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Highlights: 

 Genome-wide assessment for copy number aberrations (CNAs) and copy-neutral loss-of-

heterozygosity (CN-LOH) allows better diagnostic precision, detects prognostic markers and

informs treatment decisions for acute myeloid leukemia (AML).

 Chromosomal microarray (CMA) currently represents a clinically applicable and widely available

assay that allows genome-wide assessment for CNAs and CN-LOH with increased detection rate

in AML patients compared with conventional cytogenetic testing including karyotype and

Fluorescence in situ hybridization (FISH).

 Evidence from published research and clinical studies supports the use of CMA testing for

patients with AML negative for cytogenetic and molecular high-risk markers (intermediate risk),

AML with unobtainable or inadequate cytogenetic results, AML with unusual morphologic and

immunophenotypic features, and refractory and relapsed AML.
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Abstract 

Structural genomic abnormalities, including balanced chromosomal rearrangements, copy number gains 

and losses and copy-neutral loss-of-heterozygosity (CN-LOH) represent an important category of 

diagnostic, prognostic and therapeutic markers in acute myeloid leukemia (AML). Genome-wide 

evaluation for copy number aberrations (CNAs) is at present performed by karyotype analysis which has 

low resolution and is unobtainable in a subset of cases. Furthermore, examination for possible CN-LOH 

in leukemia cells is at present not routinely performed in the clinical setting. Chromosomal microarray 

(CMA) analysis is a widely available assay for CNAs and CN-LOH in diagnostic laboratories, but there 

are currently no guidelines how to best incorporate this technology into clinical testing algorithms for 

neoplastic diseases including AML. The Cancer Genomics Consortium Working Group for Myeloid 

Neoplasms performed an extensive review of peer-reviewed publications focused on CMA analysis in 

AML. Here we summarize evidence regarding clinical utility of CMA analysis in AML extracted from 

published data, and provide recommendations for optimal utilization of CMA testing in the diagnostic 

workup. In addition, we provide a list of CNAs and CN-LOH regions which have documented clinical 

significance in diagnosis, prognosis and treatment decisions in AML. 
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1. Introduction/background  

Significance of diagnostic, prognostic and predictive genetic markers in AML   

Acute myeloid leukemia (AML) encompasses a heterogeneous group of hematopoietic neoplasms 

involving precursor cells which are committed to myeloid development and differentiation into 

granulocytic, monocytic, erythroid or megakaryocytic elements [1]. AML is the most common acute 

leukemia in adults, with an incidence of 3 to 5 cases per 100,000 individuals, but it accounts for less than 

10 percent of acute leukemia in children under 10 years of age [2, 3]. 

A definitive diagnosis of AML is made based on combined results of  morphologic, immunophenotypic, 

cytogenetic and molecular studies, which should be performed in every case to obtain information 

necessary for accurate subclassification of the disease [4].  It has been recognized for decades that 

specific cytogenetic abnormalities in AML closely, and sometimes pathognomonically, correlate with 

morphologically and clinically distinct subsets of the disease [5]. More recently, a similar correlation with 

specific pathologic and clinical features of AML has been recognized for sequence abnormalities 

(molecular mutations) in certain genes. The 2017 WHO categorization recognizes nine chromosomal and 

molecular abnormalities that define specific AML subtypes: t(8;21)(q22;q22) (RUNX1-RUNX1T1), 

inv(16)(p13.1q22) or t(16;16)(p13.1;q22) (CBFB-MYH11), acute promyelocytic leukemia (APL) with 

PML-RARA, t(9;11)(p21.3;q23.3) (MLLT3-KMT2A), t(6;9)(p23;q34.1) (DEK-NUP214), 

inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2) (GATA2,MECOM), t(1;22)(p13.3;q13.3) (RBM15-MKL1), 

BCR-ABL1, mutated NPM1,  bi-allelic mutation of CEBPA and mutated RUNX1. The nine subtypes 

defined by specific chromosomal and molecular abnormalities account for approximately 20 to 30 percent 

of AML cases [1, 6]. 
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In addition to their use in disease classification, cytogenetic abnormalities and molecular mutations are 

critical prognostic markers in AML [7]. Broadly accepted prognostic classification systems based on 

genetic abnormalities were put forward  by the National Comprehensive Cancer Network (NCCN) and 

European LeukemiaNet (ELN), and both risk stratification schemes integrate similar cytogenetic and 

molecular features to divide AML into favorable, intermediate and poor risk prognostic groups [8, 9].   

With new information on the genomic landscape of AML and the continual identification of potential 

therapeutic targets, the understanding of the prognostic implications of specific cytogenetic and molecular 

findings is also rapidly evolving.  While it is likely that prognostic categorization of AML will become 

even more complex in the future, it will continue to center on genetic abnormalities in leukemic cells, 

with different prognostic subgroups defined based on combinations of chromosomal aberrations 

(including balanced rearrangements, gains, losses, and amplifications), molecular mono and bi-allelic 

mutations and over/under-expression of different genes. Routine genetic profiling on all newly diagnosed 

AML patients is currently standard of care, and its importance will likely continue to increase in the 

future.  

Current testing methods for identification of genetic markers in AML  

Conventional karyotype analysis remains mandatory in the evaluation of suspected AML, and its critical 

role is highlighted in recent practice guidelines by professional organizations and expert groups [4, 9]. 

Using standard banding techniques, an abnormal karyotype can be detected in 50 to 60 percent of patients 

with de novo AML [10], and conventional karyotype analysis remains the most broadly available and 

clinically applicable genome-wide test for detecting both numerical and structural chromosomal 

abnormalities. Cell-based analysis makes karyotyping suitable for detecting clonal heterogeneity and 

evolution, and for detecting abnormal clones in the presence of normal dividing bone marrow cells. 

However, karyotype analysis has limitations (including low resolution, the requirement for viable cells, 

reliance on the ability of leukemic cells to divide in culture, need for highly trained and experienced 

laboratory staff and limited possibilities for automation), which continue to drive development and 

implementation of complementary testing methodologies. 

Fluorescence in situ hybridization (FISH) is a valuable targeted assay for detecting diagnostically and/or 

prognostically important abnormalities in AML, such as RUNX1-RUNX1T1, CBFB-MYH11, KMT2A 

(MLL) rearrangements, NUP98-NSD1 and loss of chromosome 5q, 7q, or 17p material.  In the clinical 

setting, G-banded karyotype analysis is the test of choice at the time of diagnosis; however, if karyotype 

is normal or unobtainable, FISH can be used as a more sensitive, higher resolution method independent 

on availability of dividing cells, to evaluate for specific AML-associated abnormalities and thus support 
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the clinical and morphologic diagnosis. FISH testing for abnormalities detected at diagnosis can also be 

helpful during follow-up, to evaluate for residual disease or detect relapse. 

Growing recognition of the diagnostic and prognostic importance of specific molecular mutations in 

AML resulted in a standard practice to combine cytogenetic results with targeted testing for mutations 

in FLT3, NPM1, CEBPA, and KIT in order to determine the diagnostic and prognostic subgroup of the 

disease. Based on the recent updates in WHO classification and risk stratifications guidelines, routine 

testing for molecular mutations should likely also include those in RUNX1, TP53 and ASXL1. Finally, 

development of targeting agents that show efficacy in AML cases with IDH1, and IDH2 mutations may 

soon mandate inclusion of these genetic markers into the first line testing for AML. Rather than 

performing individual assays for mutations in clinically important genes, diagnostic laboratories 

increasingly offer simultaneous evaluation of multiple AML-associated genes using next-generation 

sequencing (NGS) technologies.     

In addition to chromosomal abnormalities resulting in abnormal gene fusions, specific copy number 

aberrations (CNAs) (-5/5q-, -7/7q-, del(17p)) are well recognized as important prognostic markers in 

AML [8, 9]. Furthermore, the prognostic relevance of copy neutral loss of heterozygosity (CN-LOH) 

involving specific chromosomes and chromosomal regions has also been documented [11]. Genome-wide 

evaluation for CNAs) is at present performed in AML by conventional karyotype analysis with all its 

well-known limitations, while CN-LOH is not evaluated routinely by any clinically utilized testing 

methodology.  Chromosomal microarray (CMA) analysis allows non-targeted (genome-wide) detection of 

CNAs with very high resolution; additionally, many clinically used CMA platforms include single 

nucleotide polymorphism (SNP) probes and can also detect CN-LOH [12]. CMA analysis is used as a 

routine diagnostic test for constitutional CNAs [13] and is emerging as a preferred assay for formalin 

fixed paraffin embedded samples from brain tumors and melanomas [14-20], however, it is still not 

incorporated into standard testing algorithms for the majority of neoplastic diseases including AML. 

Recently updated ENL Recommendations for Diagnosis and Management of AML in Adults [9] and 

College of American Pathologists (CAP) and American Society of Hematology (ASH) Guidelines for 

Initial Diagnostic Workup of Acute Leukemia [4] do not discuss the role of CMA analysis in genetic 

evaluation of AML. To address this gap, the Cancer Genomics Consortium Working Group for Myeloid 

Neoplasms undertook a project to systematically review peer-reviewed published literature, summarize 

evidence regarding clinical utility of CNA and CN-LOH evaluation in AML, and develop an evidence-

based proposal for optimal genome-wide AML testing by CMA and other established and emerging 

genomic technologies.   
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2. Methods 

A systematic literature search was performed for peer-reviewed manuscripts focusing on CNA and CN-

LOH testing in AML published between 2001 and 2017. The workgroup members studied in detail 70 

peer- reviewed papers.  Many of those publications did not focus specifically on AML, but also included 

other myeloid malignancies for which there are significant overlaps in the spectrum of genetic 

aberrations. Two types of data were extracted from the reviewed manuscripts: 1) diagnostic yield of CMA 

testing for CNAs and CN-LOH in AML as compared to conventional cytogenetics (including the total 

number and percent of cases abnormal by CMA in each study, the number and percent of cases abnormal 

by CMA but normal by conventional cytogenetics, the number and type of abnormalities detected by 

CMA but undetected by karyotype and number of abnormalities missed by CMA but detected by 

karyotype), and 2) list of detected recurrent CNAs and CN-LOH loci. For aberrations that are shared 

between AML and other myeloid malignancies, including -5/del(5q), -7/del(7q), -17/del(17p), and 

complex karyotype, the articles  were searched for information regarding their importance in AML. The 

significance of these overlapping aberrations in other myeloid neoplasms is reviewed in a separate 

manuscript by the CGC Myeloid Malignancies Working Group (Kanagal-Shamanna et al.).   

Recurrent CNAs from individual manuscripts were selected for further evaluation based on the following 

criteria: they had to be observed in at least 3% of AML patients in a large cohort (at least 100 patients) or 

in at least 2 AML patients in a small cohort (less than 100 patients).  Since some of the early studies, in 

particular for CN-LOH, include false discoveries which represent benign copy number variants or 

constitutional CN-LOH regions [21], expert review was performed by working group members to ensure 

that only disease associated, acquired aberrations were included for further consideration [22]. A CNA 

was characterized as possibly being clinically significant if a study had evidence that: 1) a CNA was 

either specifically associated with AML and/or an AML sub-type, or it represented a recurrent finding 

that supported the diagnosis of AML (diagnostic significance-D), 2) a CNA showed clear statistically 

significant association with a superior or inferior outcome (prognostic significance-P) or 3) a CNA 

showed significant association with a response or a resistance to an existing drug (therapeutic 

significance-T). The initial broad list of potentially clinically significant and/or recurrent CNAs and CN-

LOH regions was further refined to include CNAs and CN-LOH which were identified as clinically 

significant and/or recurrent by at least two independent studies. The strength of evidence supporting 

clinical significance of a particular CNV or CN-LOH locus in AML was evaluated using a classification 

scheme adapted from the Standards and Guidelines for the Interpretation and Reporting of Sequence 

Variants in Cancer [23]. Briefly, supporting evidence was considered to be strong if a variant was 

included in WHO classification and professional practice guidelines (Level 1) or if its diagnostic, 
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prognostic and/or therapeutic significance was supported by well-powered studies with consensus from 

experts in the field (Level 2). The evidence was considered adequate (good) if it was based on the results 

of multiple small studies without any contradicting data (Level 3).  The list of clinically significant and/or 

recurrent CNAs selected and evaluated based on this process is provided in table 1.   

Focused literature review was conducted to investigate clinical utility of CMA testing in AML cases 

which are currently classified as having an intermediate prognosis (including normal karyotype (NK)  

AML and AML with non-specific chromosome abnormalities) and in AML cases for which karyotype 

could not be obtained. In AML with abnormal karyotype, the literature was surveyed for studies focusing 

on the role of CMA in better characterization of non-specific karyotype abnormalities (defined as 

abnormalities that have not been previously reported in association with AML and other myeloid 

neoplasms, and for which their clinical significance is unknown) and karyotype abnormalities that could 

not be fully elucidated due to poor chromosome morphology. 
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3. Results 

Detection Rate for CNAs  

The reviewed studies have documented higher detection yield for CNAs by CMA as compared to 

conventional karyotyping (Table 2), with an additional CMA advantage of enabling more precise CNA 

characterization (including determination of the exact size, breakpoints and gene content) [12, 24, 25]. As 

expected, balanced rearrangements, which are the driver genetic abnormalities in approximately 20% of 

AML patients, were typically only observed by karyotyping and FISH, although in cases with apparently 

balanced rearrangements CMA frequently detected cryptic CNAs at the breakpoints [12, 24, 26, 27]. 

Overall, karyotyping and FISH detects genetic abnormalities including CNAs and balanced 

rearrangements in 55% of AML patients, while CMA detects CNAs and CN-LOH in approximately 50% 

of AML patients (Table 2). A relatively low overall detection rate by CMA can be accounted for by a 

substantial proportion of AML cases that only have balanced chromosome rearrangements and sequence 

mutations as main oncogenic drivers. Some studies also pointed to lower sensitivity of CMA for low level 

mosaicism compared to karyotype and particularly FISH, suggesting that CMA shows its utility at the 

time of diagnosis and relapse, and has limited value for residual disease detection [12, 25, 28]. 

Prognostic Significance of CNA Detection 

Approximately 40-50% of AML patients have no detectable abnormalities by conventional karyotype 

analysis and by commonly used AML FISH probes (inv(16), t(8;21), 11q23 (KMT2A), t(15;17), etc.). An 

additional 20-30% of the patients may have non-specific clonal abnormalities that do not allow 

classifying them into either a favorable or adverse risk group. According to the risk stratification in 2017 

NCCN AML guideline and 2017 ELN recommendations, NK-AML cases are classified into intermediate 

risk category [8, 9]. However, these patients are prognostically heterogeneous. Molecular testing by 

conventional Sanger sequencing or NGS may identify an underlying driver mutation or prognostically 

important abnormalities in a subset of these cases. Nevertheless, a large proportion will remain classified 

as having an intermediate risk.  CMA has clinical utility in these patients with its ability to detect 

cytogenetically cryptic CNAs and CN-LOH of prognostic significance.   

CMA detects genetic lesions including cryptic CNAs and CN-LOH in 32-68% of NK-AML patients 

(table 2), and several studies suggest that detection of these aberrations may allow improved prognostic 

stratification in AML [28-31]. Statistically significant association of CMA abnormalities with adverse 

outcome in AML with both normal and abnormal karyotype has been shown in studies by Parkin et al. 

[25] and Tiu et al [24]. Yi et al focused specifically on the prognostic role of CMA testing in NK-AML 

with normal FISH testing; the authors showed in multivariate analyses that the abnormalities detected by 
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CMA had unfavorable prognostic significance in regards to overall survival [29]. Prognostic significance 

of CMA abnormalities has also been noted in pediatric AML. In the recent comprehensive analysis which 

included 446 pediatric patients enrolled in several Children’s Oncology Group trials, Vujkovic et al 

observed that the presence of CNAs detectable by CMA testing was significantly associated with 

decreased overall survival and event-free survival in pediatric patients with standard risk AML [32]. 

CMA abnormalities have been demonstrated to add negative prognostic information to knowledge of 

mutations in AML-associated genes, suggesting that integration of CMA results with multi-gene 

sequencing panel testing may increase the precision of prognostic classification [33, 34]. Furthermore, the 

utility of CMA when combined with conventional karyotype has also been described. Tiu et al looked at 

the ability of CMA to complement the results of conventional cytogenetics, and showed that the patients 

with abnormalities detected by either karyotyping or CMA had worse overall survival, event-free survival 

and progression-free survival than patients with no abnormalities detected by either technique; 

furthermore, patients with additional lesions detected by CMA regardless of karyotyping results showed 

worse outcome than patients with unchanged findings [35].   

Clinically-Significant Submicroscopic CNAs Detected by CMA  

Application of CMA testing to large cohorts of AML patients led to discovery of novel recurrent CNAs, 

which cannot be detected by conventional cytogenetics due to their small size and which are not targeted 

by routine AML-related FISH panels; several of these loci are either emerging or have already been 

established as important prognostic markers. Similar to well-known cytogenetically detected CNAs like 

5q and 7q deletions, some of these novel loci (TET2 deletion on 4q), are shared between different 

myeloid malignancies including AML, MDS, and MPN. This is particularly true in secondary AML that 

evolves on the basis of other myeloid malignancies. However, a subset of novel submicroscopic CNAs 

are AML specific (Table  1). A comprehensive list of CNAs detectable by CMA testing that have 

diagnostic, prognostic and treatment implications in AML is provided in Table 1. Selected novel, 

clinically important CNA regions are discussed below.  

4q24 deletion involving TET2 locus.  The TET2 gene encodes an enzyme belonging to the Ten-Eleven 

Translocation (TET) family of dioxygenases involved in the process of DNA demethylation [36].  

Somatic TET2 mutations are found in 8-27% of patients with de novo AML [37-42] and approximately 

14% of therapy-related AML (tAML) patients [43, 44]. Mutational analysis of TET2 is recommended as 

part of the molecular diagnostic workup for AML patients according to the most recent joint guideline 

from CAP and ASH [4]. However, in addition to sequence abnormalities, TET2 disruption in AML can 

also be caused by partial or complete deletions. 4q24 deletions including TET2 have been identified by 
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FISH and CMA in 5.2% of AML cases, including 4.2% primary or de novo AML (pAML) patients, 8.1% 

secondary AML (sAML) patients and 13.3% tAML patients [45].  These deletions are frequently 

accompanied by TET2 mutations [42]. Bacher et al. showed that TET2 loss-of-function mutations occur in 

the non-deleted TET2 alleles in 37.5% of AML with TET2 deletions [45]. This observation indicates that 

submicroscopic 4q24 deletions represent not-only an important mechanism to induce TET2 

haploinsufficiency, but also, in combination with concurrent sequence abnormalities, to cause a complete 

loss of TET2 function. Bacher et al. also found that in de novo AML with intermediate cytogenetic risk, 

the presence of any TET2 alteration including deletion and/or mutation was associated with worse median 

overall survival and event-free survival [45]. Weissmann et al. described that TET2 alterations including 

deletion and/or mutation were associated with NK-AML, higher white blood cell count, lower platelet 

count and higher age. Survival analysis focusing on de novo NK-AML found TET2 alteration is 

associated with inferior event-free survival [42]. Detecting 4q24 deletions encompassing TET2 may thus 

be of prognostic importance in AML. About 32% of such 4q24 deletions are cytogenetically cryptic, and 

since FISH analysis using a TET2 probe is not routinely performed in AML, 4q24 microdeletions 

encompassing TET2 are most likely to be detected by CMA testing.   

17q11.2 deletion including the NF1 gene.  Submicroscopic 17q11.2 deletion encompassing NF1 has been 

detected by CMA in 3.5-11% of AML patients including pAML and sAML [39, 40]. This deletion has 

also been identified in 3.8-6.7% of NK-AML. The majority of the 17q11.2 deletions are cytogenetically 

cryptic [24, 29, 46]. The tumor suppressor gene NF1, which encodes a GTPase-activating protein that 

negatively regulates RAS signaling, is the critical gene in this deletion interval. 20-52% of NF1-deleted 

patients carry mutations in the other NF1 allele [47, 48]. In the study by Walter et al., the 17q11.2 

deletion including the NF1 gene was found to be associated with worse overall survival [49].  

21q22 microdeletion involving RUNX1. RUNX1 encodes one of the two subunits of the Core Binding 

Factor (CBF) and plays a critical role in homeostasis of hematopoietic stem and progenitor cells. 

Germline loss-of-function RUNX1 mutations (including whole gene deletions) resulting in 

haploinsufficiency, as well as point mutations acting in a dominant-negative manner, are associated with 

the familial platelet disorder (FPD) with a predisposition to AML [50, 51]. Somatic mutations of RUNX1, 

mostly frameshift and nonsense mutations, are found in 6 -13% of AML patients [44, 52, 53] and are 

associated with lower complete remission rates, shorter disease-free survival and overall survival, and 

resistance to chemotherapy [52-55]. In addition, RUNX1 is one of the most frequently translocated genes 

in hematological malignancies including pAML) and sAML. In the 2017 WHO classification of myeloid 

neoplasms and acute leukemia [1, 6], AML with mutated RUNX1 was introduced as a novel category, 

since it appears to represent a biologically distinct group with a possibly worse prognosis than other AML 
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subtypes [1, 52, 53, 55, 56]. In addition to loss-of-function sequence mutations, submicroscopic deletions 

involving RUNX1 have also been observed as somatic abnormalities in AML. Figure 1 shows a 

representative submicroscopic 21q deletion, encompassing the RUNX1 gene, detected by CMA in an 

AML patient. Itzhar et al. reported cryptic 21q22 deletion including RUNX1 in 4/30 tAML patients but 

not in 36 pAML patients [57].  RUNX1 deletions have also been identified in AML patients both with and 

without concurrent RUNX1 mutations [58, 59]. RUNX1 deletion is expected to result in 

haploinsufficiency, similar to loss-of-function mutations of RUNX1; they are thus predicted to have 

comparable association with adverse outcome as RUNX1 mutations, although additional studies will be 

needed to fully characterize the clinical significance of RUNX1 deletions in AML. Depending on the 

clinical context, family history, size and mosaicism level of a RUNX1 deletion in AML patients, the 

possibility that such deletion represents a germline abnormality should also be considered [60].     

21q22 amplification including the ERG gene. ERG is a member of the ETS gene family and is an 

oncogene involved in the tumorigenesis of prostate cancer, Ewing sarcoma and leukemia. Amplifications 

of the ERG locus in 21q22 have been reported as recurrent CNAs in AML, and have been detected in 

approximately 6-9% of pAML cases. The majority of patients with ERG amplification have a complex 

karyotype [49, 57, 61, 62]. ERG amplification results in high level expression of the gene. The study by 

Walter et al. suggested that ERG amplification was associated with poor overall survival [49]. Nibourel et 

al. identified ERG amplification as a poor prognostic marker in their own cohort and then confirmed this 

finding by analysis of the Cancer Genome Atlas (TCGA) data. This study demonstrated that ERG 

amplification was associated with resistance to cytarabine, a cornerstone drug for AML treatment; the 

authors suggested that an alternative drug should be considered for AML patients with ERG amplification 

[62]. Nibourel et al. also revealed high frequency (64%) of co-occurrence of TP53 mutation in TCGA 

AML patients with ERG amplification. Notably, the multivariate analysis using the TCGA cohort of 

patients older than 60 years of age identified ERG amplification as a better predictor of overall survival 

than the ELN risk classification and TP53 mutation status. Another important finding by Nibourel et al. 

was the presence of ERG amplification in some AML patients classified as having an intermediate risk, 

who likely would have been more accurately classified in the high risk category [62]. The results to date 

suggest that ERG amplification should be considered for inclusion into risk-stratification algorithms as a 

high-risk marker for AML [62]. ERG amplification is cytogenetically cryptic, commonly hidden in a 

supernumerary abnormal chromosome 21 or marker chromosome. CMA is therefore the best testing 

method for ERG amplification. 

Detection and Clinical Significance of CN-LOH in AML 

Downloaded for Anonymous User (n/a) at Indiana University - Ruth Lilly Medical Library from ClinicalKey.com by Elsevier on October 09, 2018.
For personal use only. No other uses without permission. Copyright ©2018. Elsevier Inc. All rights reserved.



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

14 

Acquired CN-LOH has been recognized as a common mechanism through which cancer cells achieve a 

growth advantage by duplicating mutations in oncogenes or tumor suppressor genes [63]. Acquired CN-

LOH regions either involve whole chromosomes if they originate through mitotic non-disjunction events, 

or encompass large (>15-20Mb) terminal regions of chromosome arms, consistent with the mitotic 

recombination mechanism [30, 63, 64]. CMA analysis currently remains the only technique that allows 

genome wide evaluation of CN-LOH. Overall, CN-LOH is found in approximately 8-36% of AML 

patients [12, 43, 58, 60]) and in 12-32% of patients with NK-AML (Table 2) [21, 23, 43, 61, 62].  

CN-LOH in AML exhibits non-random distribution.  The most frequently involved chromosome arms 

include 4q, 7q, 13q, 11p, 11q, and 17p (Table 1).  Although CN-LOH has been identified across all 

clinical and molecular subtypes and cytogenetic risk groups of AML [65], there are subtype-related 

differences in overall frequency and the most commonly observed CN-LOH loci. For example, 9p CN-

LOH associated with JAK2 mutations is most commonly seen in sAML arising from myeloproliferative 

neoplasms [66, 67]. Some of the recurrent CN-LOH loci like 7q and 17p correspond to chromosome 

regions which are frequently affected by CNAs.  However, there are also regions including 5q and 20q 

that are commonly affected by deletions in myeloid malignancies, but where CN-LOH is almost never 

detected.  Although its significance is not completely clear, this observation may suggest that CN-LOH 

and CNAs may sometimes contribute to leukemogenesis through shared molecular mechanisms, but in 

other cases work via completely different and independent pathways [63]. 

Correlation of CN-LOH with mutation status of candidate genes.  

Since CN-LOH has been hypothesized to act as a mechanism to duplicate mutations in oncogenes or 

tumor suppressor genes, a candidate gene has been sought for every recurrent CN-LOH locus in AML 

(Table 1). Many studies correlated CN-LOH in a specific region with the presence of a pathogenic 

sequence change in the proposed candidate gene. Although for the majority of the loci a correlation could 

be established, it was not absolute. For example, a FLT3-ITD mutation could be identified in virtually all 

AML patients with 13q CN-LOH [11, 30, 65-69].  In addition, homozygous RUNX1 mutations are 

detected in almost all AML patients with 21q CN-LOH [70]. In contrast, homozygous c-CBL mutations 

have been found in only half of the MDS/AML patients with CN-LOH 11q [67] and TP53 mutations were 

found in approximately 60% of patients with CN-LOH 17p [71]. Furthermore, for some recurrent CN-

LOH regions in AML, a plausible candidate gene has yet to be identified. Several mechanisms were put 

forward to explain the oncogenic role of CN-LOH in the absence of demonstrable mutation in a candidate 

oncogene or tumor suppressor gene. For genes that are regulated by methylation-based promoter 

silencing, CN-LOH could result in duplication of an aberrantly methylated or unmethylated allele, thus 
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leading to either effective knockout or enhanced expression. Finally, CN-LOH can become oncogenic 

through a duplication of a minor disease-prone allele present in the germline [63].   

Clinical significance of CN-LOH in AML.  

A landmark study that specifically looked into the prognostic relevance of detection of CN-LOH by CMA 

was reported by Gronseth et al. By testing 112 consecutive AML patients, the authors found, in 

multivariate analyses, that detection of CN-LOH had an independent predictive value for early disease 

recurrence in patients with intermediate and unfavorable cytogenetics. The prognostic effects were the 

most pronounced for 13q CN-LOH, which was associated with a 6.64-fold higher rate of disease 

recurrence and a 3.45-fold worse OS, and was enriched in cases with the FLT3-ITD mutation [11].  

CN-LOH in 13q is one of the most common CN-LOH events in AML, found in 3.3-6.3% of the cases [11, 

30, 65] (Figure 2). In addition, 13q is the region where detection of CN-LOH has the best documented 

prognostic implications [11]. 13q CN-LOH shows strong correlation with the presence of the FLT3-ITD 

mutation [11, 30, 63, 65-69]. In addition, practically all patients with a high FLT3-ITD level have CN-

LOH involving 13q [65], confirming CN-LOH as the key mechanism leading to high FLT3-ITD allelic 

burden (rather than amplification of the FLT3 locus for example). Interestingly, patients with CN-LOH of 

13q rarely carry FLT3-TKD mutation [65].  

FLT3-ITD is known to be a secondary, cooperating mutation in AML rather than an early driver. AML is 

a polyclonal disease, particularly at initial diagnosis, and the FLT3 mutant-to-wild type allelic ratio is 

considered to be a reflection of the fraction of leukemia cells that harbor the mutation. It has been shown 

that at diagnosis the mutant burden estimated by PCR-based methods can range from  barely detectable to 

nearly 100%, and that a high allelic FLT3-ITD burden correlates with a particularly poor outcome in 

FLT3-mutated AML [72, 73]. In fact, current risk stratification schemes for AML only include the 

presence of FLT3-ITD as a marker of adverse prognosis if there is a high allelic burden for the mutant 

allele [9].  FLT3-ITD is clinically most commonly detected by PCR amplification and fragment size 

analysis based methods, since NGS based approaches may fail to identify large duplications which often 

cannot be accurately aligned to the reference sequence by current algorithms.  PCR-based approaches 

allow estimation of the allelic burden as the ratio between the mutant and the wild-type allele, but many 

laboratories currently do not provide this information. Even when the allele ratio is reported, the methods 

for its estimation are far from standardized, and they depend on the blast percentage of the specimen 

analyzed, which can be influenced by the quality of the aspirate. As a result, molecular estimations of the 

allelic level are unreliable, with a concern that the allelic burden may be underestimated.  13q CN-LOH is 

reliably detectable by CMA in samples that have ≥ 20% abnormal myeloid blasts, and has been 

reproducibly shown to be associated with higher rate of disease recurrence and worse OS in AML [11, 30, 
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65, 69]. CMA testing and detection of 13q CN-LOH is not meant to replace molecular testing for FLT-

ITD, but can provide additional prognostically important information in FLT3 mutated AML.  

A comprehensive list of recurrent CN-LOH loci in AML and summary of their clinical significance are 

presented in Table 1.  While most of these recurrent CN-LOH regions are shared among myeloid 

malignancies, 13q CN-LOH is highly specific for AML. To date, the clinical impact has been firmly 

established in AML only for a few recurrent areas of CN-LOH, including 9p CN-LOH in sAML evolving 

from JAK2 mutated myeloproliferative neoplasms, 4q CN-LOH seen frequently with a co-occurring TET2 

mutations, and 13q CN-LOH associated with AML with FLT3–ITD mutation. Additionally, CN-LOH in 

17p correlates frequently with the presence of a TP53 mutation, which is a marker of a very poor 

prognosis in AML. If not already performed, TP53 mutation analysis should be recommended for all 

AML cases with 17p CN-LOH. CN-LOH 11q in c-CBL mutated AML is also emerging as a potentially 

relevant prognostic marker [11].  Further studies will be needed to accurately assess prognostic 

significance of other recurrent CN-LOH loci, and confirm that, as suggested by Gronseth et al., detection 

of any region of CN-LOH may have prognostic implications in AML [11]. 

CMA testing in diagnostic cases with unobtainable karyotype 

Karyotype analysis of leukemic cells at the time of diagnosis is standard of care, but cytogenetic analysis 

requires a viable bone marrow or leukemic blood sample which is not always available. A common 

reason for failure to produce metaphase cells for karyotype analysis is treatment with hydroxyurea or 

other cytotoxic agents prior to collection of the diagnostic bone marrow or peripheral blood sample.  

Karyotype analysis is not possible with these non-mitotic samples, however, they can be studied with 

CMA to detect CNAs and CN-LOH, and with FISH to exclude the common AML associated balanced 

rearrangements. Figure 3 depicts an illustrative AML case with a failed karyotype analysis and normal 

results of FISH testing with the D7S486 probe located in 7q31, in which CMA evaluation revealed a 

prognostically important 7q deletion outside of the region targeted by the FISH probe.   

Extramedullary AML or myeloid sarcoma (MS), a tumor of malignant granulocytic precursor cells in 

anatomical sites outside of the bone marrow, is also frequently associated with lack of cytogenetic 

information, for reasons other than a technical failure to obtain analyzable metaphases.  MS commonly 

develops concurrently or after the diagnosis of AML, but occasionally occurs as the initial manifestation 

of the disease without bone marrow infiltration [74].  In this situation, the disease may not be recognized 

as a hematologic neoplasm, and samples may get processed following solid tumor protocols. 

Consequently, fresh MS samples fail to get submitted for cytogenetic evaluation, and only formalin-fixed 

paraffin-embedded (FFPE) tissue is available for genetic analysis.  CMA may thus be a particularly useful 
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diagnostic method for detecting CNAs in MS samples, because the analysis can be performed on DNA 

extracted from FFPE.  Although only a handful of CMA studies focused on MS, they clearly 

demonstrated that CMA using FFPE material is a feasible and clinically applicable approach for detection 

of prognostically significant genomic abnormalities in MS [75, 76]. 

Likewise, in those AML cases in which a bone marrow sample has inadvertently not been sent for 

cytogenetic analysis, CMA could be performed on FFPE bone marrow aspirate clot or fresh bone marrow  

biopsy to obtain important information about the leukemic karyotype.  Array platforms optimized for 

FFPE testing are now available in clinical cytogenetic laboratories for solid tumor testing, and thus can be 

utilized for FFPE samples from hematologic neoplasms.  

In addition to clinically significant submicroscopic CNAs and regions of CN-LOH discussed above, 

several cytogenetic prognostic markers used by broadly accepted risk stratification schemes are detectable 

by CMA if karyotype cannot be obtained, including genomic complexity, monosomy 7, and 5q and 17p 

deletions. 

Multiple genomic abnormalities (genomic complexity). The presence of three or more unrelated 

chromosomal abnormalities (complex karyotype) represents a strong predictor of poor outcome in AML. 

In all currently used risk stratification schemes (ELN, NCCN), AML patients with a complex karyotype 

are considered ‘poor risk’ [8, 9]. AML with a complex karyotype is characterized by frequent loss of 5q 

and/or 7q and/or 17p regions, and some studies suggest that complex karyotype cases with these ‘typical’ 

abnormalities have worse prognosis than AMLs with ≥ 3 abnormalities but without the presence of any of 

these characteristic changes [77-79]. Abnormalities observed in AML with a complex karyotype were 

shown by karyotype analysis, FISH and CMA to almost invariably involve loss and gain of genomic 

material, making them amenable for detection and characterization by CMA. Considering that CMA 

routinely detects increased number of abnormalities relative to karyotype analysis, including much 

smaller CNAs than those visible by routine cytogenetics, it remains to be confirmed whether the 

definition of complexity based on conventional cytogenetic studies (3 or more unrelated abnormalities) 

can be directly applied to CMA.  Several studies published to date help to address this question. Parkin et 

al showed that increased genomic complexity defined as ≥4 CMA lesions demonstrated a strong, 

independent negative impact on overall survival [HR = 1.98; 95% confidence interval (CI), 1.20–3.28; P 

< 0.01] , while ≥3 CMA lesions also trended toward an independent negative effect but did not reach 

clinical significance (HR = 1.57; 95% CI, 0.95–2.57; P = 0.07) [71]. Gronseth et al. found that genomic 

complexity defined as the presence of at least three CMA abnormalities (including both CNVs and CN-

LOHs), was associated with a shorter overall survival. Notably, in the same study, the authors were able 

to reclassify based on CMA findings 5 out of 112 AML patients who were originally in the good or 
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intermediate cytogenetic risk group into the group with genomic complexity and high risk [11].  A formal 

definition of ‘CMA-detected genomic complexity’ in a large scale clinical trial would allow its 

incorporation into risk stratification schemes, and utilization of CMA for detection of this subset of high 

risk AML cases in the clinical setting. 

Monosomy 7 and deletion 7q (-7/7q-) are recognized as common cytogenetic abnormalities in AML, 

particularly in sAML and tAML, and are associated with an adverse prognosis. Most current guidelines 

for clinical evaluation and management of AML include -7/7q- as key prognostic markers, and 

recommend testing for this and other prognostic aberrations by karyotype and/or FISH at the time of 

diagnosis [9]. Mapping the critical region(s)/gene(s) on 7q has been a challenge over the years, and has 

more recently extensively relied on the use of CMA analysis. In different studies, the commonly deleted 

region (CDR) has been mapped to 7q22, 7q32-33, and 7q35-36 regions [80-83]. Haploinsufficiency of 

multiple tumor genes in 7q, instead of inactivation of one particular candidate gene according to the 

Knudsen 2-hit model, has been proposed as the mechanism underlying oncogenic potential of 

chromosome 7 loss and 7q deletion [84].  Several candidate genes have been proposed to contribute to the 

oncogenic potential of -7/7q- in myeloid malignancies, including EZH2 (7q36)   [80-82], CUX1(7q22.1)  

[83], SAMDL9 (7q21.3) [84], MLL3 (7q36.1) [85], DOCK4 (7q31.1) [86] and LUC7L2 (7q34) [87].  

The commercial FISH probes for 7q deletion testing commonly used by clinical cytogenetics laboratories 

typically target the 7q31 region, and would thus not detect the other CDRs mentioned above. While the 

majority of 7q deletions encompass multiple CDRs, smaller deletions are also observed and should be 

identified for accurate risk stratification. The advantage of CMA as compared to FISH testing for 

detection of chromosome 7 abnormalities if karyotype is unobtainable is in the ability to detect 

submicroscopic deletions and deletions that do not include the region targeted by the commonly used 

CEP7/7q31 probe set (Figure 3).   

Deletion 5q (-5/5q-) is among the most common karyotypic abnormalities in myeloid neoplasms 

including AML; it is observed in 10–15% of patients with pAML, and in up to 40% of patients with 

sAML [85]. The presence of del(5q) has distinct clinical implications depending on the concurrent 

morphologic findings and associated cytogenetic abnormalities. Furthermore, deletions of different 

regions in 5q appear to have different morphologic and clinical correlations and different prognostic 

implications; more distal deletions involving the critical region in 5q32-33 (known as the distal region or 

CDR1) have an important role in the pathogenesis of  the 5q- syndrome, which is a subtype of low-risk 

MDS, while deletions in the proximal region in 5q31 including EGR1, CDC25C and CTNNA1 (CDR2) 

characterize higher-risk MDS and AML [85, 86]. Notably, recent CMA studies proposed a further 

refinement of the CDR boundaries, and defined two commonly retained regions (CRRs) in 5q. In contrast 
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to monosomy 7, which is relatively common, a complete loss of chromosome 5 is exceedingly rare in 

myeloid malignancies. According to recent CMA studies, the two chromosome 5 regions that are 

typically retained in MDS and AML are CRR1 (commonly retained region 1) extending from the 

centromere to 5q14.2 and CRR2 mapping between band 5q34 and the telomere [87]. In addition, patients 

with small interstitial deletions have been suggested to have a better outcome as compared to those with 

larger deletions [87]. 

Considering that clinical implications of 5q deletions may be different depending on the size, location of 

the deleted region and concurrent abnormalities, methods like CMA that provide genome-wide 

information but also detect and precisely map deletions in any region of chromosome 5 are superior to 

FISH in evaluating 5q abnormalities in AML.   

17p deletion involving the TP53 gene has long been recognized as a marker of an adverse outcome in 

AML patients [9], occurring in 3% of pAML and 12% of tAML cases [57]. TP53 abnormalities, including 

both pathogenic sequence variants and deletions encompassing the gene, have been shown in AML to be 

associated with sAML [66], a complex karyotype, older age and a particularly poor outcome [66, 77]. 

Notably, among complex karyotype AML positive for a TP53 abnormality, ~40% have TP53 loss due to a 

deletion and the remaining 60% were found to carry a pathogenic sequence change [77]. TP53 mutation 

testing is recommended as a part of the molecular diagnostic workup for AML patients according to the 

NCCN guidelines and the most recent guideline from the CAP and ASH [4, 8], and it is clearly important 

that such testing includes methods that identify TP53 loss due to chromosomal 17p deletions. Of note, 

due to poor morphology and complexity of chromosomal abnormalities, such deletions may remain 

cryptic by karyotype analysis. In one study involving AML with a complex karyotype, CMA testing 

identified 17p deletions encompassing TP53 in 6% of additional cases in which they were not detected by 

conventional karyotype analysis [88]. 

Characterization of chromosomal abnormalities by CMA  

Due to low resolution of conventional cytogenetics, karyotype complexity or very poor chromosome 

morphology, the nature of chromosome abnormalities often cannot be completely elucidated by karyotype 

analysis. Accurate characterization of CNAs by CMA can thus be helpful for accurate risk stratification. 

For example, CMA analysis has shown that marker chromosomes seen in a significant proportion of 

AMLs with a complex karyotype often arise from chromothripsis, a single catastrophic event of multiple 

breaks and random reassembly of one or a small number of chromosomes.  In the study by Bochtler et al., 

chromothripsis-positive AML cases were characterized by a particularly high degree of karyotype 

complexity, TP53 mutations and dismal prognosis [89]. Chromosomes with additional chromosome 
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material of unknown origin may also harbor chromothripsis. Figure 4 depicts a chromothripsis-like 

pattern of CNAs on chromosome 8 detected by CMA in an AML patient with an add(8q) abnormality 

seen by karyotype analysis.  

Although CMA is not expected to detect balanced rearrangements, it is a useful tool for detecting cryptic 

rearrangements resulting in abnormal gene fusions, which may be associated with the presence of 

deletions and duplications at the breakpoint sites. The study on 111 pediatric AML cases by Radke et al 

identified 4 leukemias that expressed the t(5;11)-encoded NUP98-NSD1 chimeric transcript, of which two 

had CNAs adjacent to one or both translocation partners [90]. Similarly, in a recent study which also 

focused on childhood AML, Vujkovic et al showed that CNAs frequently mapped at the breakpoints of 

rearrangements resulting in prognostically significant gene fusions like NUP98-NSD1 and LPP-KMT2A 

[32]. Some gene fusions can only be formed by complex rearrangements due to ‘incompatible’ gene 

orientation of the partner genes on the corresponding chromosomes. The examples include the fusion 

between the MLLT10 gene in 10p12.3 and KMT2A gene in 11q23 [94], and the fusion between the ETV6 

gene in 12p13.2 and the ABL1 gene in 9q34.12 [95]. Generation of such fusions occurs through complex 

rearrangements with multiple breakpoints and is often accompanied by non-specific abnormalities in the 

karyotype; CNAs mapping to the breakpoints within the partner genes are frequent in these cases, and can 

be detected by CMA [26, 30, 49, 91].   

The other mechanism through which CMA analysis can reveal the presence of an abnormal fusion is a 

gain or loss of one of the derivative chromosomes from a reciprocal translocation, which is a common 

secondary abnormality in AML and other cancers where an abnormal gene fusion is the main oncogenic 

driver. Acquisition of an extra copy of a derivative chromosome from which the fusion is expressed is a 

known mechanism of tumor cells to gain a selective advantage. The best known example of this 

phenomenon is a gain of an additional copy of the der(22)t(9;22)(q34;q11.2)-Philadelphia chromosome, 

which is a very frequent abnormality during progression of chronic myeloid leukemia into an accelerated 

phase or blast phase [92]. Both gain and loss of ‘non-functional’ derivative chromosomes are also 

frequent, and in most cases represent random events in cancer cells. If only one of the derivative 

chromosomes from a clinically important translocation is present in the karyotype, the abnormality may 

be difficult to recognize by conventional cytogenetic analysis. However, the resulting copy number 

imbalance with the breakpoints mapping within the fusion partner-genes make such abnormalities easily 

recognizable by CMA [91]. 
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Discussion 

Presented evidence supports genome-wide assessment for CNAs and CN-LOH as the best practice in 

diagnostic evaluation of AML. In addition to allowing better diagnostic precision, such evaluation can 

detect prognostic markers and inform treatment decisions.  While traditionally whole genome- CNA 

assessment was solely performed by karyotyping, CMA currently allows increased resolution and also 

detects CN-LOH.  That makes CMA a valuable tool in clinical diagnostics for AML at the time of 

diagnosis and relapse, even with its limited sensitivity to detect genetic aberrations present in a low 

proportion of cells in a sample and its inability to detect balanced rearrangements. Although not widely 

available and practical for clinical use, NGS-based approaches for genome-wide evaluation for CNAs and 

CN-LOH may also become feasible in the future. 

 

Recommendations for CMA testing in AML 

CMA testing identifies genetic abnormalities in a large proportion of AML cases, frequently detecting 

abnormalities that influence risk stratification and patient management.  Even in AML with a favorable 

translocation, CMA may detect additional abnormalities that might predict resistance to treatment, thus 

warranting increased surveillance or treatment modifications. Assuming successful karyotype analysis, 

CMA testing may not be clinically indicated for every newly diagnosed AML patient. However, existing 

evidence supports clinical use of CMA testing in the following circumstances: 

1. Intermediate risk AML  

This includes AML cases with a normal karyotype, non-specific cytogenetic abnormalities and 

chromosome abnormalities associated with intermediate prognosis (like trisomy 8), in particular 

when sequencing based testing also does not identify molecular mutations associated with 

adverse prognosis. In intermediate prognosis AML, CMA analysis may identify cytogenetically 

cryptic and clinically important CNAs (including deletions resulting in haploinsufficiency of  

EZH2, CUX1, TET2, TP53, RUNX1, NF1, WT1, RB1, etc.) or prognostically significant CN-LOH 

regions (13q CN-LOH in AML with FLT3-ITD, 9p CN-LOH in sAML with JAK2 mutation, and 

others) as shown in Table 1. 

2. AML with unobtainable cytogenetic results 

This includes cases in which hydroxyurea or other cytotoxic therapy was initiated prior to 

collection of the diagnostic bone marrow or peripheral blood sample, preventing the sample from 

producing metaphase cells for karyotype analysis.  In such cases, DNA for CMA can be extracted 

from the fresh sample or a fixed cell pellet after culturing.  In cases in which bone marrow 
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aspirate was not sufficient for cytogenetic analysis, CMA can be performed on DNA isolated 

from the FFPE bone marrow clot or fresh bone marrow biopsy.  CMA can also be performed on 

FFPE myeloid sarcoma biopsies which were not initially recognized as hematologic tumors and 

fresh tissue was not submitted for cytogenetic studies.  

3. AML with inadequate results of cytogenetic analysis 

This includes cases where chromosome abnormalities cannot be deciphered by conventional 

analysis due to an insufficient number of abnormal cells, low chromosome band resolution, 

complexity of the rearrangements and/or suboptimal chromosome morphology. CMA in such 

cases is capable of detecting prognostically significant CNAs, CN-LOH or chromothripsis and 

often allows characterization of complex abnormalities. 

4. AML with unusual morphologic and immunophenotypic findings 

This includes acute leukemias that are diagnostic dilemmas with unusual or initially conflicting 

clinical, morphologic, immunophenotypic and/or cytogenetic findings. In such cases, 

comprehensive genetic analysis including both CMA and sequencing based testing can be helpful 

to reach a definitive diagnosis.  

5. Refractory and relapsed AML 

In refractory and relapsed AML, CMA analysis may detect CNAs associated with resistance to 

chemotherapy, including 17p deletion, ERG amplification, CN-LOH of 13q, chromothripsis or 

other unfavorable cryptic genetic findings. Additionally, CMA analysis may identify 

rearrangements that implicate molecular pathways targetable by existing agents (including gene 

amplifications, fusions involving kinase genes etc). 

Even if a diagnostic or relapsed sample is not specifically collected for CMA studies, most current CMA 

platforms have very modest sample requirements and a sufficient amount of DNA can typically be 

obtained from available residual fresh specimens, fixed cell pellets, FFPE bone marrow clots and FFPE 

myeloid sarcoma samples.  Residual DNA from molecular studies can also be used for CMA.  Some 

laboratories systematically preserve DNA from residual PB or BM samples sent for conventional 

cytogenetic studies for possible CMA testing. 

Future directions   

CMA analysis is at present recommended as the first-tier test for detecting constitutional CNAs in 

individuals with developmental disabilities or congenital anomalies [13].  In addition, CMA represents a 

clinically applicable, reproducible and sensitive, economical and widely available approach for genome-
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wide detection of CNAs and CN-LOH in cancer [12].  Because of their critical clinical significance,  

testing for sequence changes in AML using NGS based panels is becoming a part of routine diagnostic 

work up for AML. Additionally, it has been shown that NGS panels can be robust tools to detect 

clinically significant gene fusions in cancers including AML [93]. One approach that could be explored as 

an alternative for chromosomal analysis and FISH is the use of NGS for detecting sequence variants and 

gene fusions, in combination with CMA for genome wide detection of CNAs and CN-LOH. Clinical trials 

would be useful to compare the diagnostic yield, cost, turn-around-time and other clinically important 

parameters between the two approaches. The importance of such objective evaluation is underscored by  

both NGS panels and CMA analysis becoming well-established and relatively widely available in 

diagnostic laboratories.  

Furthermore, with the rapid advancement of NGS technology including analytical tools, methods have 

been developed to detect CNAs and CN-LOH using data obtained from whole genome or exome 

sequencing [94-99]. However, detecting non-targeted low-level genetic abnormalities in cancer specimens 

by NGS remains a challenge, due to relatively low read depth in whole genome or exome sequencing. 

Nonetheless, it is tempting to explore the possibility of simultaneously detecting mutations, CNAs, and 

CN-LOH using NGS as a single platform. Shen et al. demonstrated the feasibility of detecting CNAs in 

targeted regions using sequencing read depth generated from a targeted NGS panel specifically designed 

for myeloid malignancies including AML [59]. This method has the advantage in concurrently detecting 

mutations and CNAs in targeted regions and is superior to CMA in identifying sub-gene level CNAs such 

as KMT2A partial tandem duplications (KMT2A-PTD); however, it does not detect CNAs outside of the 

targeted regions and does not identify CN-LOH. McKerrel et al. described a comprehensive genomic 

diagnostic platform that combines a targeted mutation and translocation panel with a genome wide SNP 

backbone to detect mutations, translocations, genome wide CNAs, and CN-LOH for myeloid 

malignancies [100]. This strategy successfully detected chromosomal CNAs in more than 20% of cells, 

but at the resolution and sensitivity only comparable to karyotype analysis. Most recently, Shen et al. 

showed that a similar approach using a genome-wide SNP sequencing backbone together with high-depth 

coverage of 62 genes frequently mutated in AML allows for detection of clinically significant sequence 

changes as well as genome-wide CNAs and CN-LOH in myeloid malignancies including AML [101]. In 

this study, NGS achieved concordant results with CMA in samples with >= 20% of leukemia cells, 

showing that a combination of SNP sequencing backbone and targeted mutation NGS panel may be a 

feasible strategy for more comprehensive genetic profiling of myeloid malignancies using a single assay. 

With the advancement of technology and decreasing cost, NGS may be able to achieve a similar 

resolution and sensitivity as CMA in the future. Regardless of the technologies used, detection of genome 

wide CNAs and CN-LOH represents a critical component in the diagnosis and prognostic stratification of 
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AML, and CMA is at present the optimal methodology for obtaining this clinically important genetic 

information. 
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Table 1. A comprehensive list of CNAs detectable by CMA testing with strong diagnostic, prognostic and 

treatment implications in AML. Clinical significance and level of evidence are defined as described in the 

methods. 

Chromosome AML subtype 

Abnormality 

type (gain, loss, 

CN-LOH) 

Region 
Relevant genes 

(if known) 

Clinical 

significance 

Level of 

Evidence 
Reference 

1 
AML including 

NK-AML 
CN-LOH 1p 

 
D 3 [11, 29, 30, 67-69, 102-104] 

2 AML CN-LOH 2p DNMT3A D 3 [11, 65, 100] 

3 NK-AML, sAML Loss 3p14.1 FOXP1 D 3 [30, 57, 66] 

4 sAML and pAML CN-LOH 4q24 TET2 D 3 [67, 71, 105] 

4 
AML, NK-AML, 

sAML 
Loss 4q24 TET2 D, P 3 [42, 45, 66] 

5 pAML, sAML Loss 5q 
 

D 1 
[24, 33, 45, 49, 57, 66, 77, 87, 

88, 106-108] 

6 
AML including 

NK-AML 
CN-LOH 6p 

 
D 3 [29, 30, 102, 104] 

7 
AML including 

NK-AML 
CN-LOH 7q EZH2 D 3 [67, 102, 109] 

7 
NK-AML, pAML, 

sAML 
Loss 7q EZH2, CUX1 D 1 [28, 57, 66, 110] 

8 
complex 

karyotype AML 
Amplification 8q24 MYC D, P 3 [24, 49, 61] 

9 NK-AML, sAML CN-LOH 9p JAK2 D 3 [66, 67, 104] 

11* 
AML w complex 

karyotype 
Amplification 11q23 MLL D, P 3 [49, 111] 

11* AML CN-LOH 11p WT1 D 3 [11, 30, 65, 102] 

11 
pAML, sAML, 

NK-AML 
CN-LOH 11q CBL D 3 [11, 65-67, 102] 

12 

AML, NK-AML, 

AML w complex 

karyotype, sAML 

Loss 12p13.2 ETV6 D 3 
[24, 30, 33, 49, 57, 61, 66, 77, 

104, 108, 111-115] 

13* 

pAML, NK-AML, 

NPM1 mutated 

AML, FLT3-ITD 

pos AML, sAML 

CN-LOH 13q FLT3 D, P 2 
[11, 28-31, 65-69, 102, 104, 

109, 116-118] 

16 

NK-AML, AML 

w complex 

karyotype, pAML, 

sAML 

Loss 16q CBFB D 3 [29, 49, 61, 108] 

17 AML, NK-AML, CN-LOH 17p TP53 D 3 [11, 28, 29, 65, 67, 102, 107] 
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pAML, sAML 

17 

sAML, NK-AML, 

AML w complex 

karyotype, de 

novo AML 

Loss 17p TP53 D, P 1 
[24, 28, 29, 49, 61, 66, 88, 

106-108, 114] 

17 NK-AML, pAML Loss 17q11.2 NF1, SUZ12 D, P 3 
[24, 28, 29, 47-49, 61, 66, 

104, 111] 

19* 
AML, NK-AML, 

sAML 
CN-LOH 19q CEBPA D 3 [11, 29, 30, 69, 102, 105] 

20 sAML Loss 20q 
 

D 3 [24, 66, 119, 120] 

21* 

pAML, AML w 

complex 

karyotype 

Amplification 21q22 ERG, ETS2 D, P, T 3 [49, 57, 61, 62, 121] 

21* 
AML, NK-AML, 

sAML, 
CN-LOH 21q RUNX1 D 3 [11, 29, 67, 70, 102-105] 

21* sAML Loss 
21q22.1

2 
RUNX1 D 3 [57] 

D- diagnostic significance; P-prognostic significance; T- therapeutic significance. Classification of levels 

of evidence: Level 1- WHO classification or professional practice guidelines; Level 2- well-powered 

studies with consensus from experts in the field; Level 3- multiple small studies without any contradicting 

data; Level 4- individual small studies, case reports, preclinical studies. 

CMA indicates chromosomal microarray; CNA indicates copy number aberration; CN-LOH indicates 

copy-neutral loss-of-heterozygosity; AML indicates acute myeloid leukemia; NK-AML indicates normal 

karyotype AML; pAML indicates primary AML; and sAML indicates secondary AML. 

* indicates CNAs and CN-LOH regions that are predominantly seen in AML. 
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Table 2.  The detection rate of CMA analysis for CNAs and CN-LOH in different AML subtypes. 

Disease 

entity 

Percentage of 

abnormal  

cases (both 

CNAs and 

CN-LOH) by 

CMA  

Percentage of 

abnormal 

cases by 

karyotype 

Percentage of 

cases with 

CN-LOH by 

CMA 

Percentage of 

abnormal karyotype 

cases with additional 

abnormalities by CMA  

Average 

number of 

CNAs per case 

Average number 

of CN-LOH 

regions per case 

Reference 

AML 50% 55% 8-36% 40-73% 2.34-5.3 1.1 [11, 31, 49, 62, 65] 

NK-

AML 
32-68% 0% 12-32% 0% 1.8-2.9 1.1 

[28-31, 49, 104, 

116] 

pAML 56-65% 39-59% 17-29% NA NA 1.1 
[7, 31, 65, 67, 71, 

122] 

sAML 77-82.6% 45-53% 23-35% 27% NA NA 
[31, 35, 66, 105, 

108] 

 

CMA indicates chromosomal microarray; CNA indicates copy number aberration; CN-LOH indicates 

copy-neutral loss-of-heterozygosity; AML indicates acute myeloid leukemia; NK-AML indicates normal 

karyotype AML; pAML indicates primary AML; sAML indicates secondary AML; and NA indicates not 

determined. 

 

 

Figure 1. A 1.15 Mb deletion encompassing RUNX1, detected by CMA testing (chr21:36,059,345-

37,211,393) [hg19] in a 59-year -old female patient with newly diagnosed AML. Karyotype analysis 

revealed a t(20;21)(p11.2;q22.1) as a sole abnormality.   FISH testing using the RUNX1T1/RUNX1 dual 

fusion probe (Vysis, Abbott Molecular, Des Plaines, IL) was performed to determine whether the 
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breakpoint on chromosome 21 involves the RUNX1 locus. FISH testing was negative for a rearrangement 

of RUNX1, but one of the RUNX1 signals appeared to have decreased intensity. CMA testing confirmed 

a cryptic deletion encompassing RUNX1, which was predicted to result in RUNX1 haploinsufficiency.  

Loss-of-function mutations in RUNX1 are associated with an adverse prognosis in AML, and the CMA 

finding suggested that the patient should be considered ‘high risk’. CMA results were generated using 

CytoScan HD arrays (Affymetrix, Santa Clara, CA). Data analysis was performed by the Chromosome 

Analysis Suite (ChAS) software (Affymetrix, Santa Clara, CA).  

 

Figure 2. Copy-neutral loss-of-heterozygosity (CN-LOH) of chromosome 13.  In AML with normal 

cytogenetics, 13q CN-LOH is associated with disease recurrence, worse overall survival and enrichment 

of FLT3-ITD mutation.  The data was generated using Infinium CytoSNP-850K v1.1 BeadChip 

cytogenomic array (Illumina, Inc., Santa Clara, CA) and analyzed using NxClinical 3.0 analysis software 

(Biodiscovery, Inc., El Segundo, CA). 
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Figure 3. A 35Mb mosaic 7q terminal deletion (chr7:124,006,365-159,119,707) [hg19] in a 40-year-old 

AML patient with failed chromosomal analysis and normal AML FISH panel including a normal result 

for the D7S486 FISH probe (Vysis, Abbott Molecular, Lake Bluff, IL). The D7S486 FISH probe on 

7q31.2 is located outside of the deleted region, which accounts for the discrepancy between FISH and 

CMA results. 7q deletion is determined as mosaic by smooth signal of 1.5 and four allele tracks. 7q 

deletion is associated with high risk in AML patients. CMA results were generated using CytoScan HD 

arrays (Affymetrix, Santa Clara, CA). Data analysis was performed by the Chromosome Analysis Suite 

(ChAS) software (Affymetrix, Santa Clara, CA).  

 

Figure 4. Chromosome 8 CNAs in a 28-year-old AML patient with bone marrow eosinophilia who failed 

induction chemotherapy.  G-banded chromosome analysis showed a 45,X,-Y,add(8)(q22) 

karyotype.  FISH testing using probes for RUNX1/RUNX1T1, PML/RARA, CBFB, BCR/ABL1, KMT2A 

(MLL), PDGFRA, PDGFRB and FGFR1 were normal.  Molecular analyses for FLT3-ITD and TKD, as 

well as mutations in NPM1 (exon 12), KIT (exon 8, 9, 11, 13 and 17) and CEBPA were normal.  CMA 
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revealed chromothripsis-like changes involving the 8q22.2 to 8q24.3 region and including the MYC gene. 

This finding likely explains the poor response to treatment and aggressive clinical course in the patient.   

CMA results were generated using CytoScan HD arrays (Affymetrix, Santa Clara, CA). Data analysis was 

performed by the Chromosome Analysis Suite (ChAS) software (Affymetrix, Santa Clara, CA).   

Downloaded for Anonymous User (n/a) at Indiana University - Ruth Lilly Medical Library from ClinicalKey.com by Elsevier on October 09, 2018.
For personal use only. No other uses without permission. Copyright ©2018. Elsevier Inc. All rights reserved.



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

31 

 References: 

[1] WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues: International Agency 
for Research on Cancer, 2017. 
[2] Dores GM, Devesa SS, Curtis RE, Linet MS, Morton LM. Acute leukemia incidence and patient 
survival among children and adults in the United States, 2001-2007. Blood 2012;119:34-43. 
[3] Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA: a cancer journal for clinicians 
2017;67:7-30. 
[4] Arber DA, Borowitz MJ, Cessna M, Etzell J, Foucar K, Hasserjian RP, Rizzo JD, Theil K, Wang SA, 
Smith AT, Rumble RB, Thomas NE, Vardiman JW. Initial Diagnostic Workup of Acute Leukemia: Guideline 
From the College of American Pathologists and the American Society of Hematology. Archives of 
pathology & laboratory medicine 2017. 
[5] Bitter MA, Le Beau MM, Rowley JD, Larson RA, Golomb HM, Vardiman JW. Associations 
between morphology, karyotype, and clinical features in myeloid leukemias. Human pathology 
1987;18:211-25. 
[6] Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M, 
Vardiman JW. The 2016 revision to the World Health Organization classification of myeloid neoplasms 
and acute leukemia. Blood 2016;127:2391-405. 
[7] Byrd JC, Mrozek K, Dodge RK, Carroll AJ, Edwards CG, Arthur DC, Pettenati MJ, Patil SR, Rao KW, 
Watson MS, Koduru PR, Moore JO, Stone RM, Mayer RJ, Feldman EJ, Davey FR, Schiffer CA, Larson RA, 
Bloomfield CD, Cancer, Leukemia Group B. Pretreatment cytogenetic abnormalities are predictive of 
induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo 
acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 
2002;100:4325-36. 
[8] NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) Acute Myeloid Leukemia 
Version 3.2017. 2017 Acessed. 
[9] Dohner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Buchner T, Dombret H, Ebert BL, 
Fenaux P, Larson RA, Levine RL, Lo-Coco F, Naoe T, Niederwieser D, Ossenkoppele GJ, Sanz M, Sierra J, 
Tallman MS, Tien HF, Wei AH, Lowenberg B, Bloomfield CD. Diagnosis and management of AML in 
adults: 2017 ELN recommendations from an international expert panel. Blood 2017;129:424-47. 
[10] Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH, Wheatley K, Harrison 
CJ, Burnett AK, National Cancer Research Institute Adult Leukaemia Working G. Refinement of 
cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare 
recurring chromosomal abnormalities among 5876 younger adult patients treated in the United 
Kingdom Medical Research Council trials. Blood 2010;116:354-65. 
[11] Gronseth CM, McElhone SE, Storer BE, Kroeger KA, Sandhu V, Fero ML, Appelbaum FR, Estey EH, 
Fang M. Prognostic significance of acquired copy-neutral loss of heterozygosity in acute myeloid 
leukemia. Cancer 2015;121:2900-8. 
[12] Li MM, Monzon FA, Biegel JA, Jobanputra V, Laffin JJ, Levy B, Leon A, Miron P, Rossi MR, Toruner 
G, Alvarez K, Doho G, Dougherty MJ, Hu X, Kash S, Streck D, Znoyko I, Hagenkord JM, Wolff DJ. A 
multicenter, cross-platform clinical validation study of cancer cytogenomic arrays. Cancer genetics 
2015;208:525-36. 
[13] Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, Church DM, Crolla JA, 
Eichler EE, Epstein CJ, Faucett WA, Feuk L, Friedman JM, Hamosh A, Jackson L, Kaminsky EB, Kok K, 
Krantz ID, Kuhn RM, Lee C, Ostell JM, Rosenberg C, Scherer SW, Spinner NB, Stavropoulos DJ, 
Tepperberg JH, Thorland EC, Vermeesch JR, Waggoner DJ, Watson MS, Martin CL, Ledbetter DH. 
Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with 

Downloaded for Anonymous User (n/a) at Indiana University - Ruth Lilly Medical Library from ClinicalKey.com by Elsevier on October 09, 2018.
For personal use only. No other uses without permission. Copyright ©2018. Elsevier Inc. All rights reserved.



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

32 

developmental disabilities or congenital anomalies. American journal of human genetics 2010;86:749-
64. 
[14] Venneti S, Huse JT. The evolving molecular genetics of low-grade glioma. Advances in anatomic 
pathology 2015;22:94-101. 
[15] Cancer Genome Atlas Research N, Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, Cooper 
LA, Rheinbay E, Miller CR, Vitucci M, Morozova O, Robertson AG, Noushmehr H, Laird PW, Cherniack AD, 
Akbani R, Huse JT, Ciriello G, Poisson LM, Barnholtz-Sloan JS, Berger MS, Brennan C, Colen RR, Colman H, 
Flanders AE, Giannini C, Grifford M, Iavarone A, Jain R, Joseph I, Kim J, Kasaian K, Mikkelsen T, Murray 
BA, O'Neill BP, Pachter L, Parsons DW, Sougnez C, Sulman EP, Vandenberg SR, Van Meir EG, von 
Deimling A, Zhang H, Crain D, Lau K, Mallery D, Morris S, Paulauskis J, Penny R, Shelton T, Sherman M, 
Yena P, Black A, Bowen J, Dicostanzo K, Gastier-Foster J, Leraas KM, Lichtenberg TM, Pierson CR, 
Ramirez NC, Taylor C, Weaver S, Wise L, Zmuda E, Davidsen T, Demchok JA, Eley G, Ferguson ML, Hutter 
CM, Mills Shaw KR, Ozenberger BA, Sheth M, Sofia HJ, Tarnuzzer R, Wang Z, Yang L, Zenklusen JC, Ayala 
B, Baboud J, Chudamani S, Jensen MA, Liu J, Pihl T, Raman R, Wan Y, Wu Y, Ally A, Auman JT, 
Balasundaram M, Balu S, Baylin SB, Beroukhim R, Bootwalla MS, Bowlby R, Bristow CA, Brooks D, 
Butterfield Y, Carlsen R, Carter S, Chin L, Chu A, Chuah E, Cibulskis K, Clarke A, Coetzee SG, Dhalla N, 
Fennell T, Fisher S, Gabriel S, Getz G, Gibbs R, Guin R, Hadjipanayis A, Hayes DN, Hinoue T, Hoadley K, 
Holt RA, Hoyle AP, Jefferys SR, Jones S, Jones CD, Kucherlapati R, Lai PH, Lander E, Lee S, Lichtenstein L, 
Ma Y, Maglinte DT, Mahadeshwar HS, Marra MA, Mayo M, Meng S, Meyerson ML, Mieczkowski PA, 
Moore RA, Mose LE, Mungall AJ, Pantazi A, Parfenov M, Park PJ, Parker JS, Perou CM, Protopopov A, Ren 
X, Roach J, Sabedot TS, Schein J, Schumacher SE, Seidman JG, Seth S, Shen H, Simons JV, Sipahimalani P, 
Soloway MG, Song X, Sun H, Tabak B, Tam A, Tan D, Tang J, Thiessen N, Triche T, Jr., Van Den Berg DJ, 
Veluvolu U, Waring S, Weisenberger DJ, Wilkerson MD, Wong T, Wu J, Xi L, Xu AW, Yang L, Zack TI, 
Zhang J, Aksoy BA, Arachchi H, Benz C, Bernard B, Carlin D, Cho J, DiCara D, Frazer S, Fuller GN, Gao J, 
Gehlenborg N, Haussler D, Heiman DI, Iype L, Jacobsen A, Ju Z, Katzman S, Kim H, Knijnenburg T, 
Kreisberg RB, Lawrence MS, Lee W, Leinonen K, Lin P, Ling S, Liu W, Liu Y, Liu Y, Lu Y, Mills G, Ng S, Noble 
MS, Paull E, Rao A, Reynolds S, Saksena G, Sanborn Z, Sander C, Schultz N, Senbabaoglu Y, Shen R, 
Shmulevich I, Sinha R, Stuart J, Sumer SO, Sun Y, Tasman N, Taylor BS, Voet D, Weinhold N, Weinstein 
JN, Yang D, Yoshihara K, Zheng S, Zhang W, Zou L, Abel T, Sadeghi S, Cohen ML, Eschbacher J, Hattab EM, 
Raghunathan A, Schniederjan MJ, Aziz D, Barnett G, Barrett W, Bigner DD, Boice L, Brewer C, Calatozzolo 
C, Campos B, Carlotti CG, Jr., Chan TA, Cuppini L, Curley E, Cuzzubbo S, Devine K, DiMeco F, Duell R, Elder 
JB, Fehrenbach A, Finocchiaro G, Friedman W, Fulop J, Gardner J, Hermes B, Herold-Mende C, Jungk C, 
Kendler A, Lehman NL, Lipp E, Liu O, Mandt R, McGraw M, McLendon R, McPherson C, Neder L, Nguyen 
P, Noss A, Nunziata R, Ostrom QT, Palmer C, Perin A, Pollo B, Potapov A, Potapova O, Rathmell WK, 
Rotin D, Scarpace L, Schilero C, Senecal K, Shimmel K, Shurkhay V, Sifri S, Singh R, Sloan AE, Smolenski K, 
Staugaitis SM, Steele R, Thorne L, Tirapelli DP, Unterberg A, Vallurupalli M, Wang Y, Warnick R, Williams 
F, Wolinsky Y, Bell S, Rosenberg M, Stewart C, Huang F, Grimsby JL, Radenbaugh AJ, Zhang J. 
Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. The New England journal 
of medicine 2015;372:2481-98. 
[16] Ramkissoon SH, Bi WL, Schumacher SE, Ramkissoon LA, Haidar S, Knoff D, Dubuc A, Brown L, 
Burns M, Cryan JB, Abedalthagafi M, Kang YJ, Schultz N, Reardon DA, Lee EQ, Rinne ML, Norden AD, 
Nayak L, Ruland S, Doherty LM, LaFrankie DC, Horvath M, Aizer AA, Russo A, Arvold ND, Claus EB, Al-
Mefty O, Johnson MD, Golby AJ, Dunn IF, Chiocca EA, Trippa L, Santagata S, Folkerth RD, Kantoff P, 
Rollins BJ, Lindeman NI, Wen PY, Ligon AH, Beroukhim R, Alexander BM, Ligon KL. Clinical 
implementation of integrated whole-genome copy number and mutation profiling for glioblastoma. 
Neuro-oncology 2015;17:1344-55. 
[17] Kool M, Korshunov A, Remke M, Jones DT, Schlanstein M, Northcott PA, Cho YJ, Koster J, 
Schouten-van Meeteren A, van Vuurden D, Clifford SC, Pietsch T, von Bueren AO, Rutkowski S, McCabe 

Downloaded for Anonymous User (n/a) at Indiana University - Ruth Lilly Medical Library from ClinicalKey.com by Elsevier on October 09, 2018.
For personal use only. No other uses without permission. Copyright ©2018. Elsevier Inc. All rights reserved.



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

33 

M, Collins VP, Backlund ML, Haberler C, Bourdeaut F, Delattre O, Doz F, Ellison DW, Gilbertson RJ, 
Pomeroy SL, Taylor MD, Lichter P, Pfister SM. Molecular subgroups of medulloblastoma: an international 
meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 
4 medulloblastomas. Acta neuropathologica 2012;123:473-84. 
[18] Ruland V, Hartung S, Kordes U, Wolff JE, Paulus W, Hasselblatt M. Choroid plexus carcinomas are 
characterized by complex chromosomal alterations related to patient age and prognosis. Genes, 
chromosomes & cancer 2014;53:373-80. 
[19] Wang L, Rao M, Fang Y, Hameed M, Viale A, Busam K, Jhanwar SC. A genome-wide high-
resolution array-CGH analysis of cutaneous melanoma and comparison of array-CGH to FISH in 
diagnostic evaluation. The Journal of molecular diagnostics : JMD 2013;15:581-91. 
[20] Cassoux N, Rodrigues MJ, Plancher C, Asselain B, Levy-Gabriel C, Lumbroso-Le Rouic L, Piperno-
Neumann S, Dendale R, Sastre X, Desjardins L, Couturier J. Genome-wide profiling is a clinically relevant 
and affordable prognostic test in posterior uveal melanoma. The British journal of ophthalmology 
2014;98:769-74. 
[21] Heinrichs S, Li C, Look AT. SNP array analysis in hematologic malignancies: avoiding false 
discoveries. Blood 2010;115:4157-61. 
[22] Simons A, Sikkema-Raddatz B, de Leeuw N, Konrad NC, Hastings RJ, Schoumans J. Genome-wide 
arrays in routine diagnostics of hematological malignancies. Hum Mutat 2012;33:941-8. 
[23] Li MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI, Roy S, Tsimberidou AM, Vnencak-Jones 
CL, Wolff DJ, Younes A, Nikiforova MN. Standards and Guidelines for the Interpretation and Reporting of 
Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular 
Pathology, American Society of Clinical Oncology, and College of American Pathologists. The Journal of 
molecular diagnostics : JMD 2017;19:4-23. 
[24] Bajaj R, Xu F, Xiang B, Wilcox K, Diadamo AJ, Kumar R, Pietraszkiewicz A, Halene S, Li P. Evidence-
based genomic diagnosis characterized chromosomal and cryptic imbalances in 30 elderly patients with 
myelodysplastic syndrome and acute myeloid leukemia. Molecular cytogenetics 2011;4:3. 
[25] Costa AR, Vasudevan A, Krepischi A, Rosenberg C, Chauffaille Mde L. Single-nucleotide 
polymorphism-array improves detection rate of genomic alterations in core-binding factor leukemia. 
Medical oncology 2013;30:579. 
[26] Iacobucci I, Lonetti A, Papayannidis C, Martinelli G. Use of single nucleotide polymorphism array 
technology to improve the identification of chromosomal lesions in leukemia. Current cancer drug 
targets 2013;13:791-810. 
[27] WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues: International Agency 
for Research on Cancer, 2008. 
[28] Huh J, Jung CW, Kim HJ, Kim YK, Moon JH, Sohn SK, Kim HJ, Min WS, Kim DH. Different 
characteristics identified by single nucleotide polymorphism array analysis in leukemia suggest the need 
for different application strategies depending on disease category. Genes, chromosomes & cancer 
2013;52:44-55. 
[29] Yi JH, Huh J, Kim HJ, Kim SH, Kim HJ, Kim YK, Sohn SK, Moon JH, Kim SH, Kim KH, Won JH, Mun 
YC, Kim H, Park J, Jung CW, Kim DH. Adverse prognostic impact of abnormal lesions detected by 
genome-wide single nucleotide polymorphism array-based karyotyping analysis in acute myeloid 
leukemia with normal karyotype. Journal of clinical oncology : official journal of the American Society of 
Clinical Oncology 2011;29:4702-8. 
[30] Bullinger L, Kronke J, Schon C, Radtke I, Urlbauer K, Botzenhardt U, Gaidzik V, Cario A, Senger C, 
Schlenk RF, Downing JR, Holzmann K, Dohner K, Dohner H. Identification of acquired copy number 
alterations and uniparental disomies in cytogenetically normal acute myeloid leukemia using high-
resolution single-nucleotide polymorphism analysis. Leukemia 2010;24:438-49. 

Downloaded for Anonymous User (n/a) at Indiana University - Ruth Lilly Medical Library from ClinicalKey.com by Elsevier on October 09, 2018.
For personal use only. No other uses without permission. Copyright ©2018. Elsevier Inc. All rights reserved.



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

34 

[31] Tiu RV, Gondek LP, O'Keefe CL, Huh J, Sekeres MA, Elson P, McDevitt MA, Wang XF, Levis MJ, 
Karp JE, Advani AS, Maciejewski JP. New lesions detected by single nucleotide polymorphism array-
based chromosomal analysis have important clinical impact in acute myeloid leukemia. Journal of clinical 
oncology : official journal of the American Society of Clinical Oncology 2009;27:5219-26. 
[32] Vujkovic M, Attiyeh EF, Ries RE, Goodman EK, Ding Y, Kavcic M, Alonzo TA, Wang YC, Gerbing RB, 
Sung L, Hirsch B, Raimondi S, Gamis AS, Meshinchi S, Aplenc R. Genomic architecture and treatment 
outcome in pediatric acute myeloid leukemia: a Children's Oncology Group report. Blood 
2017;129:3051-8. 
[33] Parkin B, Ouillette P, Yildiz M, Saiya-Cork K, Shedden K, Malek SN. Integrated genomic profiling, 
therapy response, and survival in adult acute myelogenous leukemia. Clinical cancer research : an official 
journal of the American Association for Cancer Research 2015;21:2045-56. 
[34] Mukherjee S SM, Ma Z, Andreatta, M, Lennon PA, Wheeler SR, Prescott JL, Coldren C, Casey, T, 
Rietz, H, Fasig, K, Woodford, R, Hartley, T, Spence, D, Donnelan, W, Berdeja, J, Flinn, I, Kozyr N, Bouzyk 
M, Correll, M, Ho H, Kravtsov V, Tunnel, D, Chandra P Addition of Chromosomal Microarray and Next 
Generation Sequencing to FISH and Classical Cytogenetics Enhances Genomic Profiling of Myeloid 
Malignancies. Cancer genetics 2017;In press. 
[35] Tiu RV, Gondek LP, O'Keefe CL, Elson P, Huh J, Mohamedali A, Kulasekararaj A, Advani AS, 
Paquette R, List AF, Sekeres MA, McDevitt MA, Mufti GJ, Maciejewski JP. Prognostic impact of SNP array 
karyotyping in myelodysplastic syndromes and related myeloid malignancies. Blood 2011;117:4552-60. 
[36] Solary E, Bernard OA, Tefferi A, Fuks F, Vainchenker W. The Ten-Eleven Translocation-2 (TET2) 
gene in hematopoiesis and hematopoietic diseases. Leukemia 2014;28:485-96. 
[37] Abdel-Wahab O, Pardanani A, Rampal R, Lasho TL, Levine RL, Tefferi A. DNMT3A mutational 
analysis in primary myelofibrosis, chronic myelomonocytic leukemia and advanced phases of 
myeloproliferative neoplasms. Leukemia 2011;25:1219-20. 
[38] Chou WC, Chou SC, Liu CY, Chen CY, Hou HA, Kuo YY, Lee MC, Ko BS, Tang JL, Yao M, Tsay W, Wu 
SJ, Huang SY, Hsu SC, Chen YC, Chang YC, Kuo YY, Kuo KT, Lee FY, Liu MC, Liu CW, Tseng MH, Huang CF, 
Tien HF. TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with 
intermediate-risk cytogenetics. Blood 2011;118:3803-10. 
[39] Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A, Kosmider O, Le Couedic 
JP, Robert F, Alberdi A, Lecluse Y, Plo I, Dreyfus FJ, Marzac C, Casadevall N, Lacombe C, Romana SP, 
Dessen P, Soulier J, Viguie F, Fontenay M, Vainchenker W, Bernard OA. Mutation in TET2 in myeloid 
cancers. The New England journal of medicine 2009;360:2289-301. 
[40] Gaidzik VI, Paschka P, Spath D, Habdank M, Kohne CH, Germing U, von Lilienfeld-Toal M, Held G, 
Horst HA, Haase D, Bentz M, Gotze K, Dohner H, Schlenk RF, Bullinger L, Dohner K. TET2 mutations in 
acute myeloid leukemia (AML): results from a comprehensive genetic and clinical analysis of the AML 
study group. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 
2012;30:1350-7. 
[41] Metzeler KH, Maharry K, Radmacher MD, Mrozek K, Margeson D, Becker H, Curfman J, Holland 
KB, Schwind S, Whitman SP, Wu YZ, Blum W, Powell BL, Carter TH, Wetzler M, Moore JO, Kolitz JE, Baer 
MR, Carroll AJ, Larson RA, Caligiuri MA, Marcucci G, Bloomfield CD. TET2 mutations improve the new 
European LeukemiaNet risk classification of acute myeloid leukemia: a Cancer and Leukemia Group B 
study. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 
2011;29:1373-81. 
[42] Weissmann S, Alpermann T, Grossmann V, Kowarsch A, Nadarajah N, Eder C, Dicker F, Fasan A, 
Haferlach C, Haferlach T, Kern W, Schnittger S, Kohlmann A. Landscape of TET2 mutations in acute 
myeloid leukemia. Leukemia 2012;26:934-42. 
[43] Lindsley RC, Mar BG, Mazzola E, Grauman PV, Shareef S, Allen SL, Pigneux A, Wetzler M, Stuart 
RK, Erba HP, Damon LE, Powell BL, Lindeman N, Steensma DP, Wadleigh M, DeAngelo DJ, Neuberg D, 

Downloaded for Anonymous User (n/a) at Indiana University - Ruth Lilly Medical Library from ClinicalKey.com by Elsevier on October 09, 2018.
For personal use only. No other uses without permission. Copyright ©2018. Elsevier Inc. All rights reserved.



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

35 

Stone RM, Ebert BL. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood 
2015;125:1367-76. 
[44] Bullinger L, Dohner K, Dohner H. Genomics of Acute Myeloid Leukemia Diagnosis and Pathways. 
Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2017;35:934-46. 
[45] Bacher U, Weissmann S, Kohlmann A, Schindela S, Alpermann T, Schnittger S, Kern W, Haferlach 
T, Haferlach C. TET2 deletions are a recurrent but rare phenomenon in myeloid malignancies and are 
frequently accompanied by TET2 mutations on the remaining allele. British journal of haematology 
2012;156:67-75. 
[46] Parkin B, Ouillette P, Wang Y, Liu Y, Wright W, Roulston D, Purkayastha A, Dressel A, Karp J, 
Bockenstedt P, Al-Zoubi A, Talpaz M, Kujawski L, Liu Y, Shedden K, Shakhan S, Li C, Erba H, Malek SN. NF1 
inactivation in adult acute myelogenous leukemia. Clinical cancer research : an official journal of the 
American Association for Cancer Research 2010;16:4135-47. 
[47] Haferlach C, Grossmann V, Kohlmann A, Schindela S, Kern W, Schnittger S, Haferlach T. Deletion 
of the tumor-suppressor gene NF1 occurs in 5% of myeloid malignancies and is accompanied by a 
mutation in the remaining allele in half of the cases. Leukemia 2012;26:834-9. 
[48] Boudry-Labis E, Roche-Lestienne C, Nibourel O, Boissel N, Terre C, Perot C, Eclache V, Gachard N, 
Tigaud I, Plessis G, Cuccuini W, Geffroy S, Villenet C, Figeac M, Lepretre F, Renneville A, Cheok M, Soulier 
J, Dombret H, Preudhomme C, French Ag. Neurofibromatosis-1 gene deletions and mutations in de novo 
adult acute myeloid leukemia. American journal of hematology 2013;88:306-11. 
[49] Walter MJ, Payton JE, Ries RE, Shannon WD, Deshmukh H, Zhao Y, Baty J, Heath S, Westervelt P, 
Watson MA, Tomasson MH, Nagarajan R, O'Gara BP, Bloomfield CD, Mrozek K, Selzer RR, Richmond TA, 
Kitzman J, Geoghegan J, Eis PS, Maupin R, Fulton RS, McLellan M, Wilson RK, Mardis ER, Link DC, 
Graubert TA, DiPersio JF, Ley TJ. Acquired copy number alterations in adult acute myeloid leukemia 
genomes. Proceedings of the National Academy of Sciences of the United States of America 
2009;106:12950-5. 
[50] Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D, Ratajczak J, Resende IC, Haworth 
C, Hock R, Loh M, Felix C, Roy DC, Busque L, Kurnit D, Willman C, Gewirtz AM, Speck NA, Bushweller JH, 
Li FP, Gardiner K, Poncz M, Maris JM, Gilliland DG. Haploinsufficiency of CBFA2 causes familial 
thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nature genetics 
1999;23:166-75. 
[51] Michaud J, Wu F, Osato M, Cottles GM, Yanagida M, Asou N, Shigesada K, Ito Y, Benson KF, 
Raskind WH, Rossier C, Antonarakis SE, Israels S, McNicol A, Weiss H, Horwitz M, Scott HS. In vitro 
analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet disorder with 
predisposition to acute myelogenous leukemia: implications for mechanisms of pathogenesis. Blood 
2002;99:1364-72. 
[52] Gaidzik VI, Bullinger L, Schlenk RF, Zimmermann AS, Rock J, Paschka P, Corbacioglu A, Krauter J, 
Schlegelberger B, Ganser A, Spath D, Kundgen A, Schmidt-Wolf IG, Gotze K, Nachbaur D, Pfreundschuh 
M, Horst HA, Dohner H, Dohner K. RUNX1 mutations in acute myeloid leukemia: results from a 
comprehensive genetic and clinical analysis from the AML study group. Journal of clinical oncology : 
official journal of the American Society of Clinical Oncology 2011;29:1364-72. 
[53] Tang JL, Hou HA, Chen CY, Liu CY, Chou WC, Tseng MH, Huang CF, Lee FY, Liu MC, Yao M, Huang 
SY, Ko BS, Hsu SC, Wu SJ, Tsay W, Chen YC, Lin LI, Tien HF. AML1/RUNX1 mutations in 470 adult patients 
with de novo acute myeloid leukemia: prognostic implication and interaction with other gene 
alterations. Blood 2009;114:5352-61. 
[54] Greif PA, Konstandin NP, Metzeler KH, Herold T, Pasalic Z, Ksienzyk B, Dufour A, Schneider F, 
Schneider S, Kakadia PM, Braess J, Sauerland MC, Berdel WE, Buchner T, Woermann BJ, Hiddemann W, 
Spiekermann K, Bohlander SK. RUNX1 mutations in cytogenetically normal acute myeloid leukemia are 
associated with a poor prognosis and up-regulation of lymphoid genes. Haematologica 2012;97:1909-15. 

Downloaded for Anonymous User (n/a) at Indiana University - Ruth Lilly Medical Library from ClinicalKey.com by Elsevier on October 09, 2018.
For personal use only. No other uses without permission. Copyright ©2018. Elsevier Inc. All rights reserved.



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

36 

[55] Mendler JH, Maharry K, Radmacher MD, Mrozek K, Becker H, Metzeler KH, Schwind S, Whitman 
SP, Khalife J, Kohlschmidt J, Nicolet D, Powell BL, Carter TH, Wetzler M, Moore JO, Kolitz JE, Baer MR, 
Carroll AJ, Larson RA, Caligiuri MA, Marcucci G, Bloomfield CD. RUNX1 mutations are associated with 
poor outcome in younger and older patients with cytogenetically normal acute myeloid leukemia and 
with distinct gene and MicroRNA expression signatures. Journal of clinical oncology : official journal of 
the American Society of Clinical Oncology 2012;30:3109-18. 
[56] Schnittger S, Dicker F, Kern W, Wendland N, Sundermann J, Alpermann T, Haferlach C, Haferlach 
T. RUNX1 mutations are frequent in de novo AML with noncomplex karyotype and confer an 
unfavorable prognosis. Blood 2011;117:2348-57. 
[57] Itzhar N, Dessen P, Toujani S, Auger N, Preudhomme C, Richon C, Lazar V, Saada V, Bennaceur A, 
Bourhis JH, de Botton S, Bernheim A. Chromosomal minimal critical regions in therapy-related leukemia 
appear different from those of de novo leukemia by high-resolution aCGH. PloS one 2011;6:e16623. 
[58] Roumier C, Fenaux P, Lafage M, Imbert M, Eclache V, Preudhomme C. New mechanisms of 
AML1 gene alteration in hematological malignancies. Leukemia 2003;17:9-16. 
[59] Shen W, Szankasi P, Sederberg M, Schumacher J, Frizzell KA, Gee EP, Patel JL, South ST, Xu X, 
Kelley TW. Concurrent detection of targeted copy number variants and mutations using a myeloid 
malignancy next generation sequencing panel allows comprehensive genetic analysis using a single 
testing strategy. British journal of haematology 2016;173:49-58. 
[60] Beri-Dexheimer M, Latger-Cannard V, Philippe C, Bonnet C, Chambon P, Roth V, Gregoire MJ, 
Bordigoni P, Lecompte T, Leheup B, Jonveaux P. Clinical phenotype of germline RUNX1 
haploinsufficiency: from point mutations to large genomic deletions. European journal of human 
genetics : EJHG 2008;16:1014-8. 
[61] Rucker FG, Bullinger L, Schwaenen C, Lipka DB, Wessendorf S, Frohling S, Bentz M, Miller S, 
Scholl C, Schlenk RF, Radlwimmer B, Kestler HA, Pollack JR, Lichter P, Dohner K, Dohner H. Disclosure of 
candidate genes in acute myeloid leukemia with complex karyotypes using microarray-based molecular 
characterization. Journal of clinical oncology : official journal of the American Society of Clinical 
Oncology 2006;24:3887-94. 
[62] Nibourel O, Guihard S, Roumier C, Pottier N, Terre C, Paquet A, Peyrouze P, Geffroy S, Quentin S, 
Alberdi A, Abdelali RB, Renneville A, Demay C, Celli-Lebras K, Barbry P, Quesnel B, Castaigne S, Dombret 
H, Soulier J, Preudhomme C, Cheok MH. Copy-number analysis identified new prognostic marker in 
acute myeloid leukemia. Leukemia 2017;31:555-64. 
[63] Fitzgibbon J, Smith LL, Raghavan M, Smith ML, Debernardi S, Skoulakis S, Lillington D, Lister TA, 
Young BD. Association between acquired uniparental disomy and homozygous gene mutation in acute 
myeloid leukemias. Cancer research 2005;65:9152-4. 
[64] O'Keefe C, McDevitt MA, Maciejewski JP. Copy neutral loss of heterozygosity: a novel 
chromosomal lesion in myeloid malignancies. Blood 2010;115:2731-9. 
[65] Gupta M, Raghavan M, Gale RE, Chelala C, Allen C, Molloy G, Chaplin T, Linch DC, Cazier JB, 
Young BD. Novel regions of acquired uniparental disomy discovered in acute myeloid leukemia. Genes, 
chromosomes & cancer 2008;47:729-39. 
[66] Milosevic JD, Puda A, Malcovati L, Berg T, Hofbauer M, Stukalov A, Klampfl T, Harutyunyan AS, 
Gisslinger H, Gisslinger B, Burjanivova T, Rumi E, Pietra D, Elena C, Vannucchi AM, Doubek M, Dvorakova 
D, Robesova B, Wieser R, Koller E, Suvajdzic N, Tomin D, Tosic N, Colinge J, Racil Z, Steurer M, Pavlovic S, 
Cazzola M, Kralovics R. Clinical significance of genetic aberrations in secondary acute myeloid leukemia. 
American journal of hematology 2012;87:1010-6. 
[67] Dunbar AJ, Gondek LP, O'Keefe CL, Makishima H, Rataul MS, Szpurka H, Sekeres MA, Wang XF, 
McDevitt MA, Maciejewski JP. 250K single nucleotide polymorphism array karyotyping identifies 
acquired uniparental disomy and homozygous mutations, including novel missense substitutions of c-
Cbl, in myeloid malignancies. Cancer research 2008;68:10349-57. 

Downloaded for Anonymous User (n/a) at Indiana University - Ruth Lilly Medical Library from ClinicalKey.com by Elsevier on October 09, 2018.
For personal use only. No other uses without permission. Copyright ©2018. Elsevier Inc. All rights reserved.



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

37 

[68] Kronke J, Bullinger L, Teleanu V, Tschurtz F, Gaidzik VI, Kuhn MW, Rucker FG, Holzmann K, 
Paschka P, Kapp-Schworer S, Spath D, Kindler T, Schittenhelm M, Krauter J, Ganser A, Gohring G, 
Schlegelberger B, Schlenk RF, Dohner H, Dohner K. Clonal evolution in relapsed NPM1-mutated acute 
myeloid leukemia. Blood 2013;122:100-8. 
[69] Koren-Michowitz M, Sato-Otsubo A, Nagler A, Haferlach T, Ogawa S, Koeffler HP. Older patients 
with normal karyotype acute myeloid leukemia have a higher rate of genomic changes compared to 
young patients as determined by SNP array analysis. Leukemia research 2012;36:467-73. 
[70] Silva FP, Almeida I, Morolli B, Brouwer-Mandema G, Wessels H, Vossen R, Vrieling H, Marijt EW, 
Valk PJ, Kluin-Nelemans HC, Sperr WR, Ludwig WD, Giphart-Gassler M. Genome wide molecular analysis 
of minimally differentiated acute myeloid leukemia. Haematologica 2009;94:1546-54. 
[71] Parkin B, Erba H, Ouillette P, Roulston D, Purkayastha A, Karp J, Talpaz M, Kujawski L, Shakhan S, 
Li C, Shedden K, Malek SN. Acquired genomic copy number aberrations and survival in adult acute 
myelogenous leukemia. Blood 2010;116:4958-67. 
[72] Thiede C, Steudel C, Mohr B, Schaich M, Schakel U, Platzbecker U, Wermke M, Bornhauser M, 
Ritter M, Neubauer A, Ehninger G, Illmer T. Analysis of FLT3-activating mutations in 979 patients with 
acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor 
prognosis. Blood 2002;99:4326-35. 
[73] Whitman SP, Archer KJ, Feng L, Baldus C, Becknell B, Carlson BD, Carroll AJ, Mrozek K, Vardiman 
JW, George SL, Kolitz JE, Larson RA, Bloomfield CD, Caligiuri MA. Absence of the wild-type allele predicts 
poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal 
tandem duplication of FLT3: a cancer and leukemia group B study. Cancer research 2001;61:7233-9. 
[74] Bakst RL, Tallman MS, Douer D, Yahalom J. How I treat extramedullary acute myeloid leukemia. 
Blood 2011;118:3785-93. 
[75] Deeb G, Baer MR, Gaile DP, Sait SN, Barcos M, Wetzler M, Conroy JM, Nowak NJ, Cowell JK, 
Cheney RT. Genomic profiling of myeloid sarcoma by array comparative genomic hybridization. Genes, 
chromosomes & cancer 2005;44:373-83. 
[76] Mirza MK, Sukhanova M, Stolzel F, Onel K, Larson RA, Stock W, Ehninger G, Kuithan F, Zophel K, 
Reddy P, Joseph L, Raca G. Genomic aberrations in myeloid sarcoma without blood or bone marrow 
involvement: characterization of formalin-fixed paraffin-embedded samples by chromosomal 
microarrays. Leukemia research 2014;38:1091-6. 
[77] Rucker FG, Schlenk RF, Bullinger L, Kayser S, Teleanu V, Kett H, Habdank M, Kugler CM, 
Holzmann K, Gaidzik VI, Paschka P, Held G, von Lilienfeld-Toal M, Lubbert M, Frohling S, Zenz T, Krauter 
J, Schlegelberger B, Ganser A, Lichter P, Dohner K, Dohner H. TP53 alterations in acute myeloid leukemia 
with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and 
dismal outcome. Blood 2012;119:2114-21. 
[78] Slovak ML, Kopecky KJ, Cassileth PA, Harrington DH, Theil KS, Mohamed A, Paietta E, Willman 
CL, Head DR, Rowe JM, Forman SJ, Appelbaum FR. Karyotypic analysis predicts outcome of preremission 
and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern 
Cooperative Oncology Group Study. Blood 2000;96:4075-83. 
[79] Schoch C, Kern W, Kohlmann A, Hiddemann W, Schnittger S, Haferlach T. Acute myeloid 
leukemia with a complex aberrant karyotype is a distinct biological entity characterized by genomic 
imbalances and a specific gene expression profile. Genes, chromosomes & cancer 2005;43:227-38. 
[80] Fischer K, Frohling S, Scherer SW, McAllister Brown J, Scholl C, Stilgenbauer S, Tsui LC, Lichter P, 
Dohner H. Molecular cytogenetic delineation of deletions and translocations involving chromosome 
band 7q22 in myeloid leukemias. Blood 1997;89:2036-41. 
[81] Le Beau MM, Espinosa R, 3rd, Davis EM, Eisenbart JD, Larson RA, Green ED. Cytogenetic and 
molecular delineation of a region of chromosome 7 commonly deleted in malignant myeloid diseases. 
Blood 1996;88:1930-5. 

Downloaded for Anonymous User (n/a) at Indiana University - Ruth Lilly Medical Library from ClinicalKey.com by Elsevier on October 09, 2018.
For personal use only. No other uses without permission. Copyright ©2018. Elsevier Inc. All rights reserved.



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

38 

[82] Jerez A, Sugimoto Y, Makishima H, Verma A, Jankowska AM, Przychodzen B, Visconte V, Tiu RV, 
O'Keefe CL, Mohamedali AM, Kulasekararaj AG, Pellagatti A, McGraw K, Muramatsu H, Moliterno AR, 
Sekeres MA, McDevitt MA, Kojima S, List A, Boultwood J, Mufti GJ, Maciejewski JP. Loss of 
heterozygosity in 7q myeloid disorders: clinical associations and genomic pathogenesis. Blood 
2012;119:6109-17. 
[83] Boultwood J. CUX1 in leukemia: dosage matters. Blood 2013;121:869-71. 
[84] Honda H, Nagamachi A, Inaba T. -7/7q- syndrome in myeloid-lineage hematopoietic 
malignancies: attempts to understand this complex disease entity. Oncogene 2015;34:2413-25. 
[85] Hosono N, Makishima H, Mahfouz R, Przychodzen B, Yoshida K, Jerez A, LaFramboise T, 
Polprasert C, Clemente MJ, Shiraishi Y, Chiba K, Tanaka H, Miyano S, Sanada M, Cui E, Verma AK, 
McDevitt MA, List AF, Saunthararajah Y, Sekeres MA, Boultwood J, Ogawa S, Maciejewski JP. Recurrent 
genetic defects on chromosome 5q in myeloid neoplasms. Oncotarget 2017;8:6483-95. 
[86] Ebert BL. Molecular dissection of the 5q deletion in myelodysplastic syndrome. Seminars in 
oncology 2011;38:621-6. 
[87] Jerez A, Gondek LP, Jankowska AM, Makishima H, Przychodzen B, Tiu RV, O'Keefe CL, 
Mohamedali AM, Batista D, Sekeres MA, McDevitt MA, Mufti GJ, Maciejewski JP. Topography, clinical, 
and genomic correlates of 5q myeloid malignancies revisited. Journal of clinical oncology : official journal 
of the American Society of Clinical Oncology 2012;30:1343-9. 
[88] Mehrotra M, Luthra R, Ravandi F, Sargent RL, Barkoh BA, Abraham R, Mishra BM, Medeiros LJ, 
Patel KP. Identification of clinically important chromosomal aberrations in acute myeloid leukemia by 
array-based comparative genomic hybridization. Leukemia & lymphoma 2014;55:2538-48. 
[89] Bochtler T, Granzow M, Stolzel F, Kunz C, Mohr B, Kartal-Kaess M, Hinderhofer K, Heilig CE, 
Kramer M, Thiede C, Endris V, Kirchner M, Stenzinger A, Benner A, Bornhauser M, Ehninger G, Ho AD, 
Jauch A, Kramer A, Study Alliance Leukemia I. Marker chromosomes can arise from chromothripsis and 
predict adverse prognosis in acute myeloid leukemia. Blood 2017;129:1333-42. 
[90] Radtke I, Mullighan CG, Ishii M, Su X, Cheng J, Ma J, Ganti R, Cai Z, Goorha S, Pounds SB, Cao X, 
Obert C, Armstrong J, Zhang J, Song G, Ribeiro RC, Rubnitz JE, Raimondi SC, Shurtleff SA, Downing JR. 
Genomic analysis reveals few genetic alterations in pediatric acute myeloid leukemia. Proceedings of the 
National Academy of Sciences of the United States of America 2009;106:12944-9. 
[91] Busse TM, Roth JJ, Wilmoth D, Wainwright L, Tooke L, Biegel JA. Copy number alterations 
determined by single nucleotide polymorphism array testing in the clinical laboratory are indicative of 
gene fusions in pediatric cancer patients. Genes, chromosomes & cancer 2017. 
[92] Johansson B, Fioretos T, Mitelman F. Cytogenetic and molecular genetic evolution of chronic 
myeloid leukemia. Acta haematologica 2002;107:76-94. 
[93] Winters JL, Davila JI, McDonald AM, Nair AA, Fadra N, Wehrs RN, Thomas BC, Balcom JR, Jin L, 
Wu X, Voss JS, Klee EW, Oliver GR, Graham RP, Neff JL, Rumilla KM, Aypar U, Kipp BR, Jenkins RB, Jen J, 
Halling KC. Development and Verification of an RNA Sequencing (RNA-Seq) Assay for the Detection of 
Gene Fusions in Tumors. The Journal of molecular diagnostics : JMD 2018;20:495-511. 
[94] Fromer M, Moran JL, Chambert K, Banks E, Bergen SE, Ruderfer DM, Handsaker RE, McCarroll 
SA, O'Donovan MC, Owen MJ, Kirov G, Sullivan PF, Hultman CM, Sklar P, Purcell SM. Discovery and 
statistical genotyping of copy-number variation from whole-exome sequencing depth. American journal 
of human genetics 2012;91:597-607. 
[95] Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding L, 
Wilson RK. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome 
sequencing. Genome research 2012;22:568-76. 
[96] Krumm N, Sudmant PH, Ko A, O'Roak BJ, Malig M, Coe BP, Project NES, Quinlan AR, Nickerson 
DA, Eichler EE. Copy number variation detection and genotyping from exome sequence data. Genome 
research 2012;22:1525-32. 

Downloaded for Anonymous User (n/a) at Indiana University - Ruth Lilly Medical Library from ClinicalKey.com by Elsevier on October 09, 2018.
For personal use only. No other uses without permission. Copyright ©2018. Elsevier Inc. All rights reserved.



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

39 

[97] Plagnol V, Curtis J, Epstein M, Mok KY, Stebbings E, Grigoriadou S, Wood NW, Hambleton S, 
Burns SO, Thrasher AJ, Kumararatne D, Doffinger R, Nejentsev S. A robust model for read count data in 
exome sequencing experiments and implications for copy number variant calling. Bioinformatics 
2012;28:2747-54. 
[98] Sathirapongsasuti JF, Lee H, Horst BA, Brunner G, Cochran AJ, Binder S, Quackenbush J, Nelson 
SF. Exome sequencing-based copy-number variation and loss of heterozygosity detection: ExomeCNV. 
Bioinformatics 2011;27:2648-54. 
[99] Zhao M, Wang Q, Wang Q, Jia P, Zhao Z. Computational tools for copy number variation (CNV) 
detection using next-generation sequencing data: features and perspectives. BMC bioinformatics 
2013;14 Suppl 11:S1. 
[100] McKerrell T, Moreno T, Ponstingl H, Bolli N, Dias JM, Tischler G, Colonna V, Manasse B, Bench A, 
Bloxham D, Herman B, Fletcher D, Park N, Quail MA, Manes N, Hodkinson C, Baxter J, Sierra J, Foukaneli 
T, Warren AJ, Chi J, Costeas P, Rad R, Huntly B, Grove C, Ning Z, Tyler-Smith C, Varela I, Scott M, 
Nomdedeu J, Mustonen V, Vassiliou GS. Development and validation of a comprehensive genomic 
diagnostic tool for myeloid malignancies. Blood 2016;128:e1-9. 
[101] Shen W, Paxton CN, Szankasi P, Longhurst M, Schumacher JA, Frizzell KA, Sorrells SM, Clayton 
AL, Jattani RP, Patel JL, Toydemir R, Kelley TW, Xu X. Detection of genome-wide copy number variants in 
myeloid malignancies using next-generation sequencing. J Clin Pathol 2017. 
[102] Bullinger L, Frohling S. Array-based cytogenetic approaches in acute myeloid leukemia: clinical 
impact and biological insights. Seminars in oncology 2012;39:37-46. 
[103] Barresi V, Romano A, Musso N, Capizzi C, Consoli C, Martelli MP, Palumbo G, Di Raimondo F, 
Condorelli DF. Broad copy neutral-loss of heterozygosity regions and rare recurring copy number 
abnormalities in normal karyotype-acute myeloid leukemia genomes. Genes, chromosomes & cancer 
2010;49:1014-23. 
[104] Akagi T, Ogawa S, Dugas M, Kawamata N, Yamamoto G, Nannya Y, Sanada M, Miller CW, Yung A, 
Schnittger S, Haferlach T, Haferlach C, Koeffler HP. Frequent genomic abnormalities in acute myeloid 
leukemia/myelodysplastic syndrome with normal karyotype. Haematologica 2009;94:213-23. 
[105] Flach J, Dicker F, Schnittger S, Schindela S, Kohlmann A, Haferlach T, Kern W, Haferlach C. An 
accumulation of cytogenetic and molecular genetic events characterizes the progression from MDS to 
secondary AML: an analysis of 38 paired samples analyzed by cytogenetics, molecular mutation analysis 
and SNP microarray profiling. Leukemia 2011;25:713-8. 
[106] Kim MH, Stewart J, Devlin C, Kim YT, Boyd E, Connor M. The application of comparative genomic 
hybridization as an additional tool in the chromosome analysis of acute myeloid leukemia and 
myelodysplastic syndromes. Cancer genetics and cytogenetics 2001;126:26-33. 
[107] Rumi E, Harutyunyan A, Elena C, Pietra D, Klampfl T, Bagienski K, Berg T, Casetti I, Pascutto C, 
Passamonti F, Kralovics R, Cazzola M. Identification of genomic aberrations associated with disease 
transformation by means of high-resolution SNP array analysis in patients with myeloproliferative 
neoplasm. American journal of hematology 2011;86:974-9. 
[108] Gondek LP, Tiu R, O'Keefe CL, Sekeres MA, Theil KS, Maciejewski JP. Chromosomal lesions and 
uniparental disomy detected by SNP arrays in MDS, MDS/MPD, and MDS-derived AML. Blood 
2008;111:1534-42. 
[109] Tyybakinoja A, Elonen E, Vauhkonen H, Saarela J, Knuutila S. Single nucleotide polymorphism 
microarray analysis of karyotypically normal acute myeloid leukemia reveals frequent copy number 
neutral loss of heterozygosity. Haematologica 2008;93:631-2. 
[110] McNerney ME, Brown CD, Wang X, Bartom ET, Karmakar S, Bandlamudi C, Yu S, Ko J, Sandall BP, 
Stricker T, Anastasi J, Grossman RL, Cunningham JM, Le Beau MM, White KP. CUX1 is a haploinsufficient 
tumor suppressor gene on chromosome 7 frequently inactivated in acute myeloid leukemia. Blood 
2013;121:975-83. 

Downloaded for Anonymous User (n/a) at Indiana University - Ruth Lilly Medical Library from ClinicalKey.com by Elsevier on October 09, 2018.
For personal use only. No other uses without permission. Copyright ©2018. Elsevier Inc. All rights reserved.



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

40 

[111] Kjeldsen E. Oligo-based High-resolution aCGH Analysis Enhances Routine Cytogenetic 
Diagnostics in Haematological Malignancies. Cancer genomics & proteomics 2015;12:301-37. 
[112] Paulsson K, Heidenblad M, Strombeck B, Staaf J, Jonsson G, Borg A, Fioretos T, Johansson B. 
High-resolution genome-wide array-based comparative genome hybridization reveals cryptic 
chromosome changes in AML and MDS cases with trisomy 8 as the sole cytogenetic aberration. 
Leukemia 2006;20:840-6. 
[113] Feurstein S, Rucker FG, Bullinger L, Hofmann W, Manukjan G, Gohring G, Lehmann U, Heuser M, 
Ganser A, Dohner K, Schlegelberger B, Steinemann D. Haploinsufficiency of ETV6 and CDKN1B in patients 
with acute myeloid leukemia and complex karyotype. BMC genomics 2014;15:784. 
[114] Zhang R, Kim YM, Wang X, Li Y, Lu X, Sternenberger AR, Li S, Lee JY. Genomic Copy Number 
Variations in the Myelodysplastic Syndrome and Acute Myeloid Leukemia Patients with del(5q) and/or -
7/del(7q). International journal of medical sciences 2015;12:719-26. 
[115] Wall M, Rayeroux KC, MacKinnon RN, Zordan A, Campbell LJ. ETV6 deletion is a common 
additional abnormality in patients with myelodysplastic syndromes or acute myeloid leukemia and 
monosomy 7. Haematologica 2012;97:1933-6. 
[116] Serrano E, Carnicer MJ, Orantes V, Estivill C, Lasa A, Brunet S, Aventin AM, Sierra J, Nomdedeu 
JF. Uniparental disomy may be associated with microsatellite instability in acute myeloid leukemia (AML) 
with a normal karyotype. Leukemia & lymphoma 2008;49:1178-83. 
[117] Koh KN, Lee JO, Seo EJ, Lee SW, Suh JK, Im HJ, Seo JJ. Clinical significance of previously cryptic 
copy number alterations and loss of heterozygosity in pediatric acute myeloid leukemia and 
myelodysplastic syndrome determined using combined array comparative genomic hybridization plus 
single-nucleotide polymorphism microarray analyses. Journal of Korean medical science 2014;29:926-33. 
[118] Stirewalt DL, Pogosova-Agadjanyan EL, Tsuchiya K, Joaquin J, Meshinchi S. Copy-neutral loss of 
heterozygosity is prevalent and a late event in the pathogenesis of FLT3/ITD AML. Blood cancer journal 
2014;4:e208. 
[119] Barresi V, Palumbo GA, Musso N, Consoli C, Capizzi C, Meli CR, Romano A, Di Raimondo F, 
Condorelli DF. Clonal selection of 11q CN-LOH and CBL gene mutation in a serially studied patient during 
MDS progression to AML. Leukemia research 2010;34:1539-42. 
[120] Huh J, Tiu RV, Gondek LP, O'Keefe CL, Jasek M, Makishima H, Jankowska AM, Jiang Y, Verma A, 
Theil KS, McDevitt MA, Maciejewski JP. Characterization of chromosome arm 20q abnormalities in 
myeloid malignancies using genome-wide single nucleotide polymorphism array analysis. Genes, 
chromosomes & cancer 2010;49:390-9. 
[121] Baldus CD, Liyanarachchi S, Mrozek K, Auer H, Tanner SM, Guimond M, Ruppert AS, Mohamed 
N, Davuluri RV, Caligiuri MA, Bloomfield CD, de la Chapelle A. Acute myeloid leukemia with complex 
karyotypes and abnormal chromosome 21: Amplification discloses overexpression of APP, ETS2, and 
ERG genes. Proceedings of the National Academy of Sciences of the United States of America 
2004;101:3915-20. 
[122] Raghavan M, Lillington DM, Skoulakis S, Debernardi S, Chaplin T, Foot NJ, Lister TA, Young BD. 
Genome-wide single nucleotide polymorphism analysis reveals frequent partial uniparental disomy due 
to somatic recombination in acute myeloid leukemias. Cancer research 2005;65:375-8. 

 

Downloaded for Anonymous User (n/a) at Indiana University - Ruth Lilly Medical Library from ClinicalKey.com by Elsevier on October 09, 2018.
For personal use only. No other uses without permission. Copyright ©2018. Elsevier Inc. All rights reserved.


