revised eeriness index, namely, eerie and
spine-tingling, continued to serve as two stand-alone con-
cepts for the measurement, as was verified by confirma-
tory factor analysis. Owing to the above advantages, these
indices can contribute to the measurement and plotting of
human perceptions of humanlike characters, thus providing
valuable feedback to enhance their designs.

The revised indices reliably measure fairly independent
dimensions with respect to the perceptions of anthropomor-
phic characters. In addition to assisting robot developers [2],
the revised indices can also assist animators. Comparing dif-
ferent characters or comparing different feature settings and
configurations for the same character using the same set of
indices will help engineers and animators make design deci-
sions.
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