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Abstract

A preclinical murine model of hydroxyapatite (HA) breast microcalcifications (µcals), which are 

an important clinical biomarker for breast cancer detection, was used to investigate the 
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independent effects of high affinity bisphosphonate (BP) ligands and a polyethylene glycol 

(PEG) spacer on targeted delivery of gold nanoparticles (Au NPs) for contrast-enhanced 

radiographic detection. The addition of BP ligands to PEGylated Au NPs (BP-PEG-Au NPs) 

resulted in five-fold greater binding affinity for targeting HA µcals, as expected, due to the 

strong binding affinity of BP ligands for calcium. Therefore, BP-PEG-Au NPs were able to 

target HA µcals in vivo after intramammary delivery, which enabled contrast-enhanced 

radiographic detection of µcals in both normal and radiographically dense mammary tissues 

similar to previous results for BP-Au NPs, while PEG-Au NPs did not. The addition of a PEG 

spacer between the BP targeting ligand and Au NP surface enabled improved in vivo clearance. 

PEG-Au NPs and BP-PEG-Au NPs were cleared from all mammary glands (MGs) and control 

MGs, respectively, within 24-48 h after intramammary delivery, while BP-Au NPs were not. 

PEGylated Au NPs were slowly cleared from MGs by lymphatic drainage and accumulated in 

the spleen. Histopathology revealed uptake of PEG-Au NPs and BP-PEG-Au NPs by 

macrophages in the spleen, liver, and MGs; there was no evidence of toxicity due to the 

accumulation of NPs in organs and tissues compared with untreated controls for up to 28 days 

after delivery.

Statement of Significance

Au NP imaging probes and therapeutics are commonly surface functionalized with PEG and/or 

high affinity targeting ligands for delivery. However, direct comparisons of PEGylated Au NPs 

with and without a targeting ligand, or ligand-targeted Au NPs with and without a PEG spacer, 

on in vivo targeting efficiency, biodistribution, and clearance are limited. Therefore, the results 

of this study are important for the rationale design of targeted NP imaging probes and 

therapeutics, including the translation of BP-PEG-Au NPs which enable improved sensitivity and 



  

specificity for the radiographic detection of abnormalities (e.g., µcals) in women with dense 

breast tissue.

1. Introduction

Breast cancer is the most common cancer and the second leading cause of cancer-related 

deaths among women in the United States [1]. The five-year survival rate is 98.6% when 

diagnosed while still confined to the breast, but only 23.3% when diagnosed after metastasizing 

to distant sites [2]. Therefore, early detection and correct diagnosis of breast cancer is critical for 

patient survival. Mammographic screening of women ages 40-69 has been associated with a 

20-40% reduction in mortality across numerous studies [3,4]. At the same time, mammographic 

screening can result in false-positives, unnecessary biopsies, and overdiagnosis [3,4].

Both the sensitivity and specificity of mammography are dramatically decreased with 

increased breast density [4,5]. Elevated breast density is an independent risk factor for breast 

cancer and the risk is greatest during the first 12 months following a mammogram, which 

suggests that this risk results from impaired detection of abnormalities (e.g., microcalcifications) 

that are masked in mammography by the elevated tissue density [6]. Thus, new imaging methods 

are needed to improve breast cancer detection in women with elevated radiographic breast 

density [6].

Ultrasound, magnetic resonance imaging (MRI), and molecular breast imaging (MBI) 

have been investigated as an adjunct to mammography to improve the detection of abnormalities 

in women with dense breast tissue [7-9]. However, these methods each have their own 

limitations in sensitivity, specificity, spatial resolution, radiation dose, availability, cost, and 

other barriers to widespread adoption [7-9]. Contrast-enhanced dual-energy mammography, 

which utilizes conventional mammography and iodinated contrast agents to distinguish tumors 



  

via vascularity, was recently demonstrated to exhibit detection rates comparable to MRI [10,11]. 

However, iodinated molecules are limited by potential allergic reactions in patients, rapid 

clearance, and suboptimal X-ray attenuation, which has motivated investigation of targeted 

nanoparticle contrast agents for CT [12-16] including optimal compositions for dual-energy 

mammography [17]. Targeted contrast agents that improve the sensitivity and specificity of 

existing mammographic instrumentation and screening practices could mitigate the need for 

adjunct imaging modalities and promote clinical adoption.

Bisphosphonate-functionalized gold nanoparticles (BP-Au NPs) were recently shown to 

enable improved sensitivity and specificity for contrast-enhanced radiographic detection of 

breast microcalcifications (µcals) in murine models of normal and radiographically dense 

mammary tissue [18-20]. µcals are an important early marker for breast cancer and the most 

common abnormality detected by mammographic screening [21-23]. Targeted delivery of BP-Au 

NPs to µcals was facilitated by BP ligands, which exhibit high binding affinity for 

hydroxyapatite (HA) [24], the mineral component of µcals associated with malignant breast 

lesions [22].

Au NPs are advantageous as an X-ray contrast agent due to exhibiting strong X-ray 

attenuation, low cytotoxicity in vivo, and facile surface functionalization for colloidal stability 

and molecular targeting [25,26]. Polyethylene glycol (PEG) is commonly used to stabilize Au 

NPs for improved blood pool stability and circulation upon in vivo delivery [25-28]. The 

importance of high binding affinity ligands for targeted delivery of Au NPs is well-established 

[25], but the independent effects of a PEG spacer and targeting ligand are not well understood 

[28]. Direct comparisons of PEGylated Au NPs with and without a targeting ligand, or ligand-

targeted Au NPs with and without a PEG spacer, on in vivo targeting efficiency, biodistribution, 



  

and clearance are lacking. Previous preclinical studies have primarily focused on demonstrating 

feasibility of targeted delivery to biological targets (e.g., tumors, lymph nodes, brain, etc.) [12-

15]. These models are clinically significant but exhibit inherent biological variability in the target 

that complicates efforts to study the independent effects of a PEG spacer and targeting ligand on 

the targeting efficiency and clearance.

Therefore, the objective of this study was to investigate the effects of BP ligands on 

targeted delivery of PEGylated Au NPs in a murine model for contrast-enhanced radiographic 

detection of breast µcals. The murine µcal model affords relatively precise control and low 

variability of the engineered µcal targets compared with other in vivo models that utilize 

biologically-derived targets, and was previously used to investigate BP-Au NPs without a PEG 

spacer [19,20]. Therefore, PEGylated Au NPs with (BP-PEG Au NPs) and without (PEG-Au 

NPs) a BP targeting ligand, and BP-functionalized Au NPs with (BP-PEG Au NPs) and without 

(BP-Au NPs) a PEG spacer, were able to be directly compared in a well-characterized and 

highly-controllable preclinical model. We hypothesized that targeting and contrast-enhanced 

detection of µcals using BP-PEG-Au NPs would be compromised by the absence of a BP 

targeting ligand. Previous investigations of contrast-enhanced radiographic detection of breast 

µcals using BP-Au NPs [18-20] did not utilize a PEG spacer; therefore, we also hypothesized 

that incorporating a PEG spacer between the Au NP surface and BP targeting ligand would 

improve biostability and mammary gland clearance compared with BP-Au NPs.

2. Materials and methods

2.1. Synthesis of PEG-Au NPs and BP-PEG-Au NPs

Au NPs were synthesized with a mean NP diameter of ~13 nm and gold concentration of 

~0.5 mM in aqueous solution using the citrate reduction method as previously described in detail 



  

[29-31]. Au NPs were PEGylated by adding either a monofunctional thiol-PEG (SH-PEG, 

CH3O(CH2CH2O)nCH2CH2SH, 2000 Da, Sigma-Aldrich, St. Louis, MO) or heterobifunctional 

thiol-PEG-carboxylic acid (SH-PEG-COOH, CHO2(CH2CH2O)nCH2CH2SH, 2000 Da, Creative 

PEGWorks, Winston Salem, NC) to as-synthesized Au NPs at a PEG/Au molar ratio of 0.1 and 

stirring overnight to allow covalent Au-thiol bonding. BP targeting ligands were added to 

COOH-PEG-Au NPs by mixing ~20 mg N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide 

hydrochloride (EDC, C8H17N3·HCl, 99.0%, Sigma-Aldrich) and ~20 mg N-

hydroxysulfosuccinimide sodium salt (NHS, C4H4NNaO6S, 98%, Sigma-Aldrich) with 30 mL of 

COOH-PEG-Au NPs at 0.5 mM Au concentration buffered with 0.01 M 2-(N-

morpholino)ethanesulfonic acid (MES, 99%, C6H13NO4S, Sigma-Aldrich) under stirring for 

25 min. Activated COOH-PEG-Au NPs were collected and separated from unreacted EDC and 

NHS by centrifugation (Sorvall RD 6 Plus, Thermo Scientific Corporation, Waltham, MA) at 

1485g for 30 min using molecular weight cutoff filters (Amicon Ultra-15 10k, Millipore 

Corporation, Billerica, MA). Activated COOH-PEG-Au NPs were resuspended in phosphate 

buffered saline (PBS, Amresco, Solon, OH) to 30 mL, 10 mg alendronate sodium trihydrate 

(C4H12NaNO7P2·3H2O, ≥97%, Sigma-Aldrich) was added, and the solution was stirred 

overnight. All solutions of PEG-Au NPs and BP-PEG-Au NPs were washed thrice by 

centrifugation at 16,770g for 1 h to remove excess PEG and BP prior to further use.

2.2. Characterization

The particle diameter, hydrodynamic diameter, zeta potential, colloidal stability in 

physiological media, and surface density of PEG and BP were characterized for PEG-Au NPs 

and BP-PEG-Au NPs. Results were compared to BP-Au NPs and as-prepared, citrate-stabilized 

Au NPs which were previously prepared and characterized using identical methods [30-32]. The 



  

particle diameter distribution was measured from a total of at least 100 randomly selected 

particles using transmission electron microscopy (TEM, FEI Titan 80-300, Hillsboro, OR) at 

80 kV accelerating voltage. TEM specimens were prepared by evaporating drops pipetted from 

NP solutions onto carbon-coated grids. The hydrodynamic diameter and zeta potential were 

measured for three replicates of three samples at ambient temperature using dynamic light 

scattering (DLS, Zetasizer Nano ZS90, Malvern Instruments, Worcestershire, UK) after diluting 

as-prepared NPs to a final gold concentration of ~0.5 μM in water, which was buffered with 

10 mM NaCl (pH 7.2) for zeta potential. Colloidal stability in physiological media was 

characterized by both DLS and UV-vis spectroscopy (Nanodrop 200C, Thermo Scientific, 

Wilmington, DE) after diluting NP solutions with an equal volume of either deionized (DI) 

water, PBS, or 10% fetal bovine serum (FBS, Omega Scientific, Tarzana, CA) in PBS to a final 

gold concentration of ~40 mg/L. The hydrodynamic diameter and surface plasmon resonance 

(SPR) were measured at 0, 2, and 7 days following dilution.

The number of PEG molecules absorbed to Au NP surfaces (PEG/Au NP) was measured 

for three samples using thermogravimetric analysis (TGA, TGA/DCS-1, Mettler Toledo, 

Columbus, OH), heating 2-5 mg lyophilized samples of PEG-Au NPs and BP-PEG-Au NPs from 

10 to 800°C at 10°C/min under nitrogen atmosphere flowing at 50 ml/min. The number of BP 

molecules per Au NP (BP/Au NP) and NP surface area (BP/nm2) was calculated from the 

measured mass ratio of elemental P:Au and particle size distributions, using methods previously 

described in detail [30]. Assumptions included prolate spheroids for NPs, a P:BP molar ratio of 

2:1, and a bulk density of gold of 19.3 g/cm3. The mass ratio of elemental P:Au was measured 

for three samples using inductively coupled plasma-optical emission spectroscopy (ICP-OES, 

Optima 8000, Perkin Elmer, Inc. Waltham, MA) after digesting solutions with 3% v/v aqua regia 



  

(3:1 HCl:HNO3). Calibration curves for ICP-OES were created by diluting certified standard P 

and Au solutions (Assurance grade, SPEX CertiPrep, Metuchen, NJ).

2.3. Binding affinity to HA

The binding of PEG-Au NPs and BP-PEG-Au NPs to HA crystals was measured in DI 

water using previously established methods, such that results were compared to previously 

reported results for BP-Au NPs and Au NPs [30]. Briefly, whisker-shaped HA crystals 

(10 ± 0.1 mg), exhibiting a mean length and width of ~18 × ~2 µm [33], and varying 

concentrations of PEG-Au NPs or BP-PEG-Au NPs were added to DI water for a total volume of 

15 mL, placed onto a test tube rotator, and allowed to incubate for 4 h. HA crystals with bound 

Au NPs were separated from unbound Au NPs remaining in solution by centrifugation at ~700g 

for 2 min. The Au concentration in control (no HA crystals) and supernatant solutions was 

measured by ICP-OES (Optima 8000, PerkinElmer) using the methods described above. All 

binding tests were performed in triplicate.

Binding isotherms were plotted as the mass of Au NPs bound per mass of HA crystals, V 

(mg Au/g HA), versus the initial Au concentration, [S] (mg Au/L). Binding isotherms were 

modeled as a Langmuir isotherm,

where V is the mass of Au NPs bound per mass of HA crystals (mg/g), Vmax is the maximum 

surface binding (mg/g), [S] is the initial concentration of gold (mg/L), and K is the equilibrium 

binding constant (mg/L). K and Vmax were determined using non-linear least squares regression 

(JMP 13, SAS Institute, Inc., Cary, NC). Vmax was also normalized to the specific surface area of 

HA crystals, Vmax
* (mg Au/m2 HA), and calculated as the maximum number of Au NPs bound 

𝑉 =
𝑉𝑚𝑎𝑥[𝑆]
𝐾 + [𝑆]

(1)



  

per surface area of HA crystals, Vmax
# (#/µm2 HA). The specific surface area of the HA crystals 

was previously measured to be 5.63 m2/g [30]; the number of Au NPs was estimated from the 

bulk density of gold (19.3 g/cm3) and the measured mean particle size.

Binding of PEG-Au NPs and BP-PEG-Au NPs to HA crystal surfaces was also verified 

by field emission scanning electron microscopy (FE-SEM, 400 XHR, FEI, Hillsboro, OR) at an 

accelerating voltage of 5.0 kV and current of 6.3 pA. Samples were prepared by drying collected 

HA crystals at 50°C, redispersing in 90% ethanol, pipetting drops onto heated SEM stubs to 

quickly evaporate the solvent, and coating with 2.5 nm iridium by sputter deposition.

2.4. Murine model of µcals within radiographically dense mammary tissue.

Radiographic detection of µcals was investigated using a previously established 

transgenic murine model of premalignant breast cancer which recapitulates radiographically 

dense mammary tissue [20] in combination with previously established methods for creating 

breast µcals of controlled size within murine mammary glands (MGs) [18-20]. Results were 

compared to previously reported results for BP-Au NPs using identical models [20]. Female 

mice positive for the mouse mammary tumor virus-polyoma middle T-antigen (MMTV-PyMT or 

PyMT) transgene and female wildtype mice negative for the PyMT transgene were obtained by 

breeding male PyMT mice (Jackson Laboratory, Bar Harbor, ME) on a FVB/NJ background 

with female FVB mice (Jackson Laboratory) lacking the PyMT transgene. All mice were 

genotyped for the PyMT transgene using polymerase chain reaction with DNA extracted from 

ear biopsies at 3 weeks of age. At 7-8 weeks of age, µcals were created within normal and 

radiographically dense mammary tissue in wildtype and PyMT mice (n = 5/group), respectively, 

by injecting the left number 4 (4L) MG of anesthetized mice with 50 µL Matrigel (BD 

Biosciences, San Jose, CA) containing 5.0 mg/mL HA crystals. Matrigel alone was injected into 



  

the right number 4 (4R) MG as a negative, contralateral control. All procedures were approved 

by the Institutional Animal Care and Use Committee at the University of Notre Dame and were 

conducted in accordance with the guidelines of the U.S. Public Health Service Policy for 

Humane Care and Use of Laboratory Animals.

2.5. Contrast-enhanced CT

PEG-Au NPs or BP-PEG-Au NPs were administered to anesthetized mice 24 h after 

creating µcals by intramammary injection of a 100 µL dose containing 50 mM Au NPs, which 

corresponded to 2 mg Au/mouse, into both the 4L and 4R MG. Mice were imaged in vivo under 

anesthesia by computed tomography (CT, Albira, Bruker Corporation, Billerica, MA) 

immediately prior to delivering Au NPs (0 h) and longitudinally at 3, 6, 24, and 48 h after 

delivering Au NPs (n = 5/group/time point). CT images were acquired at 45 kVp and 400 µA for 

600 slices with a 250 ms integration time, 125 µm voxel size, and a 0.5 mm aluminum filter. 

Three-dimensional (3D) CT reconstructions were analyzed using PMOD (v3.17, PMOD 

Technologies Ltd., Zurich, Switzerland). X-ray attenuation was measured within an animal-

specific volume of interest (VOI) determined by contrast between the µcal and surrounding 

mammary tissue prior to delivery of Au NPs and subsequently mapped onto CT images acquired 

longitudinally after delivery of Au NPs. The pooled mean (± standard deviation) VOI was 14.3 

(0.92) mm3. Measured grayscale intensities were converted to Hounsfield units (HU) by 

calibration with air (-1000 HU) and water (0 HU). Two-dimensional (2D) projections of 3D CT 

reconstructions were created for visualization using VolView (v3.4, Kitware Inc., Clifton Park, 

NY).

2.6. Biodistribution and histology



  

Wildtype mice were euthanized at 2, 14, and 28 days after delivery of Au NPs, while 

PyMT mice were euthanized 2 and 14 days after delivery of Au NPs (n = 5/group/time point). 

Note that PyMT mice were not permitted to live more than 14 days after delivery of Au NPs (9-

10 weeks of age) due to the development of palpable tumors after this time point and the overall 

tumor burden on mice by 11-12 weeks of age. Selected organs (liver, spleen, kidney, lung, heart, 

brain, intestine, and skin), tissues (MGs, femora, and peritoneum), and µcals were dissected from 

three mice in each group, dried overnight in an oven at 37°C, massed, and digested in aqua regia 

(3 HCl:1 HNO3) for 24 h. The mass of Au in each sample and mass of Ca in µcals was measured 

using ICP-OES (Optima 8000, Perkin Elmer). Calibration curves were created by diluting 

certified standard Au and Ca solutions (SPEX CertiPrep). In remaining mice, freshly dissected 

MGs were immediately fixed in ice cold 4% paraformaldehyde (PFA) for 2 h, while livers and 

spleens were fixed in neutral buffered formalin for 24 h at room temperature. All tissues were 

then rinsed with PBS, dehydrated in a graded series of ethanol solutions, embedded in paraffin, 

sectioned to 4 µm, and stained with hematoxylin and eosin. Stained tissue sections were imaged 

by transmitted light microscopy (Eclipse ME600, Nikon Instruments, Melville, NY) at 1000X 

magnification and interpreted by a medical pathologist.

2.7. Statistical methods

All measurements of replicates were reported as the mean (± standard deviation). 

Differences in the measured NP diameter, hydrodynamic diameter, zeta potential, PEG/Au NP, 

and BP/Au NP were examined using one-way analysis of variance (JMP 13, SAS Institute Inc., 

Cary, NC) and post hoc comparisons were performed using Tukey’s HSD tests. Differences in 

the hydrodynamic diameter in various physiological media over time were examined using 

repeated measures ANOVA and post hoc comparisons were performed using Tukey’s HSD tests. 



  

A log-transform of the hydrodynamic diameter was used to provide a normal distribution for 

analysis. Differences in X-ray attenuation between experimental groups and time points were 

examined using a mixed model analysis of variance (ANOVA) accounting for longitudinal 

repeated measures and the nested, random effect of the animal. Post hoc comparisons between 

µcals and negative controls within wildtype and PyMT mice, both before and after delivering 

PEG-Au NPs or BP-PEG Au NPs, were performed using a paired t-test at each longitudinal time 

point. Post hoc comparisons between the X-ray attenuation measured before delivering Au NPs 

and at longitudinal time points after delivering Au NPs, for both µcals and negative controls 

within wildtype and PyMT mice, were performed using Tukey’s HSD tests. The level of 

significance for all tests was set at p < 0.05.

3. Results and discussion

3.1. Physicochemical characterization

Au NPs were synthesized using the citrate reduction method and surface functionalized 

with either monofunctional thiol-terminated PEG (PEG-Au NPs, Fig. 1a) or heterobifunctional 

thiol- and carboxyl-terminated PEG, which was conjugated to alendronate, a BP with a primary 

amine, using EDC/NHS chemistry (BP-PEG-Au NPs, Fig. 1b). Resulting PEG-Au NPs and BP-

PEG-Au NPs were spherical and monodispersed, as characterized by TEM (Fig. 1); the 

difference in the mean particle diameter was not statistically significant (Table 1). The 

hydrodynamic diameter distribution measured by DLS was also similar for PEG-Au NPs and 

BP-PEG-Au NPs (Fig. 1), but the mean hydrodynamic diameter was slightly increased with the 

addition of BP ligands (Table 1), as expected. The mean hydrodynamic diameter of BP-Au NPs 

investigated previously was larger still (Table 1), likely due to the presence of weakly associated 

polyvinyl alcohol molecules which were added as a stabilizer during BP surface 



  

functionalization [32]. Importantly, PEG-Au NPs, BP-PEG-Au NPs, and BP-Au NPs exhibited a 

hydrodynamic diameter that was comparable in magnitude and significantly larger than that for 

as-prepared, citrate-stabilized Au NPs (Table 1).

The zeta potential measured by DLS was near neutral for PEG-Au NPs and became more 

negative for BP-PEG-Au NPs due to the charge of BP ligands (Table 1), as expected. The zeta 

potential of BP-PEG-Au NPs was comparable but more negative than BP-Au NPs, most likely 

due to a greater density of conjugated BP ligands (Table 1). Surface functionalization decreased 

the magnitude of the negative zeta potential exhibited by as-prepared, citrate-stabilized Au NPs, 

due to the displacement and removal of citrate ions (Table 1). Thus, measured changes in both 

the hydrodynamic diameter and zeta potential indicated successful surface functionalization of 

the as-prepared Au NPs.

The mean number of PEG molecules adsorbed to Au NP surfaces (PEG/Au NP) was 

~900-1000 and was not different between PEG-Au NPs and BP-PEG-Au NPs (Table 1). The 

measured PEG/Au NP was comparable to previous reported measurements for PEGylated NPs of 

similar size and PEG molecular weight [27,34,35]. The number of BP molecules per Au NP 

(BP/Au NP) and NP surface area (BP/nm2) was ~2500 and 5, respectively, for BP-PEG-Au NPs, 

which was greater than that for BP-Au NPs (Table 1). This difference was most likely due to BP-

PEG-Au NPs allowing BP molecules to directly adsorb onto Au NP surfaces, via the primary 

amine in alendronate, in addition to being conjugated to PEG molecules. In contrast, BP-Au NPs 

only permitted binding of BP molecules directly onto Au NP surfaces via the primary amine in 

alendronate [32]. Therefore, PEGylated Au NPs enabled conjugation of a greater number and 

surface density of BP targeting ligands than was possible by binding BP molecules directly onto 

Au NP surfaces.



  

3.2. Colloidal stability in physiologically relevant media

As-prepared PEG-Au NPs and BP-PEG-Au NPs exhibited colloidal stability in 

physiologically relevant media, including DI water, PBS, and 10% FBS, over a period of 7 days 

as characterized by DLS and UV-vis spectroscopy. The mean hydrodynamic particle diameter 

remained unchanged over 7 days in DI water and PBS for both PEG-Au NPs and BP-PEG-Au 

NPs (Fig. 2). In FBS, the mean hydrodynamic diameter of PEG-Au NPs and BP-PEG-Au NPs 

was significantly increased by day 7 (Fig. 2a) and day 2 (Fig. 2b), respectively. However, the 

characteristic SPR peak remained unchanged over 7 days in DI water, PBS, and FBS for both 

PEG-Au NPs (Fig. 2a) and BP-PEG-Au NPs (Fig. 2b). Therefore, the increase in hydrodynamic 

diameter measured for BP-PEG-Au NPs in FBS at day 2 (Fig. 2a) was most likely due to non-

specific electrostatic adsorption of serum proteins to the negatively-charged BP-PEG-Au NPs 

(Table 1) and was similar to that previously measured for BP-Au NPs under identical conditions 

[32]. Moreover, the further increase in hydrodynamic diameter measured for both PEG-Au NPs 

and BP-PEG-Au NPs in FBS at day 7 was most likely due to coagulation and precipitation of the 

serum proteins. This explanation was further confirmed by measuring the hydrodynamic 

diameter of the 10% FBS media in the absence of NPs, which did not exhibit an increase at day 2 

but exhibited an increase of similar magnitude by day 7 (data not shown).

3.3. Binding affinity to HA

BP-PEG-Au NPs exhibited significantly greater binding affinity to HA crystals compared 

with PEG-Au NPs (Fig. 3, Table 2), as expected, due to the high binding affinity of BP ligands 

chelating calcium ions on HA crystal surfaces [24] compared with a weak, non-specific 

electrostatic interaction between PEG and HA crystal surfaces. The difference in binding affinity 

to HA was visually striking in representative SEM micrographs (Fig. 3). The binding isotherm 



  

for BP-PEG-Au NPs was accurately modeled by a Langmuir isotherm (Fig. 3) with a correlation 

coefficient of 0.95 (Table 2). Maximum surface binding constants (Vmax, Vmax*, and Vmax
#) were 

approximately five-fold greater for BP-PEG-Au NPs compared with PEG-Au NPs (Table 2).

The maximum surface binding constants previously measured for BP-Au NPs using 

identical methods [30] were comparable in magnitude but lower than BP-PEG-Au NPs (Table 2). 

Therefore, the addition of a PEG spacer between the BP targeting ligand and Au NP surface, and 

the concomitant increase in BP/Au NP (Table 1), resulted in a greater binding affinity to HA 

surfaces (Table 2). However, the magnitude of the difference in binding affinity was relatively 

small compared with the variability in measurements of BP/Au NP and Vmax. Both BP-PEG-Au 

NPs and BP-Au NPs possessed an excess of high affinity BP ligands for targeting HA.

3.4. Targeted delivery to µcals within mouse MGs

Contrast-enhanced radiographic detection of µcals targeted by BP-PEG Au NPs was 

investigated using a previously established and well-characterized model for creating engineered 

HA µcals within normal (wildtype mice) and radiographically dense (PyMT mice) mammary 

tissue [18-20]. In all wildtype and PyMT mice, model µcals were injected into the fat pad of the 

left number 4 MG while the right number 4 MG served as a negative, contralateral control. Mice 

were imaged by CT after creating µcals but prior to delivering PEG-Au NPs or BP-PEG-Au NPs 

(0 h), and longitudinally at 3, 6, 24, and 48 h after delivering PEG-Au NPs or BP-PEG-Au NPs 

via intramammary injection into both the left and right number 4 MGs.

Prior to delivering PEG-Au NPs or BP-PEG-Au NPs, MGs with µcals exhibited greater 

X-ray attenuation compared with contralateral controls in wildtype mice (Fig. 4a,b), but not in 

PyMT mice (Fig. 4c,d) due to the elevated mammary tissue density of PyMT mice masking the 

detection of µcals [20]. The elevated radiographic density of PyMT mice was previously shown 



  

to be due to hyperplastic epithelium and greater amounts of collagen at a premalignant stage of 

development [20,36,37], which recapitulated elevated radiographic density in human breast 

tissue associated with fibroglandular tissue. Importantly, the addition of engineered µcals within 

wildtype and PyMT mice was further able to recapitulate the clinical challenges of detecting 

small abnormalities in dense breast tissue by radiographic imaging. The murine µcal model 

provided a pathological target with more precise control and lower variability than is possible 

with biologically-derived targets, which is advantageous for investigating contrast-enhanced 

detection of a pathological target.

After delivering PEG-Au NPs, MGs with µcals and contralateral controls, in both 

wildtype and PyMT mice, exhibited a transient increase in X-ray attenuation over 3-6 h and then 

decreased back to initial levels by 24-48 h (Fig. 4a,c), such that the difference in X-ray 

attenuation before and 48 h after delivery of PEG-Au NPs was not statistically significant. 

Moreover, the relative difference in X-ray attenuation (differential contrast, ∆HU) between MGs 

with µcals and contralateral controls in wildtype mice (Fig. 4a), or the lack of a difference in X-

ray attenuation between MGs with µcals and contralateral controls in PyMT mice (Fig. 4c), was 

generally maintained at all time points after delivery of PEG-Au NPs. These results suggest that 

PEG-Au NPs were readily cleared from MGs within 24-48 h after intramammary administration 

and were unable to target HA µcals in vivo due to the lack of high binding affinity ligands. 

Therefore, PEG-Au NPs were unable to enhance the contrast of µcals in either normal or 

radiographically dense mammary tissues.

After delivering BP-PEG-Au NPs, contralateral control MGs in both wildtype and PyMT 

mice also exhibited a transient increase in X-ray attenuation over 6 h, and then decreased back to 

initial levels by 24-48 h (Fig. 4b,d), such that the difference in X-ray attenuation before and 24-



  

48 h after delivery of BP-PEG-Au NPs was not statistically significant. In contrast, MGs with 

µcals in both wildtype and PyMT mice exhibited an increase in X-ray attenuation that was 

maintained at each time point after delivering BP-PEG-Au NPs (Fig. 4b,d), such that the 

difference in X-ray attenuation before and up to 48 h after delivery of BP-PEG-Au NPs was 

statistically significant. Moreover, MGs with µcals exhibited increased X-ray attenuation 

compared with contralateral controls at all time points after delivery of BP-PEG-Au NPs. Thus, 

the relative difference in X-ray attenuation (differential contrast, ∆HU) between MGs with µcals 

and contralateral controls in both wildtype (Fig. 4b) and PyMT (Fig. 4d) mice was increased at 

24-48 h after delivery of BP-PEG-Au NPs compared with before delivery. These results suggest 

that BP-PEG-Au NPs were readily cleared from control MGs within 24-48 h after intramammary 

administration and were able to target HA µcals in vivo due to high binding affinity BP ligands. 

Therefore, BP-PEG-Au NPs enabled contrast-enhanced detection of µcals in both normal and 

radiographically dense mammary tissues. These results also suggest that BP-PEG-Au NPs 

enabled improved specificity for detecting µcals in normal mammary tissues (Fig. 4b) and 

improved sensitivity for detecting µcals that were otherwise undetectable in radiographically 

dense mammary tissues (Fig. 4d).

The ability of BP-PEG-Au NPs to target HA µcals and enhance radiographic contrast was 

not unlike previous results for BP-Au NPs using the same in vivo model [20]. However, BP-

PEG-Au NPs were more readily cleared from control MGs compared with BP-Au NPs. The 

delivery of BP-Au NPs to control MGs resulted in an increase in X-ray attenuation that was 

maintained at each subsequent time point, such that the difference in X-ray attenuation before 

and up to 48 h after delivery of BP-Au NPs was statistically significant [20]. In contrast, the 

delivery of BP-PEG-Au NPs to control MGs resulted in a transient increase in X-ray attenuation 



  

that returned to initial levels by 24-48 h (Fig. 4b,d), such that the difference in X-ray attenuation 

before and 24-48 h after delivery of BP-PEG-Au NPs was not statistically significant. This result 

suggests that the addition of a PEG spacer between the BP targeting ligand and Au NP surface 

enabled improved clearance in vivo.

3.5. Biodistribution and histology

The biodistribution of PEG-Au NPs and BP-PEG-Au NPs in various organs and tissues 

was measured at 2, 14, and 28 days after delivery in wildtype mice, and at 2 days after delivery 

in PyMT mice (Fig. 5). The 14 and 28 day time points were not completed for PyMT mice due to 

the development of nonpalpable tumors by 14 days after delivery of Au NPs (9-10 weeks of age) 

and the overall tumor burden on mice by 11-12 weeks of age. The highest concentrations of Au 

were measured in µcals, MGs, the surrounding skin, and peritoneum at every time point for both 

PEG-Au NPs and BP-PEG-Au NPs in both WT and PyMT mice (Fig. 5). The relatively high 

concentration of Au at these sites was expected due to the localized, intramammary 

administration of Au NPs. The concentration of Au in µcals was greater for BP-PEG-Au NPs 

(Fig. 5b) compared with PEG-Au NPs (Fig. 5a), and was maintained over 28 days, confirming 

targeting of HA µcals by BP-PEG-Au NPs. Thus, important trends observed in X-ray attenuation 

measurements at the 48 h time point (Fig. 4) were in good agreement with the measured Au 

biodistribution at the same time point (Fig. 5). This suggests that CT can be used to non-

invasively measure the in vivo biodistribution of NPs, especially with the advent of photon-

counting spectral CT enabling k-edge imaging [40].

The concentration of Au in MGs and the surrounding skin and peritoneum exhibited little 

change over 28 days (Fig. 5). Interestingly, the concentration of Au increased over time in the 

spleen (Fig. 5), while concentrations of Au measured in the liver, kidneys, lungs, heart, brain, 



  

intestines, and femora were low, often within the measurement noise. These results suggest that 

after intramammary administration, Au NPs were slowly cleared from MGs by lymphatic 

drainage and accumulated in the spleen. In contrast, there was relatively little or no clearance 

from MGs to the liver and kidneys, as is commonly observed after intravenous delivery 

[25,27,41-43]. Thus, the route of administration had a profound effect on the in vivo 

biodistribution of PEGylated Au NPs.

The biodistribution previously measured for BP-Au NPs using the same in vivo model 

and characterization methods revealed comparable concentrations of Au in the MGs and the 

surrounding skin and peritoneum, but much lower accumulation in the spleen [20]. Thus, PEG-

Au NPs and BP-PEG-Au NPs were more readily cleared from MGs and surrounding tissues to 

the spleen compared with BP-Au NPs. This result suggests that the addition of a PEG spacer 

between the BP targeting ligand and Au NP surface enabled improved clearance from MGs in 

vivo.

Lymphatic clearance of NPs has been previously reported after subcutaneous delivery 

[44-47], which could be expected to exhibit a similar clearance route as intramammary delivery. 

Inguinal lymph nodes in the number 4 MGs were visually observed to be dark red in color upon 

dissection of the MGs. This observation suggests that after intramammary delivery PEGylated 

Au NPs were transported to the resident lymph nodes [48]. However, the concentration of Au in 

the lymph nodes over time was not measured separately from the entire MG due to the small 

mass of tissue. Transport of PEGylated Au NPs from resident lymph nodes to the spleen 

occurred via slow drainage from lymphatic vessels into the blood pool which is filtered by the 

spleen [49]. PEGylated Au NPs accumulated in the spleen (Fig. 5), where they were taken up by 

splenic macrophages (Fig. 6) [49,50]. The mechanism for accumulation of PEGylated Au NPs in 



  

the spleen after intramammary delivery vs. the liver and kidneys after intravenous delivery is not 

entirely clear. One possible explanation is that PEGylated Au NPs are opsonized by antibodies in 

the lymph fluid which are recognized by the spleen, but the role of the spleen in the 

pharmacokinetics of NPs is not yet well-understood [49].

The total amount of Au (mg) measured in all the organs and tissues did not change with 

time (data not shown). This suggests that PEG-Au NPs and BP-PEG-Au NPs were not cleared 

from mice during the time period studied, but instead redistributed throughout the body. 

Moreover, renal clearance was not expected since the size of the Au NPs in this study was larger 

than the glomerular filtration system cutoff [51].

The histopathology of various organs and tissues was examined at 2, 14, and 28 days 

after delivering PEG-Au NPs and BP-PEG-Au NPs in wildtype mice, and at 2 and 14 days after 

delivering PEG-Au NPs and BP-PEG-Au NPs in PyMT mice (Fig. 6). There were no apparent 

changes in tissue or cellular morphology, and thus no evidence of tissue level toxicity, in the 

MGs, spleen, and liver due to the accumulation of PEG-Au NPs or BP-PEG-Au NPs at any time 

point compared with untreated controls. PEG-Au NPs and BP-PEG-Au NPs were taken up by 

macrophages in the MGs, spleen, and liver (arrows, Fig. 6), and this accumulation appeared to 

increase with time. Intracellular PEG-Au NPs and BP-PEG-Au NPs appeared to be highly 

concentrated within the cytoplasm but did not appear to enter the nucleus. There has been a 

paucity of data for the long term (weeks) in vivo cytotoxicity of Au NPs at concentrations 

necessary for use as an X-ray contrast agent, particularly for the liver and spleen, which typically 

accumulate the highest concentrations of Au NPs after delivery [25]. Therefore, the results of 

this study aid in filling a gap in the literature and are promising for clinical translation of PEG-



  

Au NPs and BP-PEG-Au NPs given that the MGs and spleen were exposed to a relatively high 

concentration of Au NPs over 28 days (Fig. 5).

The absence of any histological evidence of tissue level toxicity over 28 days exposure to 

relatively high concentrations of Au NPs is promising but warrants further analysis. For 

example, the spleen was exposed to a mass concentration of Au that was approximately ~6000X 

greater than that previously shown to result in no cellular or genetic toxicity [50,52]. 

Additionally, the mass concentration of Au in the liver was much lower than the MGs and spleen 

but was still ~2X greater than that previously reported to cause acute liver toxicity and genetic 

changes indicative of an immune response [50,52,53]. Therefore, the results of this study must be 

followed with more detailed cellular and molecular level analyses. Nonetheless, the results of 

this study are significant due to providing a relatively long-term evaluation of the in vivo 

biodistribution and cytoxocity of Au NPs at a dose suitable for use an X-ray contrast agent, 

which is significantly greater than doses typically used to study the in vitro and in vivo toxicity 

of Au NPs [25].

4. Conclusions

The addition of BP ligands to PEGylated Au NPs (BP-PEG-Au NPs) resulted in five-fold 

greater binding affinity for targeting HA µcals, as expected, due to the strong binding affinity of 

BP ligands for calcium. Therefore, BP-PEG-Au NPs were able to target HA µcals in vivo after 

intramammary delivery, which enabled contrast-enhanced radiographic detection of µcals in both 

normal and radiographically dense mammary tissues similar to previous results for BP-Au NPs, 

while PEG-Au NPs did not. The addition of a PEG spacer between the BP targeting ligand and 

Au NP surface enabled improved in vivo clearance. PEG-Au NPs and BP-PEG-Au NPs were 

cleared from all MGs and control MGs, respectively, within 24-48 h after intramammary 



  

delivery, while BP-Au NPs were not. PEGylated Au NPs were slowly cleared from MGs by 

lymphatic drainage and accumulated in the spleen. Histopathology revealed uptake of PEG-Au 

NPs and BP-PEG-Au NPs by macrophages in the spleen, liver, and MGs; there was no evidence 

of toxicity due to the accumulation of NPs in organs and tissues compared with untreated 

controls for up to 28 days after delivery.
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Appendix A. Supplementary Data

Figure 6S shows additional histology from the MGs, spleen and liver of (a) wildtype and 

(b) PyMT mice at 2 days, and (c) wildtype mice at 28 days after intramammary delivery of PEG-

Au NPs and BP-PEG-Au NPs.
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Tables

Table 1: The mean (± standard deviation) NP diameter, hydrodynamic diameter, zeta potential, 
number of PEG molecules per Au NP (PEG/Au NP), number of BP molecules per Au NP 
(BP/Au NP), and number of BP molecules per Au NP surface area (BP/nm2) for PEG-Au NPs, 
BP-PEG-Au NPs, BP-Au NPs, and Au NPs dispersed in DI water. Groups not connected by the 
same superscript letter exhibited statistically significant differences (p < 0.05, Tukey).

Group
NP 
Diameter 
(nm)

Hydrodynamic 
Diameter (nm)

Zeta 
Potential 
(mV)

PEG/Au 
NP

BP/Au 
NP BP/nm2



  

n/a = not applicable; 1BP/Au NP and BP/nm2 for PEG-Au NPs were measured to be 43 (14) and 
0.08 (0.01), respectively, which reflected the level of background noise in ICP-OES 
measurements rather than a negligible presence of BP.
Table 2: Binding constants for PEG-Au NPs, BP-PEG-Au NPs, BP-Au NPs, and Au NPs 
adsorbed onto HA crystals in DI water determined by non-linear least squares regression of 
Langmuir adsorption isotherms, where Vmax is the maximum surface binding (mg Au/g HA), 
Vmax* is the maximum surface binding normalized to the specific surface area of HA crystals 
(mg Au/m2 HA), Vmax

# is the maximum number of Au NPs bound per surface area of HA crystals 
(#/µm2 HA), and R2

 is the correlation coefficient for the regression. The 95% confidence interval 
for Vmax is shown in square brackets.

Figure Captions

Fig. 1. Au NPs were surface functionalized with either (a) monofunctional thiol-terminated PEG 
or (b) heterobifunctional thiol-PEG-COOH which was conjugated to alendronate to provide BP 
ligands for targeting HA µcals. Size distributions measured by TEM (physical diameter) and 
DLS (hydrodynamic diameter) were similar for both (a) PEG-Au NPs and (b) BP-PEG-Au NPs. 
Moreover, PEG-Au NPs and BP-PEG-Au NPs were both spherical and monodispersed, as shown 
in representative TEM micrographs.

Fig. 2. The colloidal stability of (a) PEG-Au NPs and (b) BP-PEG-Au NPs in physiologically 
relevant media, including DI water, PBS, and 10% FBS, showing the hydrodynamic diameter 
measured by DLS at 0, 2, and 7 days and the SPR peak measured by UV-vis spectroscopy at 0 
and 7 days. Error bars show one standard deviation of the mean hydrodynamic diameter (n = 3 

PEG-Au 
NPs 13.1 (1.3)ab 30.9 (2.2)a -7.2 (2.3)a 965 (240)a n/a1 n/a1

BP-PEG-
Au NPs 12.6 (1.6)a 33.4 (1.6)b -17.0 (2.8)b 902 (443)a 2500 

(1064)a 4.9 (0.7)a

BP-Au 
NPs 
[31,32]

13.2 (0.9)b 43.5 (1.9)c -11.2 (1.8)c n/a 1845 
(405)b 3.5 (0.3)b

Au NPs 
[30,32] 13.4 (1.2)b 19.3 (0.3)d -25.2 (1.9)d n/a n/a n/a

Group Vmax (mg/g) Vmax
* (mg/m2) Vmax

# (#/µm2) R2

PEG-Au NPs 2.1 [1.2, 2.9] 0.4 17 0.62

BP-PEG-Au NPs 9.8 [8.8, 10.9] 1.7 86 0.96

BP-Au NPs [30] 7.7 [6.9, 8.6] 1.4 65 0.95

Au NPs [30] 0.4 [0.2, 0.5] 0.1 3 0.75



  

samples/group/time point). Error bars not shown lie within the data point. *p < 0.05 vs. all other 
groups and time points, Tukey. A gray reference line is shown at 527 nm for comparison of SPR 
peaks in UV-vis spectra.

Fig. 3. Binding isotherms and representative SEM micrographs of PEG-Au NPs and BP-PEG-Au 
NPs adsorbed onto HA crystals in DI water. Error bars show one standard deviation of the mean 
(n = 3 samples/group/time point). Error bars not shown lie within the data point. Experimental 
data were modeled as a Langmuir isotherm (Eq. 1) using non-linear least squares regression 
(lines) and the maximum surface binding constants are reported in Table 2. BP-PEG-Au NPs 
exhibited significantly greater binding affinity to HA crystals compared with PEG-Au NPs, as 
expected due to the high binding affinity of BP ligands for calcium ions on HA crystal surfaces.

Fig. 4. The X-ray attenuation (HU) measured in vivo from 3D CT reconstructions for HA µcals 
compared with negative, contralateral controls in (a,b) wildtype and (c,d) PyMT mice exhibiting 
radiographically dense mammary tissue before (0 h) and longitudinally at 3, 6, 24, and 48 h after 
intramammary delivery of (a,c) PEG-Au NPs and (b,d) BP-PEG-Au NPs. Error bars show one 
standard deviation of the mean (n = 5 mice/group). *p < 0.05 vs. 0 h, Tukey. **p < 0.05 µcal vs. 
control, paired t-test. Note that a differential contrast (ΔHU) of at least 30 HU has been 
suggested to be necessary for visibly apparent enhanced-contrast in CT [38,39]. Representative 
2D grayscale CT image projections show HA µcals within 4L MGs (arrows) compared with 
negative, contralateral controls in 4R MGs (arrowheads), before (0 h) and 48 h after delivering 
PEG-Au NPs and BP-PEG-Au NPs. BP-PEG-Au NPs enabled contrast-enhanced detection of 
µcals in both normal (wildtype) and radiographically dense (PyMT) mammary tissues, while 
PEG-Au NPs did not. PEG-Au NPs and BP-PEG-Au NPs were cleared from all MGs and control 
MGs, respectively, within 24-48 h after delivery.

Fig. 5. The biodistribution of Au measured within organs, tissues, and µcals in wildtype mice at 
2, 14, and 28 days after intramammary delivery of (a) PEG-Au NPs and (b) BP-PEG-Au NPs, 
and in PyMT mice exhibiting radiographically dense mammary tissue at 2 days after 
intramammary delivery of (a) PEG-Au NPs and (b) BP-PEG-Au NPs. Error bars show one 
standard deviation of the mean (n = 3/group/time point). PEG-Au NPs and BP-PEG-Au NPs 
cleared from MGs to the surrounding skin and peritoneum, and accumulated in the spleen more 
than the liver and kidneys.

Fig. 6. Representative transmitted light optical micrographs of histological sections prepared 
from the MGs, spleen and liver of (a) wildtype mice and (b) PyMT mice exhibiting 
radiographically dense mammary tissue before (untreated) and 14 days after intramammary 
delivery of PEG-Au NPs and BP-PEG-Au NPs. Representative micrographs at 2 and 28 days are 
available in Figure 6S as supplementary content. Arrows highlight PEG-Au NPs and BP-PEG-
Au NPs (black in color) taken up by macrophages. No changes were apparent in the cell or tissue 
morphology between treated (PEG-Au NPs and BP-PEG-Au NPs) and untreated tissues for up to 
28 days after delivery, which suggests there was no cytoxicity. Normal ductal structures are 
shown in wildtype mice, while PyMT mice exhibited hyperplastic epithelium surrounding ductal 
structures.

Statement of Significance



  

Au NP imaging probes and therapeutics are commonly surface functionalized with PEG and/or 

high affinity targeting ligands for delivery. However, direct comparisons of PEGylated Au NPs 

with and without a targeting ligand, or ligand-targeted Au NPs with and without a PEG spacer, 

on in vivo targeting efficiency, biodistribution, and clearance are limited. Therefore, the results 

of this study are important for the rationale design of targeted NP imaging probes and 

therapeutics, including the translation of BP-PEG-Au NPs which enable improved sensitivity and 

specificity for the radiographic detection of abnormalities (e.g., µcals) in women with dense 

breast tissue.




